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Figure I, Scatter plot of two variables that shows five clusters. 

1. Introduction 

The problem addressed in this paper is best illustrated by an example• 
See Figure 1. The scatter plot of two variables in the figure suggests that 
there are five clusters present (and the points are labeled accordingly); how- 
ever, it shows only two of the five variables in this data set. The other three 
consist simply of random noise and show no cluster structure. 

A standard cluster analysis of this data set might proceed by separately 
standardizing each of the five variables, and then applying a convenient algo- 
rithm sucl', as k-means (MacQueen 1967) or either single linkage or complete 
linkage hierarchical clustering based on Euclidean distances between all pairs 
of the objects being clustered. Each of these standard algorithms fails to 
identify the five group structure suggested by Figure 1. 

With knowledge that the duster structure is confined to two of the vari- 
ables, one could use only these variables and ignore the others. The result of 
doing this is shown in Figure 2 for the complete linkage method. The five 
clusters, with their members labeled 1 through 5, appear as five major 
branches in the dendrogram. The corresponding picture when all five 
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Figure 2. Dendrogram that results when clustering is done using the two variables plotted in 
Figure 1. 
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Figure 3. Dendrogram that results when clustering is done using all five variables. 
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variables are used for clustering is displayed in Figure 3. The "true-cluster" 
numbers are now mixed up because the cluster structure has been completely 
masked by including the three noise variables! 

This type of phenomenon is no surprise to experts in clustering. In pat- 
tem recognition, the importance of "feature selection" is well recognized. 
The approach of variable selection developed in this paper is one answer to 
this p r o b l e m -  an a posteriori, data-based selection of key features rather 
than a choice based solely on considerations prior to analyzing the data. In 
practice the situation tends not to be as clear cut as in the above artificial 
example, and the question is what to do about it. 

There is a considerable literature that touches on the problem of 
weighting variables to facilitate the extraction of clusters. For recent reviews, 
see DeSarbo, Carroll, Clark, and Green (1984) and De Soete, DeSarbo, and 
Carroll (1985). Much of this work, including in particular these two papers, 
focuses on ways of finding differential weights for variables as part of the 
clustering algorithm. However, in De Soete (1986), a method is proposed for 
finding "optimal" weights for use as input to ultramettic or hierarchical clus- 
tering. Block clustering methods (see, e.g., Hartigan 1972), which divide a 
data matrix of variables by observations into blocks, provide another way of 
tackling the problem. In the present paper, the approach is different from 
any of these: subsets of variables are extracted for use in conjunction with 
standard clustering procedures. 

Consequently, the flavor here is more akin to variable selection in 
discriminant analysis. However, the fact that the groups are pre-specified, 
rather than data-based, makes the development of variable selection pro- 
cedures for discriminant analysis much easier. For recent reviews of the 
variety of techniques available in this area, see Seber (1984, Section 6.10) 
and McKay and Campbell (1982). See also Fowlkes, Gnanadesikan, and Ket- 
tenting (1987) for a combined discussion of variable selection in regression, 
discriminant analysis, and clustering. 

One popular procedure in discriminant analysis has been the use of 
tests for additional information as a basis for selecting variables in a forward 
selection manner. The next variable to be added is the one yielding the most 
significant value in a test of equality of group means, conditioning on the 
presence of the previously chosen variables. This is equivalent to picking as 
the next variable the one that maximizes Wilks' likelihood ratio statistic, used 
in testing equality of group mean vectors in multivariate analysis of variance 
(see, e.g., Seber 1984, p. 341). 

This statistic is one of several that are functions of the eigenvalues, el, 
of W -1 B, where W and B are the usual within and between group sums of 
cross products matrices. A similar approach is followed in this paper for the 
clustering problem: decisions are based on the relative sizes of standard 
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eigenvalue-based statistics measuring separation among contemplated clus- 
ters. Of course, the distribution theory for these statistics is different, and 
much more complicated, in this situation because the clusters are data depen- 
dent. Furthermore, the type of conditioning arguments used in the discrim- 
inant analysis problem cannot be carried over because the cluster structure is 
evolving along with the choice of variables. 

To put the problem in a broader setting, the objective can be described 
as trying to achieve an effective "reduction of dimensionality," which is 
often advertised as one of the major goals of multivariate analysis. Methods 
for finding such reductions range from very formal ones involving 
significance testing to very informal ones that are guided by numerical sum- 
maries and graphical displays in an interactive data analytic environment. 
One can also distinguish between procedures that perform the reduction 
indirectly based on linear combinations of variables and those that extract 
subsets of the variables directly. The procedures developed in this paper are 
very definitely in the informal, subset selection comer. 

While the specific procedure that is developed here is for use in con- 
junction with complete linkage hierarchical clustering, the same basic 
approach could be easily adapted to other hierarchical schemes and, with 
appropriate modifications, to non-hierarchical ones such as the k-means 
method. The procedure is of the forward sdection variety, but other types 
have been considered, too. For instance, a backward elimination approach 
was investigated but found to be ineffective. The primary reason is suggested 
by the example already described: the noise variables distort the analysis 
based on all variables to such an extent that procedures designed to select the 
best ones to drop are fooled. 

Experiments have also been run with a "guided selection" procedure 
that attempts to find an intermediate route between forward selection and 
backward elimination. The idea is to make an intelligent initial guess at a 
subset of variables that appears promising and then to work forward and 
backwards from there. A crude implementation of this idea appears to work 
quite well, but it is not reported here in detail because of the need for further 
refinement ofthe procedure. 

A different and more direct method would be to optimize a function of 
the eigenvalues directly with respect to the partitioning into dusters and the 
choice of variables. A major drawback of such an approach is its computa- 
tional demands; Gnanadesikan (1977, p. 104). The procedure developed in 
this paper attempts to find reasonable answers in a way that avoids such 
demands. 

The following sections deal with the details of the forward selection 
algorithm, simulation experiments to check its performance, application to a 
real data example, and concluding remarks. 
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2. The Forward Selection Algorithm 

In the context of complete linkage hierarchical cluster analysis, the for- 
ward selection algorithm begins by searching for the single variable out of the 
total, p, that shows the most evidence of clustering of the n objects. This is 
done by producing a hierarchical tree based upon each variable; cutting each 
tree at successive levels to produce partitions of the data into k = 2 . . . . .  kmax 
(a user specified number) groups; measuring the amount of separation for 
each of the p'kmax groupings; and selecting the variable for which the separa- 
tion is the most "significant." 

Additional variables are selected in a similar manner. To find a second 
variable, all combinations of two variables that include the one selected at the 
first stage are considered. The combination that produces the most 
"significant" partition is chosen. The process continues until there no longer 
appears to be a variable worth adding. 

The "significance" of variables is judged informally against a null 
background of no cluster structure. Specifically, the null assumption is that 
the data are a random sample of n observations from a p-dimensional mul- 
tivariate normal distribution with a diagonal covariance matrix. There would 
be no serious difficulty in changing this background assumption to, for exam- 
ple, a uniform distribution or a distribution with general covariance structure. 

Prior to the start of the variable selection process, the data are standard- 
ized so that each variable has a unit sample standard deviation. Then 
Euclidean distances are computed between every pair of objects, based on the 
variable or subset of variables being considered, and these are used as the 
input to the hierarchical cluster analysis. 

This form of standardization of the data is not entirely satisfactory 
because it tends to mask the presence of clusters (see, e.g., Hartigan 1975, p. 
62 and Milligan and Cooper 1988). Similarly, one could standardize by the 
sample covariance matrix if the null background were assumed to have a gen- 
eral covariance structure, but this can be criticized for the same reason in the 
non-null case. A conceptually more attractive method that is appropriate for 
situations where clusters have homogeneous covariance structures is to stand- 
ardize by the sample covariance matrix estimate, based on pairwise 
differences, developed by Art, Gnanadesikan, and Kettenring (1982). This 
method attempts to find a rough estimate of the within-cluster covariance 
matrix without knowing the cluster structure in advance. 

While there are clearly many ways to standardize, the relatively primi- 
tive method of equalizing variances that is used in the present study has been 
the popular choice of many practitioners, even though it is now possible to do 
better in the sense of revealing rather than obscuring clusters, at least in some 
circumstances. 
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Many different statistics can be used to measure the amount of separa- 
tion in a partition induced by cutting a tree. Perhaps, the most important of 
these are the traditional ones from discriminant analysis or multivariate 
analysis of variance. They are based on the eigenvalues, el, of W -1 B, where 
B and W are the (p* xp* )  between and within groups sum of  cross-products 
matrices based on the k groups and the p* variables in the subset of variables 
under consideration. The most successful one tested in the present study is 

ei 
s = = 1 

t i (1 + el) ' 

which is a scaled version of Pillai's (1955) trace statistic. The scale factor, 
t = min (p*, k -  1) forces Hllai's statistic to lie in the interval (0,1). Hllai's 
statistic has proved to be sensitive in the multivariate analysis of variance 
context in terms of easily interpretable functions of the noncentrality parame- 
ters (Roy, Gnanadesikan, and Srivastava 1971, Chapter 5). 

To assess the strength of clustering in a partition into k groups, one 
could calculate 

S* (k) = S ( k ) -  E(S(k)) , - 1 < S* (k) < 1, (1) 

where E(S(k)) is the mean of S(k) under the null model. For example, sup- 
pose a particular variable has been chosen at the first stage, and one is now 
searching for a second one that may be worth adding. Then S(k) would be 
evaluated from the data at hand for every two-variable combination that 
includes the one chosen at the first stage. Similarly, E(S(k)) would be calcu- 
lated, in principle, for a corresponding normal sample, assuming the "bes t"  
variable had been entered at the first stage. To be precise, it is presumed that 
"bes t"  means picking the one with the highest S-value. 

Ideally, it would be preferable to perform a full standardization of S(k) 
by also dividing through by its standard deviation. This turns out to yield a 
procedure that is too delicately dependent on the null assumptions. Better 
results have been obtained with (1), although the fact that the variance of 
S*(k) does depend upon k should not be forgotten. 

Because E(S(k)) is theoretically intractable, it is necessary to estimate 
it via simulation. In today's computing environment, the simulations can be 
done as part of the variable selection process. The specific procedure used is 
as follows: for a particular (n, p)  combination, 100 spherical normal samples 
are generated, variables are selected from each sample according to the max- 
imum value of S(k), and averages of S-values across samples are obtained as 
estimates of E(S(k)) with "nul l"  data. With these estimates in hand, the vari- 
able selection process can proceed. 
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Figure 4. Plots of separation statistic, S*(k), versus number of clusters,/g for variable sets 
{1,2,3} and {1,2,4}. 
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The informal graphical procedure that is used to execute the variable 
selection, as well as to suggest the number of clusters, is based upon plots of 
S*(k) versus k. Figure 4 shows a hypothetical example. In this example, 
p = 4 and variables 1 and 2 have already been selected at the two previous 
stages. Now, at stage 3, the question is whether to enter variable 3, variable 
4, or neither. It appears that the best choice would be to enter variable 3 
because the value of S*(k) is larger in this case for every value of k and, in 
particular, because there is a very strong indication of three clusters associ- 
ated with the {1,2,3} combination. In practice, the choice may not be so clear 
cut, and other information may be needed before a decision can be made. 
Looking at the scatter plots of the variables in question can be very helpful. 

There are two features of the graphical procedure, related to earlier 
comments, that need to be kept in mind while interpreting the S*(k) versus k 
plots. First, the variance of S*(k) is not constant under null conditions. In fact 
it tends to decrease as k increases. Second, because the effects of selecting 
"significant" variables at earlier stages have not been conditioned out, their 
impact will tend to spillover into plots at later stages. 

3. Simulation Experiments 

A large number of simulation experiments on computer-generated data 
were run to study the properties of the variable selection algorithm. They 
included checks on its behavior under null conditions of no clustering as well 
as tests of its ability to recover cluster structure consisting of various types of 
elliptical point clouds. In each of  the non null cases, the cluster structure was 
confined to a subset of the p variables. Highlights of these experiments are 
summarized in this section. 

Experiment 1 - Null Spherical Data 

The forward selection algorithm was run on 100 fresh samples of spher- 
ical normal data with (n, p)  = (50,5) and (n, p)  = (75,5). The distributions of  
S*-values were studied in each case using box plots. The primary issue is to 
what extent these distributions hover around zero since the null situation 
should not suggest that particular variables are needed for clustering. Figure 
5 shows an example of the results at the stage of picking a second variable 
when n = 75. The distributions are centered near zero with variability that 
decreases as k increases. At the same time, Figure 5 does not indicate any 
strong bias towards picking an unneeded variable inadvertently. The other 
figures (not shown) provide a similar story. 
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Figure 5. Box plots of distributions of S*(k) for selection of second of five variables using the 
null data with sample size 75. 

Exper iment  2 - Clusters Along Coordinate Axes 
The design of  this experiment is particularly favorable to the forward 

selection procedure because the clusters can be associated with individual 
variables. Specifically, unit variance spherical normal clusters of  size n(/) 
and dimension p = 2 l + 1 were located at a distance d = 5.0 from the origin 
along each of  the first I coordinate axes. Thus the clusters were confined to 
an /-dimensional subspace. The other l+ 1 dimensions corresponded to 
independent unit normal (N(0,1)) noise variables with no cluster structure. 
Tests were run with l = 2(1)5 and n(/) = [ I 0 0 / l ] .  For each l, 100 random 
samples were drawn. The forward selection algorithm picked the best/-subset 
in all cases. 

Exper iment  3 - Clusters in a Plane 
Four types of  bivariate normal cluster structure in two variables were 

combined with three other independent N(0,1) noise variables to check how 
consistently the structure variables were selected in the first two stages of  the 
selection algorithms. For each of the four cases, the experiment was repeated 
100 times. Figure 6 shows scatter plots of  the variables with the cluster 
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Figure 6. Scatter plots illustrating types of data used in Experiment 3. 

structure for one random sample from each of the four cases. The 
specifications of the remaining cluster parameters are shown in Table 1. The 
design provides for testing the effects of differences in cluster separation and 
within-cluster covariance structure. The forward selection algorithm picked 
the cluster variables correctly in the first two steps in each of the 400 samples. 
Box plot summaries of the S*-values at the second stage of variable selection 
are shown in Figure 7 for each of the four cases. It is clear from these plots 
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TaMe 1 

Parameter Specifications 

Case h 
cluster sizes 20 20 20 

~,°~to=o I:l [::1 I':l 

cluster correlations -0.7 0.7 0.0 

Case II: 
cluster sizes 20 20 20 

cluster means [1~] [~] [11~] 

c,ooo~.~= I:l [:1 I:l 
cluster correlations 0.7 0.0 -0.7 

Case IH: 
cluster sizes 20 20 20 20 

cluster means [:1 [1:1 [1:] [11: ) 

cluster correlations 0.7 0.0 0.0 0.7 

Case IV: 
cluster sizes 15 15 15 15 15 

cluster means [~1 [1~1 [551 [1~1 [i~1 

olo~t~v~o= I:] I:] I:l [:/ [:) 
cluster correlations 0.0 0.0 0.0 0.0 0.0 
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Figure 7. Box plot summaries of S*(k) for Experiment 3. 

that the correct number of clusters would have been inferred in most of the 
samples as well. For example, note how the box heights peak in Case I at 
k =-. 3, which corresponds to the actual number of simulated clusters. 
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Figure 8. Scatter plots illustrating types of data used in Experiment 4. 

E x p e r i m e n t  4 - B r e a k d o w n  

The layout in this case is similar to Experiment 2 except that: 
l = 2 or 4 only, n(/) = 25, and d = 1(1)5. By reducing d, one gets an idea of  
when the selection procedure breaks down. Ten random samples were 
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generated for each (l,d) combination. Figure 8 shows one sample realization 
for each d with l = 2. The clusters show considerable overlap when d = 1 or 
2 but are well separated for other values. The forward selection procedure 
picked the correct pair of variables in the first two stages in each test sample 
for d = 4 or 5, but performed no better than one would expect by chance for 
d = 1 or 2. When d = 3, the pair with duster structure was picked correctly 
in nine cases out of 10 when l = 2 and seven times when l = 4. 

Collectively, these experiments suggest that the forward sdection algo- 
rithm can successfully cull out variables with cluster structure from noise 
variables provided the clusters are reasonably separated and even in the pres- 
ence of moderate orientation and scale differences. 

4. Variable Selection on Real Data 

In this section the forward selection algorithm will be used to analyze 
data concerning the fading of microwave signals. One purpose of analyzing 
these data was to predict the amount of time, measured in seconds, that the 
strength of microwave signals between a pair of microwave towers falls 
below 30 decibels (fading time) in a given year as a function of the following 
seven explanatory variables: 

1. Distance in miles between microwave towers (hop length), 
2. Absolute humidity in rag/cubic meter, 
3. Terrain roughness in meters, 
4. Average annual temperature in degrees Fahrenheit, 
5. Annual number of hot days (temperature > 90°F), 
6. Average annual rainfall in inches, 
7. Average annual number of days with thunderstorms. 

Data were available on 51 pairs of towers from across the United States con- 
centrated in a relatively small number of geographical areas. There were 
several instances of repeated measurements of fading time at the same site 
over several periods of time. 

Preliminary scatter plots of the explanatory variables indicated the pos- 
sible presence of duster  structure in these variables. The seven explanatory 
variables thus seemed natural candidates for the investigation of whether the 
duster structure was present in all seven variables or largely confined to a 
subset. Presence of duster structure could have an important impact on the 
prediction of fading time. Prior to analysis, each of the seven variables was 
standardized to have unit standard deviation. Figure 9 shows plots of S*(k) 
versus k for each subset containing one variable. ~ o r  this example, any 
small, negative values were rounded to zero. This does not affect the choice 
of variables.) The collection of plots represents the first step in a forward 
selection process. 
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Figure 9. Plots of  separation statistic versus number of  clusters for selection of  first variable. 
The number over each plot refers to the variable being considered. 
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Figure 10. Plots of separation statistic versus number of clusters for selection of second vari- 
able. 

The plot for variable 3, Terrain, exhibits the largest value, S*(2) = .14, 
of those in Figure 9. (The standard deviation of S*(2) under null normal con- 
ditions is about .08 and drops to around .05 for higher values of k. 
Corresponding values for later stages of the selection process are about the 
same.) Terrain was entered at the first step in the forward selection. 

Figure 10 shows plots of  S*(k) versus k for all two variable subsets, 
given that variable 3, Terrain, was selected in the first step. The maximum 
value of S*(k) increased from approximately .14 at step one to approximately 
22 at the second step. Given the rough estimates of standard deviation from 

the simulation experiment, this increase was deemed "significant." 
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Figure I 1. Scatter pIot for checking reasonableness of the three clusters. 

Inspection of Figure 10 shows that subsets {3,2} and {3,4} exhibit the largest 
values of the separation statistic, S*(k). The largest values are for S*(3). 
Arbitrarily, variable 4, Temperature, was chosen at the second step in prefer- 
ence to variable 2, Humidity. That this choice was not crucial wiU be evident 
later. Since only two variables are being considered at this step, the cluster- 
ing should be clearly revealed by a scatter plot of Temperature versus Terrain. 
Figure 11 shows such a scatter plot with points identified by cluster number. 
(There appear to be fewer than 51 points because of repeated values and 
overstriking.) The clusters appear to be very well separated. 

Having entered variables 3 and 4 (Terrain and Temperature) in the first 
two steps of forward selection, the selection was continued, and variable 2, 
ttumidity, was selected at the third step. (Had Humidity been selected at the 
second step, then Temperature would have entered here.) Forward selection 
of variables was terminated after step four. Figure 12 shows plots of S*(k) 
versus k for each four variable subset containing the previously selected vari- 
ables. The plot for variables 3,4,2,7, in which Thunderstorms is the fourth 
variable, exhibits the largest cluster separation so far encountered, 
S*(k) = .27. 
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Figure 12. Plots of separation statistic versus number of clusters for selection of fourth vari- 
able. 
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Figure 13. Plot of separation statistic versus number of clusters using all variables. 
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Any further addition of variables in the forward selection process 
decreases the value of the separation statistic. Consider Figure 13 which 
shows S*(k) versus k plots for all of the variables. There are sharp decreases 
in some of the S*(k) values from the ones for variable subset {3,4,2,7}. For 
example, S*(3) decreases markedly from the subset {3,4,2,7} to the fuU com- 
plement of seven variables. This suggests that the three duster structure that 
was found for the subset {3,4,2,7} has been largely wiped out by the additiorf 
of the final three variables. In addition, the general level of S* (k) is markedly 
reduced from the subset {3,4,2,7} to the fuU complement. Overall, there 
appears to be weak clustering when all of the variables are used. Peaks occur 
at k = 2andk  =4.  

Given the subset {3,4,2,7}, attention was confined to the k = 3 cluster 
structure. The duster memberships were determined by cutting the tree 
resulting from the hierarchical clustering of the four standardized variables 
(using Euclidean distance and the complete linkage method) to produce three 
clusters. In order to establish the reasonableness of the three duster structure, 
the dusters were considered in more detail. In particular, the sites falling in 
the three dusters were studied, the separation of the dusters was assessed by 
methods other than the separation statistic S* (k), and characterizations of the 
dusters in terms of the four variables were also made. Figure 14 shows a 
map of the United States with the individual sites identified by the three clus- 
ter numbers. Cluster #2 comprised hot, rainy sites in the southeastern United 
States largely from the states of Florida, Georgia, and Alabama. Cluster #3 
comprised mountainous regions of New York, Pennsylvania, New Mexico, 
and Wyoming, while Cluster #1 contained the remaining sites, largely cool 
and flat, scattered across the midwest, Texas, and New Jersey. There is thus a 
strong geographical-climatological component in the clustering since places 
that duster together either tend to be close in terms of map distance or close 
in terms of terrain, temperature, humidity, and number of thunderstorms. 

Figure 15 shows a duster profile in which this geographical clustering 
is amplified. Values of the duster means minus the grand mean for the stand- 
ardized data are plotted, using their duster numbers, on the X-axis while the 
variables Humidity, Terrain, Temperature, and Thunderstorms are positioned 
on the Y-axis. The plot is reaUy a series of four unidimensional plots juxta- 
posed for comparison purposes. For example, the plot shows that Cluster #3 
which includes sites in Pennsylvania, New York, Wyoming, and New Mexico 
has the roughest terrain, the lowest annual temperature, and the lowest humi- 
dity. Cluster #2, which comprises sites in Florida and other southeastern 
states, has the highest humidity, highest temperature, and flat terrain. 

Figure 16 gives an overall assessment of duster separation. It shows a 
plot of the Euclidean distances of each point to the centroid of the duster in 
which it falls and to all other duster centroids. The distances have been 
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Figure 14. Geographical location of three clusters obtained using "best"  four variables. 
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Figure 15. Profile plot that shows separation of clusters on individual variables. 
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Figure 16. Distance plot of individual points to cluster centroids using "bes t "  four variables. 
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scaled by dividing by the square root of the number of variables used in the 
distance calculation. This facilitates the comparison of plots for differing 
numbers of variables. Points are again identified by cluster number, and a 
small uniformly distributed random variable is added to the X-coordinate so 
that the points may be more easily seen. The basic plot is repeated for each 
of the three clusters and the results are shown side-by-side. This plot is a 
variation of one proposed by Gnanadesikan, Kettenring, and Landwehr 
(1977). Beginning at the left in Figure 16 the plot shows that, for Cluster #1, 
the distances of the sites in Cluster #1 to their own centroid are much less 
than the distances of the other sites to this same centroid. The exception is 
one point in Cluster #1 which represents the single California site. Further- 
more, there is a pronounced gap between the points for Cluster #1 and the 
others in this column. Cluster #2, comprising sites in the southeast, shows 
some slight overlap with Cluster #1, but for most points it is quite separated. 
Cluster #3, containing the mountainous sites, perhaps shows the largest 
separation of all. Its points are all much closer to the Cluster #3 centroid than 
to the centroids of the other two clusters. 

Finally, a study was made to show how the three clusters that were 
found to be reasonable for the subset {3,4,2,7} are altered when all of the 
variables are included. From the plot of the separation statistic S* (k) versus 
the number of clusters k in Figure 13 there is a suggestion that there might be 
two or four clusters when all variables are considered. These clusterings 
ought to be somewhat weaker than the clustering for the subset {3,4,2,7} 
since the general level of S*(k) is reduced when all of the variables are 
entered. Limiting attention now to the four cluster case, the contents of these 
clusters can be compared to the three clusters found when the subset 
{3,4,2,7} was considered. The four component clustering derived from all of 
the variables left the cluster comprising sites in the southeastern U. S. (again 
Cluster #2) intact but removed the mountainous regions of New York and 
Pennsylvania from the mountainous cluster and combined them with fiat 
regions in New Jersey and the midwest (new Cluster #3). This does not seem 
to be reasonable. Also a new cluster (Cluster #4) was formed containing two 
of the three Texas sites and the single Califomia site. The separation of the 
four clusters can be assessed by constructing a distance plot, Figure 17, like 
that of Figure 16. The pronounced gaps found in Figure 16 for the three com- 
ponent clustering using subset {3,4,2,7} have now largely disappeared. Only 
Cluster #4 appears well separated. 

This example has shown that the subset of variables, Humidity, Terrain, 
Temperature, and Thunderstorms contain well-separated and meaningful 
clusters. The remaining variables in part wipe out structure found for the sub- 
set and dilute the cluster separation. 
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5. Conclusion 

The inclusion of unnecessary variables in a cluster analysis can cause 
more damage than in such other statistical procedures as regression analysis. 
However, constructing sound statistical procedures for variable selection in 
clustering appears to be particularly tricky. The contribution of this paper has 
been to propose a straightforward but computationaUy intensive procedure for 
use in conjunction with standard clustering algorithms. Experience with 
simulated and real data shows that it is elective. 
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