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FUNCTIONS WITH MEASURABLE DIFFERENCES 

By 
M. LACZKOVICH (Budapest) 

1. Let R denote the set of real numbers and let F be a class of real valued 
functions defined on R. We say that F has the difference property, provided that 
every function f :  l i a R  for which f (x+h)- f (x )EF holds for every h, can be 
written in the form f=g+H where gEF and H is additive, that is H satisfies the 
functional equation H(x+y)=H(x)+H(y). The notion of difference property 
was introduced by N. G. de Bruijn who proved that a series of important classes 
have the difference property (e.g. the classes of continuous, differentiable, analytic, 
absolute continuous, Riemann-integrable functions, respectively; see [1] and [2]). 
The results of de Bruijn have been extended and generalized in various ways, see 
[3], [4], [5], [6], [11], [13]. 

However, the following example given by Erd6s shows that the class of Lebesgue 
measurable functions does not have the difference property if we assume the con- 
tinuum hypothesis. Indeed, the continuum hypothesis implies the existence of 
a bounded and non-measurable function S: R ~ R  such that for every hER, 
S(x+h)--S(x)=O holds for all but countably many values of x (see [16], p. 27). 
Now S is not of the form g+H where g is measurable and H is additive because 
otherwise H =  S - g  would be bounded on a set of positive measure. By a theorem 
of Ostrowski, this implies that H is linear (see [15] or [12]) and thus S is measurable, 
a contradiction. 

It was conjectured by Erdbs that every function f :  R ~ R  for which f ( x §  
- f ( x )  is measurable for every h, is of the form f=g+H+S,  where g is measur- 
able, H is additive and S has the property that, for every h, S(x+h)-S(x)=O 
for almost every x. 

We say that a class F has the weak difference property if every function f :  R ~ R  
for which f (x + h ) - f  (x) E F holds for every h admits a decomposition f = g  + H +  S 
with gEF, H additive, and S satisfying the condition that for every h, S(x+h)-  
- S ( x ) = 0  holds for a.e. x (see [6]). Let L denote the class of Lebesgue measurable 
functions defined on R. Then Erd6s' conjecture can be formulated as follows: the 
class L has the weak difference property. The main purpose of this paper is to 
prove this conjecture (Theorem 3). 

We remark that the weak difference property has been established for the 
classes Lp(0, 1) if p=>l (see [41 and for a generalization, [13]). F. W. Carroll raised 
the question whether this is true for 0 < p < l .  We give an affirmative answer in 
Theorem 4. 

We prove Theorems 3 and 4 in Section 2, making use of the preparatory results 
of Lemmas 1, 2 and Theorem 2. In Section 3 we give some applications of The- 
orem 3. These applications will be based on Theorem 5 which states that the classes 
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of measurable functions of one and two variables have a "double difference pro- 
perty" in the following sense. 

Let F1 be a class of real functions defined on R and let F~ be a class of real 
functions defined on R 2. We say that the pair (F1, F~) has the double difference 
property if whenever f ( x + y ) - f ( x ) - f ( y ) C F ~  holds for a function f:  R--R then 
f is of the form f = g + H ,  where gCF~ and H is additive. 

For example, the pair of classes of bounded functions of one and two variables, 
respectively has the double difference property (see [1], Theorem 1.2, p. 196). First 
we prove that the same is true for the classes of functions whose limit equals zero 
at the origin. More precisely we prove 

THEOREM 1. I f  f is defined on R and 

lira {f(x + y) - f ( x )  -f(y)} = 0 
X--~0 
y~0 

holds then f = g  + H where H is additive and lim g(x)=g(O)=O. 
X ~ O  

PRooF. Let 6>0 be such that 

(1) [ f (x+y) - f (x ) - f (y ) [  <- max(l, [f(0)]) do~ A for every Ixl, lYl ~- 6. 

We put f * (x )e*r f ( x -k6 )  if k6=x-< <(k+1)6  (k=0,-t-1 . . . .  ). We show that 

F(x,y)d~ If*(x+Y)-f*(x)--f*(y)l is bounded on R ~. Let x, yCR be arbitrary 

and let k=[-~] ,  n = [ ~ ] .  If [ - ~ ] = k + n  then we have 

F(x, y) = [f(x+ y - ( k  + n ) 6 ) - f ( x - k f ) - f ( y - n 6 ) [  <= a 

by (1). If [ - - - ~ ] = k + n + l  then we have 
t O J  

F(x, y) = ]f(x + y - (k + n + 1) 8) - f ( x -  k6) - f ( y  - n6)[ <= 

<If(x= . . . .  k6+y (n+l )6 ) - f ( x  k6 ) - f ( y  (n+l )6) l+  

+ [f(y - ( n +  1)8)-f(y  - n6 ) - f ( -6 ) l  + I f ( -  6)[ <= 2.4 + If(--6)[ 

using (1) again. Hence F(x ,y )<-2A+l f ( -6) l  for every x, yCR. Thus, by the 
above mentioned theorem ([1], Theorem 1.2, p. 196), there exists an additive func- 

tion H such that f * - H  is bounded. Hence the function g(x)ae f f (x ) -H(x)  is 
bounded in [0, 8). If xC(-6 ,  0) then we have 

I g (x)] = If(x) - H(x)[ ~ If(x) + f ( -  x)-f(0)[ + [f(0)l + IH(-- x)--f(-- x)[ 

< A + [f(0)[ + ]g(-x)[ 

and hence g is bounded in ( - 6 ,  6). 
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We show lira g(x)=0 (the proof of lim g(x)=0  is similar). We put 
x ~  + 0  x ~ - - 0  

{ M. = sup g(x); ~-  <- x -< (n = 1, 2 . . . .  ). 

Let ~>0 be arbitrary and let N be such that 

Ig(x+ y)-g(x)-g(y) l  = [f(x+ y)- f(x)- f(y)]  < e 

holds for every 0<Ix l, lYI<-2~-N �9 Then we have 

1 1 
(2) M.+I -<_2M.-- + ~  ~ (n => N). 

Indeed, for every xC 2.+1,  ~ , n>-N, we have Ig(2x)--2g(x)l<e from which 

1 1 1 1 
g(x) < -~-g(2x)+-~-g <= -~- M.+~-8 

1 1 
and hence Mr.+ 1 <- ~ M , + - ~ .  

1 
If M,<_-~ holds for at least one n>=N then by (2) we have M.+l<=~-e+ 

1 
+ ~ - e = 8  and by induction Mk<_--e for every k>-n. Thus in this case 

limsup M.<=8 holds. 

�9 1 1 
If M,>~ holds for every n>-N then M,+I<-~M,+-fM.=M,  for every 

def 
n>=N i.e. the sequence {M.}2=N is decreasing. Let M =  lira 3/,.  Then (2) implies 

M<=2M+2e,  M<=n and thus we have limsupM,<-e again. 

Since e>0 was arbitrary we proved lira sup g(x)<= lim sup M,<=0. A similar 

argument shows that lim infg(x)=>0 and hence lira g(x)=0 as we stated. 
x ~ + 0  x ~ + 0  

Finally lim ~ ]g(0) -g(x) -g( - -x) l  =0  gives g(0)=0, which completes the proof. 

2. Let S denote the class of all functions defined on R which are Lebesgue 
measurable and periodic mod 1. For fE S we denote 

and 
I { f ~  c} = {x6[O, 13; f(x) ~ c} 

[Ifl[ = inf{a+A(I{[f[ ~ a}); a > O} 
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where 2 denotes the Lebesgue measure. 1 The following properties of the "pseudo- 
norm" II' I1 are well-known (and can be easily verified). 

(3) 0 <_- lIfl[ -~ 1 (TEa), 

(4) Ilfll = 0 iff f(x) = 0 for a.e. xER, 

(5) IIf+gl[ <--[Ifll+llgll (f, gES),  

(6) IIf(x+h)ll =llf(x)ll (fES, hER), 

(7) If yES and Ilfll < a then ).(I{Ifl  -> a}) < a, 

(8) ~im ~ IIf(x+h)-f(x)ll = 0 (TEa), 

(9) l ira Ilfn-fll - 0 iff the sequence fn converges to f in measure (fn,fE S). 

LEMMA 1. Let s(f)d~ cER}. Then for every fES, 
a) there exists c0ER such that IIf(x)-Coll=s(f), 

then there exists clER such that 2(I{f~=cl}) >-a and b) if s ( f )=d  

PROOF. a) Let fE S be given. First we show that cnE R, Ic, l ~ oo implies [I f -  Cnll --" 1. 
For every 8>0 and n = l ,  2 . . . .  there exists an>0 such that 

(10) an+2(I{If--cnl >= an} ) < IIf--cnl I +8. 

Since If(x)--c,l-~o for every xER hence ,~(I{]f--Cnl~=l})~l, thus there exists 
N > 0  such that ,~(l{If-cnl>=l})>l-8 for n>=N. If  a n > l  then I l f - c , [ l > l - z  
by (10). If an<-I and n>-N then 

[If-Cnl[ > ,~(I{If-cnl >- an})--8 ----> 2(I{]f--Cnl ~ 1})--5 > 1 --28. 

That is, I l f - c ,  l l > l - 2 e  for n ~ N  and hence I I f -cnl l - ' l .  
Now let II f -  coil -*s(f) .  If the sequence {cn} is not bounded, then for a suitable 

subsequence we have Icn~l-~,  consequently s( f )=l iml l f -cnJ l=l .  Then 

l=s(f)<=llf-O[l<=l and we put co=0. 
If  {c,} is bounded then it has a convergent subsequence cn~-~Co . We have 

liT-coil = l i m  llf--cn~[I = s ( f )  which proves a). 
f 

w o  oan supposo n on  omp,y  

and bounded from above. Indeed, 5 I { f ~ - n } =  O and hence 2(I{f<=-n})--,O; 
n~'l 

0 I{f<-n}=[O, 1] from which 2(I{T<-n})-l> 3 .  Consequently -nEC and 

1 This  n o r m  was in t roduced  by M. Fr~chet.  See his book  Les  Espaces Abstraits, Gauthier-Vi l -  
lars (Paris, 1928), p. 92. 
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C c ( - ~ ,  n) if n is large enough. We put c~=sup C. Then c~+l~.c from 

/l 11/ " 2(I{f<-c~})=lim2 I f<-cl+ =-~-. On the other hand we have 

( f )  IIf 11 < - ~ + 2  - C l  => = 

which 

= d + 2  ( I { f < - c l - d } ) + 2 ( I { f > =  cl+d})-< _ ~ + 2  (I{f__ > c:t + d } )  

since Cl-~EC. Hence 2 I ~ c 1 +  = ~ -  and b) is proved. 

LEnA 2. Let A and B be measurable subsets of the interval [0, a] with 2(A)_->c, 
i(B)>-c (c>-O). Then there exists lhl_<-a such that 

r 
i((A +h)~B) > - -  

= 2a 

where A+h denotes the set {x+h;  xEA}. 

PROOF. We put D={(x,y); -a~=x~a,y-xEA}~ORNB); it is easy to see 
that D is measurable. For every yEB we have 

def 
D r = {x; (x, y)ED} = (-A)-t-y 

and hence 2(Dr)=2(A). By Fubini's theorem 22(D)=f2(DY)dy=2(B).2(A). 
B 

def 
On the other hand Dx =~- {y; (x, y)ED}=(A+x)AB for every xE[-a, a] and thus 
we have 

/ / ~((A+x)nB)dx = ,~(D~) d x  = ~ ( B ) 2 ( A )  ~ c 2. 

2 
Hence t((A+x)FIB)>=-~a " holds for at least one Ixl<-_a, q.e.d. 

Our next theorem is a generalization of the simple fact that a function fE S 
is constant a.e. (that is s ( f ) = 0 )  if and only if II f(x+h)-f(x)[I =0  for every h. 

Tm~OREM 2. Let {f,} be an arbitrary sequence of functions belonging to S. Then 
l im s ( f~)=0 if and only/f l im I[ f~(x+h)-f,(x)ll =0  holds for every hell .  

PROOF. 2 Suppose first ~im s ( f , )=0 .  By Lemma 1 a), there exists a sequence 

{c,} such that s(L)=llL(x)-e.ll. Then, for every hER we have 

Ilf,,(x + h)-f,,(x)II <- ]lf,,(x + h)-c,,[l + llc,,-f,,(x)ll = 2s(f,) ~ 0. 

2 A s impler  p roo f  can  be found  in A. J. E. M. Janssen ,  Note  on  a paper  by M.  Laczkovich  on 
func t ions  with m e a s u r a b l e  differences (Erd6s '  conjecture)  (to appear) .  
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Now suppose indirectly that lirn llf~(x-t-h)-f~(x)ll =0 holds for every h but 
s(f.)§ Then, after selecting a suitable subsequence, we may assume that s(f .)= > 
>=3d>0 for n=l ,  2 .. . . .  We prove that for every non-degenerate interval [a, b] 
and for every N=>0 there exist hC(a, b) and n>N such that 

d 2 
(11) IIf~(x+h)-f,(x)ll ~_ T"  

p - 1  p + l  
Let p be a rational number such that a< < <b. By our assumption 

q P P 
lira [fn (x+l ) - f~(x) l l=0;  hence there exists n>N such that ]fn (x++)-- 

-f,(x) <~/ where q =-a-2~_~. Thus by (7) we have 
oq- 

This easily implies 

(13) 2[l{lf.(x+~}-f.(x)l >-qq})<qq for every 

Indeed, ]f.[x+kl-f.(x)>=q~ implies 

k =  1,2 . . . . .  q. 

I,.(x+ 
for at least one of the values i=0, 1, . . . ,k -1 .  Thus 

(14) I{ f.  IX +__kq)_f. (x) I _-> qt/}c i~i [I {If. (x +1)_f . (x )  I _> t/} - q ] ;  

and (13) follows from (12) and (14). 
Since s(f.)=>3d, by Lemma 1 b), there is a cCR such that for the level sets 

A=I{f.<-c}, B=I{f.>=c+d} we have 2(A)>-d, 2(B)~d. Then there are indices 
l <-i<=q, l <=j<-q such that 

q , > q ,  2 B  

1 
Applying Lemma 2 for a=- -  and for the sets q 
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2 • .  We put h=P-- -h l .  Obviously we get Ihl[~@ such that ).((A'+hOAB')>= ~ 
q 

hE(a, b); we are going to show (11). Let l~k<=q be arbitrary and let 

and 

(15) 

~ = , { I f ~ ( ~ + ~ , l ~ (  x- ~ 4 ~: q~l q 

It follows from (13) (and from the periodicity of f.) that 

2(D) < q~l, 2(E)  < q~?. 

Let F= [(A' + hi) (] B'] + ~ - [ ,  then 

k -  1 ,q] d 2 
(16) F c  q , and 2(F)=>~-q. 

k - i  
If xEF",x(DUE) then x -  - h l E A  

q 

definition of A and B we have f,, [ x - k - i  
q 

which 

x -  - h i  x -  " => d. 
q q 

On the other hand x ~ D U E and hence we get 

Consequently 

k- j  
and x -  EB. Therefore, by the 

q 

~11~ InIx ~}~c+~ from 

I~ (X+q_~,)_f~,x, I _~ ~_~q, 
1 }) 

, �9 I f , , (x+h)-f , , (x) l  >= d - 2 q n  >= 

d 2 d 2 
_-> ~(FX,(D re ) )  _-> Tq -2q ,  = Tq 

by (15) and (16). This inequality holds for every k = l ,  2 . . . .  , q, therefore 

d 2 
2 ( I { I f , ( x + h ) - f , ( x ) l  >= d-2qt/}) _-> "T" 

d 2 
Since d - 2 q l l  >--4-- this implies 

I x+h ) - f , , ( x ) l  > ='- 

and hence we have (11) by (7). 
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Let no=0 and [a0, b0]=[0, 1]. Suppose that k>0,  and the index nk-1 and 
the non-degenerate interval [ak_ 1, bk_l] have been defined. Then, applying the 
foregoing argument with [a,b]=[ak-~,bk-1] and N=nk-1, we get an index 
nk>nk_l and hkC(ak-1, bk-1) such that 

d = 
Ilf,,,, (x + hD - f  ,,,, (x)ll >= -T'" 

It follows easily from (8) that there exists (5>0 such that 

[ak, bk] d~f [hk--3, hk+6] C [ak_ 1, bk_l] 
and 

d 2 
(17) I[f~(x+h)-f,~(x)]l >--if- holds for every hE[ak, bk]. 

Thus by induction we define the sequence nl, n2, ... and the nested sequence of 

intervals [ak, b j  such that (17) holds for every k. Let hoe 5 [ak, bk]. Then by (17) 
k = l  

we have 
d ~ 

llf,,k(x+ho)-f,~(x)ll > --g- (k = 1, 2 ....  ). 

This obviously contradicts our assumption 11 f~(x+h0)-f~(x)ll-~0 and this con- 
tradiction proves Theorem 2. 

Now we turn to prove our main result. 

THEOREM 3. The class L has the weak difference property. 

PROOF. Suppose that, for a function f :  R ~ R ,  f ( x + h ) - f ( x ) C L  holds for 
every h. We have to prove that f can be written in the form f = g + H + &  where 
gEL, H is additive and, for every h, S(x+h)-S(x)=O holds for a.e.x.  We may 
suppose that f is periodic mod 1. Indeed, let the periodic function f*  be defined by 

f* (x )=f (x )  ( 0 = < x < l )  and f* (x + l ) = f* (x) (xCR). 

Then f - f *  is measurable since for n<=x<n+l we have f * ( x ) - f ( x ) = f ( x - n ) -  
- f (x ) .  On the other hand 

f* (x + h) - f *  (x) = [f* (x + h ) - f  (x + h)l + [f (x + h ) - f  (x)l + [f (x)- f*  (x)] 

is measurable for every h. Hence, if f *=g*+H+S where g*, H and S have the 
desired properties then we have f=g  +H+ S where g=( f - f* )+g*  is measurable. 
(This argument is due to DE BRU1JN [1], w 1.) 

Now suppose that f is periodic rood 1, then f ( x + h ) - f ( x ) E S  for every h. 
By Lemma 1 a), for every h there exists a constant c(h) such that 

s (f(x + h) - f(x))  = ][f(x + h) - f (x)  - c (h)l[. 

We may suppose that c(O)=O and the function c(x) is periodic rood 1. We show 
that 
( l  8) ~im ~ (c (h + k) - c (h) - c (k))  = 0. 

k~0 
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First we prove that 
(19) ~im ~ s ( f ( x  + h) - f ( x ) )  = O. 

Indeed, let h. be an arbitrary sequence tending to zero and let f . ( x ) = f ( x + h . ) -  
- f ( x ) .  Then for every fixed kER we have 

II f .  (x + k) - f .  (x) ll = II f (x + h. + k) - f  (x + k) - f ( x  + h.) + f (x )  ll = [I F(x + h.) - F(x)ll 

where F ( x ) = . f ( x + k ) - f ( x ) C S .  It follows from (8) that HF(x+h.) -F(x)H~O,  
therefore [] f , (x+k) - f . (x ) l [~O for every kCR. Applying Theorem 2 we have 
s ( f . ) = s ( f ( x + h . ) - f ( x ) ) ~ O  which gives (19). 

Now let h . ~ 0  and k..-~0 be arbitrary, then we have 

s ( f ( x  + h. + k.) - f ( x ) )  = 11 f ( x  + h n + k.) - f ( x )  - c (h. + k.)][ ~ 0, 

s ( f ( x  + h.) - f ( x ) )  = [I f ( x  + h.) - f ( x )  - c (h.)[1 = II f ( x  + h,, + k.) - f ( x  + k.) - c (h.)ll -~ 0 
and 

s ( f ( x  + k.) - f ( x ) )  -- llf(x-t- k.) - f ( x )  - c (k.)[I ~ 0. 
Hence 

[[c(h. + k.)- .c(hn)-c(k.) l l  <- Ilf(x + h. + k . ) - f ( x ) - c ( h .  + k.)][ + 

+ I1 c (h.) - f ( x  + h. + k.) +f(x  + k.)ll + I[ c (k.) +f(x) - f ( x  + k.)11 ~ O. 

Since I[cll =min  (1, 1c[) holds for every constant function c, therefore 

]c(h. + k . ) - c ( h . ) - c ( k n )  I -* 0 
which proves (18). 

Now we can apply Theorem 1 for the function c (x) and get the functions H(x) 
and u(x) such that c (x )=H(x)+u(x ) ,  H is additive and 

(20) lim u (x) =- u (0) --- 0. 
X ~ 0  

We may suppose H(1 )=0  since otherwise we put 

Hi(x) = H ( x ) - x .  H(1), ul(x) = u (x) + x .  H(1). 

Then H(x) (and thus u(x) as well) is periodic mod 1. We put 

. def  
K(x, y) ~ f ( x  + y) - f ( x ) -  H(y). 

Obviously, for every fixed y, K(x,  y) (as a function of x) belongs to S. We show 
that 

(21) [lK(x, y . ) - K ( x ,  Yo)[l -* 0 whenever y.  ~ Yo. 

(Here and in the sequel the "norm" 1[ �9 [I of a function of x and y denotes the 
norm of that function as a function of x; the variable y is always fixed.) 

Let y.-~0, then 

II K(x, y.)l[ = [I f ( x  + y.) - f ( x )  - H(y.)ll -< Ilf(x + Yn) - f ( x )  -- c (y.)[[ + Ii c ( y . ) -  Hfy.)H = 

= s ( f ( x + y . ) - - f ( x ) ) + m i n  (1, lu(y.)l) -~ 0 
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226 M. LACZKOVICFI 

by (19) and (20). If  Y,,--"Yo then we have 

IlK(x, y,) - K (x, yo)ll = IIf(x + y,) - f  (x + yo) - H (y, - Yo) ll = 

= Il f (x+y, , -yo)- f (x)-H(y,-Yo)l l  = IlK(x, Y,-Y0)[I -~ 0 

and hence (21) is proved. 
The next step of  our proof is the construction of a measurable function O(x, y) 

satisfying the following condition: 

(22) For every yER, G(x, y) = K(x, y) for a.e. xER. 

Let 8>0  be arbitrary. Then there exists 8 > 0  such that IlK(x, y ) -K(x ,  Y')II <8 

whenever ly -y ' l<6.  Indeed, otherwise we could find two sequences y,  and y~, 

such that y , - y ~ O  and IlK(x, y,)--K(x, y~,)[[ =>8. Since K(x, y) is periodic in y, 
we may suppose y,,y,'E[0, 3] ( n = l ,  2 . . . .  ). Then, for a suitable subsequenoe n k 
we have y,k~yo, Ynk Yo. By (21) we have []K(x,y,k)-K(x, y,~)l[~0 which is 
a contradiction. 

I 
Now let 6 , > 0  be such that ly-y'l<6,, implies IlK(x,y)-K(x,y')[l<-~ 

( n = l , 2  . . . .  ) and put 

G.(x,y) de-~fK(x,i~.) if i6.<-y<(i-t-1)6. ( i = 0 , _ 1 , + 2  . . . .  ; n = l , 2  . . . .  ). 

Then G. is measurable for every n and 
I 

(23) llG,(x, y ) - g ( x ,  Y)II = IlK(x, i6,)-K(x,  Y)II < 2--7 

holds for every yER. 
We define 

[ l im  G, (x, y), if the finite limit exists, 

G(x, y) = [ 0, otherwise. 

G is measurable and satisfies (22). Indeed, let y be fixed. By (7) and (23) we have 

I I IG.(x, y ) -K(x ,  Y)I ~ < 2--~- 

and hence, by the Borel--Cantelli lemma we have 

G(x, y) = lirn G,(x, y) = g(x, y) for a.e. xE[0, iI. 

Thus the periodicity of  the functions G, and Kproves G(x, y)=K(x, y) for a.e. xER. 
Let 

(24) Sl(X ' y) aef K(x, y ) -G(x ,  y) = f ( x + y ) - f ( x ) - H ( y ) - G ( x ,  y). 

According to (22), for every fixed y we have 

(25) Sl(X, y) = 0 for a.e. xER. 
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(26) 

We shall prove that there exists a point x0~R such that 

for every fixed h, Sl(x o, x+h)-S~(xo,  x)=O for a.e. xCR. 

We have: 

Sl(x, y+  z) = f ( x +  y+ z ) - f ( x ) - H ( y +  z ) -G(x ,  y+ z); 

-S~(x  + y, z) = - f ( x  + y+ z)+f(x  + y)+ H(z)+G(x + y, z); 

-- S 1 (x, y) = - f ( x  + y) + f (x )  + H(y)  + G (x, y). 
By adding we get 

(27) Sl(x, y + z ) - S l ( x  + y, z ) -S l ( x ,  y) = -G(x ,  y + z)+ 

+ G (x + y, z) + G(x, y) de rr L(x, y, z). 

The measurability of G implies that L is measurable, too. On the other hand it 
follows from (25) and (27) that for every fixed y and z, L(x, y, z)=0 for a.e.x.  
Therefore L(x, y, z)=0 for almost every (x,y, z)CR 3. Hence there exists a point 
x0 such that L(xo, y, z)=0 for almost every pair (y, z)CR 2. Thus there exists 
a subset Z c R  such that 2 ( R \ Z ) = 0  and for every zEZ we have L(xo, y, z)= 
=Sl(xo, y + z ) - S l ( x o + y , z ) - S l ( x o , y ) = O  for a . e .y .  However Sl(xo+y, z)=0 
for a.e. y by (25) hence 

(28) Sl (xo ,y+z) -S l (xo ,y )  = 0  holds for a .e .y .  

Now let hCR be arbitrary. Then there are z~, z2CZ such that h=z~+z2, since 
Z Cl ( h -  Z) ~ 0 .  Therefore 

$1 (Xo, x + h ) -  S 1 (Xo, x) = 

= [ S l ( x 0 ,  x+zl+z~)-SdXo, x+zO]+[SdXo, x+z~)-Sdxo,  x)] = 0 

holds for a.e. x by (28) and hence (26) is proved. 
Now we apply (24) by replacing x by xo and y by X-Xo: 

$1 ()Co, x - xo) = f (x)  -f(Xo) - H(x) + H(xo) - G (Xo, x -  xo) 
from which 

f (x)  = [G (Xo, x -  Xo) +f(Xo) - H(x0)] + H(x) + Sx (Xo, x -  Xo) aef g (x) + H(x) + S(x). 

It is easy to see from the construction of G(x, y) that G(xo, x) is measurable for 
every fixed x0. Hence g(x)=G(xo, X--Xo)+f(xo)-H(xo) is measurable. Further- 
more, for every fixed h we have 

S(x+h)-S(x)  = &(Xo, x+h -Xo)-&(Xo, X-Xo) = 0 

for a.e. xC R by (26), q.e.d. 
In our next theorem L~,(0, 1) denotes the class of those functions fCL which 

1 

are periodic mod 1 and for which llfG=(flf(x)l, dx)l/,<o~. 
0 
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THEOREM 4. The classes Lp(0, 1) have the weak difference property for every 
p>O. 

PROOF. Suppose that for a function f :  R ~ R ,  f ( x + h ) - f ( x ) E L p ( O ,  1) holds 
for every h. Then, by our preceding theorem, f = g + H + S ,  where gEL, H is addit- 
ive and, for every h, S ( x + h ) - S ( x ) = O  holds for a . e .x .  We may assume that 
g, H and S are periodic mod 1 since otherwise we consider the functions gl (x)= 
=g{x--[x])+(x-[x]) .H(1),  H ~ ( x ) = H ( x ) - H ( 1 ) . x  and S~(x)=S(x-[x])  in- 
stead of g, H and S. 

For every fixed h we have 

g (x + h) - g (x) = If(x-t- h) - f (x) ]  - H(h) - [S(x + h) - S(x)] = [f(x + h) - f (x) ]  - H(h) 

for a.e. x and thus 
def 

N(h) ~--- [lg(x+h)-g(x)ll~, <~, 
holds for every h. 

We prove that the function N is bounded on [0, 1]. First observe that 

N ( - h )  = I lg(x-h)-g(x) l lg  = IIg(x)-g(x+h)ll~, = N(h) 

holds for each hER. 
Furthermore, for every f l , f a  E Lp (0, 1) we have 

1 1 

Ilfl+f~llg = f Ifl+fzlPdx <- f [2max(IAI, IAI)JPdx <- 
O 0 

1 

-< 2.  f ( IL l"+  ILl p) dx = 2p(IIAIIg+ IIAllg) 
0 

and thus 
N(yt  + Y~) = ][g(x + yt + Y2)-g(x)t]~, = 

= H[g(x+yl+y2)-g(x+ya)]+[g(x+y~)-g(x)]lEg <= 

<- - 2p(llg(x + y~ + y~ ) -g (x  + y2)ll~ + llg(x + y~)-g(x)Hf,) --- 

= 2P(II g ( x + y 0 -  g (x)llg + N(y2)) = 2"(N(y0 + N(y~)) 
def P 

holds for every yl,Y2ER. The function G(x ,y )m- lg (x+y) -g(x ) [  is measurable 
1 

on [0, 1]• 1] hence N ( y ) = f G ( x , y ) d x  is measurable on [0, 1]. Thus there 
o 

exists K > 0  such that the set A={yE[0, 1]; N ( y ) < K }  is of positive measure. 
By a theorem of Steinhaus (see [12], p. 145), there is 6 > 0  such that if [y[<6 
then Y : Y l - Y 2  for suitable y~,y~EA and so, 

0 < N(y) < 2n(N(y ) + N ( -  )) = 2P(N(y ) + Y ( y  )) -< 2P+IK = = 1 Y2 1 2 - �9 

Hence, if 1/2"<6 then for every yE[O, 1] we have 

0 =< N(y)~_ 2 p + I N ( y )  ~=: 2 2(p+l) �9 N( �88  :'< . . .  ~ 2 n(p+l) �9 N ( y )  :~: 2 ( n + l ) ( p + l ) ' g .  
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It follows by Fubini's theorem that 

i 1 I i I 

f (f C(x,y)dy)dx= f (f  (x,y)dx)dy=fN(y)dy<  
0 0 0 0 0 

and hence, for at least one value of x we have 

l 1 

f G(x,y)dy = f [g(x+y)-g(x)lPdy <oo. 
0 0 

By the periodicity of g, this obviously implies gELp(O, 1), q.e.d. 

3. Our next theorem states that the pair (L, L (2)) has the double difference 
property, where L (2) denotes the class of Lebesgue measurable functions defined 
on R 2. 

THEOREM 5. I f  a function f: R ~ R  is such that f (x + y ) - f  ( x ) - f  (y) is Lebesgue 
measurable (as a function o f  two variables), then f is of  the form g + H where 
gEL and H: R ~ R  is additive. 

PROOF. There exists a subset Y=R such that 2 ( R \ Y ) = 0  and, for every 
yCY, f ( x + y ) - J ' ( x ) - f ( y )  is measurable, as a function of x. Let h~R be arbitrary. 
Then there are Yl, y2CY such that h=yl+y2 since YN[ ( -Y )+h]#  f3. Since 

f ( x  + h) - f (x )  = [f(x + Yl + Y2) - f ( x  + Yz) -f(Yx)] + 

hence f (x + h) - f  (x) is measurable for every h. According to Theorem 3, f =  g + H +  S 
where g is measurable, H is additive and, for every h, S(x+h)-S(x)=O for a.e.x. 

Let F(x, y) dr y)-- S(x) - S(y), then 

F(x, y) = [f(x+y) - f (x )  -f(y)]  - g ( x + y ) +  g(x) + g(y) 

and thus F(x, y) is measurable. For every fixed x we have 

-F (x ,  y) = S(x) -[S(x+y)-S(y)]  = S(x) for a .e .y .  

1 

Consequently S ( x ) = - f  F(x,y)dy holds for every x which proves that S is 
0 

measurable, too. Hence f = [ g + S ] + H  is a sum of a measurable and an additive 
function, q.e.d. 

For the analogous theorem concerning Borel measurable functions we need 
the following simple 

LEMMA 3. Let f (x ,y ) :  R)<[0, 1]-+R be a bounded function of  Baire class o~. 
1 

Then F(x)= f f (x, y)dy is of Baire class ~, too. 
0 

PROOf. We prove by transfinite induction. If ~ = 0, that is if f is continuous, 
then the continuity of the function F is well-known. 
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Let c~>0 and suppose the assertion is true for /3<~. Let If(x, y)l<=M and 
let f . (x ,  y) be a sequence of functions of Baire class ~ .<~ converging to f .  We 
may suppose If.(x,y)l<-M because otherwise we take the functions 

1 

min (M, max (fn, --M)) instead of fn" Then F . (x )=  ff.(x, y)ay is of Baire class 
0 

~. by the induction hypothesis. Furthermore Lebesgue's theorem implies 

1 1 

F(x) = f f(x, y)dy = lim. f f.(x, y)dy = .-=lim F,,(x) 
0 0 

which proves that F is of class a. 

THEOREM 6. I f  a function f:  R ~ R  is Lebesgue measurable and such that 
f (x + y ) - f  ( x ) - f  (y) is of Baire class cr (as a function of two variables), then J" is 
of Baire class ~. 

PROOF. In the case of ~ = 0 the assertion is a simple consequence of de Bruijn's 
theorem on the difference property of the class of continuous functions. For, if 
f ( x + y ) - f ( x ) - f ( y )  is continuous, then f ( x + h ) - f ( x )  is continuous for every 
h and hence f = g + H  where g is continuous and H is additive. By our assumptions 
H = f - g  is measurable and thus H must be linear. 

Now we suppose ct_->2. It easily follows from Luzin's theorem that every 
measurable function equals almost everywhere to a Baire 2 function. Hence there 
exists a Baire 2 function p (x) such that 

(29) q(x) deff(x)--p(x) = 0 for a .e .x.  

q(x + y) - q (x) - q (y) = [f (x + y) - f  (x) - f (y ) ]  - p (x + y) + p (x) + p (y) 

is a Baire ~ function since f ( x + y ) - f ( x ) - f ( y )  is Baire ~ by our assumption, 
p is Baire 2 and ~ 2 .  Hence 

�9 d e f  
F(x, y) -~  - arctg [q (x + y) - q (x) - q (y)] 

is a bounded Baire ~ function. For every fixed x we have F(x, y)=arc tg  [q(x)] 
1 

for a.e. y by (29). Hence by Lemma 3, arctg [q(x)]= fF(x, y)ay is Baire a and thus 
0 

so is the function f (x)=p(x)+q(x) .  
Finally suppose a =  1. By Luzin's theorem, for every natural number  n there 

exists a closed subset F, c R  such that 2 ( R \ F , ) <  1 and the restriction f i e .  is 
n 

continuous. Let  

p , ( x ) = { f ~ )  if xEF~ { 0 if xCF, 
if x ~ F  n, q . ( x ) =  f(x) if x(~F,,. 
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Then p.(x) is Baire 1, q.(x) is measurable, 

(30) f ( x )  = p.(x)+ q.(x) (xER), 

1 
(31) L({x; q.(x) r 0}) < n 

and 
(32) Iq.(x)[ <= If(x)l for every xER. 

q,, (x + y) -- q,, (x) -- q,~ (y) ---- [ f (x  + y) - f ( x )  - f (y ) ]  -- p. (x + y) + p,, (x) + p,,(y) 

is Baire 1 by our assumption. Hence 

def 
F. (x, y) ~ - arctg [q. (x + y) - q. (x) - q. (y)] 

1 

is a bounded Baire 1 function and thus by Lemma 3, G.(x) a'f f F.(x,y) + is 
0 

Baler 1, too. It follows from (31) that 
2 

2({y; F.(x, y) ~ arctg [q.(x)]}) < - -  
n 

for every xER. Hence 
27~ 

(33) [G, (x) -arc tg  [q,(x)][ < 
n 

that is 

(34) Gn(x ) _ 2..._~_~ < arctg [q,(x)] < G.(x) +27r 
n n 

Let 

for every x. 

v .  = x; - T  < c"(x)-2~n < G . ( x ) +  < . 

U, is an F ,  set since G, is Baire 1. 

Let 

a.(x) = p . (x )+ tg  G . ( x ) -  , b.(x) = p . (x )+ tg  G.(x)+ (xEU.), 

then by (30) and (34) we have 

(35) a . ( x )  <S(x) < b.(x) (xEV3. 

Since p.  and G~ are Baire 1 functions, hence a. and b. are Baire 1 functions, too 
(on the F~ set U~) and thus the level sets {xEU~; a.(x)>c} and {xEU~, b.(x)<c} 
are F~ sets for every cER and n = l ,  2 . . . . .  

We prove that 

(36) { x ; f ( x ) <  c } =  0 {xEU,; b , ( x ) <  c} 
n = l  
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for every cER. The inclusion 
00 

{x; f (x)  < c} D W {xEU.; b,(x) -< c} 
I1=1 

is obvious by (35). Suppose f ( x ) < c  and let ]f(x)l  =A.  It follows from (32) that 

clef 
[arctg [q.(x)]] -< arctg A ~--- ~ - - s  

for every n. Hence by (33) we have 

8 2z~ 21t r~ 
(37) 2 ~--2 < G , ( x ) - - -  <: G . ( x ) + - -  < - - - - -  n n 2 2 

8re 8~ 
if n ; ~ - -  and thus xEU,, for n_->-- .  (37) implies 

8 

Jim (b.(x)-  a.(x)) = tg (x) + - t g  G . ( x ) - 7  = 0 

[ since tg (x) is uniformly continuous on the interval - 2  -~ 

2im a.(x)=Jim bn(x)=f(x) by (35), consequently b.(x)<c if n is large enough. 

Thus we have 

{x; f(x)  < c} c [_J {xEU,; b,(x) < c} 
? 1 = 1  

and (36) is proved. 
Hence {x; f ( x )<c}  is an F~ set for every c. The same argument shows that 

{x; f ( x )> c}  is F~, too which proves that f is Baire 1, q.e.d. 
Now Theorems 5 and 6 immediately imply 

THEOREM 7. Suppose that f (x + y ) - f ( x ) - f  (y) is Baire a (as a function of 
two variables). Then there are a Baire ~ funetion g: R-+R and an additive function 
H such that f (x )=g(x)+H(x) .  

For, by Theorem 5, f is of  the form g + H  where g is measurable and H is 
additive. Since 

g(x + y ) -  g ( x ) -  g(y) = f ( x  + y ) - f ( x ) - f ( y )  

is Baire ~, Theorem 6 gives that g is Baire 7, too. 
We remark that de Bruijn's theorem on the class of  continuous functions 

can be deduced from Theorem 7. Indeed, suppose that f ( x + h ) - f ( x )  is con- 
tinuous for every h. Then the function f ( x + y ) = f ( x ) - f ( y )  is separately contin- 
uous in both variables. Then, by Baire's theorem, it is a Baire 1 function (as a func- 
tion of  two variables) and thus, by Theorem 7, there are a Baire 1 function g and 
an additive function H such that f = g + H .  Let x0 be a point of  continuity of  the 
function g. Then the continuity of g ( x + h ) - g ( x ) = f ( x + h ) - f ( x ) - H ( h )  implies 
that g is continuous at xo+h. Since h is arbitrary, g is continuous everywhere. 
Obviously, this proof  is much more complicated than de Bruijn's. Yet, the same 
argument applies for the following theorems. 
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THEOREM 8. The class of approximately continuous functions has the difference 
property. 

PRoof. Suppose that f ( x + h ) - f ( x )  is approximately continuous for every h. 
Then f ( x + y ) - f ( x ) - f ( y )  is separately approximately continuous and hence, by 
a theorem of R. O. DAvIEs [7], it is measurable. Applying Theorem 5 we get f = g + H  
where g is measurable and H is additive. It is well-known that every measurable 
function is approximately continuous almost everywhere (see [10], Theorem 5.9, 
p. 118). Let x0 be a point at which g is approximately continuous. Then g(x+h)= 
=g(x)+[ f (x+h)- f (x )] -H(h)  implies that g is approximately continuous at 
xo+h. Since h is arbitrary, g is approximately continuous everywhere. 

THEOI~M 9. Let f: R-*-R be a bounded function for which f ( x + h ) - f ( x )  is 
a derivative for every h. Then f is a derivative. 

PROOF. The function F(x, y )= f (x+y) - - f ( x ) - f ( y )  is bounded and for every 
fixed x0, Y0, the functions F(xo, y) and F(x, Yo) are derivatives. Then, according 
to a theorem of Z. GRANDE [9], F is measurable. Applying Theorem 5 we get 
f = g + H  where g is measurable and H is additive. Since H = f - g  is bounded 
on a set of  positi ge measure, H is linear (see [12]) and thus f is measurable. Now 
the assertion of  Theorem 9 immediately follows from the following 

THEOREM 10. Suppose that f ( x + h ) - f ( x )  is a derivative for every h. I f  there 
exists an interval on which f is measurable and summable, then f is a derivative. 

X 

PROOf. Suppose that f is summable on [a, b] and let F ( x ) = f f ( t )  dt 
a 

(xC[a, b]). We can d-oose a point XoC(a, b) such that F'(xo)=f(Xo) (since F ' ( x ) =  
-- j  (x) holds a.e. in (a, b)). Let O<h<b-xo be fixed and let G(x) be a primitive 
of f ( x + h ) - f ( x ) .  Then G'(x) is summable on the interval [a, b-h] and hence 

G(x ) -G(a )= fG ' ( t )d t  for every xC[a,b-h] (see [10], Theorem 6.6, p. 143), 
t~ 

That is, for xC[a, b-hi  we have 

i x+h 
G(x)-G(a) = [f(t+h)-f(t)]dt = f f ( t ) d t -  

a a 

x a+h 

- ff(t)dt- f f ( t)dt  = F(x+h)--F(x)--F(a+h). 
a a 

This implies 

F'(xo +h)  = G' (Xo) + F '  (Xo) = [f(xo + h) -f(Xo)] +f(xo) = f(xo +h). 

Since hC(O, b:-xo) was arbitrary, we have F'(x)=f(x) (xC(xo, b)). Hence f (x+h)  
has a primitive on (xo--h, b-h)  and the same holds for 

f(x) = f (x  + h) - [f(x + h) - f (x) ] .  

That is, f has a primitive on every open interval of  length b -  x0. This easily implies 
that f has a primitive everywhere, q.e.d. 
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REMARKS. Let B, denote the class of Baire a functions defined on R. Since 
every measurable function equals a Baire 2 function a.e., it follows from Theorem 
3 that the classes B~ have the weak difference property for a_-> 2. On the other hand, 
assuming the continuum hypothesis, the classes B, do not have the difference pro- 
perty for a->2. This can be shown by the same example as in the case of measur- 
able functions; for if the set {x; S(x+h)#S(x)} is countable for every h then 
S(x+h)-S(x)EB~ for every h (see Section 1). This raises the following 

PROBLEM 1. Has the class B1 the difference property? S 

We remark here that if B1 has the difference property, then so is the class of 
derivatives. Indeed, suppose that f (x+h)- f (x )  is a derivative for every h. Then, 
by assumption f=g+H where gEB 1 and H is additive. Then g(x+h)-g(x)= 
=[f(x+h)-f(x)]-H(h) is a derivative for every h. On the other hand, g has 
a point of continuity and in a sufficiently small neighbourhood of this point g is 
measurable and bounded. Hence, by Theorem 10, g is a derivative. 

PROBLEM 2. Suppose that f (x+h)- f (x )  is Borel measurable for every h. 
Is it true that the functions f (x+h)- f (x )  belong to the same Baire class of order 
a<co!? (In the example above, ~=2.) 

Now we prove that (assuming the continuum hypothesis) there exists a Lebesgue 
measurable function S(x) such that S(x+h)-S(x)EB.~ for every h and S is not 
Borel measurable. This means that Theorem 6 fails to remain valid if we replace 
the condition " f ( x + y ) - f ( x ) - f ( y )  is Baire a" by " f (x+h)- f (x )  is Baire a 
for every h". 

Let {a,}~<~l be a well-ordering of R. Let U be an everywhere dense Ga set of 
measure zero and let {P,},<~I be a well-ordering of the family of perfect subsets 
of U. Let G~ denote the additive group generated by the set {@; fl<cr Then G~ 
is countable for every ~<co 1 and Go= {0}. Letp0EP0 and x0E U\{p0} be arbitrary 
and put H0 = {xo}. 

Suppose that c~>0 and the points PB and the countable sets Hp have been 
defined for every fl<a. Then the set 

A = U < 

is countable. Let p~,EP,\A. V= U",,(AU {p,}) is an everywhere dense Go set and 
hence so is V '=  (/ (V+h). Let x, EV" and define H,=G,+x,. Hence the points 

hEG~ 

p~EP~ and the countable sets H~ are defined for every ~<col. Let X d~ U H~. 

It is easy to see that 

(38) X c U  and hence 2(X)=0,  
(39) p ~ X  (~'~ml) and hence X does not contain any perfect set, 
(40) X has the cardinality ltl and 
(41) (X+h)\X is countable for every hER. 

Meanwhile I succeeded in giving an affirmative answer. 
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(We remark  that  a set with the properties (38), (40) and (41) was constructed 
in [16], Theor~me I.) Then X is no t  a Borel set by  (40) and (39) (see [14], p. 355). 
Hence the funct ion 

1, x C X  

S(x)= 0, xCx 

is no t  Borel measurable. On the other hand,  S is Lebesgue measurable by (38) and 
{x; S ( x + h ) # S ( x ) }  is countable for every h by (41). 

PROBLEM 3. Let f be Borel measurable and suppose that f ( x + h ) - f ( x )  is o f  
class ~ for every h. Does it follow that f is o f  class ~, too? 
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