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ON THE SUM OF DISTANCES BETWEEN n POINTS ON 
A SPHERE 

By 

R. ALEXANDER (Urbana) 

w Introduction 

If pl, P2 . . . .  , Pn are variable points on a unit sphere, let S(n)  denote the maximum 
value of the function .~. ]p; - P i t .  The circle and the Hilbert sphere are nicely 

l < J  

treated by FEJES TdTH [3]; the respective extremal configurations are the regular 
t k  

polygons and the regular inscribed simplices. The respective S ( n ) a r e  n cot [ 2~--] = 
\ - - - -  ] 

~z 6- + O ~ -  and n n(n - 1). The exact determination of S(n)  for 

higher dimensional Euclidean spheres seems very difficult. Fejes T6th conjectured 
that S(n )  < an 2 wkere ~ is tl~e "constant of uniform distribution" for the sphere. 

The paper of BJORCK [2], employing the elegant methods of potential theory, 
proves the conjecture. Let # vary over all positive Borel measures of mass n on the 
sphere. Bj6rck's method shows that 2an 2 is the maximum value attained by the 
energy integral S f  J P - q X d#(p)d#(q)  ; the uniform distribution uniquely maximizes. 

Various results of STOLARSI(Y and the author [1 ] show that ~n(n - 1) < S(n) < 
< ~n 2 - fin -~ , fl > 0, 7 > 1. The right inequality is obtained by a difficult method 
using spherical harmonics. In this article we introduce new methods for sharpening 
this inequality. We concentrate on the ordinary 2-sphere although our methods 
(with more computation) would apply to spheres of all dimensions. In l ight of 
BjOrck's results, S(n)  may be viewed as a measure of  how nearly n points may be 
uniformly distributed on the sphere. 

PROPOSITION 1.1. For the 2-sphere we have  

2 nZ 1 (1) 3-2 n2 _ 10n~- < S(n)  < -~ - --'2 

We will comment on the accuracy of  our method at the end. 
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w Proof of Proposition 1.1 

LEMMA 2.1. Let  pl  < p2 <= . . . <= p,~ and ql <= q2 < . . . <= qn be any two sets, 
each consisting o f  n real numbers. Then 

(2) ~ T Pi - qj l >= ~ I P i - P j ]  + ~ I q~ - qj ] + ~ [ Pi - qi [ . 
i , j  i < j  i < j  i = l  

PROOF. First we prove (2) assuming that each pi and qi is an integer. We use 

double induction, on n and on the quantity ~ I& - qi ] �9 
i = 1  

If  ~ ]p~ - qi [ = 0, the two sets are identical and (2) is an equality. If  n = 1, 
i = 1  

(2) is certainly an equality. Suppose (2) is true if n < k,  and if n = k, providing 
k k 

I Pi - q~ I < K. Let Pl . . . .  , Pk and ql . . . .  , q~ satisfy ~ [ Pi - qi I = K. If  Pk = qk, 
i = 1  i = 1  

terms involving the index k make the same contribution to both sides of (2). Hence 
we may suppress these points and apply an induction hypothesis for n = k -  1 
to assert the validity of (2). Otherwise, assume without loss of generality thatpk > q~. 
Let r be the least value of i for which pi = Pk; Pr >- q~ + 1 for each i. Replace Pr 
by p~ = Pr - 1 so that Z' [Pi - qi I = K - 1. In this modified situation (2) is valid 
b y  an induction hypothesis. If  we replace the modified situation by the original, 
note that we add k (=  n) to the left side of (2) while we add at most k to the right. 
This completes the double induction. 

If  the& and qi are rational numbers, we may multiply each by the least common 
multiple o f  all denominators, and then apply the result about integers. The general 
result follows at once from the fact that real numbers may be approximated by 
rationals. 

For  our purposes a somewhat weaker result will be more tractable. 

COROLLARY 2.I. Let  p i , . .  .,Pn and (ll . . . . .  qn be as before. Then 

(3) Z [ P ~ - q J [  => Z l P e - P j I +  Z l q ~ - q j l +  ~ p ( & ) .  
i, j i < j  i < j  i = l  

Here P(Pi) = min ]Pi - qy I �9 
J 

PROOf. Since p(&) =< [& - qi ], the result follows. The most important thing 
about (3) is that it is valid when the numbers are not indexed according to size. 

Ifp~ . . . .  , p ,  and ql, �9 �9 q, are arbitrary points in a Euclidean space, the work 
of I. J. SC~IOENBERC [4] shows that the quadratic form 

2 [ p , - p j l x ,  y j +  ~ [ q ~ - q j l y , 5 + 2 1 p ~ - q j l x ,  yj 
i < j  i<]  i , j  

is negative semidefinite on the hyperplane Zx~ + Zy~ = 0. Setting each x~ = 1 
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and Y i = -  1 gives 

2 [ P i -  qJl > 2 [ P i - P J [ + 2 [ q i - q J ] "  
i, j i<j i<j 

The inequalities (2), (3) are sharpened one dimensional versions. We remark 
that the higher dimensional inequalities can be sharpened by using these results 
together with (6) below. 

LEMMA 2.2. Let  ql, q~ . . . .  , qn be numbers in the interval [ - 1 ,  1]. Let  p(x) = 
= m i n l x -  qi ]. Then 

i 
1 1 

(4) S p(x)dx > - - .  
- 1  iv/ 

PROOF. For convenience suppose q~ < q~.+~. We use a simple convexity argument. 
1 

If  1 < i < n and qi r ~ (qi-1 + q~+l), then the integral can be decreased. Thus, 

in a minimal situation, the q~ lie in arithmetic progression. We may assume that 
qt = - qn or else the integral may be reduced by translating the q~. Subject to the 
above conditions, the integral equals (1 - q,)2 + q~/(n - 1). This function has a 

1 
minimal value 1/n, attained for q , - -  1 - -  

n 

In the proof of the right inequality of (1) we use Haar integrals over the special 
orthogonal group SO(3) acting on the 2-sphere. We assume that the measure is 
normalized. The integrals will be evaluated by means of the following lemma which 
we state without proof. 

LE~MA 2.3. Let  f be a real integrable function on the 2-sphere, and po be a dis, 
tinguished point  on the sphere. Let  F be defined on SO(3) by F(z)  = f (zpo). Then 

! 
(5) S F(v)dz = 4zc f f ( p ) d a ( p )  . 

As a notational aid, a barred integral will be a Haar integral. Otherwise, the 
integral will be a surface integral over the sphere. 

We give a useful application of the lemma. Let q~ and q2 be points in E z. Then 

1 
(6) I q~ - qz [ = ~ J" [ (q~ -- q2) "P I &r(p) = 2 -f ] (q~ - q~).  zfpo) ] d~l 

Let P~,P2 . . . . .  p ,  be points on the 2-sphere such that ~ . l P i - P  j [ =  S(n). 
t < j  

We show that 

4 n2" 

t, j 
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Note that the integral equals n 2 S[ Po - -cl(Po) I dz,; applying Lemma 2.3 we 
n 2 16 

obtain J" ]Po - P ] da(p). The surface integral is - if-  re. 
47c 

We apply (6) to each summand in (7) and the integral (7) becomes 

The sum in (8) may be interpreted as the sum of the distances between two 
sets of n colinear points. These sets may be realized by orthogonally projecting the 
points Pl, P2 . . . . .  p ,  and "ca(p,), zl(P2) . . . . .  -q(p,) onto a line having the direction 
of %(P0). We apply Lemma 2.1 to assert that (8) equals 

2 5 S { i<iE [ (Pi -  Pj)" %(Po) I + i<jE l(-cl(pi) - "q(pa))'z2(po)[ + E(.q, %)} dz2dzl 

(9) 
1 

where E(% %) > 0. The (double) integral of  each of the sums is~-S(n).  We will 

estimate 2 .fSEdzzd'%, the order of integration being reversed. Let Pi(% %)= 
= inf[ (p] - zl(Pi)) " "c2(P0) 1. In terms of the geometric realization, Pi('q, %) is the 

J 

same function that occurs in Corollary 2.1. Therefore, 

(10) S S Edzld% > p,d-c,d% = y pid~, d%. 
i=1  

1 
We will show that each integral in the inner sum is at least ~ .  We may assume 

without loss of generality that %(Po) = (1, 0, 0) so that the points may be viewed 
as being projected onto the interval [ - 1 ,  1] as real numbers p[, p; . . . . .  p',. Using 
Lemmas 2.3 and 2.2, we may write 

- 1 1 1 1 
(11) ~ pidh = ~ .f p,(p)da(p) = W .5-1 2r~p(x)dx > 

= 2n 

Here Pi(P) = P,(%, "q(P)) and p(x) = mini x - p'~ 1. From (10)  and (11) it fol- 
lows that * 

(12) 2 SS E(% "cz)dzld% > 2 S -~d% = 1. 

1 
It is clear that the integral in (11) exceeds ~ for almost all %. This justifies 

the strict inequality in (12). Consideration of (7), (9) and (12) gives 

4 
- - n  2 >2S(n )  + 1 (13) 3 " 

The right inequality of Proposition 1.1 follows at once. 
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Next we turn our attention to the left inequality in (1). Our method is surpris- 
ingly simple, but gives much better results than we had been able to obtain previously. 

LE~MA 2.4. Let  K be a compact subset o f  a Euclidean space, and let I~ be a Borel 
measure f o r  which #(K)  = n. Le t  A 1 . . . .  , A n be Borel subsets o f  K such that 
#(A i f') A~) = 6ij. Then 

(14) 2S(n, K )  > ~ l i p  - q ld~(p)cl~(q) - ~, D i 
K K  i=1  

where Di is the diameter o f  A i. 

PROOF. Define f on A1 x . . .  x A n by f ( P l  . . . .  , Pn) = ~ I Pi - Pj 1. Clearly f < 
/ r  

< 2S(n). Since # ( A t ) =  1 for all i, 

(15) 2S(n) => S ' ' "  S f d p ( p l ) . . .  d#(p,)  = ~ ~ ~ IP, - pjldp(p~)d#(pj) = 
Al An i ; z j  Ai A] 

= ~ ~ ]p - q [ dg(p)d~L(q) - i f S [ P  - q[ d~(p)d~(q).  
K K i=1  Ai Ai 

The result follows immediately. 
If  one knows which # maximizes the energy integral (as we do for spheres), 

we are faced with a dissection problem. For  the circle we choose the A i in the obvious 
2re 

manner to get Di < - - .  This gives the estimate S(n) > 2 n~ _ re, which is not 
n 7~ 

bad. For  the 2-sphere we claim that we can choose the A i so that D~ = O n - ~  , 
although we have no elegant method for doing this. For  simplicity suppose n = 6m 2. 
We begin with a spherical cube, and consider one of its faces. Using m - 1 great 
circles from the pencil determined by two opposite edges we can cut the face into 
m slices of equal area. Each slice can be cut into m quadrilaterals of equal area 
using great circles in the pencil in the other pair of opposite edges of the face. The 
diameters of  the quadralaterals are of the right magnitude. We suppress the details. 

w Final remarks 

How accurate is the right inequality in (1) ? If  the points are close to being uni- 
formly distributed, then the distribution of the orthogonal projection of them onto 
a line does not vary much the direction of the line. In Lemma 2.1 if the Pi and qi 
are distributed in much the same manner, then (2) is close to equality. It is difficult 
to judge what is lost when I Pi - qi I is replaced by P(Pi). We can check this for the 
circle, and it is not too much. We conjecture that for a Euclidean sphere ~n 2 - S(n) = 
= O(1). If  it were known that S(n) is "analytic in n", as it is for the circle, then the 

left inequality of (1) settles the issue. The conjecture is seen to be false for the Hilbert 
sphere. 
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We remark  that  in the case o f  the 2-sphere S(8) is not  at tained by the inscribed 
cube. I f  we rotate  the four  points o f  one face th rough  an angle of  450 in the plane 
of  that  face, the distance sum increases. 

Finally we wish to thank  Rober t  K a u f m a n  and Kenneth  B. Stolarsky for  help- 
ful conversations concerning this work.  
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