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FUNCTIONS WITH MEASURABLE DIFFERENCES

By
M. LACZKOVICH (Budapest)

1. Let R denote the set of real numbers and let F be a class of real valued
functions defined on R. We say that F has the difference property, provided that
every function f: R—R for which f(x+A)—f(x)€F holds for every 4, can be
written in the form f=g+H where g€ F and H is additive, that is H satisfies the
functional equation H(x+))=H(x)+H(y). The notion of difference property
was introduced by N. G. de Bruijn who proved that a series of important classes
have the difference property (e.g. the classes of continuous, differentiable, analytic,
absolute continuous, Riemann-integrable functions, respectively; see [1] and [2]).
The results of de Bruijn have been extended and generalized in various ways, see
31, 141, [5], [6], [11], [13].

However, the following example given by Erd6s shows that the class of Lebesgue
measurable functions does not have the difference property if we assume the con-
tinuum hypothesis. Indeed, the continuum hypothesis implies the existence of
a bounded and non-measurable function S: R—R such that for every A€R,
S(x+h)—S(x)=0 holds for all but countably many values of x (see [16], p. 27).
Now S is not of the form g+ H where g is measurable and H is additive because
otherwise H=S--g would be bounded on a set of positive measure. By a theorem
of Ostrowski, this implies that H is linear (see [15] or [12]) and thus S is measurable,
a contradiction.

It was conjectured by Erdés that every function f: R—R for which f(x+h4)—
—f (%) is measurable for every 4, is of the form f=g-+H+S, where g is measur-
able, H is additive and S has the property that, for every 4, S(x+4)—S(x)=0
for almost every x.

We say that a class F has the weak difference property if every function f: R—R
for which f(x-+h)—f (x)€ F holds for every ~ admits a decomposition f=g+H-+ S
with g€ F, H additive, and S satisfying the condition that for every A, S(x+h)—
—S(x)=0 holds for a.e. x (see [6]). Let L denote the class of Lebesgue measurable
functions defined on R. Then Erd8s’® conjecture can be formulated as follows: the
class L has the weak difference property. The main purpose of this paper is to
prove this conjecture (Theorem 3).

We remark that the weak difference property has been established for the
classes L,(0, 1) if p=1 (see [4] and for a generalization, [13]). F. W. Carroll raised
the question whether this is true for O<p<1. We give an affirmative answer in
Theorem 4.

We prove Theorems 3 and 4 in Section 2, making use of the preparatory results
of Lemmas 1, 2 and Theorem 2. In Section 3 we give some applications of The-
orem 3. These applications will be based on Theorem 5 which states that the classes
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218 M. LACZKOVICH

of measurable functions of one and two variables have a “double difference pro-
perty” in the following sense.

Let F; be a class of real functions defined on R and let F, be a class of real
functions defined on R% We say that the pair (F,, F,) has the double difference
property if whenever f(x+y)—f(x)—f (»)€ F, holds for a function f: R—~R then
S is of the form f=g+H, where gcF, and H is additive.

For example, the pair of classes of bounded functions of one and two variables,
respectively has the double difference property (see [1], Theorem 1.2, p. 196). First
we prove that the same is true for the classes of functions whose limit equals zero
at the origin. More precisely we prove

THEOREM 1. If f is defined on R and
m {f(x+y)=f(x) ()} =0

y—-0
holds then f=g+ H where H is additive and lin'é g(x)=g(0)=0.
Proor. Let 6=0 be such that

M G+ —FE—FO) = max (1, [fO) = 4 for every x|, [y] = 5.

We put f*(0)=f(x—kd) if kd=x<(k+1)5 (k=0, +1,..). We show that
F(x, y)ii—f[f*(x—[—y)——f*(x)—f*(y)] is bounded on R2 Let x, y€R be arbitrary

and let k= % , n= % L If [%tz—]:k-kn then we have

F(x,y) = |f(x+y—(k+n)5)—f(x—k5)—f(y-—n5)| =4

by (1). If [x;_y]=k—|-n+1 then we have

F(x, ) = |f(x+y—(k+n+138)—f(x—k&) —f(y—nd)| =
= |f(x—ké+y—(n+1)8)—f(x—kd)—f (y— (n+1)8)| +
+Hf(y =+ 1)) —f (y—nd) —f(=d)|+1f(—3)| = 24 +|£(=5)|

using (1) again. Hence F(x, y)=24-|f(—3)| for every x,ycR. Thus, by the
above mentioned theorem ([1], Theorem 1.2, p. 196), there exists an additive func-

tion H such that f*—H is bounded. Hence the function g(x)2 fx)—H(x) is
bounded in [0, 8). If x¢(—§, 0) then we have

[8Cl = [f()—HX)| = [fx)+f(=x)—f O+ fO]+[H(—x)—f(-x)| =

=A+fO)]+|g(—x)|
and hence g is bounded in (-4, §).
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FUNCTIONS WITH MEASURABLE DIFFERENCES 219

We show Iin;l0 g(x)=0 (the proof of ﬁrilo g(x)=0 is similar). We put

M, = sup{g(x); 2 =x< —é_—l} n=12..).
2" 2"
Let &=0 be arbitrary and let N be such that

lg(x+y)—g(x)—gO)| = [fx+p)—fR)—fW)] <=

holds for every O<|x|, |y|< 0 Then we have

"éw'.
1 1
2 M, ,==M,+—¢ (m=N)
2 2
0 ) .
Indeed, for every x¢ ST ) n=N, we have |g(2x)—2g(x)|<e from which
1 1 1 1
g(x) < 5 g(2x)+3s = —2—M,,+78
d hence M, <iM+1
an - 5 » '58.
If M,=¢ holds for at least one nx=N then by (2) we have M,,Hé%s-}»

+%a=s and by induction M;=e¢ for every k=n. Thus in this case

lim sup M,=¢ holds.

n-»co

If M,>¢ holds for every n=N then M,,+1<—;—M,,+—;-M,,:M,, for every

f
r=N ie. the sequence {M,}>= \ is decreasing. Let M “ lim M,. Then (2) implies
n-» 0o

Mé—%—M—!--Zle, M=e¢ and thus we have lilglil}p M,=¢ again.
Since &>0 was arbitrary we proved Ii)rg_n) sup gln= lilg}. sup M,=0. A similar

argument shows that lir_r’l iI(}f g(x)=0 and hence xl_i)lllo g(x)=0 as we stated.
Finally !}_{r& |g(0)—g(x)—g(—x)|=0 gives g(0)=0, which completes the proof.

2. Let S denote the class of all functions defined on R which are Lebesgue
measurable and periodic mod 1. For f¢S we denote

I{f € ¢} = {x€[0, 1]; f(x) £ ¢}
If = inf{a+A(I{lf]| = a}); a >0}

and
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220 M. LACZKOVICH

where A denotes the Lebesgue measure.! The following properties of the *“pseudo-
norm” | +|| are well-known (and can be easily verified).

3 o=|fl=1 (feS),

@ Ifl =0 if f(x)=0 for ae. xcR,

3 If+el=0r1+1gl (f£g€S),

©) fG+m]=1f (fesS, heR),

(M If feS and |f] <a then AU{f|=a})<a,
®) lim [fx+h)—f() =0 (fe9),

G ’}Lm [fa—f| = O iff the sequence f, converges to f in measure (f,,f¢S).

LEMMA 1. Let s(f)—d=‘Ef inf {| f(x)—c||; c€R}. Then for every f¢S,
a) there exists c,€R such that | f(x)—cqol=s(f),

b) if s(f)=d then there exists c¢,€R such that A (I{ f_ﬁ_cl})é—gE and

l[[{fzcl-}-?d}]z—g.

Proor. a) Let f¢€ S be given. First we show that ¢,¢ R, |¢,| < implies || f—¢,l| 1.
For every ¢=0 and n=1,2,... there exists a,>0 such that

(10) a+2(I{f—eol = a,P) < | f—c,l +e

Since | f(x)—c,|—>< for every x€R hence A(I{|f—c,|=1})—~1, thus there exists
N=0 such that A(/{|f—c,|=1})>1—¢ for n=N. If g,>1 then | f—c,[|>1—¢
by (10). If g,=1 and n=N then

”f'—cn” = ]'(I{If'—cnl = 4y )"'8 = /I(I{If_cnl = 1})_8 >1-2e.

That is, | f—c,|=>=1—2¢ for n=N and hence | f~c,|—1.
Now let || f—c,| —s(f). If the sequence {c,} is not bounded, then for a suitable
subsequence we have |[c,|—><o, consequently s(f )——-klim]l f—c,l=1. Then

1=s()=|f—0)|=1 and we put ¢,=0.

If {c,} is bounded then it has a convergent subsequence c, —~c,. We have
| f=cii=Jim | /=c,, | =5(f) which proves a).

b) We can suppose d=0. Let C ={c€R; AI{ féc})é-;}. C is non-empty

and bounded from above. Indeed, ﬁ I{f=—n}=@ and hence A(I{f=—n})-0;
n=1

Gl{fgn}z[o, 1] from which A(I{j'én})—»1>—;i. Consequently —n€C and
n=1

1 This norm was introduced by M. Fréchet. See his book Les Espaces Abstraits, Gauthier-Vil-
lars (Paris, 1928), p. 92.
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FUNCTIONS WITH MEASURABLE DIFFERENCES 221

1 .
Cc(—,n) if n is large enough. We put ¢;=sup C. Then cl—l-;éEC from which

AI{f=c,p)=1lim A [I {f§c1+%—}] ;—3@. On the other hand we have

a=s(h=1f-al = 542 (r{i-al= 3 =

B N e R

since cl——;-i—EC. Hence l’[l { f zcl—l—?d}] zgd and b) is proved.
LeMMA 2. Let A and B be measurable subsets of the interval [0, af with A(4)=c,
A(B)=c (c=0). Then there exists |h|=a such that

MA+hNB) =2

where A-+h denotes the set {x-+h; x€A}.
Proor. We put D={(x,y); —a=x=a,y—x€A}NRXB); it is easy to see
that D is measurable. For every y€B we have
def
D= {x; (x, y)eD} = (—AD+y
and hence A(D’)=i(4). By Fubini’s theorem (D)= f AMD?ydy=2(B) - A(4).
B

On the other hand Dxii—i{ {y; (x, »)éD}=(A+x)NB for every x€[—a, a] and thus
we have

[ MA+x)NB)dx= [ A(D)dx=A(B)A(4) = ¢
2
Hence /1((A+x)ﬂB)z-§a— holds for at least one |[x|=a, g.e.d.

Our next theorem is a generalization of the simple fact that a function f€S
is constant a.e. (that is s(f)=0) if and only if || f(x+h)—f(x)|=0 for every A.

THEOREM 2. Let {f,} be an arbitrary sequence of functions belonging to S. Then
'}im s(f)=0 if and only if lim | f,(x+h)—f,(x)| =0 holds for every hcR.

ProOF.2 Suppose first lim s(f,)=0. By Lemma 1 a), there exists a sequence
{c.} such that s(f)=[f.(x)—c,l. Then, for every A¢R we have

1fa(x+D) £l = 1S+ B —c,l +le,—fu (DN = 25(f) ~ 0.

2 A simpler proof can be found in A.J. E. M. Janssen, Note on a paper by M. Laczkovich on
functions with measurable differences (Erdds’ conjecture) (to appear).
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222 M. LACZKOVICH

Now suppose indirectly that nlim I o Ce+-1)—£,(Oll=0 holds for every 4 but

s(f,)+0. Then, after selecting a suitable subsequence, we may assume that s(f})=
=3d=>0 for n=1,2,.... We prove that for every non-degenerate interval [a, b]
and for every N=0 there exist 4¢(a, b) and n>N such that

an I, et ) —f (0l = 2

Let = be a rational number such that g<&*—— p-1 oy +1

5325w

—f,,(x)”<n where =

+——<b. By our assumption

1ferd)

hm

=0; hence there exists n>N such that

Thus by (7) we have

=il <

éqn}]<qn forevery k=1,2,...,¢

8%

(12) }.[1{

This easily implies

(13) ,1[1{

5[+ )

5 (x+2) 100

[+ )59

Indeed, =gy implies

(o))

for at least one of the values i=0,1,...,k—1. Thus

a9 s (v+g-nw|=af< U

and (13) follows from (12) and (14).

Since s(f,)=3d, by Lemma 1 b), there is a c€R such that for the level sets
A=I1{f,=c}, B=I{f,=c+d} we have A(4)=d, A(B)=d. Then there are indices
1=i=q, 1=j=q such that

A(Aﬂ it -’—]] =4 A(Bﬂ[j—_-l—,l-)zfl—.
q q q q q

=7

A R e BT R E

Applying Lemma 2 for a=—;— and for the sets
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FUNCTIONS WITH MEASURABLE DIFFERENCES 223

2
we get Ihﬂé% such that A((4'+h)NB’)= d

2 We put hzg—hl. Obviously

hé(a, b); we are going to show (11). Let

p=if

E={{nw-n(x-2)= qn}.

It follows from (13) (and from the periodicity of f,) that

—<_:k g be arbitrary and let

-

1
f,,[x+—-§—~h1]~f,,(x—-———-——hl)

and

(15) AD) < gqn, A(E) < qn.
Let F= [(A’+h1)ﬂB’]+E-q—1—, then
k-1 k d?
16 FC[———,—] d A(F)=—.
(16) 7 g an (F) 24

If xe A(DUE) then x—%‘—’-—hleA and x—k—;ieB. Therefore, by the

definition of 4 and B we have f,,[ k;l l)éc, A {x—!Cq;J]_Z_H-d from

which
fn( 1)—f,, (x——kq;’]‘ =d.

On the other hand x¢ DUFE and hence we get

=d—2gn.

D
a5+ 2 =) 100
Consequently
z[{xe["—;‘—, -5]; fuet B =) = d~2qn}] =

d2
= A(F\(DUE)) = >——2qn = — v

by (15) and (16). This inequality holds for every k=1,2, ..., q, therefore
d2
MU, G4 M), ()| = d—2n)) = .

2
Since d—2qn >—%— this implies

,1[1{1 fulx+B)—f,(0)) = —‘?}] = %i

and hence we have (11) by (7).
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Let n,=0 and [a,, by]=[0, 1]. Suppose that k=0, and the index n,_, and
the non-degenerate interval [a,_,, b,_,] have been defined. Then, applying the
foregoing argument with [a, bl=[a;_,,b,_4 and N=m_,, we get an index
Hp=>Np_q and th(ak_l, bk'—l) SuCh that

d2
o Gt ) —F (] = .
It follows easily from (8) that there exists d>0 such that

def
[ay, b] = [y =3, hy+6] < [ag_y, by-1]
and

(17 I o, 6+ 1) —fo )| > —dsj holds for every h€lay, b

Thus by induction we define the sequence #y, #,, ... and the nested sequence of
intervals [a, b;] such that (17) holds for every k. Let A€ () [a, b,]. Then by (17)
k=1

we have

et ) S =% (R=1,2,.).

This obviously contradicts our assumption [ f,(x+%4y)—f,(x)|| -0 and this con-
tradiction proves Theorem 2.
Now we turn to prove our main result.

TueEOREM 3. The class L has the weak difference property.

Proof. Suppose that, for a function f: R—~R, f(x+h)—f(x)€L holds for
every h. We have to prove that f can be written in the form f=g+H+S, where
g€L, H is additive and, for every A, S(x+A)—S(x)=0 holds for a.e. x. We may
suppose that f is periodic mod 1. Indeed, let the periodic function f™ be defined by

) =f(x) O@=x<1) and f*(x+1) =f*x) (x€R).
Then f—f* is measurable since for n=x<n-+1 we have f*(x)—f(x)=f(x—n)—
—f(x). On the other hand
Fr*x+B)—f*(x) = [f*x+B)—f G+ DI+ x4+ B) —f )]+ () —f* ()]

is measurable for every 4. Hence, if f*=g*+H+S where g*, H and S have the
desired properties then we have f=g-+H+S where g=(f—f")+g* is measurable.
(This argument is due to DE Brunn [1], § 1.)

Now suppose that f is periodic mod 1, then f(x+4)—f(x)€S for every h.
By Lemma 1 a), for every % there exists a constant c(/) such that

s(fe+m)—f(X) = [f(x+ ) —f(x)—cB)].

We may suppose that ¢(0)=0 and the function c(x) is periodic mod 1. We show
that

(18) lim (c(h+k)—c()—c(k)) = 0.

k—~o0
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FUNCTIONS WITH MEASURABLE DIFFERENCES 225

First we prove that
(19) lim s(fCe+ B)—f () = 0.

Indeed, let A, be an arbitrary sequence tending to zero and let f,(x)=f(x+4,)—
—f(x). Then for every fixed k€ R we have

£+ R £, = [ fx+hy+E) —f(x+ k) —f(x+h) +f (] = [ F(x+h,)— F(x)]
where F(x)=f(x+k)—f(x)€S. It follows from (8) that [[F(x+h,)—F(x)|-0,
therefore | f,(x+k)—f,(x)| ~0 for every kcR. Applying Theorem 2 we have
s(f)=s(f(x+h)—f(x))~0 which gives (19).

Now let h,—~0 and k,—0 be arbitrary, then we have
s(fc+ by +k) —f (X)) = 1 f Ge+hy+ k) —f () = (hy+ k)| 0,
s(fCe+h) () = I fx+h) —f (x) = (Bl = f G+ Byt k) ~f(x+ k) —c(h)]| -0
and
s(f(x+k)—f(x) = I f(x+ k) —f (x)—c (k)] - O.
le(h,+ k)~ c(hy) —c(kl = | f(x+hy+k) —f(x)—c(h, + k)| +

+leh) —f G+ b+ k) + (e + k) +ll e (k) +f () —f (x+ k)l - 0.

Hence

Since |c||=min (1, |c[) holds for every constant function ¢, therefore

lc(hn+ kn) _c(hn) - c(kn)l -0
which proves (18).
Now we can apply Theorem 1 for the function ¢(x) and get the functions H(x)
and u(x) such that c¢(x)=H(x)+u(x), H is additive and

(20 }cl-r-% u(x) =u(0)=0.

We may suppose H(1)=0 since otherwise we put
Hy(x) = HXx)~x-H(), u;(x) =u(x)+x-H().
Then H(x) (and thus u(x) as well) is periodic mod 1. We put

K(x, ) = f(x+y)—f()— H().

Obviously, for every fixed y, K(x, ) (as a function of x) belongs to S. We show
that

@n IK(x, yu)—K(x, yo)| ~0 whenever y, — y,.

(Here and in the sequel the “norm™ || -| of a function of x and y denotes the
norm of that function as a function of x; the variable y is always fixed.)
Let y,—0, then

1KCGe, yll = 1 e+ y) =f () —H@| = [ fK+y)—fE)—cll+le(r)—HW)| =
= s(f(x+y) —f(®)+min (1, ju(y)]) ~ 0
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by (19) and (20). If y,~y, then we have
1K, yd =K, yolll = 1 f(x+y) —f(x+y) —H(y, = o)l =
= 1f G+ yn=yo) =f ) = H (= o)l = KX, y,= o)l =0

and hence (21) is proved.
The next step of our proof is the construction of a measurable function G{x, y)
satisfying the following condition:

22) For every y€R, G(x,y)=K(x,y) for a.e. x€R.
Let £=0 be arbitrary. Then there exists >0 such that [|K(x, y)—K(x, y)| <&
whenever |y—)’|<d. Indeed, otherwise we could find two sequences y, and y;

such that y,—y;—~0 and |K(x, y,)—K(x, y;)| =e. Since K(x, y) is periodic in y,
we may suppose y,, V:€[0,3] (n=1,2,...). Then, for a suitable subsequence n,
we have ¥y, Vo, yn—~Ve- By (21) we have [K(x,y,)—K(x, y,)l—~0 which is
a contradiction. :

Now let §,>0 be such that |y—y’|<d, implies [K(x,»)—K(x,y)| <§I;
(n=1,2,...) and put
G,(x, ) L K(x,i5,) if i6,=y<G(+1)5, (=0,+1,4+2.;n=12 ..).
Then G, is measurable for every # and
. 1
(23) 1GuCx, ) —KCx, ) = | K(x, i8)—K(x M)l < 55

holds for every y€R.
We define
lim G,(x, y), if the finite limit exists,

R RUnghad
G(x,7) {O, otherwise.

G is measurable and satisfies (22). Indeed, let y be fixed. By (7) and (23) we have

w16, Ko i =) <

and hence, by the Borel—Cantelli lemma we have
G(x,y) = lim G,(x, y) = K(x,y) forae. x¢[0,1].

Thus the periodicity of the functions G, and K proves G(x, y)=K(x, y) for a.e. xCR.
Let

Q) 8% ) =K )-G, y) =fx+ ) —f ) —HG) -G, ).

According to (22), for every fixed y we have
(25) S5;(x,») =0 for ae. xER.
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FUNCTIONS WITH MEASURABLE DIFFERENCES 227

We shall prove that there exists a point x,€R such that
(26) for every fixed h, S;(x, x+h)—S;(xq, x)=0 for ae. x€R.
We have:

S1(x, y+2) =f(x+y+2)—f(x)—H(y+2)—G(x, y+2);
—81(x+y, 2) = —f(x+y+2)+f(x+ )+ H()+G(x+y, 2);

=81(x, y) =—=fx+ P+ D)+ HG)+G(x, y)-
By adding we get

@7 S:G,y+2)—Si(x+y,2)=S:1(x, ) =—G(x, y+2)+

def
+G(x+y, 2)+G(x, y) = L(x, y, 2).

The measurability of G implies that L is measurable, too. On the other hand it
follows from (25) and (27) that for every fixed y and z, L(x,y, z)=0 for a.e. x.
Therefore L(x, y,z)=0 for almost every (x, y, zZ)éR3. Hence there exists a point
X, such that L(x,,y,2)=0 for almost every pair (y, z)¢RZ2 Thus there exists
a subset ZCR such that 4 (R\Z)=0 and for every z€Z we have L(x,,y,2)=
=8, (%9, y+2)— 81 (xp+¥, 2) — S1(xp, ¥»)=0 for ae. y. However S,(x,+y,z)=0
for a.e. y by (25) hence

(28) S1(xg, y+2)—S1(x9, ¥) =0 holds for a.e. y.

Now let #€R be arbitrary. Then there are z, z,¢6Z such that h=z,+z,, since
ZN(h—2Z)s . Therefore

S1(x9, X+ h)— S, (xg, X) =
= [S1(X0, X+ 21+ 25) — S1 (X0, X +22)] 4 [S1 (xp5 X + 25) — 51 (x5, x)] = 0
holds for a.e. x by (28) and hence (26) is proved.
Now we apply (24) by replacing x by x, and y by x—x,:

81 (X, X —Xo) = f(x)—f (%) — H(x)+ H(x) — G (x4, X — Xy)
from which
F(x) =[G (xg, x—x0) +f (x0) — H(xe)] + H (%) + S (x4, X — ) = g(x)+ H(x)+ S(x).

It is easy to see from the construction of G(x, y) that G(x,, x) is measurable for
every fixed x,. Hence g(x)=G(xy, x—x,)+f(xo)—H(x,) is measurable. Further-
more, for every fixed 4 we have

S(x+h)—S(x) = S1(xg, X+ —x6) — Sy (%9, x—Xo) =0

for a.e. x¢ R by (26), q.e.d.
In our next theorem L,(0, 1) denotes the class of those functions f¢L which
1

are periodic mod 1 and for which || f] p:( f | )P dx)1/p<oo.
0
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THEOREM 4. The classes L,(0, 1) have the weak difference property for every
p=0.

ProoF. Suppose that for a function f: R—R, f(x+A)—f(x)€L,(0, 1) holds
for every A. Then, by our preceding theorem, f=g+ H-+S, where g€ L, H is addit-
ive and, for every 4, S(x+#/)—S(x)=0 holds for a.e. x. We may assume that
g, H and S are periodic mod 1 since otherwise we consider the functions g;(x)=
=g(x—[xD+(x—[xD+ HQ1), Hi(x)=Hx)—H(l)-x and S;(x)=S(x—[x])) in-
stead of g, H and S.

For every fixed / we have

gx+h)—g) =[fx+h)—fX)]-HH)—-[Sx+h)—S@] = [f(x+h)—f(x)]-H(h)
for a.e. x and thus

def
N = |g(x+h)—g(®)]p <o
holds for every h.
We prove that the function N is bounded on [0, 1]. First observe that

NE=h) = lgx—h)—gMlf = lg(x)~g(x+h)f = N(b)

holds for each h¢€R.
Furthermore, for every f;,f,€ L,(0, 1) we have

1 1
Ifi+fale = [ Ifi+flrdx = [ 2max(fil, 1f)Pdx =
o 0

=2 [ (filP+fd?) dx = 22(1 Al 2+ £:l12)

and thus
N@G1+y) = ”g(x"'.V1+J’2)‘"g(x)”§ =

= [[g(x+y+y) —g(x+yIl+[s(x+y)—g I} =
=2(lg(x+yty)— g+ yl5+lg(x+yo) —g()NE) =
=2°(lg(x+y)—g(®)5+ N(yp) =22 (N(y)+ N(1y)
holds for every y;, y,€R. The function G(x, y)gl g(x+y)—gX)|P is measurable
on [0, 1]1X][0, 1] hence N(y)= f G(x,y) dx is measurable on [0, 1]. Thus there

0
exists K=0 such that the set A={y€[0, 1]; N(»)<K} is of positive measure.
By a theorem of Steinhaus (see [12], p. 145), there is 6=0 such that if |y|<é
then y=y;—y, for suitable y,, y,€4 and so,

0= N(y) = 22(N(p) + N(=yp) = 22(N(y)+ N(yp) = 2°T'K.
Hence, if 1/2"<6 then for every y€[0, 1] we have

y Y + [J’) n+1)(p+1)
= = 2ptigl L | = 220+, N]Z o=t N | = p+1) K.
0=NQy) =2 N(z]_Z N[I]E 2 N

2”
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It follows by Fubini’s theorem that

f(f G(x,y)dy)dx——— f(f G(x,y)dx)dy=fN(y)dy<oo

and hence, for at least one value of x we have

[ Gy = [ laG+p)—g@)IPdy <e.

By the periodicity of g, this obviously implies g€L,(0, 1), q.e.d.

3. Our next theorem states that the pair (L, L®) has the double difference
property, where L® denotes the class of Lebesgue measurable functions defined
on R2

THEOREM 5. If a function f: R—~R issuch that f(x+y)—f(x)—f(y) is Lebesgue
measurable (as a function of two variables), then f is of the form g-+H where
g€L and H: R-R is additive.

ProoF. There exists a subset YCR such that A(R\Y)=0 and, for every
y€Y, f(x+y)—f(x)—f(») is measurable, as a function of x. Let AR be arbitrary.
Then there are y;, ¥,€Y such that A=y, +y, since YN[(—Y)+h]= ¢. Since

Se+B)—f(x) = [fx+p1+y) —fG+y) —f ()] +

+ G+ y) —f ()=l Hf () +f (32,

hence f(x+A)—f (x) is measurable for every A. According to Theorem 3, f=g+H+S
where g is measurable, H is additive and, for every 4, S(x+4)— S(x)=0 for a.e. x.

Let F(x, y)fl—iiS(x—!—y)—S(x)—S(y), then
F(x,y) =[fG+0)-f)—fM]—gx+y)+g(x)+20)
and thus F(x, y) is measurable. For every fixed x we have
—F(x,5) = Sx)—[Sx+y)—Sy)] = S(x) for ae. y.

1
Consequently S(x)=— f F(x, y)dy holds for every x which proves that S is

0
measurable, too. Hence f=[g+ S]+H is a sum of a measurable and an additive
function, g.e.d.
For the analogous theorem concerning Borel measurable functions we need
the following simple

LEMMA 3. Let f(x,): RX[0,1]1-R be a bounded function of Baire class «
Then F(x)= f f(x,y)dy is of Baire class a, too.

ProOF. We prove by transfinite induction. If «=0, that is if f is continuous,
then the continnity of the function F is well-known.
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Let =0 and suppose the assertion is true for f<a. Let |f(x,y)|=M and
let f,(x,») be a sequence of functions of Baire class «,<u converging to f. We
may suppose |f,(x,y))=M because otherwise we take the functions

1
min (M, max (f,, —M)) instead of f,. Then F,(x)= f Jf.(x, v)dy is of Baire class

0
o, by the induction hypothesis. Furthermore Lebesgue’s theorem implies
1 1
FG)= [ f(x,y)dy =lim [ f,(x, y)dy =lim F,(x)
0 0

which proves that F is of class .

THEOREM 6. If a function f: R—~R is Lebesgue measurable and such that
S+~ (x)—=f () is of Baire class « (as a function of two variables), then f is
of Baire class o.

Proor. In the case of a=0 the assertion is a simple consequence of de Bruijn’s
theorem on the difference property of the class of continuous functions. For, if
S+»)—f(x)—f(y) is continuous, then f(x+A)—f(x) is continuous for every
h and hence f=g+H where g is continuous and H is additive. By our assumptions
H=f—g is measurable and thus H must be linear.

Now we suppose o=2. It easily follows from Luzin’s theorem that every
measurable function equals almost everywhere to a Baire 2 function. Hence there
exists a Baire 2 function p(x) such that

29) q(x) f(x) p(x)=0 for ae. x.
g(x+y—g®)—q0) =[fx+p)—fX)—fO)]-ple+y)+pE)+p()

is a Baire « function since f(x+y)—f(x)—f(y) is Baire a by our assumptlon
p is Baire 2 and «=2. Hence

| F(x, )—-—arctg [q(x+y) 93 -4()l
is a bounded Baire o function. For every fixed x we have F(x, y)=arctg [g(x)]
for a.e. y by (29). Hence by Lemma 3, arctg [¢(x)]= f F(x, y)dy is Baire o and thus

so is the function F)=p(x)+q(x). »
Finally suppose a=1. By Luzin’s theorem, for every natural number 7 there

exists a closed subset F,CR such that l(R\Fn)<% and the restriction f|p, is

continuous. Let
f(x) if x€F, _ 0 if x€F,
pn(x) = .o n(x = .
0 if x4¢F, fx) if x¢F,.
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Then p,(x) is Baire 1, g,(x) is measurable,

(30) 109 = P+, (x€R)
3 M(xs 4.0 % 0) <+
and

() 10,091 = £ for every xeR.

4. (x+ )~ 4,(x)— g,(») = [f(x+3) —f ) —f ] = p.(x+3)+ p, () + . (»)

is Baire 1 by our assumption. Hence
def
F,(x, y) = —arcig[g,(x+y) —4,(x) — g, (y)]

1
is a bounded Baire 1 function and thus by Lemma 3, G,,(x)g f F,(x,y) dy is
0
Baier 1, too. It follows from (31) that

2
A({ys Fulx, y) # arctg [q,(0)}) < —
for every x€R. Hence

2n
(33) |G, (x) —arctg [q, (]l < —-
that is

2n 27
34) G,,(x)—T < arctg [g,(x)] < G,,(x)+T for every x.
Let
1 2n 27 /3
U,=fx; % <G0-2Z <G+ < I}

U, is an F, set since G, is Baire 1.

Let

def 2r}] def 2n

o= pw+s[6,0-2], 50 p@re[6@+E] ).
then by (30) and (34) we have
(35) a,(x) <f(x) < by(x) (x€U,).
Since p, and G, are Baire 1 functions, hence a, and b, are Baire 1 functions, too
(on the F, set U,) and thus the level sets {xcU,; a,(x)>c} and {x€U,, b,(x)<c}
are F, sets for every ¢ccR and n=1,2, ....

We prove that

(36) X f(x)<c}= @1 {x€U,; b,(x) < ¢}
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for every c€ R. The inclusion
(i@ =)o U el b, = o}
is obvious by (35). Suppose f(x)<c and let |f(x)|=4. It follows from (32) that
larctg [¢,(x)]| = arctg 4 = g—s
for every n. Hence by (33) we have

T &
(37 '——2-+7

£
2

=< Gn(x)_'zzn“ =< Gn(x)"l"zT:E = 'g'

if nzég and thus x€U, for n= 8 . (37) implies

Jim (5,09~ ,09) = lim (tg [6s0+ 2]~ te[Gi0-2]) = 0
since tg(x) is uniformly continuous on the interval [ > ; 72t 2] Hence

nhjg a,,(x):}im b,(x)=f(x) by (35), consequently b,(x)<c if n is large enough.
Thus we have

{x; f(X)<c}c 91 {xeU,; b,(x) < ¢}

and (36) is proved.

Hence {x; f(x)<c} is an F, set for every c¢. The same argument shows that
{x; f(x)=c} is F,, too which proves that f is Baire 1, g.e.d.

Now Theorems 5 and 6 immediately imply

THEOREM 7. Suppose that f(x+y)—f(xX)—f(y) is Baire o (as a function of
two variables). Then there are a Baire o function g: R—R and an additive function
H such that f(x)=g(x)+H(x).

For, by Theorem 5, f is of the form g+ H where g is measurable and H is

additive. Since
gx+y)—g(x)—g ) = f(x+y)—f(x)—f(»)

is Baire o, Theorem 6 gives that g is Baire «, too.

We remark that de Bruijn’s theorem on the class of continuous functions
can be deduced from Theorem 7. Indeed, suppose that f (x+h) —f(x) is con-
tinuous for every A. Then the function f(x-+y)~f(x)—f () is separately contin-
uous in both variables. Then, by Baire’s theorem, it is a Baire 1 function (as a func-
tion of two-variables) and thus, by Theorem 7, there are a Baire 1 function g and
an additive function H such that f=g+H. Let x, be a point of continuity of the
function g. Then the continuity of g(x+A)— —gx)=f x+h)—f (x)=~H(h) implies
that g is continuous at x,+/#. Since A is arbitrary, g is continuous everywhere.
Obviously, this proof is much more complicated than de Bruijn’s. Yet, the same
argument applies for the following theorems.
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THEOREM 8. The class of approximately continuous functions has the difference
property.

ProoF. Suppose that f(x+h)—f(x) is approximately continuous for every .
Then f(x+y)—f(x)—f(y) is separately approximately continuous and hence, by
a theorem of R. O. DAVIEs [7], it is measurable. Applying Theorem 5 we get f=g-+H
where g is measurable and H is additive. It is well-known that every measurable
function is approximately continuous almost everywhere (see [10], Theorem 5.9,
p. 118). Let x, be a point at which g is approximately continuous. Then g(x+#)=
=g(x)+[f(x+h)—f(x)]—H(k) implies that g is approximately continuous at
Xo+h. Since & is arbitrary, g is approximately continuous everywhere.

THEOREM 9. Let f: R—+R be a bounded function for which f(x+h)—f(x) is
a derivative for every h. Then f is a derivative.

ProoF. The function F(x, y)=f(x+y)—f{(x)—f(») is bounded and for every
fixed xy, yy, the functions F(x,, y) and F(x, y,) are derivatives. Then, according
to a theorem of Z. GRANDE [9], F is measurable. Applying Theorem 5 we get
J=g+H where g is measurable and H is additive. Since H=f—g is bounded
on a set of positive measure, H is linear (see [12]) and thus f is measurable. Now
the assertion of Theorem 9 immediately follows from the following

THEOREM 10. Suppose that f(x+h)—f(x) is a derivative for every h. If there
exists an interval on which f is measurable and summable, then f is a derivative.

Proor. Suppose that f is summable on [¢, 5] and let F(x)= f f)dt

(x€[a, b]). We can cFoose a point x,€(a, b) such that F’ (xg)=f(x,) (sincea F(x)=
=f(x) holds a.e. in (g, b)). Let 0<h<b—x, be fixed and let G(x) be a primitive
of f(x+h)—f(x). Then G'(x) is summable on the interval [a, b—/] and hence

G(x)—-Ga)= f G'(t)dt for every xc[a, b—h] (see [10], Theorem 6.6, p. 143).
That is, for x€[a, b—#] we have
G(x)—Gla) = f Ut —fOldi= [ F@yde-
a+h ’
— f f(t)dt— f f@t)dt = F(x+h)— F(x)— F(a+h).
This implies
F'(xo+h) = G’ (x0)+ F' (%) = [f(xo+h) —f(x0)]+f (x0) = f (xo+h).

Since k€ (0, b—x,) was arbitrary, we have F’(x)=f(x) (x€(x,, b)). Hence f(x+h)
has a primitive on (x,—h, b—k) and the same holds for

&) =fG+D—[fx+B)—f )]

That is, f has a primitive on every open interval of length b— x,. Thls easily implies
that f has a primitive everywhere, q.e.d.
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REMARKS. Let B, denote the class of Baire « functions defined on R. Since
every measurable function equals a Baire 2 function a.e., it follows from Theorem
3 that the classes B, have the weak difference property for «=2. On the other hand,
assuming the continuum hypothesis, the classes B, do not have the difference pro-
perty for a=2. This can be shown by the same example as in the case of measur-
able functions; for if the set {x; S(x-+/)=S(x)} is countable for every s then
S(x+k)— S(x)€B, for every i (see Section 1). This raises the following

ProBLEM 1. Has the class B, the difference property?®

We remark here that if B; has the difference property, then so is the class of
derivatives. Indeed, suppose that f(x-+h)—f(x) is a derivative for every h. Then,
by assumption f=g+H where g€ B, and H is additive. Then g(x+4)—g(x)=
=[f(x+h)—f(x)]—H(h) is a derivative for every 4. On the other hand, g has
a point of continuity and in a sufficiently small neighbourhood of this point g is
measurable and bounded. Hence, by Theorem 10, g is a derivative.

ProBLEM 2. Suppose that f(x+4)—f(x) is Borel measurable for every A.
Is it true that the functions f(x+#4)—f (x) belong to the same Baire class of order
o<, ? (In the example above, ¢=2.)

Now we prove that (assuming the continuum hypothesis) there exists a Lebesgue
measurable function S(x) such that S(x-+Ah)—S(x)€B, for every h and S is not
Borel measurable. This means that Theorem 6 fails to remain valid if we replace
the condition “f(x+y)—f(x)—f(y) is Baire a” by “f(x+h)—f(x) is Baire a
for every 4.

Let {a,},<a, be a well-ordering of R. Let U be an everywhere dense G set of
measure zero and let {P,},.,, be a well-ordering of the family of perfect subsets
of U. Let G, denote the additive group generated by the set {a;; f<a}. Then G,
is countable for every a<wm; and G,={0}. Let py€ P, and x,€ U\ {p,} be arbitrary
and put Hy= {x,}.

Suppose that «>0 and the points p; and the countable sets H, have been
defined for every f—<a. Then the set

A :ﬂU HﬁU{Pﬁ§ .B<“}

is countable. Let p,6 P\ A. V=U\(4U{p,}) is an everywhere dense G, set and
hence sois V’'= () (V+4). Let x,£V”’ and define H,=G,+x,. Hence the points
keG,

def
P.£P, and the countable sets H, are defined for every a<w;. Let X = U H,.
a<w;

It is easy to see that

(38) XcU and hence A(X)=0,

(39) p,¢X (x<w,) and hence X does not contain any perfect set,
(40) X has the cardinality &, and

(41) (X+A)\X is countable for every A€R.

3 Meanwhile I succeeded in giving an affirmative answer.
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(We remark that a set with the properties (38), (40) and (41) was constructed
in [16], Theoréme 1.) Then X is not a Borel set by (40) and (39) (see [14], p. 355).
Hence the function

is not

1, xeX
S(x):{o x¢X

Borel measurable. On the other hand, S is Lebesgue measurable by (38) and

{x; S(x+h)=S(x)} is countable for every i by (41).

ProOBLEM 3. Let f be Borel measurable and suppose that f(x+h)—f(x) is of
class o for every h. Does it follow that f is of class o, too?

[1] N.
2] N.
[3] F.

[4] F.

[5] F.
[6] F.
7 R.

[8] P.

[9] Z.

[10] R.
[111 J.

[12] H.
[13] F.

[14] C.
[151 A.
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