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Abstract

A solution for the unsteady-state temperature distribution in a fin of con-
stant area dissipating heat only by convection to an environment of constant
temperature, is obtained. The partial differential equation is separated into
an ordinary differential equation with position as the independent variable,
and a partial differential equation with position and time as the independent
variables. The problem is solved for either a step function in temperature
or a step function in heat flow rate, for zero time, at one boundary while the
other boundary is insulated. The initial condition is taken as an arbitrary
constant. The unspecified boundary values (temperature or heat flow rate)
are presented for both cases by utilizing dimensionless plots. Experimental
verification is presented for the case of constant heat flow rate boundary
condition.

Nomenclature

A cross sectional area

Fo Fourier number

h convection coefficient

k conduction coefficient

L fin length

n integer

Nu Nusselt number

P fin perimeter

g0 heat flow rate at ¥ = 0
g(x, ) heat flow rate

to base temperature (¥ = 0)
t initial temperature

ts surrounding temperature

Hx, 1) temperature function
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x position variable

X(x) functional in »

o thermal diffusivity

I'(z) functional in r

o dimensionless position variable
B(x, v} functional in # and =

An eigenvalues

T time

(¥, ) functional in » and

§ 1. Introduction

The subject of heat transfer from fins and extended surfaces has
been studied analytically and experimentally for almost two centu-
ries [1]. Ingenhouss [2] used fins to demonstrate the difference in
thermal conductivities of various materials. J. B. Biot [3] and
Despretz [4] formulated the mathematical model of the problem.
Jacob [5] considered the fin problem in order to determine the cor-
rections necessary for temperature measurements of thermocouples.
Harper and Brown [6] dealt with the problem as encountered in the
fin cooling of internal combustion engines. Harper and Brown also
pioneered the analysis of variable geometry fins. Schmidt [7] ex-
tended the consideration of the variable geometry fin to the de-
termination of the minimum mass profile fin. Many other investi-
gators have also considered convecting fins.

Recently the subject of radiating fins has come under extensive
study because.of the interest in space. Shouman [8] has considered
this problem in its general form and a biography on the subject is
listed in this reference.

The above mentioned references deal with the steady state
problem. However, the transient fin problem has as many practi-
cal applications as the steady-state problem. It is in this vein that
this paper will deal with the transient convecting fin problem.

§ 2. Analysis
The governing partial differential equation is written as
24(x, ) hP 1 ot

el v e W

The above equation is subject to the following boundary conditions:
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Case I: For a step function in temperature at one boundary

B.C. 1. #0,7) =1
ot I 0
2. ™ (L,7) =
I.C. t(x, O) =1

Case I1: For a step function in heat flow rate at one boundary:

ot
B.C. 1. — (0,7) = —qo/R4
o (0.7) = —aof

ot
2. —(L,n=0
ox

I.C. t(x, O) = ti
Case I. We shall define:
O(x, 7) = t(x, ) — to.

Utilizing (2), the boundary conditions are made homogeneous,

giving:

26(v,7) AP 1P 1 2
P Y O, 7) —

with B.C. 1. 6(0,7) =0,
00
2. —(L,7) =0, and
ox

kA( o 0

1. C. B(x, 0) =1t — 1o

Now let
O(x, 7) = X(x) + &(x, 7).

Ifowts) :——(x, ’T)

Equation (4) yields a steady-state problem, and a transient problem.

The steady-state problem and solution is

d2X(y) kP P
T Xk = _
dx? g W) =g b=ty
B.C. 1. X(0)=0
X
2 X o
P

X0 = (fo—ty) [cosh(hp/kA)é (L — x) } B

cosh(hPJkA)t L
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The transient problem and solution by separation of variables is

24(x,7) WP 1 o
o Tt =) (7)

x Ot

B.C. 1. ¢(0,7) =0,
2. —a—(é (L,7) =0,
o0x

I.C. ¢(x, O) = ti — Ifo —_ X(x)

4 hP
d(x,7) = X Bpexp| —« + A2 ) 7 |sin Apx (8)
n=1 kA
where the eigenequation is
cos Ayl = 0

with the eigenvalues 4, = 2n — 1) »/2L, n = 1,2, 3, ... and

L
[ [t — to — X(x)] sin Apx dx
0

B =

I
| sin? A,x dx
0

which becomes

2 ti—t) (fo — ts) An
B”*T[ in [ kP 2 ] ©)
(m’ * n)

Now combining (6), (8) and (9) according to (2) and (4) gives

b, 7) — to + (fo— 1) [ cosh(hP|kA)* (L — x) B 1] +

cosh(hP[kA)} L

2 = (ti—-—lfs (t0~—ts) An
ﬁg[[ ik
(zﬂ )
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which can be nondimensionalized to

t(¢, Fo) —ts  cosh ~/Nu (1 — )

to—ts cosh vNu
o 2 to — &
2 1 — —
+ n§1 (2%—-1)7:( to—ts)
2n— 1w ]
2 21 — 1)2 x2
@n = )i exp[——Fo <Nu + 7 )] X
Nu
4 —
. (@2n—1=n
X sin 5 ¢

where Nu = (hP|[R)(L2/A), { = x/L and Fo = ar/L2.
The dimensionless heat flow rate can be expressed as

g(¢, Fo)  ~/Nusinh VNu (1 — 0)
k4 B cosh \/m
L (tO - ts)
- by — 4
2 — —-
* ”E::I <1 tp — ts)
(2n — 1)2 x2 -
T a 2 — 1)2 2
B 2n — 12 || [~F0 (N% + 2
Ny~~~
4 A
X COS~(—2ﬁ;——1)-TCC .

2
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Fig. 1. Graphical representation of (11) for { = 1 and 4 = &.
Fig. 2. Graphical representation of (12) for { = 0 and #; = 4.

Graphs giving

11, Fo) — i3 g(0, Fo)
—_—t— and ———~
to — £q RA(to — &)

for ¢; = ¢ are shown by Figs. 1 and 2 respectively. The results ob-
tained using (10) were compared with the answers obtained by a
finite difference numerical solution. For the finite difference so-
lution, 40 nodes were used with time intervals of three seconds.
The maximum deviation between the two results was 1.59, for
typical values of the parameters.

Case I1. For this situation we shall define:

tx, ) = X(x) + 0, 7). (13)

Equation (13) is used to separate the problem into a steady-state
and transient part. The steady-state problem and solution is

d2X(x) kP hP
M = — (s 14
R I (kA) s (1)
B.C. 1. %(o, 7) = —qolkA
X
2 %(L, 7) =0

g0 RP \ cosh(hP[RA) (L —x) -
0 :[(ﬂ—/ \/ kA> sinh(hP[EA) L “”S}- (15)
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The transient problem and solution by separation of variables is

P, WP y
gz R T = BT (16)
ob
B.C. 1. =2 (0,7)=0
0%
2 % L =90
T oox (L 7) =
LC. 00 =4 — X(x)

(Note: The validity of the division used for B. C. 1 between (14)
and (16) can be shown mathematically by using the substitution

go (L —x)?

zﬁ(x, 7') = t(x, 7') — —!a- oL

to make the B. C. presented in Case II homogeneous. The final re-
sult will be exactly the same.)

O(x, 1) = % Dy eXP[—d(—ZlAi —+ AZ) 7} COS ApX (17)

where the eigenequation is

sin A,L =0
with the eigenvalues
nr
AHZTJ %:01172:
and
L
1 kA
Dy=— [tl—X(x)] dx:(ti——ts)—L (18)
L I hP
0 kA
L 2
| [t — X(%)] cos Apx dx — (T) qo/RA

Dy =2 = :
(n#0) | cos? Ayx dx (__ 4 13)
o
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Now combining (15), (17) and (18) according to (13) gives

o qo P\ cosh(hP|RA)* (L — %)
o= [(ﬁ/ \/ﬁ> sinh(APJRA)¥ L “S] +

9o
. kA hP
R R R e b
L
rA |
hP
2/ E exp[—a(ﬁ—k}tﬁ){'ws(lnx)
_T(kA =1 WP
T T

which can be nondimensionalized to

i, Fo) — &5 Nio cosh VNu (1 — )
g0 /hP o sinh v/Nu

kA | kA
th— g
+ [ P WP L — l:l exp[—Nu Fo] —
<—kA—)/(75Z >

o expl—Fo(Nu + n?n?)]
— 2N
* nél Nu - n2g2

cos(nml) (20)

where dimensionless parameters are as defined for (11). The heat
flow can be expressed as

q(, Fo) _ sinh VNu (1 — ¢

g0 sinh +/Nu
©  exp[—Fo(Nu + #n27?)] sin(nrl)
— 2 . (21
Trngln N%—i—%zTcz ( )
Graphs giving
H0, Fo) — tg {1, Fo) — ts

@@Ly T T (qofkPL)

for t; = t3 are shown by Figs. 3 and 4 respectively.
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Fig. 4. Graphical representation of (20) at { = 1 and #; = .

The results obtained using (19) were compared with the answers
obtained by a finite difference numerical solution. For the finite
difference solution 40 nodes were used with time intervals of 0.6
seconds. The maximum deviation between the two results was 2%,
for typical values of the parameters.

§ 3. Experimental verification

In order to gain confidence in the degree of agreement between
the analytical solution and the actual problem, it was decided to
carry out experimental verification of the results. Since it is rather
difficult to simulate experimentally a step function in temperature,
it was decided to attempt to simulate experimentally the case of a
step function in heat flow rate.

A copper rod, 2 feet long and one half inch in diameter, was insu-
lated at one end. A heating tape was wrapped around the rod at
the other end for a length of eight inches. This heater will be re-
ferred to here as the primary heater. Glass wool insulation £ inch
thick was wrapped around the primary heater. A secondary heater
made of the same heating tape was wrapped on top of the insu-
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faa T i
Fig. 5. Experimental set-up.

lation. Both the primary and secondary heaters were supplied inde-
pendently from separate variable power supplies. Copper-Constantan
thermocouples made of No. 30 gage wires were attached to the rod
at three inch intervals. A hole & inch deep was drilled to accommo-
date the thermocouples and aluminum epoxy was used to mount the
thermocouples in place. The thermocouples were connected to a
Leeds and Northrup multi-channel continuous recorder. A photo-
graph of the experimental setup is shown in Fig. 5.

A fixed amount of power was supplied to the primary heater
while the secondary heater power supply was manually regulated as
a function of time. The purpose of the secondary heater is to compen-
sate for the energy absorbed by the insulation and the goal is to ap-
proach as closely as possible a constant heat flow rate into the rod
at » = 0. A plot of the heat flux ratio as a function of time for
x = 0 with and without the use of the secondary heater is shown
in Fig. 6. It can be seen from the figure that constant heat flow
rate case was not completely simulated. However, it can be seen
that the use of the secondary heater leads to a better approximation
to the constant heat flow rate case than without the use of the
secondary heater. Fig. 7 shows the variation with time of the
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Fig. 6. Comparison of experimental flux with and without variable

secondary heater to step function.

Fig. 7. Comparison of temperature histories at # = 0 and # = 2 between (19)
and experimental runs with and without variable secondary source

ts = # = 81°F.

temperatures at both ends of the rod. It can be seen from this
figure that as the experimental heat flow rate approaches the step
function, the experimental temperature histories approach those

predicted analytically by (19).
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