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A N D  L I P S C H I T Z  M A P S  

K. BALL 

A b s t r a c t  

It is shown that a version of Maurey's extension theorem holds for Lips- 
chitz maps between metric spaces satisfying certain geometric conditions, 
analogous to type and cotype. As a consequence, a classical Theorem of 
Kirszbraun can be generalised to include maps into Lp, 1 < p < 2. These 
conditions describe the wandering of symmetric Markov processes in the 
spaces in question. Estimates are obtained for the root-mean-square wan- 
dering of such processes in the Lp spaces. The duality theory for these 
geometric conditions (in normed spaces) is shown to be closely related to 
the behavior of the Riesz transforms associated to Markov chains. Several 
natural open problems are collected in the final chapter. 

I n t r o d u c t i o n  

A classical theorem of Kirszbraun states that  if H and K are Hilbert spaces, 

Z is a subset of H and f : Z ~ K is Lipschitz, then there is an extension ] : 

H --, K of f whose Lipschitz norm is no more than t h a t  of f .  Theorem 4.4, 

an application of the  principal result of this paper, generalises Kirszbraun's 

theorem as follows: for each p in the interval (1,2) there is a constant  Cp so 

that if  H is Hilbert space, Z is a subset of H and f : Z --* Lp is Lipschitz, 

then there is an extension ] :  H --* Lp of f with H]Hlip _~ Cpl]fHlip. 

For Kirszbraun's  theorem (and other classical results described in 

[WW]) it is critical that the  Lipschitz norm of the extension can be taken 

to be the same as tha t  of the original function; i.e. the  theorems are "iso- 

metric". This  means that  the extension can be performed one point at a 
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time. As soon as the codomain K is not Hilbert space (or an L~-space) 
the extension certainly cannot be performed isometrically. For this rea- 
son, an approach is required which deals with arbitrarily many points at 
once. (Note: the situation here is very different from that  of linear maps. 
Any linear map  defined on a subspace of Hilbert space, extends trivially, 
by composition with the orthogonal projection, and there is no increase in 
norm,) 

The methods used in this paper are inspired by the theory of type 
and cotype of Banach spaces (see below for definitions, or [LT] for more 
information). The type and cotype properties describe the behaviour of 
sums of independent random variables in Banach spaces. In the non-linear 
setting, such sums do not make sense. The analogues of type and cotype 
introduced in this paper describe the behaviour of Markov chains in the 
spaces in question. Independence in the linear theory is replaced by the 
Markov property in the non-linear. 

It has been known for some time that  the problem of extending linear 
maps is closely related to type and cotype properties of normed spaces. 
A weU-known theorem of Maurey [M] states that  if X and Y are Banach 
spaces, X having type 2 and Y having cotype 2, Z is a subspace of X and 
T : Z --* Y is a bounded linear map, then there is an extension T : X ~ Y 
of T and 11911 is bounded by T2(X)C2(Y)IITII (T2(X) and C2(Y) being the 
type 2 and cotype 2 constants of X and Y respectively). In Chapter  1 of this 
paper it is shown that  an analogue of this theorem holds for extensions of 
Lipschitz maps, provided that  the domain and codomain satisfy geometric 
conditions that  describe the speed a~ which symmetric Markov chains can 
wander. These conditions will be called Markov type 2 and Markov cotype 2. 
Neither of these conditions has previously been studied even in the context 
of the linear theory. It is hoped that  this paper will provide a stimulus to 
the further investigation of Markov chains in normed spaces. It also seems 
reasonable to hope that  the Markov type and cotype properties will have 
applications to the theory of more general manifolds, where the study of 
Markov chains already plays an important  role. 

As mentioned above, the basic (abstract) extension theorem is proved 
in Chapter  1. In Chapter  2 it is shown that  the Markov type and cotype 
2 properties are stronger than their linear (or Rademacher) counterparts. 
Chapter  3 contains a discussion of uniform convexity and uniform smooth- 
ness and in Chapter 4 it is shown that  2-uniformly convex spaces have 
Markov cotype 2. This implies, in particular, that  for 1 < p <: 2, L v has 
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Markov cotype 2 and completes the proof of the theorem described in the 
first paragraph of this introduction. 

The principal problem raised by this paper is whether Lq has Markov 
type 2 for 2 < q < co. Chapter 5 contains a discussion of the behaviour of 
Markov chains in uniformly smooth spaces with some suggestions as to how 
the Markov type 2 problem might be tackled. An estimate on the wandering 
of Markov chains is proved, that is slightly weaker than the Markov type 2 
condition. 

Chapter 6 is intended to suggest future lines of research on the prob- 
lems studied here. There is a well-developed duality theory for type and 
cotype (due principally to Maurey and Pisier): see e.g. [MS] for details. The 
problem of duality for the Markov properties is considered in Chapter 6 and 
shown to be closely related to the theory of Riesz transforms. Some open 
problems raised by this exposition are also collected in Chapter 6. 

It is perhaps worth recalling some of the background on Lipschitz maps 
and type and cotype, before embarking upon the main discussion. If (X, dx) 
and (Y, d r )  are metric spaces, a Lipschitz function f : X ~ Y has Lipschitz 
norm defined to be 

{dY(f(x)'f(Y)) :x, yEX x~y } . 
IIfHlip ----- sup dx(x, y) 

The general extension problem is a.s follows. Suppose X and Y are metric 
spaces, Z is a subset of X and f : Z --* Y is Lipschitz. Under what 
conditions on X and Y (and perhaps Z and f)  does there exist a Lipschitz 
extension ] :  X --* Y of f ,  and what can be said about II]llnp in terms of 
Ilflllip ? There are two classical theorems which provide answers in special 
cases. Kirszbraun's theorem, stated above, provides a positive answer if X 
and Y are Hilbert spaces and the non-linear Hahn-Banach theorem gives 
extensions for arbitrary X if Y is an L~-space. Lindenstrauss ILl], proved 
a less isometric result, stating that the extension problem can always be 
solved if Y for example, is co, with O]lllip < 211fillip. 

In the papers [MarP], [JL] and [JLS], estimates are obtained for ex- 
tensions of Lipschitz maps that are initially defined on finite sets. For 
example, Johnson and Lindenstrauss showed that if Y is a Hilbert space 
(X arbitrary), there is a constant K so that any f defined initially on an 
n-point subset of X he.s an extension ] with 

II]lllio n Ilflllip �9 
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Type  and cotype play an important  role in the theory of normed spaces, 
g providing a link between geometry and probability. Let ( i)1 be an iid 

sequence of Bernoulli random variables on some probability space. For 
1 < p < 2, a normed space X is said to have type p (or Rademacher type p) 
if there is a constant K so that for all n E N and all sequences (xi)'~ in X, 

i ll" E CiXi <~ g p I lx i l l  p . 

1 

Cotype q, 2 < q < c~, is defined similarly but with the inequality reversed. 
(All normed spaces have type 1 and cotype c~ if the  definitions are extended 
in the obvious way.) There have been several suggested definitions of type 
for general metric spaces: examples of results using these may be found 
in [E], [BMW] and [G]. The paper by Gromov uses a type 2 property in 
connection with the eigenvalues of Laplacians on graphs. Given the close 
connection between Markov chains and differential operators, this would 
suggest that the Markov type 2 property should be explicitly studied for 
manifolds. 

On  the other hand, no very convenient definition of cotype was found 
for general metric spaces. In the context of the Lipschitz extension prob- 
lem one can perhaps see why. For maps into a metric space Y to have 
extensions, it is necessary that  Y should consist of more than a few isolated 
points. So one expects that  a cotype property, appropriate to the extension 
problem, will involve some existential assertion concerning points in Y. To 
simplify the present exposition, it will be assumed that  the codomain Y is 
a normed linear space (or convex subset thereof). Some remarks concern- 
ing the  generalisation of cotype to arbitrary metric spaces are included in 
Chapter  6. 

I a m  indebted to several people for their suggestions concerning the 
problems discussed here, in particular, W.B. Johnson, J. Lindenstrauss, 
G. Pisier and G. Schechtman. I am especially grateful to Prof. Johnson, 
without whose ideas and encouragement, this work would not have taken 
place. 

1. T h e  Genera l  Extens ion  P r o b l e m  

This chapter begins with a lemma which provides a necessary and sufficient 
condition for Lipschitz maps to have extensions. This lemma is a variant of 
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one used by Maurey. A related lemma was found earlier by Johnson, Lin- 
denstrauss and Schechtman: their result actually characterises extensions 
which factor through subsets of Hilbert space, a problem much closer to 
Maurey's argument. Their lemma provided much of the stimulus for the 
present work. 

The  second lemma in this chapter, provides a further, slight, refor- 
mulation of the problem. This is not really necessary hut  simplifies the 
succeeding arguments. After this, the Markov type and cotype properties 
are motivated and introduced and some equivalent forms of the Markov type 
property are described. Finally, the basic extension theorem for Lipschitz 
maps is stated and proved. 

LEMMA 1.1. Let  (X, d) be a metric space and Y a normed space, Z a subset 
of X and f : Z --* Y Lipschitz. Then, there is an extension ] : X --* Y** 
of f wi th  I[]l[,ip _< I (  i f  (and only if), for every n �9 N, n x n symmetr ic  
matrix H = (hij) with non-negative entries and sequence (xi)'{ in X ,  there 
is a m a p  

]= ] ,  : {Xl,...,x,,} , v * *  

which agrees with f on Z f ' / { x  1 . . . .  , xn } and satisfies 

h/J Ill(x/)- ] ( x j ) l l  2 _< i (  2 hijd(xi,xj) 2. 
i j  i j  

(i.l) 

Proof: Plainly, if ] exists, its restriction to a finite set { x i , . . . , x n }  will 
satisfy (1.1) for any H.  

Conversely, suppose the condition holds. The argument is in two steps. 
The first is to show that  for a finite set S = {Xl , . . . ,  xn} in X,  there is a map 
f,  : S ~ Y which agrees with f on Z M { x l , . . .  , x , }  and has Lipschitz norm 
at most K. Consider the set C of n • n matrices M = ( m i j )  of the form 

mij = I I f ( x i ) - f ( x j ) l l  2 for some map  ] agreeing with f on Z N { x l , . . . , x ~ } .  
Let D be the set of matrices of the form AI + M r where M E C and M ~ has 
non-negative entries. Finally, let T be the matrix tij  = K2d(x i ,  x j)  2. The 
aim is to show that T E D. 

The set D is convex, for suppose ]1 and ]2 are "extensions" of f to S, 
M1 and M2 their corresponding matrices and M~ and M~ have non-negative 
entries. For a fixed A �9 (0, 1), define an "extension" ] :  { x l , . . . , x n }  --* Y 
by 

] (x , )  = A / , ( x i )  + (1 - A)/~_(x,) , 1 < i < n 
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and let M be the corresponding element of C. Then 

mij < ( , x l l / ~ ( x i )  - jl(Xi)ll + (1 - A)II/2(zi) - / ~ ( x j ) l l )  = 

< ~11 /1 (~ , ) - / l (x j ) l l  2 + ( 1  - m ) l l L ( x , ) -  :=(x~)ll 2 
--~ / ~ ( U i ) i j  -1- (1 - A)(M2)ij �9 

Hence, there is a matrix 2il r with non-negative entries so that  

i + M ~ = A(M1 + M~) + (1 - A)(M2 + M~).  

Now, suppose that  T ~ D. Then there is a symmetric matrix H = (hij) 
and some a E It for which 

Z hijmij > 
ij 

but 

c~ if (mij) E D 

Z hijtij < ~. 
ij 

The definition of D ensures that each entry of H must  be non-negative, so 
that  these conditions violate the hypothesis. 

The second step is to find ] .  Assume that  Z is non-empty, Xo E Z 
(say) and that  f(xo) = 0. For each x E X,  let Bx be the topological space 
consisting of the set 

{y e Y**: ]IYI[ -< Kd(x, xo ) } ,  

equipped with the weak* topology inherited from Y**. Bx is compact  and 
hence, so is the Cartesian product B = 11 Bx. For each finite subset S 

x E X  
of X, containing x0, there is a Lipschitz map f8 : S ~ Y** "extending" f ,  
with norm at most K.  Let b (8) be the point of B given by 

h(.) = f f . (x)  if x e s 
i 0 otherwise 

for each x E X.  Note that the Lipschitz assumption on f8 guarantees that 
fs(x) E Bx, for each x E S. If b is an accumulation point of the b (s)'s 
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along the net  of finite subsets of X which contain x0, then an extension 
] : X ---* Y** is given by 

] ( x ) = b ~ ,  x E X .  [] 

By the homogenei ty  in L e m m a  1.1, it would suffice to consider only 
those matr ices  H whose largest eigenvalue is 1. Let ( h u )  be such a matr ix  

0 n and 0 = ( i)1 be an eigenvector wi th  eigenvalue 1, satisfying 

Oi>O,  l < i < n  and 
72 

E O / 2 =  1. 
1 

There is a Markov semigroup associated with H as follows. Let A = (aij) 
be the mat r ix  given by 

aij  = O~lhi jOj  1 < i , j  ~_ n . 

For each i, 
~-~ aij = O~ 1 ~ hijOj -.= 1 

J J 

while for each j ,  
02aij  = ~ OihijOj = 02 �9 

i i 

So A has rows that  sum to 1 and the vector (02 , . . . ,  02) is a s teady state vec- 
tor for A. The  powers (Ak)~=o form a Markov semigroup of operators  on R ~ 
which is said to be symmetr ic  (or time-reversible) with respect to the prob- 
ability which assigns mass 02 to the state i, 1 < i < n. If Mo, M1, M2, . .  �9 is 
the Maxkov chain satisfying 

P ( M o  = i) = 02 1 < i < n 

P ( M k + I  = j I M k  = i) = ai j  1 <_ i , j  <_ n,  

then for any m E N and sequence i0, . . . .  i , ,  of indices 

k = 0 , 1 , 2 . . .  

P ( M o  = i0, M1 = i l , . . . , M m  = ira) 

= P ( M o  = i m , . . . , M m  = io) �9 

The simplest  examples  of such Markov semigroups are those for which 0i is 
independent  of i: i.e. H = A is a symmetr ic ,  stochastic matrix.  Only these 
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matrices will be discussed below: versions of all the results proved, hold for 
general symmetric semigroups, but  the added complication of this generality 
is not needed. The next lemma explains why. From now on, a matrix (not 
necessarily square) will be called stochastic if it has non-negative entries 
and its rows sum to 1. The proof of the following lemma is easy but is 
very tedious to write carefully. Only a sketch is given. Similar refinement 
arguments appear in many places. 

LEMMA 1.2. Let  (X,  d) be a metric  space, Y a reflexive normed space, Z 
a subset  of  X and f : X --~ Y Lipschitz. There is an extension ] : X --* Y 
of f with If][flip <_ K i f  and only if, for all m,  n E N, n x n symmetric,  
stochastic A, n • m stochastic B,  ~ e (0, 1) and sequences ( z . ) ?  in Z,  (xi)~ 
in X ,  there are points  (yl)'~ in Y satisfying 

~-' ]  a,illu,- ~11 ~ + 2(1 - ~ )  f(  )ll 

Sketch of proof: Given a symmetric matrix H,  as in the hypothesis of 
Lemma 1.1, reorder the indices so that  the first m (say) correspond to 
points in Z and the remainder to points in X \ Z .  Let H be 

(; 
for appropriate matrices A, B and T. By approximating H and scaling, 
assume that  there is some c~ E (0, 1) so that  each row of B has a sum which 
is an integral multiple of (1 - a) ,  say pi times (1 - a)  for the ith row, and 
then, by adding appropriate numbers to the diagonal of A, that  the i th row 

of A adds up to plc~ (for each i). Note tha t  the diagonal of A is irrelevant 
for the inequality (1.1). The aim is to construct new matrices in place of 
A and B. First divide B by (1 - c~), and then, for each i, replace the ith 

1 times this row, to obtain B'  (say). Divide row of l_-~l~B with pi copies of pS 

A by c~: replace the ith row of ! A  with pi copies of • t imes this row to c~ p i  

1 times this obtain Aq Now, replace the i th column of A' with pi copies of p-T. 

column. For example, if c~ = �89 
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then 
= 1 1  

I! ' 1) A ' = "ff ~ A " = 41 41 
1 1 1 
2 \ 2  4 4 

The new matrices B p and A" axe stochastic and A" is symmetr ic .  Apply 
the hypothesis  (1.2) with these matrices,  the above value of a and, for each 
i, pi copies of xi. This  yields a collection of y's: the y's corresponding to 
different indices in the ith "block" may  not be the same; but  they can be 
chosen to be, just  by selecting the average, in place of all of them.  The  
resulting yi's will then  satisfy the hypothesis  of L e m m a  1.1 as the images 
](x,) .  o 

L e m m a  1.2 mot ivates  the definition of Markov type. Suppose, to begin 
m 

with, tha t  the codomain,  Y, is Hilbert space. Given A, B, c~ and ( f (x , . ) )  1 , 
the a im is to choose (yi)~ in Y so that  the quant i ty  

o ~ E a i j l l y i - y j l l  2 + 2(1 - ~) E b i r [ [ y i -  f(x~)]l 2 (1.3) 

is small. But  in Hilbert  space, one can easily determine the m i n i m u m  of 
the quadrat ic  form (1.3) over all choices of (Yi)r: namely  

(1 - a )  E ( B T C B ) ~ I l f ( z ~ ) -  f(zs)[[ 2 (1.4) 
P 8  

where 

C = (1 - ~ ) ( I -  aA) -1 
o o  

= (1 - c ~ ) E a k A k  . (1.5) 
k = 0  

This m i n i m u m  is a t ta ined when 

= for each i. 

Note tha t ,  f rom (1.5), C is a symmetr ic ,  stochastic matrix:  so each yi is a 
convex combinat ion of the f(z,.) 's. It is natural  to es t imate  (1.4) by 

(1 - c~)]lflh2p E ( B T C B ) , . s d ( z , . , z ~ )  2. 
r $  
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Hence, Lemma 1.2 guarantees extensions if the domain X has the property 
that  for some g and for all A, B, a, (z~)~ and (xi)~, 

(1 - o ~ ) E ( B T C B ) r s d ( z r ,  zs) 2 

<_ + 

This property could be taken to be the definition of Markov type 2. How- 
ever, it is unnecessarily complicated. The proof of Theorem 1.7 below, will 
show that  it is enough to consider only the cases m = n, zi = xi (1 < i < n) 
and B the identity matrix. 

DEFINITION 1.3. A metric  .space (X,  d) will be said to have Markov  type 2 

i f  there is a constant K so that i f  n E N, A is an n x n symmetric ,  stochastic 

matrix,  a E (0, 1) and (xi)~ is a sequence in X ,  

(1 - ~) ~ c~(x , ,  x~) ~ < K-~ E a'~(x',xJ) ~ (1.6) 
ij i1 

where C = (1 - c~)(I - aA) -1. The /eas t  K for which this holds win be 

denoted M2 (X). [] 

The matrix C plays the role of a Green's function for the difference 
equations defined by A: but as will be seen in Proposition 1.6, it is more 
useful to think of C as a transition matrix for a Markov chain stopped at an 
independent,  geometrically distributed time. For 1 < p < 2, it makes sense 
to define Markov type p by replacing the exponent 2 in (1.6) by p. Some 
simple observations concerning Markov type are collected here. 

PROPOSITION 1.4. i) Every metric space has Markov type 1. 

ii) Hilbert spaces have Markov  type 2. 

iii) I f  I < p < 2, Lp has Markov  type p. 

Proof: i) Let (xi)'~ be points in a metric space (X, d). With A, a and C as 
above, C = (1 - a ) I  + ~ C A  so 

E cijd(xi'xJ) = Ot E Cikakjd(xi'xJ) 
ikj 

ikj 

= ~ ~ c~(~,,x~) + ~ ~ a ~ d ( ~ , ~ ) .  
is kj 
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S u b t r a c t i n g ,  ~ cijd(xi ,  x j)  from both  sides gives 

(1 - , )  ~ c,j~(x,,x~) <_ ~ ~ a ,~(x , ,x~)  . 

ii) This  can be checked by expanding the inner product  and using the 
fact t ha t  if A is an eigenvalue of A, A < 1 and ~ is an eigenvalue of C 
with the  same eigenspace. 

X n The  result also follows from the assertions made  earlier. For, if ( 01 
is a sequence in Hilbert  space, consider the quadrat ic  form 

, ~ a , j l l , , , - , , j l l  2 + 2 ( 1 - , )  ~ ] l v ,  -~,Jt  2 . (1.7) 

If vi = xi (1 < i < n) then (1.7) takes the value 

" ~ _ ,  aijllx, - ~ j l l  ~ �9 

But, as was s ta ted  earlier, the min imum of (1.7) is 

(1 - , )  ~ cijllx, - ~ill 2 �9 

iii) For 1 _< p _< 2, Lp can be equipped with a new metr ic  d by, d(x,  y) = 
IIx - yll ~ ,  and the resulting metric space embeds  isometrically in Hilbert 
space, by results of Schoenberg [S] (see e.g. [WW]). So iii) is immedia te  
from ii). o 

Now consider codomains  Y other than  Hilbert space. The  hope is tha t  
Lipschitz maps  defined on subsets of spaces with Markov type 2, into Y, 
should be extensible. So it is natural  to ask tha t  there be a K so tha t  for 
any sequence (x r )~  in Y and all A, B and as above, there exist points  (yi)~ 
in Y with, 

~}~_. %l ly i -y i l l  ~ + 2 (1 -4 )  Y~ bill~,- x.II ~ 

< g~(1 - , )  ~ ( B T C B ) , ~ I I ~ .  - ~112i. 

Just as for type,  it is enough to consider only the case B = identity. More- 
over, at least for normed  spaces, it seems to be appropriate  to insist tha t  
the yi's can be chosen as in Hilbert space; i.e. 

Yi -- E c i j x J  (1 < i < n) . 
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D E F I N I T I O N  1.5. A normed space X will be said to have Markov cotype 2 
i f  there is a K so that i f  n E N, A is an n x n symmetric, stochastic matrix, 

~ (0, 1) and (xi)~ is a sequence in X ,  

where C = (1 - a) ( I  - (xA) - 1  . The least K for which this holds will be 

denoted N 2  ( X ) .  o 

Again, it is easy to check tha t  Hilbert spaces have Markov cotype 2 

with constant  1. 

The next theorem is intended to explain the nomenclature; at  least 

the phrase Markov type. If X is a metric space, a Markovian sequence 

M0, M1, �9 �9 �9 of X-valued random variables will be called a simple, symmetric 

Markov chain if there is an n E N, a sequence (xi)'~ in X and an n x n 

symmetric  stochastic matr ix  A - - - -  (aij) so that  

1 
P ( M o = x i ) = -  (1 < i < n )  

n 

P(Mk+I = xj  [ Mk = xi) = aij (1 _< i , j  < n) k = 0 , 1 , 2 , . . . ,  

Note: strictly speaking, it may not be possible to find such a Markov chain if 

the xi 's  are not all different. Wha t  one really wants is an X-valued function 

of a Markov chain with state space 1 , . . .  n. 

T H E O R E M  1.6. Let (X,  d) be a metric space. The following are equivalent: 
i) X has Markov type 2 

ii) There is a constant K so that i f  Mo, M 1 , . . . ,  is a simple, symmetric 
Markov chain in X and m E N, 

m - 1  

Ed(l~lm,/110) 2 < K 2 Z Ed(Mk+l,  Mk) 2 
k=O 

= K2rnEd(M1, Mo) 2 . 

iii) There is a constant K so that  i f  Mo, M 1 , . . . ,  is a simple, symmetric 
Markov chain in X and T is a random time independent o f  (Mk : k >_ O) 

then 
Ed(Mr, Mo) 2 _< K 2  E T . E d (  , Mo  ) 2 . 
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Proof: ii) =~ iii). For m = 0 , 1 , 2 , . . .  let P m =  P(T = m). Then  by 
independence 

oo 

Ed(MT'M~ -- E pmEd(M'~'M~ 

o ~  

<- I(2 E P'nmd(Ml'M~ 
r n ~ 0  

= K2ET.Ed(M1, Mo) 2 . 

iii) ~ i) Take T to be dis t r ibuted geometrically with P(T = m) = (1 - a ) a  m, 
m = 0~ 1 , 2 , . . .  and note  that  

O~ 
ET = 

1 -  oz" 

i) =~ ii) Suppose A, (xi)'~ and m E N are given. 
C = (1 - a)(I - aA) -1 and observe that  

Hence 

i.e. 

Let a = 1 -  ~ and m + l  

(m + 1) 2 1 m + 1 
k~O i j  

< (1 - ~) ~ ~,jd(x~, ~j) ~ 

_< g2~ ~ ~ii~(x. ~)2 

_ K2m 
m + l  

m 

E E (Ak)'jd(xi'xj)2 <- K2em(m + 1) E aidd(xi'xj)2 ; 
o ij ij 

1"n 

Ed(M~, Mo) 2 < ~C2~(m + 1)Ed(M1, Mo) 2 . 
le=O 

Now for each k, 

Ed(gm. Mo) ~ < E(d(M.~. M,~) + g(M~. Mo)) 2 
< 2(E,(Mm. M~) 2 + Ed(ik. Mo) 2) 
= 2(Ed(M,n-k, 2~I0) 2 4- Ed(Ma, Mo) 2) . 
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Summing over k, 

m 

(m + 1)Ed(Mm, Mo) 2 < 4 Z Ed(Mk'M~ 
k-----O 

and so 
Ed(Mm, M0) 2 < 4K2emEd(M1, Mo) 2 . 

In view of the preceding theorem, Proposit ion 1.4 ii) is s trengthened by 

the observation that  if Mo, M1, �9 �9 �9 is a symmetr ic  Markov chain in a Hilbert 

space 

S l l i m  - Moil 2 ~_ mEIIM1 - M o l l  2 ,  m - -  1 , 2 ,  . . . .  

Observe that  in any metric space, 

m - - 1  2 

m - - 1  

< m ~_, Ed(Mk+l, Mk) 2 
k = 0  

= m2Ed(21ll, U0)  2 . (1.8) 

The principal result of this chapter is the following. 

T H E O R E M  1.7. Let (X, d) be a metric space with Markov type 2, Y a 
reflex/re normed space with Markov cotvpe 2, Z a subset  of X and f : Z 

Y Lipschitz. Then, there is an extension ] : X ~ Y of f with 

II]ll,ip < 3Mo.(X)Y2(Y)llfll~ip �9 

Remark: It seems likely that  normed spaces with Markov cotype 2 are au- 

tomatical ly reflexive (and hence, superreflexive). In Chapter  2 it is shown 

that  they at least have non-trivial Rademacher  type.  

Proof: Let (zi)~ be a sequence in Z, (xi)'~ a sequence in X ,  A an n x n 
symmetric,  stochastic matrix,  B an n x m stochastic matr ix and c~ E (0, 1). 

The aim is to show that  there are points (Yl)'~ in Y with 

a, lly, - + 2 (1  - 4 )  b: lly, - S(z )ll 
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where K ---- 3M2(X).N2(Y)II/Ill~p. 
Let 

Yi = E(CB)i~S(z~)  , 
7" 

Then 

l < i < n .  

~ }-~ a~Jl ly , -yJ l l  2 + 2(1 - 4 ) ~  b, lly - s(z )ll 

< x~(g)~( 1 - ~) } 2  c~ b;~/(~) - ~ b~ / (~)  

+ 2 ( 1  - c~) ~ b.-Ilyi - f(z~)ll 2 

by the definition of the Markov cotype 2 property, and the  latter is at most 

(N2(Y) 2 + 2)(1 - e )  ~ - ~ ( B r C B ) , , l l f ( z , ) -  f(z,)ll 2 

by convexity. The hypothesis on f ensures that this is at  most 

3N2(Y)211SII~p(1 - 4) E ( BT C B ),,d( z~, z, ) 2 . 

Now, 

(1 - ~) E ( B T C B ) ~ d ( z r ,  z~) 2 

< (1 - a )  E cijbi,.bj~(d(zr, xi) + d(x i ,x j )+ d(xj, Zs)) 2 
i j r s  

since B and C are stochastic. The first term is a t  most 

3M2 (X)20' E aljd(xi'xj)2 

and so the whole is at most 

D 
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2. C o n n e c t i o n s  W i t h  ( R a d e m a c h e r )  T y p e  a n d  C o t y p e  

The principal result in this chapter shows that  Markov type implies (Rade- 
macher) type and that  Maxkov cotype is stronger than (Rademacher) co- 
type. In fact, if X is a normed space and either X has Markov type 2 or X* 
has Markov cotype 2, then X has type 2. This shows that  gl does not have 
Markov cotype 2 (since co does not have type 2) even though Ll-Spaces do 
have cotype 2. It is almost certain that there axe spaces of type 2 which do 
not have Markov type 2: very probably, any space with Markov type 2 can 
be equipped with an equivalent 2-smooth norm (see Chapter  3). 

The main tool used in this chapter is the following duality lemma. 

LEMMA 2.1. Let X be a normed space and let K be either the M2 constant 
of X or the N2 constant of X*.  Then i r A  is a n x n symmetric,  stochastic 
matrix, ~ E (0, 1), (xi)'~ is a sequence in X and C = (1 - ~) ( I  - aA)  -1, 

IJ IJ 2 
(1 - ce) ~i xl - ~ cijxj <- E a,Jllxi- xjll 2. 

�9 j ij 
(2.1) 

Proof: If K = M2(X) ,  (2.1) is obvious because C is stochastic so that  by 
convexity 

II r II Xi - CijXj ~-~ E CijllXi - xjII2 for each i .  
J 

Now suppose that  K = N2(X*). For 1 < i < n, choose a functional 
r E X* satisfying 

tl II 2 IIr  2 ~ X i - - E C i j X  j ~ r  * 
J J 

(2.2) 

Then, 

�9 ~ i j 

= (1 - o~) E ( I -  C ) i j r  
ij 
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It is easy to check that  ( 1 -  c 0 ( I - C )  = a C ( I - A )  so that  the last expression 
is 

E cik(I -- A)k j r  = a E ( I  - A)k jCk(x j )  
ij kj 

where for each k, Ck = ~ i  Ckir i" This last expression is 

1 

j k  kj 

( )'( _< - r ~ ~ akSltxk - xAI 2 
kj 

The hypothesis that  X* has Markov cotype 2 implies exactly that  

a E a l c j H C k  - r 2 _< K2(1 - a) E c k j l l C k  - Cj[[ 2 

and the latter is at most 

4K2(1 - a) E ][r 
k 

by the triangle inequality. Hence 

1 1 

O" 
! 

k j 

1 

(~Eo~llx~- ~jl~) ' 

by 2.2. This reduces to 2.1, o 

The implications from the Markov properties to the Rademacher prop- 
erties are now straightforward. 

THEOREM 2.2. Let  X be a normed space and K be either M2(X) or 
N2(X*), Then the (Rademacher) type 2 constant of  X is at mos t  2vf2 K .  
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Proof: Let (xi)~ be a sequence in X and for each e E { - 1 ,  1} k let x~ = 
~, eixi. The  problem is to show tha t  

i 

2-k ~ I1~112 <- SK2 E II~'ll ~" (2.a) 
e i 

Let A be the t ransi t ion mat r ix  of the  symmetr ic  r andom walk on the 
k-cube. Thus  A is a 2 k x 2 k matr ix  whose entries are indexed by pairs (r 6) 
of elements of { - 1 ,  1} k and 

k 1 if e and ~ differ in exactly one place 

a ~  = 0 o therwise .  

If a ~  ~ 0 and e and 6 differ in the ith place then [[x~ -x~[I  = 21[xi H. Hence 

~l lx~  - x~tl ~ = 2 k 4 
i 

If a E (0, 1) and 6' = (1 - a)(I - aA) -1 then,  by symmetry ,  ~ c~x~ is a 
k mult iple  of x~ for each E. It  is not hard to check tha t  if a = ~ 

1 E c~x~=~x~ for each e'. 

So for this value of a ,  

By L e m m a  2.1, 

2 2 1 
(1--a)~IIX~-- ~C~X~I = k'~2 " ~ " x ~ "  2 

1 
- 2(k + 2) ~ IIx~ll~ " 

1 2 k 
2(k + 2) ] ~  I1~11~ < e c l a t  "4)-] IIx~ll~, 

I(22 k �9 4 

i 

giving (2.3). o 

It  is well known (and easily checked) tha t  the type 2 constant  of g~ is 
at least 

4 1  + [log 2 nJ > l o v / ] ~ .  

Hence, N2 (e~) is at  least ~ s  ~ . 
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3. Uniform Convexity and Smoothness  

This chapter  contains a brief account of the theory of uniform convexity and 
uniform smoothness  as it will be used in the sequel. In the s tandard  texts, 
e.g. [LT], it is usual to define the modulus  of convexity 5 :  [0, 1] --* [0, 1] of 
a space X by 

5 ( c ) = i n f { 1 - 1 , , x + y , , : x ,  y E X ,  ,[x,, = ,,y[, = l and , , x -  y,[ = ~}  . 

The space X is said to have modulus  of convexity of power type q (for some 
q E [2, c~)) if there is a constant  K for which 

gq 

> y f ,  0 < < 2 .  

For q = 2 there is an equivalent definition which is more convenient for 
many purposes.  

DEFINITION. A normed space X is said to have modulus of convexity of 
power type 2, or to be 2-uniformly convex, i f  there is a constant K so that 
for all x, y E X 

2Hxll 2 + A2-~[IyII 2 _< IIx + yH 2 + I[x - yll 2 . (3.1) 

T h e / e a s t  K for which this holds will be called the 2-uniform convexity 
constant of  X .  

Clearly, Hilbert space is 2-uniformly convex with constant  1 and no 
space can have a constant  smaller than  1. If 1 < p _< 2, Lp is 2-uniformly 
convex. The  constant  can be taken to be 1/pvZp--z~- 1. G. Pisier showed me 
an a rgument  by which this may  be deduced from hypercontract iv i ty  results 
of Beckner [Be]. 

Inequali ty (3.1) can be extended to cover X-valued random vectors. A 
generalisation of this fact was proved by Pisier [P1], using results from [BG] 
and [F]. 

LEMMA 3.1. Let X be a 2-uniformly convex space with constant K ,  and U 

a random vector in L2(X) .  Then 

IIEUll 2 + I1 2EJlV - EUll 2 < EI[UII 2 . (3.2) 
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Proof: By the triangle inequality EIIUII 2 > IIEUII 2. So there is some non- 
negative 0 (possibly 0) which is maximal with the property that for any 
random vector V in L2(X), 

OEIIV- EVIl z < EIIVII  z - I I E V ] I  2 . 

The problem is to show that 0 > K -2. For a given r > 0, choose V 
non-constant with 

CEll V - EVIl 2 > EIIV]I 2 - I I E V I I  2 . 

Now, pointwise on the probability space 

-~EVII < IlWll 2 + IIEVII 2 

Hence, 

CE[[V- EV[[ 2 > El[VII 2 -  [[EVIl 2 

( 1 1 2 1  ~EV ) 2 .  [ 1 1 2 -  -~EV >2 EISV+ -IIEVII 2 + E I S V  

>2OE I V -  1 2+ 2 _ 1 2 

by definition of 0 and the fact that 

1 
~ v  + - + = ~ v  - 

Sor ~  ~1 and, taking limits as r --+ 0, one obtains O _> ~-.  [] 

Pisier used Lemma 3.1 to analyse the behaviour of martingales in uni- 
formly convex spaces. Although the result will not be used in the sequel, it 
is stated for completeness. 

PROPOSITION 3.2. Let X be a 2-uniformly convex space with constant K 
and Mo, M1,. . . ,  Mm a martingale in L2(X). Then 

m - - 1  

EIIMk+I - Mkl[ 2 _< I(2EI[M,, - M0112 . 
k = 0  

It follows immediately from Proposition 3.2 that 2-uniformly convex 
spaces have cotype 2 (in the ordinary sense). In the next chapter, Lemma 3.1 
will be used to show that such spaces also have Markov cotype 2. 

The property of normed spaces, dual to that of 2-uniform convexity is 
2-uniform smoothness. 
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DEFINITION. A normed space X is said to be 2-uniformly smooth (or 2- 
smooth) if  there is a constant K so that for all x, y E X ,  

IIx + ~112 + IIx - ull 2 _< 211xll 2 + 2K211Yll 2 �9 

The least K for which this holds will be called the 2-smoothness constant 

of K. 

The 2-smoothness constant of a space X is equal to the 2-uniform convexity 
constant of its dual X* (and vice-versa), [L2]. Hence, for 2 ~ q < oe, Lq is 
2-smooth with constant v ~ -  1. 

There are analogues of Lemma 3.1 and Proposition 3.2 valid in 2- 
smooth spaces [P1]. 

PROPOSITION 3.3. Let X be a 2-smooth space with constant K. 
i) I f U  is a random vector in L2(X) 

EIIUI] 2 < IIEUI[ 2 + I (  2EI[U - EVI l  2 . 

ii) If  (M~)~ is a martingale in L2(X) 

m - - 1  

E I I M m  - M0112 <_ I (  2 ~ E I IMk+I  - M~II 2 �9 (3.3) 
k = 0  

The proofs are the same as for the 2-uniformly convex results. Note 
that (3.3) is exactly the condition for Markov type 2 stated in Theorem 1.6 
(except that  it refers to martingales). 

4. Markov Cotype 2 

The main result in this chapter states that Lp has Markov cotype 2 for 
1 < p < 2. This is deduced from Lemma 3.1 for 2-uniformly convex spaces. 
The lemma is applicable because the Markov cotype property involves the 
Green's matrix, C, inside the norm. The situation for Markov type 2 is 
rather different: martingale methods do not seem to work directly. 

Li is not 2-uniformly convex and, as was shown in Chapter 2, does 
not have Markov cotype 2. The estimate given for Lp, 1 < p ~ 2 implies 
that the lower bound N2(e~) ~ v / ~ n  gives the correct order of growth 
of N2(s ~). This leaves open the question of whether Lipschitz maps  from 
subsets of L2 into L1, extend to the whole of L2. There is a dearth of 
genuinely non-linea~ examples which might shed some light on this matter. 
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T H E O R E M  4.1. L e t  X be  a n o r m e d  s p a c e  w i t h  2 - u n i f o r m  c o n v e x i t y  con- 

s t a n t  K .  T h e n  

N2(X) < 2K  . 

P r o o f :  Let A, c~ and C be as in Definition 1.5 and (xi)~ in X.  The  problem 
is to show tha t  

o~ ~ aijllyi - y j l l  ~ <_ 41(2(1 - ol) Z c i j l l x i  - x j l l  ~ , 

where, for each i, 

Observe tha t  

Yi = Z C i r X r  " 

C = (1 - ~r)I  + c ~ A C .  

Fix i and j and  define a r andom vector U E L 2 ( X )  with 

P ( U  = x i  - y j )  = 1 - (~ 

and 

Then  

P ( U  = y~ - y j )  = olair , 1 < r < n . 

E U  -- (1 - o~)(xi - y j )  + ol Z ai,.(y~. - y j )  

= (1 - ~ ) x i  + ~ ~ - i~yr  - yj 
r 

= Z [(1 - ~ ) I +  c ~ A C ] i x ~  - y j  

r 

---- Z c i~xr  - y j  = Yi - Yj �9 

So, by L e m m a  3.1, 

1 1 
Ilyi - u ~ l l  2 + ~ - ~ ( 1  - ~)l lx~ - y~ll 2 + / - ~ - ~  ~ ai,-IlY,. - yill ~ 

r 

_< (1 - c~)llx~ - yjll 2 + o, ~ ~,,-Ily, - y~ll 2 .  
,p 

Hence (ignoring the second t e rm on the left), 

1 
I1~'~ - u~ll 2 + x-O ~ ~ ai , . l lY i  - Y,.I[ z 

r 

_< (1 - ,~)llz~ - y~ll ~ + ~ ~ ai,.lly,- - y.~l l  2 �9 
7" 

(4.1) 
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Multiply by clj and sum over i and j using the fact tha t  C is stochastic: 

1 
c~Jlly, - yjif ~ + ~ .~ ai~it~, - ~ i l  ~ 

i j  t r  

< (1 - 4)  ~ c,~tlxi - ~ i l  2 + ~ ( ~ A C ) ~ l l ~  - ~ l l  2 
i j  r j  

From (4.1), the second term on the right is ~ .  c~j l ly~-  yjll 2 and so cancels 
r2 

with the first t e rm on the left. Hence 

~ a,~lly, - y~ll ~ < K2(1  - 4 )  ~ ci~ll~, - ~jlt ~ �9 
iv i j  

To complete  the  proof, observe that ,  by convexity 

c,~llx,- yjll 2 = ~ c , j l lx , -  ~ c ~ : k l l  2 
k 

< ~ cijcjkllxi - ~kll 2 

<_ 2 ~ c,jc~k(llx, - xill 2 + Ilxj - xkll 2) 

= 4 ~ c~ I I x , -  xill 2 �9 ~ 

COROLLARY 4.2. For 1 < p <_ 2, the Markov cotype 2 constant of  Lp is at 
most 

2 

d p -  i " ~ 

COROLLARY 4.3. For n E N, the Markov cotype 2 constant  ofg~ is at  most  

a constant mult iple of ~/1 + log n. 

Proof: The  gi and ep norms are equivalent on R n (up to a constant  inde- 
pendent of n) provided 

1 
p < l +  n 

1 + log n 

The  most  impor t an t  consequence of Theorems 4.1 and  1.3 is the fol- 
lowing. 

T H E O R E M  4.4. Let 1 < p <_ 2, Z be a subset of L2 and f : Z --4 Lp 
Lipschitz. Then there is an extension ] : L2 ~ Lp of  f wi th  

II]llzip -< _ 6 r ~ l l f l l , i p  �9 = V p - i  
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Remark: As p --* 2 from below, the constant in Theorem 4.4 does not 
approach 1, the constant in Kirszbraun's theorem. This situation can be 
remedied if one chooses not to make the simplification B -- I in the defi- 
nitions of Markov type and cotype. The cost is that the formulae become 
unintelligible. 

5. Markov Type  2 

This chapter contains a discussion of the Markov type 2 property for normed 
spaces. The situation here is not as clear as for the cotype property. It 
would be natural to conjecture that 2-smooth spaces have Markov type 2; 
in particular, that this is true for Lp, 2 < p < oo. At present I am unable 
to prove this. 

An analogue of the proof of Theorem 4.1 easily yields the following. 

PROPOSITION 5.1. Let A be an n x n symmetric, stochastic matrix  and 
(xl)'~ a sequence in a normed space X with 2-smoothness constant K.  For 
k = 0 ,1 ,2 , . . .  set 

J 

Then for m E NI, 

m--1  

~ ( A 2 m ) i j l l x  , - x j l ]  2 < 16K 2 ~ ~ a i j H x ~  k ) -  x}k)ll 2 . 
ij k = 0  ij 

Thus, in a 2-smooth space, Markov type 2 would be implied by an 
estimate on the behaviour of the images of (xi)~ under the (discrete) Markov 
semigroup generated by A. It would be enough to find a constant M so that 
for all A, (xi)~ and k E N 

E aijllx~k) -- x~ k)l12 <- M2 E aijllx' -- xjl[2" 
i j  i j  

(5.1) 

Equally, it would suffice to obtain a similar upper bound, uniformly in a, 

o n  

JI II 
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with C = (1 - c ~ ) ( I -  c~A) -1. It is easy to see that  such estimates hold (with 
M = 1) if X is Hilbert space. In general, such est imates may  be related to 
the UMD property of normed spaces: this mat te r  will be taken up again at 
the end of Chapter 6. 

For m a n y  natural  matrices, estimates like (5.1) hold for all normed 
spaces, with M = 1. An example is the discrete Laplacian matr ix  described 
in Chapter  6. However, not all symmetric,  stochastic matrices are so well- 
behaved. The simplest example seems to be the symmetric  random walk 
on the dodecahedron. For this 20 • 20 matrix A, there is a sequence (xi) 2~ 
i n / ~  for which 

E a i j l l x l  1 ) -  x~l)l12 = ~-~ E a i j H x l  - xjll  2 . 

The main  result in this chapter is an estimate on the wandering of 
Markov chains in 2-smooth spaces which is slightly weaker than that  needed 
for Markov type 2 but  is much stronger than the trivial (1.8), valid in all 
normed spaces. It will be convenient for the proof of this theorem, to work 
with the continuous semigroup of matrices with infinitesimal generator I - A .  

For a symmetric,  stochastic A, let { S  t : t > 0} be the semigroup of 
matrices 

S t = e x p ( - t ( I - A ) )  , t > _ O .  

It is easily checked that  X has Markov type 2 if and only if, there is a 
constant K so that for all A, S t as above and (xi)'~ in X,  

~--~(St)~j l lx~ - xj l l  2 ~ 1(2t ~ a~jllx~ - xjll ~- �9 
ij ij 

T H E O R E M  5.2. Le t  K > 1 and  0 < 0 < 1. There is a cons tant  M = 
M ( K ,  O) so that  i f  X is a n o r m e d  space with 2 - smoo thness  cons tant  K ,  

(xi)'~ is a sequence in X and A and S t are  as above,  

~ - - ' ~ ( S ' ) ~ j l l x i -  xjl[  z ~_ (t + M t  a+~ ~ aijllxi - x~ll z . 
i j  ij  

(5.3) 
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Remark: The proof below gives an estimate on M of the form M _< K}  so 
that  (by optimising over 8) one could replace M t  l+~ by t exp (~/-g]-g~v/I-~) .  

The crucial step in the proof of Theorem 5.2 is a lemma which is analo- 
gous to Lemma 2.1, but stated for continuous semigroups. While the result 
could be deduced from Lemma 2.1 and Theorem 4.1, a direct proof is given 
for simplicity. It will be convenient to abuse notation slightly: for a sequence 
x = (xi)'~ E g~(X) denote by S tx  the sequence 

t i j X j  

3 i = 1  

and by Stx i  the i th term of this sequence. 

X n LEMMA 5.3. Let X be a 2-smooth normed space with constant K ,  ( i)1 in 
X and A and S t as above. Then for each t >_ O, 

I1=~ - s '= i l l  = -< K2t  Z ~11=,  - =~11 = .  
i j 

Proof: Since S O is the identity, it suffices to prove that  for each t _> 0, 

d 
d~ ~ IIx, - s=x ,  ll=[==, _< K = ~ a , J l l x ,  - =i l l  2 . 

i 

(5.4) 

Now, by convexity 

I1= , -  s '+="=~l l= -< ~ S~.ll*~ - s ' +~= i l l  = �9 
i i j  

(5.5) 

Fix j and consider a random, vector U in L2(X) with 

P ( U  = z i - S t + U x j )  = S ~  , 1 < i < n . 

By Proposition 3.3 i), 

u X s,~ll , -  s'+~jH ~" 
i 

_< IIs~=j - s ' + ~ l l  ~ + K ~ ~ S ~ l l ~ -  S~=jI? �9 
i 
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The first term on the right involves only the index j .  So, by convexity, the 
whole is at most 

y~. sl ' , l lxk - S'xkll ~ + K 2 ~ s~sN l= ,  - x~ll ~ . 
k ik 

Sum over j (and use 5.5) to get 

Y~. I1=, -  s '+="=, l l  = <_ Y~. I l x k -  s 'xk l l  = + z ( 2 Y ~  s ,~ ' l l z / -  xkll = . 
i k i k  

Hence 

d 
a,---; ~ I1-, - SUx;l? ~=, 

i 

= l i m  1 ( ~  ) ~-.o g I l x / -  s'+=~x;ll 2 - ~ IIx~ - S'x~ll = 

s i ~  Ilxi - *~-I12 < lim K2 E 2,, 
- -  u - - * 0  

ik  

= K2 E a i k l t x ; -  xkll2 giving (5.4). D 

Proof of Theorem 5.2: By homogeneity, it may be assumed that 
Eaij]lxi - xjll 2 = 1. For t > O, set 

F(t) = ~ S~j l lx ; -  xjll '~ 
i j  

It is not hard to deduce from the trivial (1.8) that F(t) _< t + t 2 for all t. 
So, if M > 1, F(t) < t + M t  1+~ for t _< 1. For such an M, suppose that it 
is possible to choose t > 1 so that F(t) >_ t + M t  1+~ and choose the least t 

1 with this property. It will be shown below that for any A E (0, ~) 

F(t) < ( l  + ~ )  F( ( l  - ~)t) + 3If2t + K2F(2)~t) . (5.6) 

Then, by the minimality of t, 

t + Mtl+~ <_ (1+-~) 

+ 3K2t + 

< t + l t l  (1 

( ( 1  - A) t  + / 1 , 1 ( 1  - A)l+~ 1+~ 

2K2At + 4I(2MAl+~ 1+~ 

- ~ t 1+0 + 4I(2t + 4I(2M)~l+~176 
2 ]  
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This implies that 

and (since t > 1) that  

K. BALL GAFA 

MA 
2 (1 - 8K2A~ ~ < 4K 2 

M A ( 1  -8K2A ~ < . 4K 2 

Choose A sufficiently small, to get an estimate for M. 
To establish (5.6), fix i and k and apply Proposition 3.3 with U a 

random vector satisfying 

P ( U  = x i  - ~ )  = sk~J , 1 <_ j <_ n 

This gives 

Z )~t ~ OA* IlSXt x sk~ I1~  - =J II ~ -< IIx~ - S ~ ' x k l l  2 + g ~ 2.., o ~ j  II k - xj  II ~ . 
J J 

Multiply by r and sum over i and k: 
" i k  

s l ~ l l ~ , -  xjll ~ <_ ~ s } ~ - ~ ' l l ~ i -  S~'x~ll ~ + K ~ ~ s2Jl l s~ '~ ,  - x~ll ~ 

< ~ r (If . . . .  
- ~'~k t , , ~ ,  x~ll  + I I~k s ~ ' = k l l )  ~ 

2At + K 2 ~ Sij I l x i -  xjtl ~ 

by convexity. The second term is K2F(2M). To estimate the first term, use 
the fact that for any a and b, 

to get 

"ik "~i --  xkll 2 + 1 + z _ .  ~ i ~  Ilxk - S~*xkll 2 
i k  

= ( 1 +  ~ ) F ( ( 1 -  A)t)+ ( 1 +  2 ) ~ , , x k _ S X t x k H 2 .  

Finally observe that by Lemma 5.3, the second term is at most 

(1 + ~ )  I(2At ~-~ aijHxi - xjH 2 <_ 3K2t. 
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6. O p e n  P r o b l e m s  

The aim of this chapter is to describe some of the lines along which one 
would like to develop a full non-linear analogue of the linear theory of type 
and cotype. 

The first part of the chapter raises the questions of duality between 
the Maxkov type and cotype properties for normed spaces: i.e., under what 
circumstances is it possible to estimate M2(X) by N2(X*) and vice versa? 
For Rademacher type and cotype, the situation is well understood thanks 
to the Maurey-Pisier theorem IMP] and Pisier's K-convexity theorem [P2]. 
It is always true that  C2(X) <_ T~(X*) but a reverse inequality holds (if 
and) only if X (or equivalently X*) is/(-convex.  (A space Z is said to be 
K-convex if the Rademacher projections on L2(X) are uniformly bounded.) 
Moreover, X is K-convex if and only if it does not contain subspaces uni- 
formly close to g~ for all n. For the Markov properties, the situation seems 
to be more symmetric. There is an analogue of the Rademacher projection, 
for each symmetric, stochastic matrix A, and the boundedness of these pro- 
jections seems to be needed to estimate N2(X) by M2(X*) as well as the 
other way around. The fact that L1 does not have Markov cotype 2 may 
indicate that  this symmetry is to be expected. 

The second part of the chapter contains a brief discussion of the Markov 
type 2 problem. For applications of the theory to Lipschitz extensions, this 
is clearly the most pressing open problem. 

The third part of this chapter asks whether Theorem 4.4 can be ex- 
tended to include domains which are not uniformly convex. 

The first lemma describes the combinatorial aspect of the duality the- 
ory for Markov type and cotype and opens the way to a discussion of the 
analogues of the Rademacher projection. 

LEMMA 6.1. Let X be a normed space and assume that there is a constant 
K so that for each A, and each (xi)'] in X, there is a sequence (r in X* 
satisfying 

1 a, llr - Cjll < -  jll 
K 2 

ij ij  

= Z aij(r - Cj)(xi - x j ) .  (6.1) 
ij 

Then, 

M2(X) < KM2(X*) (6.2) 
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g : ( x )  < KM~(X*) . (6.3) 

Remark: The assumpt ion  on X is tha t  expressions like ~ aij I Iz / -  xj II 2 can 
be no rmed  by expressions of the same type.  In general, one could only 
assume the existence of some ant i symmetr ic  mat r ix  (C/j) wi th  entries in 
X*, satisfying 

aijllCiJll 2 = ~ aiytlxi - xjll 2 = ~ aijCij(xi - -  Xj) . 

Proof of Lemma 6.1: The  argument  below proves (6.3); the proof  of (6.2) is 
similar bu t  simpler. Let A, c~ and (xi)'{ be given and  C -- ( 1 - c ~ ) ( I - ~ A )  -1 . 
For each i, let yi = ~.  cijxj. Choose (Ci)~ in X* so that  

3 

1 
g 2 ~  ~ a/Jllu, - YJll 2 _< ~ ~ a,~ll~//- Yill 2 (6.4) 

= O~ E a i j ( C i  -- C j ) ( X i  -- X j )  . 

As in L e m m a  2.1, observe that  

a ( X - A ) C = ( 1 - a , ) ( I - C )  . 

Hence 

~ - o  I ly , -  y, II 2 = ~ ~ ao(C, - Ci)(~, - ~j) 

= 2 4  ~ . , j C , ( y ,  - ~ )  

= 24 E ( I  - A)ijCi(Yj) 

= 2~ z [ ( x -  A ) C ] , : , ( x k )  
ik 

= 2(1 - a )  E ( I - - C ) i k C i ( X k )  
i k  

= 2 ( 1 - 4 )  ~ c ,~C , ( , , -  x~) 

= (1 - 4) ~ c/~(Cl - C~) (~ / -  x~) 
1 

<_ - ~  - 

I 

�9 [ ( 1 - o )  Zc,,,,,,- ,,,, '] ' 
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Prom the definition of Markov type 2, the first factor is at most 

1 

which is at most 

by (6.4). Hence 
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1 

~3 

Let G : L A --+ L A be the orthogonal projection onto the subspace consisting 
of matrices of the form (ui - uj) for some sequence (ui)'~ of reals. 

For X a normed space, LA(x)  is defined to be the space of X-valued, 

antisymmetric matrices with norm 

1 

- -  

This may be regarded as a tensor product L A | X in the usual way and 

the map G @ Ix is a projection on LA(x):  (Ix being the identity on X). 
The image of a matrix (xlj) under G | Ix is the unique matrix of the form 

(zi - xj) with the property that for any sequence (r in X*, 

E al j (r  Cj)(xlj) = E a i j ( r 1 6 2  x j ) .  
i j  ij 

The proof of the following lemma is standard. 

The property of X assumed in Lemma 6.1 is characterized by the 
boundedness of certain projections. For a symmetric, stochastic A, let L A 
be the space of antisymmetric (n x n) real-valued matrices (uij) with norm 

as required, o 
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LEMMA 6.2. For any normed space X and symmetric, stochastic A, 

Ila | Zxll =IIa | Zx.II 

and this number is the least K for which the hypothesis of Lemma 6.1 holds 
(for the matrix A). [] 

The  projections G |  can be regarded as project ions onto gradients 
of potentials .  They  are well-known to probabilists in connection wi th  Riesz 
t ransforms associated to  Markov semigroups. (This was poin ted  out  to me 
by G. Pisier.) Let g~ be  the subspace of g~ consisting of sequences (ui)[ ~ 
satisfying y~ ui = 0. Given an n x n symmetr ic ,  stochastic matr ix  A, define 

grad :g~ --* L A by 

grad (ui) = ( u i -  uj)ij 

and 
d i v :  L~ , e~ by 

div(uij)iJ= ( -  ~j aijuij) [=l " 

Let L : g~ ~ g~ be the operator  -div .grad : i.e. the matr ix  I -  A. The  Riesz 
t ransform R : g~ -* L A is defined formally by 

1 I, R = "grad v ~  " 

To be more  precise, for each sequence u = (ui)~, t he  limit 

z( ) lira I - -  o ~ A ) i v ~ u v  - I - o~A)f~u~ 
ot.-.-~ l -  

exists for each i and j and  the matr ix  of these is an element Ru of L A. The 
result ing map  R is a l inear isometry of ~ into L A. T h e  adjoint  R* : L A ~ g~ 
is defined formally by 

R* = ~ d i v  . 

It is easy to see tha t  R ' R :  g~ -.-* e~ is the ident i ty  on g~ and  not  difficult 
t.o check tha t  RR* : L2 A --.-* L A is the project ion G defined above. 
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Although Riesz transforms have been extensively studied, relatively lit- 
tle seems to be known in the very general setting described here. Particular 
examples, such as the Hilbert transform, are well understood. A discrete 
version of the Hilbert transform arises in the above setting if the matr ix  A 
is taken to be the transition matr ix  of a symmetric random walk around a 
cycle: i.e. if there is an n-cycle a belonging to the group of permutat ions of 
{1 , . . . , n}  with 

aij = { ~ otherwiseifa(i)=j~ 

In this case L = I - A is a discrete version of the Laplacian on the circle. 
The discrete Hilbert transform associated with this A is bounded on [~(X) 
if and only if X has the so-called U.M.D. property. This is proved in [Bu] 
and [B]. However, for this matr ix A, the projection G | I x  is bounded on 
L A ( x )  for all normed spaces X.  

The projection G can be approximated using the inverses (I  - aA) -1 
as ce --* 1 from below: the formal s ta tement  

,, 1 ,, 
G =  g rad~d iv  

translates as follows. For every matr ix  u = (ui j )  E L A, 

Gu = lim Gou 
c~.---~l- 

where, for each a E (0, 1) 

(Gau)ij  - 1 - a ,.~ r,q 

with C = (1 - a) ( I  - a A ) - I  a s  usual. If X is a Hilbert space then G,~ | I x  
is a contraction on L A ( x )  for all a. More interestingly, for any normed 

space X ,  an est imate on IIG~ |  implies a corresponding est imate on 
the expression (5.2) since if xij = xi - xj  it is easy to check tha t  

o2 z o , ,  IZc, a  xrs -  c;po  xpqll 2 
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and the latter is at least 

The principal problem raised by this discussion of duality is whether the 
projections G | I are bounded (uniformly in A) on LA(Lp) for each fixed 
p E (1, oo). If this is true it implies that  Lq has Markov type 2 for 2 < q < 
oo. In the light of the linear theory it also makes sense to ask whether the 
G | I are uniformly bounded on L2A(X) whenever X has Markov type 2 (or 
Markov cotype 2). In an abstract setting one would hope that  boundedness 
of G | I holds for UMD spaces of type 2 and their duals. 

Probably the most important  open problem raised by this paper is 
whether Lq has Markov type 2 for 2 < q < oo. As mentioned at the start of 
Chapter 5, this would follow from estimates of the form (5.2). My feeling is 
that  2-smoothness, by itself, is not enough to imply Markov type 2. There 
is some evidence that  spaces with continuously twice differentiable norms 
might  have Markov type 2. (It was brought to my  attention by G. Godefroy 
that  it is not  known whether every space with C2-norm is UMD.) 

One natural  question is whether Theorem 4.4 remains true if the codomain 
Y is not assumed to be 2-uniformly convex; in particular if Y = L1. It is 
not known whether all Lipschitz maps from subsets of Hilbert space into 
normed spaces extend to the whole of Hilbert space. My feeling is that  this 
is not true and I do not believe it even for Y ---- L1. 

It would be nice to determine ti~e correct rate of growth of M2 (g~o) with 
n. From Chapter  2 it follows that  the constant is at least a fixed multiple of 
v/[6"~. An estimate of the same order from above would imply the  result 
of Johnson and Lindenstrauss mentioned in the introduction because any 
n-point set embeds isometrically in e~o. 

Finally, it is perhaps worth mentioning how Markov cotype may be 
defined for general metric spaces. In view of Lemma 1.2, one could say that 
a metric space (]7, d) has Markov cotype 2 if there is a K so that for every 
A, B, a and (z~)[ ~ in Y, there are points (Yi)'~ in Y with 

+ 2(1 - 4 )  F_, bJ(Y',z ) 

< g~(1 - 4 )  ~_,(BTCB),.,d(z,.,z,) 2 . 

However, in line with the proof of Theorem 1.7 it might be more natural 
to split this s tatement  into two. Say tha t  (Y, d) is approximately convex if 
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there is a K so that  for every stochastic B, symmetric,  stochastic C and 
(z~)~ in Y, there are points (xi)'~ in Y with 

Z c i jd(x i ' x j )2  § 2 y~bi , .d (x i ,  z,.) 2 < K ~ Z ( B T C B ) , . s d ( z , . , z s )  2 . 

Then, if (]I, d) is approximately convex, say that  it has Markov cotype 2 if 

there is a K so that  for every A, c~ and (xi)~ in Y, there are points (yi)~ in 
Y satisfying 

4 + 2 ( 1 - 4 )  F_, 
ij i 

<_ Ic (1 - 4) . (,) 

Note that  every normed space is approximately convex since one may  take 

xi = ~_, bi,.z,.. Thus a normed space has Markov cotype 2 provided only 
7" 

that it satisfies (*). It is not  clear whether this property of normed spaces 
is equivalent to the one used in the text. 
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