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Abstract  

A solution for the  uns teady-s ta te  t empera tu re  dis t r ibut ion in a fin of con- 
s tan t  area dissipating hea t  only by  convect ion  to all env i ronment  of cons tant  
t empera ture ,  is obtained.  The par t ia l  differential  equa t ion  is separa ted  into 
an ord inary  differential  equat ion  with  posit ion as the  independen t  variable,  
and a par t ia l  differential  equat ion  wi th  posit ion and t ime  as the  independent  
variables.  The  p rob lem is solved for ei ther  a step funct ion in t empera tu re  
or a step funct ion in hea t  flow rate,  for zero t ime, at  one boundary  while the  
o ther  boundary  is insulated. The initial condi t ion is t aken  as an a rb i t ra ry  
constant .  The unspecified boundary  values ( tempera ture  or hea t  flow rate) 
are presented for bo th  cases by  util izing dimensionless plots. Expe r imen ta l  
ver if icat ion is presented for the  case of cons tant  hea t  flow rate  boundary  
condition. 
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x pos i t ion  va r i ab l e  
X(x) f u n c t i o n a l  in  x 

t h e r m a l  d i f fus iv i ty  
F(~-) f u n c t i o n a l  in  

d imens ionless  pos i t ion  va r i ab l e  
O(x, r) functional in x and 
~.n eigenvalues 
~- time 
4(x, T) functional in x and 7 

§ 1. Introduction 

The subject of heat transfer from fins and extended surfaces has 
been studied analytically and experimentally for almost two centu- 
ries Ill. Ingenhouss [2] used fins to demonstrate the difference in 
thermal conductivities of various materials. J. B. Biot [31 and 
Despretz E4] formulated the mathematical model of the problem. 
Jacob [5] considered the fin problem in order to determine the cor- 
rections necessary for temperature measurements of thermocouples. 
Harper and Brown [61 dealt with the problem as encountered in the 
fin cooling of internal combustion engines. Harper and Brown also 
pioneered the analysis of variable geometry fins. Schmidt [71 ex- 
tended the consideration of the variable geometry fin to the de- 
termination of the minimum mass profile fin. Many other investi- 
gators have also considered convecting fins. 

Recently the subject of radiating fins has come under extensive 
s tudy because.of the interest in space. Shouman [8] has considered 
this problem in its general form and a biography on the subject is 
listed in this reference. 

The above mentioned references deal with the steady state 
problem. However, the transient fin problem has as many practi- 
cal applications as the steady-state problem. It  is in this vein that  
this paper will deal with the transient convecting fin problem. 

§ 2. Analys i s  

The governing partial differential equation is written as 

~2t(x, ~) h P  1 at 
k A  Vt (x ,  - -  : ( x ,  (1) 

The above equation is subject to the following boundary conditions : 
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Case I:  For  a step function in tempera ture  at one boundary  
B.C.  1. t(0,~-) = t o  

8t 
2. - -  (L, . )  = o 

8x 
I . C .  t(x, O) = ti 

Case I I :  For  a step function in heat  flow rate at one boundary :  
8t 

B . C .  1. 8x (O,'r) = - -qo /kA 

8t 
2. - -  (L, ,)  = 0  

8x 
I . C .  t (x ,  O) = h 

Case I .  We shall define: 

O(x, ,)  = t(x, , )  - -  to. (2) 

Utilizing (2), the boundary  conditions are made homogeneous,  
giving: 

820(x, r) h P  h P  1 80 
8x 2 kA  O(x, , )  - -  - ~  (to - -  ts) --  o~ 8, (x, ,) (3) 

with B.C.  

I . e .  

Now let 

1. 0 ( o , , )  = o, 
8O 

2. 8x (L, , )  = O, and 

O(x, O) = h - to 

o(x, . )  = x ( x )  + ¢(x,  . ) .  (4) 

Equat ion  (4) yields a s teady-state  problem, and a transient  problem. 
The s teady-s ta te  problem and solution is 

dzX(x) h P  h P  
dx 2 kA  X ( x )  = ~A~ (to --  ts) (5) 

B.  C. 1. X(O) = 0 
d X  

2. - -  (L)  = o 
dx  

I cosh(hP/kA)½ (L - -  x) 1 
X ( x )  = (to - -  ts) cosh(hP/kA)~  L - -  1. (6) 
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The transient  problem and solution by separation of variables is 

(7) 

B.C.  1. ~ ( 0 , ~ - ) = 0 ,  

2. (L,  . )  : o ,  
Ox 

I . c .  ¢ ( x ,  o) = ti - to - X ( x )  

~(x,'r) = X Bn  exp --c~ 
n = l  

where the eigenequation is 

+ ,~2) .]  sin AnX (8) 

cos 2nL = 0 

with the eigenvalues 2n = (2n --  1) rc/2L, n ----- 1, 2. 3, . and 

B n 

13 

[ti --  to --  X(x)] sin Anx dx 
0 

L 

S sin2 Anx dx 
0 

which becomes 

B ~  = ~- ~ h V  " (9) 

Now combining (6), (8) and (9) according to (2) and (4) gives 

I cosh(hP/kA)½ (L --  x) l 
t(x, r) : to -k (to --  ts) cosh(hP/kA)~ L --  1 + 

/ ,lO, 
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which can be nondimensionalized to 

t(& Fo) - -  ts 

to -- ts 

- 6 2 E  
3 = 1  

eosh x/Nu (1 -- ~) 

Bosh 4 ~  

2(1 
(2n -- 1) z: 

- - - 6  

(2n -- 1) 
2 

(2n - -  1)~ ~2 

4 

× sin (2n--2 1)~ ~] 

to - -  ti . ~ _  

t o  - -  ts / 

N u  -6 

(2n--41)2zc2)]  

where N u  = (hP/k ) (L2 /A) ,  $ = x / L  and Fo = o~-r/L 2. 

The dimensionless heat  flow rate can be expressed as 

q{& Fo) x/Nuu sinh ~/Nu (1 -- $) 
= + 

k A  Bosh x/Nuu 
L (to -- ts) 

X 

(11) 

+ 2 E 1 to -- ti 
n =  1 t o - -  ts  

- ( 2 ~  - 1 ) ~  ~ 
N u  + -4 _ 

( 2 n -  1) 
× cos ~ 

2 
(12) 
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Fig .  1 
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Fig .  2 

F ig .  1. G r a p h i c a l  r e p r e s e n t a t i o n  of  (11) for  ~ = 1 a n d  ¢i = is. 
F ig .  2. G r a p h i c a l  r e p r e s e n t a t i o n  of  (12) for  ~ = 0 a n d  ti = ts. 

Graphs giving 

t(1, Fo) -- ts and q(O, Fo) 
to -- ts kA (to -- ts) 

for ti : ts are shown by Figs. 1 and 2 respectively. The results ob- 
tained using (10) were compared with the answers obtained by a 
finite difference numerical solution. For the finite difference so- 
lution, 40 nodes were used with time intervals of three seconds. 
The maximum deviation between the two results was 1.5% for 
typical values of the parameters. 

Case II. For this situation we shall define : 

t(x, ~) = x ( x )  + O(x, ~). (13) 
Equation (13) is used to separate the problem into a steady-state 
and transient part. The steady-state problem and solution is 

d~X(x) hP (h_k~_) 
dx2 kA X ( x ) = -  & (14) 

dX 
B . C .  1. - - ~ -  (O, ~) = - -qo/kA 

cb¥ 
2. - -  (L, ~) = o 

(Ix 

[( / ~ hP ) c°sh(hP/kA)~ (L-- x) 1 
x(~): ~- TX ~ A T ~  +}~ (~s) 
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The transient problem and solution by separation of variables is 

020(x, r) hP  1 80 
o(~, ~) - (x, ~) (16) 

~x 2 kA  a gr 

~0 B.C. 1.--(o, .T)=o 
ax 
~0 

2. 3x (L,r) = 0  

I .c .  o(x, O) = ti - -  X(x )  

(Note: The validity of the division used for B. C. 1 between (14) 
and (16) can be shown mathematically by using the substitution 

¢(x,  "4 = t ( . ,  ~-) 
qo (L - - x ) 2  

kA  2L 

to make the B. C. presented in Case II homogeneous. The final re- 
sult will be exactly the same.) 

O(x, r) = Y~ Dn exp  --~ + ~  cOS~nX 
o 

where the eigenequation is 

(17) 

with the eigenvalues 

sin ~nL = 0 

and 

TtTZ 
2 n - -  n =  0, 1 , 2 , . . . .  

L ' 

L 

1 f . qo/kA Do= T Eti-- X(x)~ d~= (ti--t~) - L (  hr, ,i 

o \ k A  / 

O n ~ -  

(nO:O) 

o 

L (hP ~) 
o S cos~ ~ x  dx - ~ - - + ~  

(18) 
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Now combining (15), (17) and (18) according to (13) gives 

t(x, -r) --- -ffA sinh(hP/kA)} L + ts + 

i [ 1 
q0 

hP 
@ (ti--ts) k A  e x p - - ~ A - - ~  -- 

h P_P 5 
kA 

co exp 

L ~ = 1  

i 

hP 

which can be nondimensionalized to 

t ( ¢ ,  Fo) - -  ts = a/N*; cosh x/Nu ( 1  - -  ~ ' )  + 

qo / hP sinh ~/Nuu 
kA/TA -L 

F ti~E --1] 
qo hP 3 

oo  

- -  2Nu Y~ exp[--Fo(Nu + n2r~2)] cos(n=~) 
~=1 Nu + n2~: 2 

(20) 

where dimensionless parameters are as defined for (11). The heat 
flow can be expressed as 

q(~, Fo) sinh x / ~  (1 -- ¢) 

q0 

Graphs giving 

sinh ~/Nuu 
oo 

- - 2 r o e  n 
n = l  

exp[--Fo(Nu + n%~)J sin(nrcg) 
Nu q- n 2 x  2 

t(O, Fo ) - - t s  and t(1, F o ) - - t s  
(qo/hPL) (qo/hPL) 

for ti = ts are shown by Figs. 3 and 4 respectively. 

(21) 



T E M P E R A T U R E  D I S T R I B U T I O N  IN A CONVECTING FIN 8 3  

Z 
:~7 16 

011 

, 040  
I(D Fo. i 0 r 0~ s 

n8 o l  ~ 

0~ 
05 
014 

Xl . . . . . . . .  
~o  

o 5 1~ ~s 20 ~5 
Fo 

Fig .  3. G r a p h i c a l  r e p r e s e n t a t i o n  of  (20) a t  ~ = 0 a n d  li  = ts. 
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Fig .  4. G r a p h i c a l  r e p r e s e n t a t i o n  of  (20) at  ~ = 1 a n d  ti = ts. 

The results obtained using (19) were compared with the answers 
obtained by a finite difference numerical solution. For the finite 
difference solution 40 nodes were used with time intervals of 0.6 
seconds. The maximum deviation between the two results was 2% 
for typical values of the parameters. 

§ 3. E x p e r i m e n t a l  ver i f i ca t ion  

In order to gain confidence in the degree of agreement between 
the analytical solution and the actual problem, it was decided to 
carry out experimental verification of the results. Since it is rather 
difficult to simulate experimentally a step function in temperature, 
it was decided to attempt to simulate experimentally the case of a 
step function in heat flow rate. 

A copper rod, 2 feet long and one half inch in diameter, was insu- 
lated at one end. A heating tape was wrapped around the rod at 
the other end for a length of eight inches. This heater will be re- 
ferred to here as the primary heater. Glass wool insulation ~ inch 
thick was wrapped around the primary heater. A secondary heater 
made of the same heating tape was wrapped on top of the insu- 
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Fig. 5. Expe r imer t t a l  se t -up.  

lation. Both the primary and secondary heaters were supplied inde- 
pendently from separate variable power supplies. Copper-Constantan 
thermocouples made of No. 30 gage wires were attached to the rod 
at three inch intervals. A hole ~ inch deep was drilled to accommo- 
date the thermocouples and aluminum epoxy was used to mount the 
thermocouples in place. The thermocouples were connected to a 
Leeds and Northrup multi-channel continuous recorder. A photo- 
graph of the experimental setup is shown in Fig. 5. 

A fixed amount of power was supplied to the primary heater 
while the secondary heater power supply was manually regulated as 
a function of time. The purpose of the secondary heater is to compen- 
sate for the energy absorbed by the insulation and the goal is to ap- 
proach as closely as possible a constant heat flow rate into the rod 
at x = 0. A plot of the heat flux ratio as a function of time for 
x = 0 with and without the use of the secondary heater is shown 
in Fig. 6. It can be seen from the figure that  constant heat flow 
rate case was not completely simulated. However, it can be seen 
that  the use of the secondary heater leads to a better approximation 
to the constant heat flow" rate case than without the use of the 
secondary heater. Fig. 7 shows the variation with time of the 
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Fig .  6. C o m p a r i s o n  of e x p e r i m e n t a l  f l u x  w i t h  a n d  w i t h o u t  v a r i a b l e  

s e c o n d a r y  h e a t e r  to  s t e p  f u n c t i o n .  

F ig .  7. C o m p a r i s o n  of t e m p e r a t u r e  h i s t o r i e s  a t  x = 0 a n d  x - -  2 b e t w e e n  (i 9) 

a n d  e x p e r i m e n t a l  r u n s  w i t h  a n d  w i t h o u t  v a r i a b l e  s e c o n d a r y  s o u r c e  

ts = ti = 81°F.  

temperatures at both ends of the rod. It can be seen from this 
figure that as the experimental heat flow rate approaches the step 
function, the experimental temperature histories approach those 
predicted analytically by (19). 
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