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Abstract 

Integral equation method and photoalastic experi- 
ment are used for the stress analysis of an axial 
compressive ellipsoid. Let the concentrated forces 
and the centers of compression, with symmetrical un- 
known intensive functions XJ(c)=Xj(-c)and ~2(c)=X2(-c) 
respectively, be distributed ~ymmetrically to ~ =0 
plane along the axis z(=-c) in [a ~) and E-a -~) of 
the elastic space, in addition to a pair of equal 
and opposite axial forces acting on z~a and z=-a. 
We can reduce the problem of an axial compressive el- 
lipsoid to two coupled Fredholm integral equations of 
the first kind. Furthermore, numerical calculation 
is then made. .Two photo-elastic models of ellipsoid 
were analysed by "Freezing and Cutting" method, and 
the results, in which a= is quite nearly to those 
obtained by integral equation method, had been used 
in the analysis of the data of compressive rock spe- 
cimens. 

I. Introduction 

The three-dimensional axisymmetrical problem of a compressive ellipsoid by two 

axial c0ncentrated forces is one of the important problems for the strength analy- 
(i) 

sis of rock specimens However, such problem which seems ever be solved, is 

trying to be analysed by integral equation method and photoelastic experiment. 

As is well-known (2) , the integral equation methods often give accurate results 

more economically than the finite element method for those elastic problems with 

low surface/volume ratio. However, most of the authors derived their integral equa- 

tions by means of fictitious elementary loads directly distributed on the actual 

boundary and the problem was reduced to two-dimensional singular integral equations. 

Obviously, numerical calculation for such integral equations is laborious. 

A simple integral equation method is suggested for this problem, i.e. the method 

of fictitious elementary loads be distributed along the symmetrical axis but out- 

side the ellipsoid. Such analytic method was suggested and used for several pro-�9 

blems by the author (3~4) and the numerical calculation is simpler than other inte- 



700 Yun Tian-quan Shao u Qiu Chong-guang 

gral equation methods. Because the integral equations obtained are nonsingular, 

one-dimensional and the numerical calculation of such integral equations is sim- 

ple. 

In section II the integral equations are derivated. According to the symmetry 

of the problem, all fictitious loads must be distributed symmetrically to z= 0 

plane. For simplification, the concentrated forces and the centers of compression 

are most suitable to be the fictitious loads. In order to obtain a nonhomogeneous 

algebraic equations for the discrete calculation of obtained integral equations,we 

should put two equal and opposite concentrated forces on two ends of the ellipsoid 

and thus the two coupled one-dimensional nonsingular Fredholm integral equations 

can be obtained by satisfying the boundary conditions and the equilibrium equations 

under these fictitious loads application. 

In section III, the integral equations are replaced by their discrete form,i. 

e., nonhomogeneous algebraic equations, which are 2n nonhomogeneous algebraic equa- 

tions and they can be obtained by satisfying the boundary conditions at , points of 

the boundary (i.e., zero stresses on the surface of the ellipsoid held for n 

points of the generator). The fictitious loads, which are continuously distributed 

in(a, c:,).[_.. --co),are replaced by that which are constantly distributed in n ranges. 

These algebraic equations had been solved by DJS-21 computer for n=10 and n=16 �9 

Section IV shows the stress analysis by the method of photo-elastic experiment. 

"Freezing and Cutting" method is used as the analytic method. Two models of ellip- 

soid with a/b=].315 and 1.5 had been analysed, an~ the stresses at z=a/2 plane and 

along the z -axis are outlined. 

Finally, simple comparison of the results obtained by calculation and experi- 

ment is shown in Fig.6. 

II. Derivation of the Integral Equations 

i. stresses due to fictitious loads. 

The stresses at any point N(r, 8, z) due to the following loads: 

i. Concentrated forces and centers of compression with symmetrical unknown in- 

tensive function X~(c)=X~(--c)and X2(c)=X2(--c) respectively are dis~ibuted sym- 

metrically to z=0 plane alon q the z(=-c) axis in [a, co) and I--a, --co) of the e- 

lastic space; 

ii. A pair of equal and opposite acial force axting on z=a and z=--a along 

the z-axis of the elastic space is: 

3 -3,: 

Jo 
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+ (r2--0.5 ( z - - c )  ~) R ~  ) X 2 ( c ) d c + K P ( ( l - - Z v ) ( ( z + a ) R  7" 

- - ( z - -a )  R~ s) --3r" ( ( z + a )  R[ s - ( z - a )  R; e ) ) 

a, = K  o (1--2v)(  ( z + c )  R[,a--(z--c)  R ~  ) X ,  (c) dc--O.5K l 

" f 7  (R~* +R;:)X,(c)dc+KP(1--2v)C(z+a)R~3--(z--a)R~') 

--(Z--~) $ R2CS))-X, (C) dC*~IIT(((Z-~C~--O.~r2)R/: 

+ ( (z - -c ) t - -O.5r  =) R ~ ) X 2 ( c ) d c - - K P  ((1--2v) ( ( z+a)  R[' 

r z - - a ) R ~ a ) + 3 ( ( z + a )  3 R[ s- (z - -a)  a R,:s)) 

-- (2--C) 2 R ~ ) ) X ,  (c) d c + l . S K t r  . ( ( z + c )  t?'{. S 

+ (z--c) R:.) )X,, (c)dc--KPr((1--2v)(R; 3 - -  R . :  3 ) + 3 (  ( z+a) tR ;  s 

- ( z - a ) ~  R~ 5 ) )  

( 2 . 1 7  

where: 
R l , = ( r ' + ( z + o ) ' ) %  

R2 --~(r2+(z--c)z) % 

Rt_~(r= + ( z+a)z)'A 
R , = ( r t + (  k--a)z)  v" 

K--=--(Sx(1--v) )-l 
KI =const. 

(2.2) 
p =const. 

v Poisson's ratio 

a half longest distance of ellipsoid. 

c depth of the fictitious loads at 2~--r 

XL(c) ,  X2(c ) unknown intensive functions of concentrated 

forces and centers of compression. 

r, 0, z cylindrical coordinates. 

2. Stress boundary conditions. 

According to the fact that stresses on the surface of the ellipsoid with genera- 

ting function + = 1 must equal to zero, from the equilibrium equations, we 

have the following equations held at boundary: 
cr~=x,z.dr/dz (2.3) 
Xrz- ..~.Crz. dr /dz (2.4) 

Substituting (2.1) into (2.3) and (2.4), we have 

A t X , + B , X 2 = F ,  
AtXI  +B2Xz----F, 

(2.5) 
(2.6) 

where M z, .4~ B,, B 2 are kernel operators of the integral equations. F~, F~ are 
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known functions. 

A, = : ; , ( z , c ) = K  ( ( ~ --:'.v)( ( e t c )  RT., ~ - - ( e - - c )  R[,2 ) 

- -3b2(1- - (z /a )=) ( (z+c)Ra2 - - ( z - - c )  Ri, ~ )+(dr /d z )b (1  

- 3  - ( z l a ) ' ) , a  ( ( 1 - 2 . )  ( R ~ 2 -  Rbc ) + 3 (  (e+c)= R~2 -- ( e - c )  = R ~ ) )  

A t = A , ( z , c ) = - - K ( b ( 1 - - ( z / a ) ' ) v  ,- ( ( 1 - - 2 v )  (Ra2 -- R~2) 

+3(  ( z + c ) '  R ;~- -  (z - -c )  = R [ , 2 ) ) - - ( d r / d z ) ( ( 1 - - 2 v ) ( ( z + c ) R [ *  c 

- - ( z - - c )  R[~: ) + 3 ( ( z + c ) S R a 2 - -  ( z - - c )  s R[~c ) ) )  

B . = B , ( e , c ) = K , ( ( b = ( 1  - ( z /a)  = ) - 0 . 5  ( z + c ) ' )  R[~: +(b=(1-- (z /a)  ') 

- 0 . 5  ( z -c )D R~--1.5( b(1--(z/a)*)'/: ( ( z+c)  R[,~ 

+ ( 2 - - c )  R ~  ). (dr /dz)  ) ) 

Bz=B=(z ,c) = K , (  1.5b(1 - - ( e /o )  2) "~ ( ( z+c)Ra~ + ( z - - c )  R ~  ) 

--(  d r / d z  )( ( ( z +c )2--o.5b2(1--( z /a  )z) )R-a6c +<(z- -c )  z 

- -0 .5bt (1- - (  z/a)=) ) R[,~ c )) 

F j = F t ( z ) = - - K P ( ( 1 - - 2 v ) (  ( z + a ) R :  3 - - ( z - - a )  R[, s) 

- -3bZ(1--(z/a)2)((z+O)Ra6 - - ( z - - a )  R~ ~ ) +(dr~de)b(1 

- - ( z /a )2 )~  ((1--2v)  (R~ s -  R~3)+3(  ( z + a )  ' R~ b -  ( z - -a )  ~ R~6)))  

N ~ = F = ( z ) = K P ( b ( 1 - -  (z/a)~)'A ( ( 1 - - 2 v )  (Ra* -- R~ s ) + 3 ( ( z + a )  2 R[, 5 

- -  ( z - -a )  2 R[, 6 ) ) - ( d r / d z ) ( ( 1 - 2 v ) ( ( z + a ) R ~  3 - - ( z - - a )  R[, a) 

+ 3 ( ( z + a )  s R~ 5 -  ( z - - a )  s R~ ~ ) ) )  

(2.7) 

where 

dr /dz=--b2z /aar=-- (b /a=)z (1- -{  z /a ) t ) -v '  I 

} Rac=(b~(1--( z /a ) : )  + ! z +c): )  ", 

Rbc= (32(1 - - ( z / a )  =) + (z - - c / )  '/2 (2.8) 

Ra=(b2(1--(  z/a)2) + ( z +a )~) v, 

Rb= (b~'( 1 -- ( z / a / )  + ( z - -a ) : )  'a 

Thus, our problem is reduced to two coupled Fredholm integral equations (2.5), 

(2.6) and the equilibrium equations (2.9), (2.10). The latter two equations, are 

utilized to determine the relationship between applied load Q and constants p,Kt 

Is, (Z 9) 

I s ,  creds=O (2.10) 

Where s,, s2 d e n o t e  t h e  s e c t i o n a l  a r e a s  c u t  by z =  0 p l a n e  and y = 0  p l a n e  r e s p e c t i v e l y .  

Once t h e  s o l u t i o n s  X~, Xz, K,  and P have  been  o b t a i n e d  from ( 2 . 5 ) ,  ( 2 . 6 ) ,  

(2 .9)  and ( 2 . 1 0 ) ,  we can c a l c u l a t e  t h e  s t r e s s e s  from ( 2 . 1 ) .  
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III. Discrete Calculation of the Integral Equations 

A common simple numerical treatment of integral equations (2.5) and (2.6) is to 

replace itself by its discrete form, i.e., let the boundary conditions (2.3) and 
( r )  2 ( z )  2 -  

(2.4) be satisfied at n points of the generator ~- + ~ -- 1 (i.e., zero stresses 

on the surface of the ellipsoid held for , points of the generator); and the ficti- 

tious loads which are continuously distributed in [a, oo),[--a, --co) , are replaced 

by that which are constantly distributed in , ranges; then we can rewrite (2.5), 

(2.6) as follows: 

y']At,,X,, + ~.Bt,,X,,=F,. 
i "  i "1 

i = 1 ,  2, . .-,  n. 

)-~ A2,,X,, + ~.B2,~Xz,=Fa. 
J'~ i "  

( 3 . 1 )  

Where 

X t i = X t ( c , ) ,  F t i = F t ( z , )  ] 
~/+t~a [ t=l ,  2r [ 

At ' i=  J ~ja At(z, ,  c)dc  
! 

I [cJ+l'~ c)dc | i, j = l ,  2, "", n. B t i j=  J jio 

(3,2) 

Similarly, (2.9), (2.10) can be rewritten as: 

m 

2,r(b/m)'~icrz(ib/,n, O)=Q 
i - I  

( 3 . 3 )  

ab/(mL) ~ L ~,~,(ib/m, ta/L)=O (3.4) 
i - I  t - I  

Where ~z(r, z) and ~,(r, z) are shown in (2.1); but if t>L~/l--(i/m)', let ~(ib/m. 

ta /L)  = 0  

Solve (3.1)-(3.4), we can obtain Xt, X2, P and K, . Then the stresses can be 

obtained from (2.1). 

The example used for the ellipsoidic model possesses: half longest distance of 

the ellipsoid a=2.2875cm, half shortest distance of the ellipsoidb=l.525cm, a/b=l.5: 

Poisson's ratio v=0.45; applied loadQ=23.08kg. We use DLS-21 computer for calcu- 

lation; the integrals are approximated by Romberg formula and trapezoid formula. 

These cases of n=J0 and n=16 had been calculated, and the results obtained are 

shown in Fig. 6. 
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IV. Photoelastic Stress Analysis of Ellipsoid under Concentrated Loads 

along the Major Axis 

(i) Analytic considerations. 

In order to determine the distribution of the stresses in ellipsoid, two models 

9f ellipsoids with a/b=l.315 and 1.5 were investigated by frozen method used in three- 

flimensional photoelasticity. 

According to the fact that the problem of ellipsoid under axial forces is axisym- 

aetrical and thus the stress state at any point is independent of 0 , all the stress 

components ~r, G~, ~ : , r r 2  can be determined from two mutually perpendicular slices, 

i.e., one of them included the axis of symmetry and the other was cut by two adjoin- 

ing planes parallel to equatorial plane (a horizontal slice). These slices are shown 

in Fig. i. 

Slice i. 
meridional s l i e ~  ~ K ~  

Slice 3. ~ ~ 0 ~ / ~ _  Y i 

equatorial s l i c e . ~ ~ _  ] 
 lice 

horizontal s l i c e ~  

Fiq.l. Location of the slices 

According to the stress-optical law (5'6) , the observed data of an incident ray 

running through the meridional and horizontal slices normally yield the differences 

of the secondary principal stresses (p'--q'),, (p'--q')a and the directional angle ~0 of 

these stresses, i.e., we have: 

Gr--O'z=(p'--q'), cos 2~o=noF, cos 2q~, 

"rrz = ( p ' - - q ' ) ~  sin 2qo,=-~noF~ sin 2q)o (4.1) 

~, --Gr= ( p ' - - q ' )  z =n:Fz 

denote the fringe orders associated with the normal incidence patterns; where n,, nz 

F,, Fz denote the fringe values of the slices respectively; the subscripts 8, 2 de- 

note the directions, in which the light propagates through the slices. 

Although the equations in formula (4.1) are independent of each other, however, 

there are four unknowns, i.e. Gr, a,, ~z and Trz so that the individual normal stres- 

ses could not be determined directly. For the sake of separating the normal stres- 

ses, equations of equilibrium must be used as a supplementary. The equilibrium.equa- 

tions of the axisymmetrical problem in the case of absence of body forces are: 
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% 

Oa~ + Oxrz + ar--a~ I -or- ~ r . . . .  0 

OTrz  . 0(72" Trz  ~ 0 

-Or +-~-z + r 

(4.2) 

If we integrate the first equation in formula (4.2) with respect to r , we 

have: 

f i O r r z  . 
( O ' r ) " = ( O ' r ) ~  a 2  ar--['oCXrTff--'dr 

or in finite difference form, 

i i 
( ~ ) , ' = ( ~ r ) o - -  ~ V~ ~ z  z Ar - -  ~ '  a ' - - a ' A r r  f d  ~ 

where (G,)0 denotes the ~, at the starting point o , and (ar~is known; (o,)i de- 

notes the normal stress at point i along the integral path. The first sum of the 

right part can be computed from the photoelastic data of the meridional slice while 

the second sum can be obtained by horizontal slice. If the horizontal slice is not 

to be cut, the values of the (~--~e) can be evaluated by observing the meridional 

slice under oblique incidence. From these two sums the stress a, can be obtained. 

After that the at, az may be found by using the.first and the third of eq. (4.1). 

Thus, from the observed photoelastic data of normal incidence of two mutually per- 

pendicular slices together with the integrating of the differential equation of 

equilibrium, one can obtain the solution of the problem, i.e. four stress components 

~r~ ~ z ~  ~#s rrz 

The stress components at the points of the axis of symmetry can be calculated 

by integrating (4.2) with a known starting point (az) o obtained from the above cal- 

culation. In this case we have: 

i ' av~dz  - I '  r dz-- (~)o -2 I '  r~ dz 
( ~ ' ) i = ( ~ ) ~  Jo r - -  Jo r 

or in finite difference form: 

(~Ai=(~,)o -2, --~-az= (a~)o 
n 

i 
--2~"~, rrz'-Az 

r 
o 

(4.4) 

In the procedure of separating the normal stresses, the path of integration is taken 

along the A, o, at first and then along o~o, and finally from point A to o 

(Fig.2). Thus, the accuracy of the results can be checked from the fact that for 

the same point the values of stress ~2 obtained by the integrations with different 

paths must be equal to each other. Because the line of integration oA being 

the axis of symmetry and it is also a trajectory 'of principal stress, so it is con- 



venient to separate the principal stresses by integrating the Lam~-Maxwell equa- 

tions : 

o r  

Fig.2. Integral path 

, dO ds ) P'=P~ Io ( P - - q )  dy-y ' 

[ dO ds  

0 

(4.5) 

Where p, q represent the principal stresses or 

dR 
secondary principal stresses; ~ represents 

the variational ratio of the angle included be- 
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tween tangent of the trajectory and horizontal axis with respect to Y ; ~y denotes 

the distance from horizontal axis to the closing isoclinic; ~x denotes finite in- 

tervals along x , i.e. As or s 

(2) Results of the photoelastic test and the checking of its accuracy. 

The results of photoelastic test of two ellipsoids are given below. Fig.3a 

shows the isochromatic fringe pattern of the integral ellipsoid with a/b=1.3]5 ,while 

isochromatic fringe patterns of its meridional and horizontal slices are illustrated 

in Figs. 3b and 3c respectively. Figs. 4a and 4b show the isochromatic fringe pat- 

terns of the meridional and horizontal slices of the ellipsoid with a/b=l.5 respec- 

tively. The curves of the normal stresses along the considered sections of the two 

ellipsoids are plotteu in Figs. 5 and 6. 

Fig. 3a. Isochromatic fringe pattern of the inte- 
gral ellipsoid with (a/b=1.315) 
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Fig.3b, Isochromatic fringe 
pattern of the meri- 

dional slice cut from 
this ellipsoid 

Fig.3c. Isochromatic fringe 
pattern of the hori- 
zontal slice cut from 
this ellipsoid 

Fig.4a. 

Fig.4b. 

4a 4b 

Isochromatic fringe pattern of the meridional slice cut 

from the ellipsoid with (a/b=].5) 

Isochromatic fringe pattern of the horizontal slice cut 
from the same ellipsoid 

1,1 ~ 
- - 3 . 6 6  , 0 �9 5 [ _ _ ~ _ _ _ _ . ~ . ~ / 0  . 14 

--2 70 0.4 0-t2 
-~.17 . 0.3 o.:~6 

- ] . s ~  0.2 o.~o 

a~~-1"70 0.1 ~]0.24 
--2 --I 0 t (1.3 0.4 

Iz/d 
--6.74 0.5~_ 0.618 

o 

- 6  - 4  22  o t o.6 ~.o 

a) Curves of the ratio 

a:lao, aJao, where ao=~=1.836 
(kg/cm');is the area of the 
equatorial plane 

b) Curves of thea:,o,(kg/cm ~) 
on the axis of symme~r9 oz 

Fig.5. Curves of the normal stresses in ellip- 

soid with (a/b=1 315) 
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C," 

a) 

~z 

m 6 , 

6 ~'~--...!~ I o'<, 

or~ ],0__ 

o.,I 

Curves of the ~=,~,ooalong d) Curves of the .a:,~,~, along 
the section oj~,(Ajoz) the section Ao 

Fig.5. Curves of the normal stresses in ellip- 

soid with (b/a=l.315) 

-2.5.1 0., = 

--1.92~ 0.4 

--1.63 0.3 

-]soi i]!4o41~ o,1 o.2 

--3 --I  
I 

z/o I 

0.283 --6"57P'~-6"45 ~ ~ ] 9  

__JO.157 ~/o o ' : - -3 .641} -3 .2 ]  ~0.40 ~ ~,~ 
0.2 --G -- I --3 oT 0.5 ],u - 

i 

Curves of the ratio ~:/~o 
and a,/a~ along the axis of 

symmetry oz ~o=2 54kg/cm z. 

b) Curves of the ~.,a:~kg/cm z) 

along the axis of symmetry oz 

m ~ 
0 i o0 .2  dO. I 

,4 

r/b 

Fig. 6. 

c) Curves of thea~r,~,az 
radius of z=~- plane 

Curves of the normal stresses in the ellip- 

along the 
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Check the accuracy of the experimental results. 

The experimental results should be checked in the following way: 

Firstly, let us consider the results qualitatively. The models have axis of 

symmetry and their fringe patterns should be symmetrical to this axis too. This 

is true in Figs.3 and 4. So the results may be corrected. Secondly, the check 

may be done with respect to the equilibrium of the statical forces. For an ellip- 

soid loaded along its major axis, the internal resultant force acting over the 

equatorial section or an arbitrary horizontal section must equal to the applied 

external load. Let O' and Q be the internal and external forces respectively. 

We have: 

o r  

Q'=t:  2zr(az)rdr ( 4 . 6 )  

o n 
~ ,  . z R , - ~ _  _ 2 ~ R F  I "-~ 

.... . . . .  . . . .  (4.7) 

where 

g ----- the radius of the horizontal section; 

ri, ~z~,~--- radii of the segmental points and normal stresses at these pointsi 

~i, azr ..... average radii of the two neighbouring points and average values of 

the normal stresses at the corresponding points repectively; 

n ---- numbeL of the segments along the section; 

~- magnification of the fringe pattern. 

Substituting the value of Uza) given in Fig.5 into formula (4.7), we obtain 
G 

the resultant force over the horizontal area at z=~ of the ellipsoid (a/b=1.315) 

O=23.08kg However, the applied load O'=23.45kg , so that the error of the stati- 

cal forces in equilibrium is given: 

Q'~Q e= x l00~ 23"45--23"08xi00~ 1 
2 3 . 0 8  = . 5 %  

In a similar way, we have calculated the error e=0 43~ for another ellipsoid 

(a/b=l.5) . 
Finally, the accuracy of the results may be tested approximately by comparing 

various normal stresses, obtained from different paths, at the same point. For 

ellipsoid with (a/b=l.315) at first, we integrated equation (4.3) from point A , 

which is passing through point o~ to point o (Fig.2) and obtainedoz=--2.993kg/cm 2 

Gr=0.407kg/cm: Then the path of integration was taken from point ~ to o and 

we obtained Gz=--3.026kg/cm~ , ~,=0.36k~/cm z . The differences between these 

stresses are very small. 

Fig.~ shows the results of normal stresses obtained by the calculation of the 

discrete form of the integral equations (dotted lines) and by the experiment of 

photoelasticity (continuous lines). We can see the results of az obtained by 
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these two methods are quite near to each other; but ~r are not so good. This 

may be caused by the rough calculation, especially in (3.4). If the elements are 

cut smaller (i.e., n,m,l larger), the results may be better. 
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