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I n t r o d u c t i o n  a n d  S u m m a r y  

Averaging over tubes of unit length and width ~ < 1 leads to two maximal 
functions f~', f~*. The first is defined on the sphere Sa-1 in li a and for a 
fixed direction one takes the maximum over all translates of the tube (the 
Kakeya maximal function). The second is defined on R a and at a given 
point x one considers all b-tubes centered at x and varying direction (the 
Nikodym maximal function). It is a natural conjecture that the LP-bound 
on f ; ,  f~* is essentially given by the formula 

for 1 _< p _< d. This fact is verified for d = 2 but open in higher dimensions. 
In particular, it seems unknown whether a set in R 3 containing a line in 
every direction needs to have full Hausdorff dimension (in the paper, one 
gets a lower bound ~). The estimate (0.1) is verified here i fp  < p(d), where 

d + l  d 
- - 5 -  < p(d) < + 1 (0.2) 

is some exponent given by a recursive formula; p(3) = 7. This fact enables 
one to obtain some new results on Radon transforms, for instance: 

The function f*(L)  defined on G2(R4), obtained by taking the maxi- 
mum over all averages over translates of L, is bounded on L p for p > 2 (we 
restrict ourselves to functions with a support contained in the unit ball). In 
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particular there are no so-called Besicovitch (4,2)-sets (cf. [Fall). In general, 
it is shown that there are no Besicovitch (d, k)-sets provided the relation 

d < 2 k-1 + k (0.3) 

holds. 
Relations between these geometric problems and Fourier analysis (re- 

striction and multiplier problems) appear for instance in the work of C. Fef- 
ferman [Fe2]. His argument implies that the boundedness of the multipliers 
mx defined by 

(1 -I~12) :' I~1-< 1 
(0.4) 

o I~1 > 1 

on LP(R d) for A > 0, d+l+2x2d < p < d-l-2---------X2d (i.e. the spherical multiplier 
conjecture) has as formal consequence the dimension property 

dim A = d ,  (0.5) 

whenever A is a Nikodym set in It d. 
Similarly, a restriction theorem such as 

I[~sllL~(s~_,) -< C[[fl[L,,(.') 
2d 

for 1 _< p <  - -  (0.6) 
d + l  

would imply (0.5) if A is a Besicovitch (d(1) set. Our aim is to t ry to reverse 
these considerations and derive certain facts in Fourier Analysis from our 
partial knowledge of the (0.1)- estimate. It is shown tha t  (0.6) holds for 
certain 

2d 2 d + 2  < p < - -  (0.7) 
d + 3  d + l  

The exponent ~ is the (sharp) exponent for which an L2-restriction holds. 
In particular, for d = 3, one gets (0.6) for p < ~ (> ~). 

The last section of the  paper deals with applications to the spherical 
multipliers (0.4).Given 1~ > 0, the interval a+1+2~2d < p < a-t-2x2a is the 
optimal range where mx may  be bounded on Lv(R d) ([He]). If A > A(d) = 

d - 1  5NTU' it is known that the  spherical multiplier conjecture is valid, as a 

consequence of the L2-restriction theory (see [Fell). We will verify here this 
conjecture for certain A < A(d). For instance, if d = 3, mx is bounded if 
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A > 1 -  ~3 and ~2  v _< pVp' _< 4. This statement is not covered by the 
L2-restriction theorem. The technique is related to A. Cordoba's paper 
[Co]. 

This work is rather the beginning of a certain investigation than some- 
thing final. In particular, several arguments in section 6 and 7 may be 
improved at  the cost of additional work which would lead to bet ter  numer- 
ical statements. 

The author wishes to thank M. Christ and T. Wolff for discussions on 
the subject. 

The letter C will stand for various constants. 

1. E s t i m a t e s  o n  t h e  3 -d imens iona l  K a k e y a  M a x i m a l  F u n c t i o n  

Let ~ E $2 be a unit vector and/5 > 0. By a (~,~)-tube in R 3, we mean a 
cylinder r of unit length in direction ~ and of thickness 6. 

For f a locally integrable function of R 3, define 

f~(~) = suP ~T~ jf  (1.1) 

where the supremum refers to all (~, 5)-tubes r and ITI stands for the mea- 
sure of T, i.e. IT] ,~ 5 2. By Kakeya maximal function, we mean a function 
of the form (1.1) (although other related definitions are possible). In this 
section, we will obtain certain a priori bounds on the f ; ,  of the form 

< K 3 ( p , 6 ) I I f l I L , ( . . )  �9 (1 .2)  
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Reraavks: 
(1.3) Inequality (1.2) is a local problem in the sense that there is no re- 

striction in assuming that f is supported by the unit ball in R s. The 
reader will easily verify this fact. 

(1.4) The case p = 2 is well-understood (in any dimension). One has 

K2(2,5) ,-~ log (in dimension 2) (1.5) 

d--2 

K~(2, 5) ~ (in dimension d) (1.6) 

These bounds may be obtained by using Fourier Analysis only, with- 
out further geometric considerations (see [Fall, section 7 and related 
references). 

(1.7) It is a conjecture that 

Kd(p, 5)=O(5 -~) for p > d .  (1.8) 

This would imply that a set in R ~ containing a line segment in every di- 
rection has Hausdorff dimension d. This is an open problem, already for 
d = 3. It is directly related to certain conjectures on exponential sums 
(Montgomery's conjectures) and problems in Fourier analysis (behavior of 
the restriction of Fourier transforms to surfaces). See [Bol] and [Fel] for 
these matters. The relevance to Fourier Analysis will also be discussed in 
later sections of this paper. 

Presently (as will be shown in this section) I know to show a lower 
estimate ~ for the Hausdorff dimension of a set in R 3 containing a line 

7 segment in every direction. Also the right bound on K3(p, 5) for 2 < p < 
will be obtained (given by interpolation between p = 2, i.e. (1.6) and p = 3, 
i.e. (1.8)). Thus 

( ( 1 )  { - t + ' )  7 (1.9) K%(p, 6)=O for 2 < p < ~ .  

(1.10) This work is mainly meant as progress on well-known problems. Sev- 
eral results are indeed not final and only improve on what is given 
by interpolation. 

Inequality (1.5) will be used and we include a proof. (An analogous 
argument works for (1.6) as well.) 
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Proof of (1.5): Denote 

= f f(x)e-U'i("X)dx (1.11) 

the Fourier transform of f. Consider a function 7~ E G(R) satisfying 

0<~_<2  } 

_> 1 on [0,1] (1.12) 

_ 0, ~ supported by [-10,10] 

Clearly the indicator function of the [0, 1] • [0, 6]- rectangle in R 2 is bounded 
by the fimction 

6. r - ~(xl)qp(6-1x2) (1.13) 

Hence, for ~ = Oe2, O e SO(2), we have 

f;(~) _< sup l f f(y)r - O-ly)dy] 

= s~p ] f ~'(~ )~( o - '  ~ )e~"( "'~ x) ~1 

/]f'(A)] ]r . (1.14) 

Observe that by (1.12), (1.13), r = 0 unless [A[ < c. 6 -1. Hence, (1.14) 

is bounded by fo "6-1 fo 2'~ [ff(r. ~)]~(r. cos(g) - O))r dr de, where 

cos0 sin0"~ 
O =  -sinO cosO] (1.15) 

and 
= (cosg), sing)) (1.16) 

By the preceding and HSlder's inequality 

c.6 - 1  2 ~  2~r 

Ilf~ll~'(Sa)-< { f f f [ f ' ( r ' ~ ) 1 2 ~ (  r'c~ 
0 0 0 

c.6 -I 2~r {f (1.17) 
0 0 
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_<c{ Jo :c''-1 1 -I-1 r dr}{ Jofe"-tfoZ~l]'(r'~)lZrdrdr (1.18) 

< c" ( l o g ~ )  Hf~l ] (1.19) 

Hence 

I1~11~ _< c.  log II/11~ (1.20) 

Using the general results from [St], (1.9) will follow from a distributional 
inequality (corresponding to the case p = ~ in (1.9)) 

-2+e 
Iml > c . t~  a~l{(xa); > a}l (1.21) 

for A a subset of B(0, 1) and 0 < a < 1. Considering the action of the 
orthogonal group, (1.21) is also equivalent to the following statement: 

Ial > c 'S i+ ' a~  provided {(XA); > a} C Sz has measure > �89 (1.22) 

(see again [St] for details). 
Denote E the averaging operator on cubes of size 5. Clearly 

(XA) ;  <-- c (E [xA ] ) ;  . (1.23) 

For 0 < t < 1, define the set 

A, -- { x  e R 3 It  <_ E[XA]} �9 (1.24) 

These sets axe unions of di-cubes and 

tlAtl <_ ]A 1 . (1.25) 

Write 

L E[XA] _< xA, dt + ca 

for an appropriate constant c, 

L (1.26) 
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Hence, by (1.23) and an appropriate choice of constants 

{(x~); > o} c U (x~,)~ > c . (1.27) 
c o < t < l  

Assume inequality (1.21) holds for sets which are unions of 5- cubes. Letting 
t range over dyadic values, it then follows from (1.25) 

? ()1o 
1{(~)~ > ~ -< c log ~ - i - ,  ~ I~1 (~.2s) 

for some t < 1. Hence clearly 

IAI > c~ I+ '~ I { (XA)}  > ~)1. (1.21) 

Therefore it sui~ces to prove (1.21) or (1.22) assuming A a union of 5-cubes. 
The argument is of combinatorial nature. 

Proof of (1.22) for A a union o] 5-cubes: We start by constructing induc- 
tively a sequence of "bushes", i.e. collections of 5-tubes having a common 
point. Let A C B(0, 1) such that  

T)_= {~ e S ~ I(XA)~ > a} satisfies IT)I > �89 (1.29) 

(we may clearly assume a > 5). 
Let C be a W-separated set in T~ with 

For ~ E E, there is a (~, ~)-tube ~-~ such that 

IA n v~l > a52 . (1.31) 

Hence 

and therefore there is a subset ~0 of C and a point x0 E A such that  

(1.32) 

X0ET~ for ( e F 0  (1.33) 
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Define 

Observe that 

.1. BOURGAIN GAFA 

G 3 

#.To > IA'--/" (1.34) 

Bo = U ~ (1.35) 
~E~-o 

A N ( T e \ B ( x o , 3 )  ) > 3  52 (1.36) 

for ~ E .To, where the (•\B(xo, ~))~e~-o are mutually disjoint, by definition 
of s Consequently 

IBol < 3]A n Bol �9 (1.37) 

Define 

and 

A' = A\Bo (1.38) 

/ ) 1 =  ~ e S  2 ( x A , ) ; > ] - 6  " 

If I/)11 < i!6, this ends the construction. Otherwise, one may repeat previous 
construction to get a point xl, a set .T1 of directions such that 

xl E ~'~ for ~ E.T1 (1.40) 
0.3 0-3 

#.Tz ~ ~-~ > IA--- ~ (1.41) 

and 

where 

Define then 

IBI[ ~ l lA' nBll (1.42) 
(7 

B1 = U re. (1.43) 

A t = A\(Bo U B1) (1.44) 

and start again. 
The construction stops after s steps, where (1.34), (1.35), (1.37), (1.41), 

(1.42), (1.43) etc. yields the bound 

(73~ 2 (1.45) IA__J ~ ~ IB, I ;>,,s. . 
o" *<. IAI- 
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i.e. 

Also, by construction, the set 

satisfies 

s Z "- '  6 -2 (1.46) 
0. 4 

- 6  A = (A N Bt) (1.47) 
t =O 

(7 
(X~);(~) > ~ (1.48) 

for ~ E D, where D C $2 has measure > �88 
It follows in particular that for each ~ E D one may find a (~, b)-tube 

r~ such that  

[r~ fq Btl  > 2 6~ . (1.49) 
t = 0  

Fix t = 0 , . . . ,  s. Denote T e the parMlellepipedum generated by r e and its 
translate centered at xt. Because of the geometry of Bt, one has that 

1 1 
Ir e n Bt[ ~ -~el lT~ n B,[ (1.50) ITel 

Xt 

It is natural at this point to consider the maximal function 

.M~I(~) = sup 1 fT f ( x )dx  (1.5t) TN 
where the supremum ranges over parallellepipeds T obtained as the 6- 
neighborhood of some rectangle axed along ( of dimensions 1, p, 5 _< p < 1. 
Here ( E $2. 

We will use the following estimate, the proof of which is postponed. 
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LEMMA 

r < l ) .  

It follows from (1.49),(1.50) that for ~ E 

where 

3. B O U R G A I N  G A F A  

1.52. llM6fl12 ~ r-1/26-'llfl12 if supp f C B(O, 2r)\B(O,r) (0 < 

t ~ t l  6 < . < 1  
P dy&dir 

(1.53) 

0.2 ~ s6-,IAI ~ ~-2-~ IA[ z (1.58) 
0 .  0 .5  .... 

which is inequality (1.22). 

Proof of Lemma 1.52: We will use the Kakeya maximal function estimate 
in dimension 2. Fix a plane L through 0 with normal vector eL. If ~ is in 
the unit sphere SL "~ $1 of L and Te the associated parallellepiped, one has 

1 L 1// [Tel f ~ -~ ,(flL+tr (1.59) 

where e depends on the position of Te with respect to L. 

Thus, by (1.45),(1.46) 

B~" = (Bt - xt) N [B(0, 2r)\B(0, r)] . (1.54) 

Hence 
1 

a 2 Z slog ~ E E M'(XB: )2 (1.55) 
t r 

and  integrating (1.56) on 7) yields by (1.52) 

1 IB~I (1.56) 0.2 s - EE; 
t r 

Observe that again by the geometry of Bt 

IB:I ~ r .  IB, I �9 (1 .57)  
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Hence, using the bound on g~ in a 2-plane 

�9 dy&die 

fs, ,Mf,as (log�89 fi ( f lf(x)12dL,(x))dt (I.61) 

denoting Lt = L + teL. 
Integration (1.61) over the Grassmannian G(3, 2) in L easily yields 

( log 
1 3 

Kere D L .  denotes and ~-neighborhood of the annulus [x e L I " < Ixl < 
2r]. This proves Lemma 1.52. 

2. E s t i m a t e s  o n  t h e  K a k e y a  M a x i m a l  F u n c t i o n  in D i m e n s i o n  > 3 

It is an easy exercise to see that  a set in R d containing a line segment in 
every direction has Hausdorff dimension > d+l We may improve this lower 

- -  2 ~ 

bound by using the same technique as for d = 3 (previous section). In fact, 
we will prove the "correct" estimate (assuming p < d) 

I(d(p,~) ~ ( 1 )  {-'+" (2.1) 

provided p is in the range 
2 < p < p(d) (2.2) 

where - ~  < p(d) < ~ will be specified in what follows. 
The argument is based on induction. We essentially repeat the con- 

struction of the previous section, replacing (1.5) by the bound on some 

~Cd_~(p, ~). 
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The analogue of (1.22)" is now 

[A[ > c .  6 d - P + ' a  p (2.3) 

where A C B(0, 1) is a union of/5-cubes such that {(XA)] > a} C Sd-1 
has measure > �89 We then repeat the construction leading to the proof of 
(1.22). Here 

#E  ,,~ (-~) d-1 (2.4) 

G d 

#grt > [A---~ " (2.6) 

Inequality (1.45) becomes now 

[A__[E ;~ IB,[ ;~ s - ~ [ o  . (2.7) 
(7 5=0 

The T~ are defined as in the 3-dimensional case and (1.50) holds. Lemma 

1.52 gets replaced by the inequality 

][M6f[[q ~ r -1]q (2.8) 

provided 
supp / C B(0, 2r)\B(O, r) .  

The proof of (2.8) is analogous to (1.52) up to the Lq-bound of g~ in di- 
mension d - 1, where one invokes the induction hypothesis. 

Inequality (1.56) becomes 

Hence, by (2.7), 

dyadic 

(~)"-l-q+" IAI ;~ aq $q--I 
a 

(2.9) 

(2.10) 
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and substituting s 

(2.11) 

This yields us 
ed- -2a  - -  q d - b l q - - d  

hence 

p(d)  = 
p ( d -  1 ) ( d + 2 ) - d  

2p(d-  1) - 1 

For p satisfying (2.2), one has (2.1). 
Thus one gets in particular 

(2.12) 

(2.13) 

p(2)=2  
7 p(3) = 

30 
p(4)= 1-Y 

155 
p ( 5 ) =  49 

(2.14) 

Inequality (2.1) implies a lower estimate on the Hausdorff dimension 
as shown next. 

LEMMA 2.15. Suppose that for a given p, (2.1) holds for all 6 > O. Then a 
set A in R g containing a line segment in every direction has dimension > p. 

Proof: Let D C Sd-1 have positive measure and assume A contains a unit 
segment in every direction ~ E D. Assume 

a c U B~ (2.16) 
d~_jo 

where B i is a union of 2-J-cubes. We have to show that for some j _> j0 

the number of these cubes is at least 

2J(p - ' )  (2.17) 
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(letting j0 be large enough). Take any sequence (T/j)j>jo satisfying 

1 (2.18) 
E ~ J <  100 
J_>Jo 

It is clear from the definition of the Bj that for ~ E D 

1 (2.19) 
> 1-6 

j_>Jo 
Hence, for some j > j0 

/ (xB~)i-J+, > njlDI �9 (2.2O) 

The left member of (2.32) may then be evaluated as 

II(x.);-.lllp < Kd(p,2-J+I)IBJl I/p g (2r162 (2.21) 

by (2.1). Hence 
IB~I ;~ IDIP~(2-J) d-p+* �9 (2.22) 

Choosing r/j appropriately, (2.17) immediately follows. 
The numbers (2.14) consequently yield lower bounds for the dimension 

of "Kalceya-sets" in various dimensions. 

3. Averages o v e r  P l a n e s  in R 4 

We will show in this section that a measurable set in R 4 containing a trans- 
late of any 2-plane (or simply intersecting the translate in a set of positive 
2-dimensional Lebesgue measure) has positive measure. Other results of a 
similar nature will be obtained later on in the paper. In fact, one obtains 
also LP-bounds on the maximal function associated to the corresponding 
Radon transform. 

If L is a k-plane in R d and f a bounded measurable function with 
bounded support, define 

F(L) = .~r. f(x)dx (3.1) 

where dx stands for the k-dimensional Lebesgue measure on L. Consider 
the maximal function 

if(L) = sup F(x + L) (3.2) 
=ER ~ 

defined on the Grassmannian G(d, k). The statement made at the beginning 
of this section may then be derived from the following analytical fact 
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PROPOSITION 3.3. There is an a priori inequality 

IIf*IIL~,,,~ <-- c(P)IIflIP (3.4) 

for p > 2 and assuming f supported by the unit ball in 114. 

Remarks: 
(3.5) The result of this section may be rephrased in the language of [Fal] 

by saying that  there are no (4, 2) "Besicovitch sets". The case (3, 2) 
was known and proved by various authors, using either geometric 
or Fourier Analysis techniques. The reader is referred to [Fall for a 
survey. In [Fa2] it is claimed that (d, 2) Besicovitch sets do not exist in 
any dimension d. Unfortunately, the proof is incorrect and although 
the statement is most likely true, the problem is open in general (the 
case d > 5 is open, to the best of the author's knowledge). 

(3.6) In proving Proposition 3.3, we will rely on the I(3(p, ~) estimate (1.9) 
and standard Fourier transform techniques appearing in the study 
of Radon transforms. The method is thus based on both geometric 
considerations and Fourier Analysis. This idea is applicable to various 
similar problems (see later sections in the paper). 

Proof of Proposition 3.3: Take 2 < p < ~ and f a bounded measurable 
function supported by the unit ball B(0, 1) of 114. Write 

f = ~-~ f j  (3.7) 
j>0 

where f j  = ( f ,  ~j) - ( f  * Tj-1), ~j(x) = 2J~(2Jx) and ~ e 8(11) satisfies 

= 1  on B(0 ,1 ) ,  s u p p ~ C B ( 0 , 2 ) .  (3.8) 

Fix g = f i  and let 5 = 2 - i .  For a unit vector ~, define a Radon transform 

~0 
1 

-~(z) = g(x + t~)dt for x �9 [~]• . (3.9) 

Let ~, ~' be perpendicular unit vectors in It 4. It follows from the definition 
of g that  
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Consequently, also 
g*([~,~']) ~ (Ig~[);(~') �9 (3.11) 

Fixing ~ 6 $3, denote S~ ,2_ $2 the 2-sphere $3 N [~]• One has 

[]g'[[s = . [g* ([~, ~'])[Pa2(d~')a3(d~) (3.12) 

where, by (1.9), applied in [~]~', and (3.11) 

Further 

fs. f[~l• [-~,l'dxd, ~ ],g]]:-'. /s.f[~l• .-~]2dxd, (3.14) 

where, taldng into account the support of ~ = 

s ft,,  t  l'ex ee  ll ltg (3.15) 

(cf. the proof of (1.5) for this fact). 
Hence, (3.14) may be estimated by 

5. [[fl[~ -2ll/I]] (3.16) 

and (3.12) is therefore bounded by 

5x-~- '  ][f[[~ "]]f[l~ (3.17) 

which is summable over 5 = 2-J, since p > 2. This yields an estimate 

_ !  ! 

[[f*ltL,'(a,,2) < E ]l/ ';[IL,(O,,,) <- G, II.fll~ "II/ l [~ �9 (3.18) 
j_>o 

7' Hence, for 2 < p < 

I I / ' l l ~ , ( c , . , )  _< C~lt/i[~,~ �9 (3 .19)  

Inequality (3.4) then follows from the results of [St] and interpolation. 
A direct adaptation of the previous argument yields that there are no 

(7, 3) Besicovitch sets. More precisely, 
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PROPOSITION 3.20. There is an a priori inequality 

Ilf* IlL,(r.,) < C(p)llfllp (3.21) 

for p > 3 and assuming f supported by the unit ball of R r. 
1 5 5  Here we consider first 3 < p < -~- = p(5) (cf. (226)) and apply 

in 5-dimensional subspaces inequality (2.1) on the 2-dimensional Radon 
transform gM,~'] = f :  f :  g(x + t~ + t'~')dt dr' where x E [~, ~']• Moving the 
frame ~, ~t, a gain of 52 is obtained, i.e. 

It(r,2) fle,e'J" Igle'e'll2dx d~ dg Z ~ 2 1 1 g l l ~  . (3.22) 

1 s - - 2  �9 
The bound (2.1) now gives the estimate ~ - ~ ' ; -  on Jlf;'fl,, and hencep > 3 
yields a convergent series. 

Remarks: 
(3.23) The condition p > 2 in Proposition 3.3 is optimal, as the standard 

example shows. 
(3.24) When studying the (d, k)-properties for larger k, it is more efficient 

to apply geometric dimension estimates to sets containing translates 
of kt-cubes, k ~ > 2, rather than using a Kakeya-maximal function 
estimate on a (k - 1)-Radon transform in dimension d - k + 1. 
Relevant geometrical estimates will be obtained later in the paper 
and the applications to (d, k)-properties discussed subsequently. 

4. Further  Res u l t s  on  the  B e s i c o v i t c h  P r o p e r t y  

By Besicovitch (d, k)-property, we mean the non-existence of (d, k) Besicov- 
itch sets, i.e. the fact that  sets in R d containing a translate of any k-plane 
are of positive measure. The so-called Kakeya set in the plane disproves this 
(2, 1)-property. The (d, k)-property for k > ~ has been obtained by several 
authors and may be derived from the L2-boundedness of the corresponding 
maximal function. In the previous section, we proved the (4, 2) and the 
(7, 3) property. We will obtain here further results of the same nature 

PROPOSITION 4.1. The (d, k) property holds for d < 24-1 + k. 

The argument is again based on entropy estimates and Fourier Analysis 
and we follow the same scheme as before. We first develop the geometrical 
inequalities. 
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If A is a subset of a finite dimensional metric space X and ~ > 0, denote 

h, (A) - log N(A, e) (4.2) 
log 

where N(A, e) stands for the metrical entropy numbers of A, i.e. the min- 
imum number of e-balls needed to cover A. The following observation is 
elementary and left as an exercise to the reader. Let f : X ~ Y be a 
Lipschitz map between metric spaces and assume 

for any y E Y. Then 

_> p (4.3) 

h~(X) >_ h~(Y) + p.  (4.4) 

For a > 0, define p~(d,k,a) as the lower bound on h~(A) where A ranges 
over all subsets of B(0, 1) = the unit ball in R d having the following property: 

sup IAn (x + L) I > o (4.5) 
l 

1 Our pur- for all L E G(d, k) taken in a a subset of G(d, k) of measure > ~. 
pose is to get a recursive estimate on the p~(d, k, a). Let A have the property 
considered above and G C G(d, k) the set of measure > �89 of subspaces L 
satisfying (4.5). Let H = [e l , . . .  ,ed-1]. Let ~ E Sd-1, dist(~,H) > ca and 
M E G(H, k - 1) such that L -- [M, ~] E G. By (4.5), there is a translate 
M ~ of M, M ~ C H, such that  

lAg1 [M',~]] > a .  (4.6) 

Thus, defining 

= {t e [-1,  II I mes [y e M '  I (y + [~1) M (H + tea) e A] > ca} 

(4.6) yields by a Fubini argument 

Ir(~,M)I > ca (4.8) 

(we denote again by c various constants, which here may depend on d). The 

set 7 / C  Sa-1 x G(H, k - 1) defined by 

"H --- {d i s t (~ ,g )  > ca and [M,~] e G} (4.9) 
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may be assumed for measure > �89 Again by Fubini applied in 7-I • [-1, 1], 
one gets from (4.8) a set r c [-1,1] such that 

Irl > ~a (4.10) 

and for t E F 
[{( ( ,M)  E 7"/[t e r(LM)}[ > c a .  (4.11) 

One easily deduces from (4.10),(4.11) the existence of a sequence (t i) i<g in 
r and a subset/E of 7"/such that  the following holds 

] t l - t j l > c a K  - i  for i c y  (4.12) 

~ { i  <_ I { [ t i  e F(~,M)} > c a K  for all ( G M )  e /E  (4.13) 

I/El > c a .  (4.14) 

The number I (  = I ( ( a )  will be specified later. 
Define Hi = H + tiea (i <_ K )  and consider the Lipschitz map 

x - y (4.15)  f: Y [(Hi n A )  x ( H i  n A ) ]  --,  & - l :  (x ,  y) , - ,  Ix - yl " 
i#d 

Define f~ C Sd-1  as follows. 

f~ = {~ e Sd-1 [ ( ( , M )  e /E  

Thus, by (4.14) 

for M E/Ee C G ( H ,  k - 1) 
(4.16) 

where [/E~[ > ca}  . 

[f~[ > c a .  (4.17) 

Fix ~ E fL Then, by construction, for M E/E~, there is a translate M'  of 
M, M '  C g such that mes [y e M '  I (y + [~]) N Hi e A] > ca for ccrg  i's. 

Hence, taking K ,~ a -2, it follows that  

[M' N B~[ > ca 2 (4.18) 

where one has defined 

B~ = { y e H I  (Y + [ ~ ] ) N H i e A  for at least 2 distinct l < i < K } .  
(4.19) 
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Replacing B~ by a suitable union B~ of ~ a -I images of B~ under orthogonM 

transformation in ]-/, one gets a set satisfying 

log a -1 (4.20) h,('-B~) < h,( B~) +Clogr 1 

and 
s . p  a + M)  I > co (4.21) 
z E H  

for M taken in a half-measure subset of G(H, k - 1). Consequently 

h,('-B~) >_ p , (d-  1,k - 1,ca 2) . (4.22) 

Coming back to the map f given by (4.15), it follows from the definition 
of B e for ~ e ~,  that h,(f-l(~)) > h,(B~). Hence, by (4.20),(4.22) 

log a -1 (4.23) h,(y-l(~)) > p,(d- 1 ,k -  1,ca 2) -Clogs_ 1 . 

Also, by (4.17) 

log a -  I (4.24) h~(D) > d -  1 - C l o g e _  1 . 

Applying (4.4), one obtains from (4.23),(4.24) 

2 max.h,(ANHi) > ht(f-l(a)) > 
l<_i<_K 

log a -1 (4.25) 
> p ~ ( d - l , k - l , c a  2 ) + d - l - c l o g s _  1 . 

c l~ for some i < K.  Thus h~(HiNA) > }p, (d-  1 ,k-  1,caZ) + d.~ _ ,os~-' 
Taking into account the construction of the Hi, the reader will easily verify 
that 

h,(AN(H+tea)) > �89  d - 1  l o g a - '  T - c ~  (4.26) 

for t rmlging in a set F' C F satisfying also 

log a -1 (4.27) 
h,(F ')  > 1 - C l o s e _  1 . 
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Hence one obtains finally 

h,(A) > �89 1, k -  1 ,caZ)+ ~ - 

and therefore 

p,(d,k,a) > �89 1 , k -  1 ,ca2)+  - -  

which is the desired recursive inequality. 
It follows also from section 2 that 

for some 

B E S I C O V I T C H  T Y P E  M A X I M A L  O P E R A T O R S  

d + 1 log a-X 
2 

d + 1 log a -1 

p~ (d, 1, a) > p(d) log a -1 
- Clog e_ x 
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(4.28) 

(4.29) 

d + l  d + l + T  d 
7 < p(d) - 2 < 5 -t- 1 .  (4.30) 

It is lmW straightforward by iterating (4.28) and inserting (4.29),(4.30) at 
the end to show that  

d -  k - r '  log a -1 
p,(d,k,a) > d -  2k Clogr 1 (4.31) 

for some r '  = TP ( d, k) > O. 

Proof of Proposition 4.1: We use the same method as in section 3. Let f 
be the indicator function of a subset A of the unit  ball B(0, 1) and assume 

f*(L) > a > O for L e G c G(d,k) (4.32) 

where IGI > �89 Let 

f = E fJ (4.33) 
j>o 

be a Littlewood Paley decomposition as in (3.7) and estimate 

f*(L) g E ( f ; ) ( L )  . (4.34) 

For ~ E Sd-1, let ~ be defined as in (3.9) and observe again that  for 

M e G([~] • k - 1) 
g" ([(, MI) ~ (~e) '(M) . (4.35) 
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Also, of. (3.15) 
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fs~_, J~[~l • { ~ .  2i[(~i)e12} < C[[f[[2 (4.36) 

and hence, there is ( E Sd-1 satisfying 

1 
lael > i-6 where G~ = {M e G([~I-L,k - 1) I [(,M] E G} (4.37) 

and 

~1 x ~ ]  2J[(fj)el 2 < CIA I . (4.38) 
i 

Let (~lj)j>_o be a sequence of positive numbers to be specified later. It follows 
from (4.38) that 

At = {x e [r I [(Yj)~l(x) > ,~} (4.39) 

satisfies 
[Aj[ < c~;22-J[A[.  (4.40) 

Since, roughly speaking, the fi may be considered essentially constant on 
2-J-cubes, this means that 

log r/~ -1 log IAI - t  (4.41) h 2 - . ~ ( A j ) < d - 2 + c  : .... c 
J J 

Also 
[(fj)~]'(M) < (XAr + crli . 

Thus, if 
Z rlj < ca 

it follows from (4.34),(4.35),(4.42) that 

(4.42) 

(4.43) 

O" 

~ ( X A I ) * ( M )  > 7 
j>_O 

(4.44) 

for M E G~. Clearly, by (4.37),(4.43), there is some j > 0 satisfying 

( X & ) ' ( M )  > car/j (4.45) 
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for M E 7-I C Ge where 

17-/I > c a ~  5 . (4.46) 

Consequently, by (4.31) 

h2-r (Ai) _> P2-~ (d - 1, k - 1, c a r s )  - cl~ r/j)-i  > 
3 

> d - 1 d - k - T'  _ clog(a.r/j) - i  , 
2k-i  3 

(4.47) 

and thus, invoking (4.41) and the hypothesis d _< k + 2/*-1 

T ! 

log [A1-1 < log(aqj) - t  - j 2 k _ 1  . (4.48) 

Take qj ,,~ a j - 2 .  Then the right member of (4.48) is bounded by a function 
of a, implying a lower bound on IAI. This completes the proof of Proposition 
4.1. 

R e m a r k  ~ .~9 :  The preceding also permits deriving a maximal inequality 
on the Radon transform 

[[f*llL~<,.,~ ~ CIIf]lp (4.50) 

for some p < co, provided d < k + 2 4-1. We again assume f supported by 
a bounded region. 

5. T h e  N i k o d y m  M a x i m a l  F u n c t i o n  

For f a locally integrable function on R d, define for given 0 < 5 < 1 

f ;*(z)  = sup 1 r -~[ f ( y ) d y  (5.1) 

where the supremum is taken over all 5-tubes of unit length centered at x. 
Let us call f~* the Nikodym maximal function of eccentricity 5. 
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Remarks: 
(5.2) The Nikodym set in R 2 is a measure zero set A such that  for every 

point x E R 2 there is a line segment L centered at x so that  L - x  C A. 
(5.3) One may again conjecture that a Nikodym set in R d needs to have 

Hansdorff dimension d. This fact is correct for d -- 2 and open for 
d > 3. In this section we will use the same techniques as in section 1,2 
of the paper to obtain the same estimates on the Nikodym maximal 
operators. 

(5.4) C. Fefferman's remarkable paper on ball-multipliers (see [Fe2]) implies 
that  the dimension conjecture stated in (5.3) is a corollary of the 
following fact (unknown for d > 3) on radial multipliers: 

(Mxf)A(~) = (1 --[~[2)~. f'(~) (5.5) 

defines a bounded multiplier on LP(Ra), provided A > 0, ~-~ _< p _< 
d 1 d2--+~, (see [St2] for a discussion). 

The interest of the results obtained in this paper to multiplier and 
restriction problems in Harmonic analysis will be discussed later. Our at- 
tention will mostly be directed to dimension 3. 

PROPOSITION 5.6. 
(a) In R a, one has the inequality 

for2<p< }. 

8 

][f;*llL,(R*) --< II/[IL~(.~) (5.7) 

(b) In R d, there is the inequality 

for 2 < p <_ p(d), where p(d) are the numbers obtained in section 2. 

Taking for f the indicator function of a ball B(0, 6), one verifies again 
the essential optimality of these estimates. 

For d = 2, inequality (5.8), i.e. 

[[f;*Jlp < 6-~[]fI[p (5.9) 
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holds for p > 2. This fact may be verified using Fourier transform, in the 
same way as for the Kakeya maximal function f~. 

Our purpose is to indicate the modifications in the proof of the Kakeya 
estimates obtained in sections 1,2. Only the case d = 3 will be of relevance. 
The problem is reduced to showing the analogue of (1.4), i.e. 

IAI > CSI+~o~[{(XA);* > o}J (5.10) 

assuming A a union of &cubes. 
Considering unions of suitable translates of A, (5.10) follows from the 

statement 
2 ? 

]A[ > c ~ + ' a  T (5.11) 

whenever .4 C B(0, 1), A a union of &cubes and 

1 (5.12) I{(~A);" > ~}l > ~.  

We now consider the construction in the proof of (1.22). Letting 

/:) = {(XA)~* > a}  (5.13) 

we get for x E T~ a ~-tube T, such that  

IA N T~ I > a62 . 

Let C be a &separated net in D. One has by (5.12) 

and 

(5.14) 

#E ~ 6 -3 (5.16) 

A Z X~'. ~ a6 -1  �9 (5.17) 
zEE 

Thus thcre is a point x0 such that  

#I x  e C lxo e r.} ~ ~IA--~ 

and we may therefore extract  a subset Y0 of C such that  

U 3 

#;:o a IA--[ 

(5.18) 

(5.19) 
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and the tubes (7~),e7 o containing Xo point in ~-sepaxated directions. Let- 
ting 

Bo = U T~ (5.20) 
| E.~"o 

one then has again, by (5.14), 

IB0[ g ~lAn B0[. (5.21) 

Define A' = A\Bo, 7:)1 = {(XA,);* > ~ } .  If IV~l > ~o, one gets from 
the preceding construction a subset Jr1 C :D1 so that  

0 ̀3 (7 3 
#~:~ ~ iE j  > IA-~ (5.22) 

(T=)~ey 1 have a common point xl  and 

B I =  (3 7-, (5.23) 
~ EY ' , ,  1 

satisfies 

IS1[ ~ ~[A1 N S0[ �9 . (5.24) 

If the construction stops after s steps, one gets the bound (1.46), i.e. 

s IAl:,5 (5.25) 
O-4 

and 

satisfies 

$ 

= U ( A  N Bt) (5.26) 
t----0 

~ (5.27) (xx)}* > 

on a set ~ C Z~ of measure > �88 
Thus for x E D, there is a tube T, centered at  x such that  

8 

E ['7" N Bil > a5 ~ . (5.28) 
0 
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Denote  again 
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B; = B, n [B(x, ,2r) \B(xt ,  r)] for 6 < r < 1 .  (5.29) 

Hence 

and form (5.28) 

IBZI s rlB, I 

Z :  ~ It, n B~'I > G,~ 2 �9 
~" d y a d  ic 

Fix t , r .  If Ix - x t l  > r ,  one has 

(5.30) 

(5.31) 

(5.32) 

where ~ = ~ and T~ has dimensions ,~ 1, dist (xt, [T~]), 5 

xt 

If Ix - xt] < r, one gets 

6-2[r~ N B~'[ _< (5.33) 
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with ~ = ~ and T e with dimensions 1,r .  Angle(x - xt,  r ,) ,  5. 

GAFA 

Xt 

T~ 

? J 

Consider the maximal operator A46 defined in (1.51). It follows from 
(5.31),(5.32),(5.33) that for x E 

X - -  X t 

E 6(B~" - x,)  1 7 - T , I  
6<',-<1 ~=0 
r d y a d i c  

1 G 2 
> - -  (5.34) 

Ix - x t  [2 s log -~ " 

Integrating (5.34) on D and invoking Lemma 1.52 yields 

6<r<l _ I 

G26 e 
1 IB~'I > E E ;  

6 < r < l  t~s  

0-2 

s log -~ 
(5.35) 

(5.36) 

Consequently, from (5.30),(5.21),(5.24), etc. 

as 6e 
]d[ > - 

8 
(5.37) 

Combine with (5.25), (5.11)follows. 
This proves Proposition (5.6),(a). 
The case d > 3 is analogous and we omit details. 
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6. R e s t r i c t i o n  o f  Four i e r  T r a n s f o r m s  to  Spheres 

A result of P. Tomas [T] states that if f �9 Lp(Rd), 1 < p < ~ the 
- -  d + 3  

Fourier transform ]" is defined a.e. on the sphere Sd-1 and the restriction 
yields and L2(da) functions. There is the inequality 

^ \ 1 /2  

( /s~_lI f I2da)  <_C, HfH p . (6.1) 

The result was extended to the end point p = ~ by E. Stein (see [St3], 
p. 326). In this section, we will consider non-L 2 restriction theorems and 
prove that  the restriction f [  s makes sense for f �9 LP(R ~) and certain 
22-}-2d.i.3 < P < d-"~'2d These facts are intimately related to the behavior of 
Kakeya maximal operators and our argument is based in part on results 
from the first two sections. 

We first present an alternative proof of (6.1) (in a dual form), i.e. we 
look for a distributional inequality for the function 

~(~ )  =- Jfs,~_, ~(x)e-2~{~'r (6.2) 

assuming 

~s l~12da -< 1 .  (6.3) 
d--1 

This inequality will give some additional information on the level sets 

[1 1 > A] �9 (6.4) 

LEMMA 6.5. With previous notations and 0 < R < )~-z~-~ , one has 

~ n +  R -~-~ sup mes [x E B(z,~-z~-~)I I~'d(x) I > ~] .  
zER d 

(6.6) 
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Proof: Denote 
A = [Re ~ > )t] (6.7) 

{Aj} a partition of A in cubes of size )t-a~'r-~ and {Aj,f} a subpartition of 
Aj in cubes of size R. Denote {Xj}, {Xjj '} the corresponding indicator 
functions. At the cost of replacing A by a set of proportional measure, one 
may assume 

dis t (Aj , ,Ai , )  > c,k -a4-r-' for Jl # j 2  (6.8) 

and 

Since 

dis t (AjjI ,Ajs~)  > R for j~ # j ~  . (6.9) 

o n e  he-is 

A = U A j  = U A j s ,  (6.10) 
j jj '  

< I _- ( f ,  z a (6.11)  

Expressing t, he square as single and mixed products yields 

.X~IAI z < ~ f I~r + 2~_. (~j,~). 
j j#k 

_ ~ f 1~r + 2 ~-'~ I (x j ,  xk * 6) I �9 
j j#k 

Repeating this for Xj = ~ Xjd' gives thus 
j, 

j , j ,  j j ' #k '  

+ ~ l ( x j , x ~ * o ) l  �9 
j#/, 

(6.12) 

*~>1+ 

(6.13) 

f I~z'l 2do = f I~i,J'12d% (6.14) 

To estimate the first terms in (6.13), observe that  I~j,j,I 2 has a Fourier 
transform contained in a ball of radius CR, hence 
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where a,/R = a*7~l/R and T E S satisfies ~ = 1 on B(0, C). Since I1~,/~11oo 
R, one gets the estimate C .  R]]Xj,j,I]~ on (6.14). Hence, 

/IX'./,j' ] 2da ~ R E IA.~,.i ' ] = R]AI .  
j,j' j,j' 

(6.15) 

To bound the second and third terms in (6.13), observe that if 

dist(A, A') > p (6.16) 

then by the decay property of 

[ <XA,XA, * a>l -< IIxAIIIlIxA'ItllIaIB(O,,,~olIoo ~ P - ~ - ~ I A I I A ' I  �9 (6.17) 

Inserting this bound in (6.13) give the following estimate on the mixed 
terms, 

~_, R-~~ IA~a, IIAj,k,I + c ~-~ .X21AjlIA~I _< 
j j,~k, j~k 

_< R-"~ --z' ~ IA.~I 2 + oX21AI 2 (6.18) 
J 

relying on (6.8),(6.9). 

Since the last term in (6.18) is o(~X21AI2), one concludes from (6.13), 
(6.15), (6.18) that  

,X2IAI 2 ~ RIAI + R -%z ~_, IA~] 2 �9 (6 .19)  
J 

Estimating 

]Aj[ 2 ~ ]AI m,axmes [x e B(z,)~ -z~-r-~ ) ] I~'~[ > ~] �9 (6.20) 

(6.6) easily follows. This proves the lemma. 
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Remark 6.21: If one takes in (6.6) R ,,, )~-z~-~, it clearly follows that  

rues [17al > ~] g ~ - : - ~  = ~ - 2 ~ .  (6.22) 

In a dual formulation, it means that f~s E LP(da), provided f E L~-~ ' I  (Ha). 
Our next purpose it to develop an estimate on the quantity 

mes [x E B(0, p) I [~d I > ~] (6.23) 

assuming I~l -< 1 and ~ < 1, p > 1. This estimate will' result from a 
majoration of 

117a b(o,.)I1~ (6.24) 

2 d+x will be taken such that  where q < d-1 

< <_ p(d) (6.25) 

and p(d) is the exponent appearing in (2.2). 

LEMMA 6.26. If  T E Lcc(Sa-1), 17~1 _< 1, one has for q satisfying (6.25) 

, ,  a+~ _ K/.!)+, (6.27) II~a b(o,:) I1~ < c,p,~ , 

Part  of tile considerations in the proof are related to the geometric 
construction appeaxing for instance in [Fell. This is the decomposition of 
a (2-dimensional) annulus 1 - 6 < Ixl < 1 in (6 x V~)-size rectangles. The 
reader may find it more convenient to read what follows in dimension 3. 
Define 

d T 1  
qo = qo(d) -- 2 d _ 1 (6.28) 

LEMMA 6 . 2 9 .  Let { x a }  b e  a ~-separated set of points on Sd-1 and 2 _< 
q <_ qo. Then 

where the {aa} are arbitrary scalars. 
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Proof of (6.29}: The result is gotten from interpolation between 2 and qo. 
The case q = 2 yields a bound R~, simply by the almost orthogonality of 
the restrictions {ei(| }. For q = q0, the left member of (6.30) may 

be evalu.ted by II :~ ~(x)e'<:'~>.(ax)ll.o. Rd-1 where ~ is constant on cells 

of size R -1 on S and ( f  ipl2da) 1/2 ,., R-~-!(~']. la~12) 1/2. Hence, by the 
d--1 

estimate II~'#llqo S Cli~IIL,(s), there is the bound R " w  if q = q0. The 
result follows. 

Coming back to ~'~, partition the unit cube in cells of size ,~ ~ and 

let S = LJ S~ be the induced partition of Sa-1. 
Write for xa E S~ 

L ~9(x)e-ilri(i,~)a(dx) = 

= ~e-~"<'~ s ~(x)~-~:~(: .. . .  ~>,,(d~)). 
(6.31) 

To evaluate its Lq-norm on B(0, p), partition the domain into cubes Q of size 
v/ft. Since ]x-x~ I < cp -112 for x E S,~, one may see the fso~(x)e -2"~i(~-'*'~)da- 
factors as constants for ~ E Q. This may be formalized the usual way, mak- 
ing a change of variable ~' = ~ + r/where r/E B(0, VO) is a new variable. 
We skip the details. Applying (6.29) with R = v/~, one gets on a Q-cube 

~/-'--v- �9 'IQI-'/~":~-''~' I( ~ I f  12\ 1/2ll 
) I �9 

" IL'i(Q) 
(6.32) 

Summing over these subcubes of B(0, p) yields 

- ' - ' ~ - ' - - + - "  -'- ~(,):,-,<-.,>d<, ) I ~ ~ t t - ' P "  I ]--ll 

== I Le(B(O,p)) 

(6.33) 
Our next purpose is to estimate the square function expression. 
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Write 

I ( ~ [ fs, ~P(x)e-2"~q"Odal2) l/211I~(B(o,p)) = 
(6.34) 

I L' /3(s(o,o))  

Fix ~. Let xs be the center of Ss and consider a function Ks such 
that 

k s  = 1 on ( s s  - s s )  + B(0, p- ' )  (6.35) 

where Ks has the shape of a tube in direction xs of length p and width v~  

_ x s  1 1 2  

. 
0 

This tube appears as the polar of the (p-l/2 x .. .  x p-112 xp-1)_box indi- 
d=l 

cated above. Its volume-measure is norma~zed. 
Write for ~ E B(O, p) 

I A ~(x)e -~'"''*)do (~) = (ll ~ls~ .o  ? r  Ks)(r = 
a 

= Ks(r ~ls..~ 12(r/)~'(P-lr/)dr/�9 (6.36) 

Here r E S is the usual bump function and we assume 

supp r C B(0, 1) .  (6.37) 
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Interpret (6.36) as an average of translates of Ka,  where the averaging 
measure 

A 
I ~lso ~ j=r (6.38) 

has weight 

A 

J ~ b o o  l=(,7)r -< 

(6.39) 
/ / f  ,~(p(x, - ==))o(,tx,)~.(,t=2) ~ p"-{("-') < 

S= x S~ 

as the reader will easily verify. 
By convexity, one may find points {q=} for which the right member of 

(6.34) is bounded by 

II1/2 
p-}+�88 y~. I(,~(. - q,~) . (6.40) --y. Lq/2(B(O,p)) 

Maldng a chmlge of variable q -- px, x e B(O, 1), (6.40) becomes 

Ip/2 
1 d ,4 E d~l 

P'~+'~-~ c ,  p - - r K , , , ( x  - zo,) L,/,(B(O,1)) (6.41) 

where z~ = p-ir]~ and 
R•(x)  = pdlf,~(px) . (6.42) 

Observe that h'~ corresponds to a tube of unit length in direction xa and 
thickness ~ .  Estimating the II ILL,/'-n~ in (6.41) is done by duality 

and pairing with a function f e L(} ) ' (B(O,  1)) of norm 1. The norm then 
gets essentially evaluated by 

d--I $ f $ 
~ ]  P-~'f,~-�89 (='~) ~ Js f,~-{ -< IIr_~ I1~(.,.', (6.43) 

o~ d- I  

since the {x~} form a p-1/2-net in S. 

In view of (2.1), (6.25), there is a bound (pl/2)( ]''~'-1+~ = 
- l.a. g _.4~ p ,-, ,-. Colle~ting estimates (6.33), (6.34), (6.41) and the previous 

one, leads finally to the bound 

II~lln.(.(o,,,)) ~ p . ~ r -  . , - , , - ,  , - , - ,  , ,, (6.44) 
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which is (6.27). This proves lemma 6.26. 
Coming back to inequality (6.6), application of (6.27) with p = A-zbr-~ 

yields the additional inequality 

mes [x e B(z,A-z~-r-~ ) l l~5(x)l > A] g A -]-l-z~'r-~ (6.45) 

for q satisfying (6.25). 
Inserting (6.45) in (6.6) and optimizing in R leads to 

mes [l~'~l > A] g A-(zCcr+a~r-d~) -~ . (6.46) 

Consequently 

PROPOSITION 6.47. The map ~o ~ f ~(x)ei(| is bounded from 
L~(Sd_l) to LP(ad), provided 

p > 2 l, ~ + " (6.48) 

Since p(d) > d--~21 , this exponent is less than ~ ,  corresponding to 
the case qo E L2(Sd-1). This leads to a Fourier transform restriction theorem 

2(d+1) for functions f E LF (R d) where p' > d+3 �9 
From Proposition 6.47, the general Nikishin-Maurey-Pisier factoriza- 

tion theory [Pi] and the invariance of the problem, under the orthogonal 
group, it follows formally that the map qo H f~(x)e i ( ' ,e )a(dx)  is also 
bounded from LP,I(S) to L p, for p satisfying (6.48). Interpolating this 

- L - '~ '~  bound yielcls then further improvement. In result and the L2(S) ~(d+l) 
and following restriction particular, in the case d = 3, one has p(d) = 

theorem 

THEOREM 6.49. The restriction map f --~ f l s  is bounded from L ' (R  3) to 
L~(S2) for 4 <_ r <_ ~a a n d S =  2a~--a0" 

Remarks: 
(6.50) Based on the technique described above, it is possible in fact to get 

slightly bet ter  results. In particular, Lemma 6.26 may be improved. 
We did not want to complicate the exposition however. 

(6.51) The method employed here applies equally well if the sphere is 
replaced by  a compact smooth surface of non-vanishing curvature 
(cf. also Stein's exposition in [St3]). 
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7. Applications to Bochner-Riesz Summabil i ty  

Consider the multiplier 

m~,(:) = (1 -1:12)  ~' if I:1 < 1 (7.1) 
= o  if [ ~ 1 > 1  

It is a conjecture that  mx acts boundedly on Ln(H a) for p0(A) < p < p0(A)', 
p0(A) = 2d A > 0 (ef. [Fel], [Ho]). The conjecture is verified for d = 2 d+l+2A 

d-1 The reader is referred to the and in arbitrary dimension d, for A > Y(TTU" 
expository paper [St3] and its bibliography for a discussion of the d = 2 case. 
If A > ~ ,  the result follows from the L%restriction theorem, along the 
lines of [Fell, p. 51. An alternative proof of this fact will be given here. The 
method used follows a known pattern. It may be summarized as follows. 
One considers for 0 < 6 < 1 the contribution of a substitute for 

(}111-~<,r (7.2) 

and decomposes the spherical shell A6 = [1 - 6 < [~[ < 1 - ~] in boxes of 

size Vq x . . .  x Vq x6, say Bo. 
d_~l 

Xa 

One may indeed build a multiplier with spherical symmetry from ~] XB,, 

by averaging over the orthogonal groups. 
Let p < 2 ( d + l )  

- -  d - 1  " 
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An estimate on a (7.2)-related multiplier in L p will thus follow from a 
bound on II ~-~(f'iB~)vllp" Assume f E S, p > 2 (the multiplier problem is 

self dual). The first step consists of an estimate by a square function. For 
d = 2, p = 4 one has equivalence. For d >_ 3, we don't  know the accurate 
estimate unless p ~ 2~_11 . In any case, it follows from Lemma 6.29 as in 

the proof of Lemma 6.26 that for p < 2 ~  

~(TI~.)" ,~-~(~+~)+~ 

If Q .  denotes a v~-cube containing B~ (they are essentially disjoint), one 
also has that  

since p > 2. Denoting f~, -- (]'IQ=) v, one may write 

( T I ~ . )  v = f a  * ( x . . )  v �9 (7.5)  

Roughly speaking (XB,)v has the shape of a tube of length �89 and width 
:~6,oriented perpendicularly on Ba.  The left member of (7.4) may therefore 
be controlled by expressions of the form 

t( E (1Iol, I, <- tIE I~ol2 * K ~ a1'2,/2 (7.6) 
where K~ is the indicator function of a tube in direction x,~, of length p 
and width pl/2, p ,.., df-1. Proceeding as in the previous section, estimate 
]l ~ (Ifat 2 * Kc')I[p/2 by duality and hence, consider g E L(H2)' of norm 1 
and write 

( Z  fSoP �9 ~'<,,, g) -< tl Z lfol?ll,/211 ~ x  t~, * K.Ill(,/,,, �9 (7.7) 

The second factor will lead to a Nikodym maximal function after rescaling. 
Putt ing x = px', g '(x ')  = g(px),  one has indeed 

(g * Kc,)(x) = (g' * (g~, )p- , ) (x ' )  (7.8) 

hence 
! * *  X r tg* K.l(x) _< [(g )~_,,,](). (7.9) 
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consequently, assuming 

it follows from Proposition 5.6 that 

(7.10) 

II max Ig* KolII(,/~, z p ot 
(7.11) 

Collecting estimates (7.3),(7.4),(7.7),(7.11), one obtains the following bound 
on the LP-norm of (7.2) 

~ , r , - , ~ . ~ . ,  A [ T C v - ' ] - "  , , ,  , ,  , , , - : , T -  , , - T 0  , - ,  = 5 - , ( T - - r  . (7.12) 

Therefore 
A>~I  ( 3 d  . . . . .  3 d + l p  P 3 )  (7.13) 

implies boundedness of the multiplier mx given by (7.1) on L ' ,  p~ < r < p. 
Ore' assmnption on p is that 

2(d + 1) (7.14) 
2p (d ) '<p_<  d - 1  

d + l  Recall that  p(d) > --~-, so p(d)' < ~_~ and hence (7.14) defines a non-empty 
range. 

_ 2(d+1) (7.13) becomes A > ~ which is the In particular, for p - --Ezi-, 
sharp result in this case. In fact, one may obtain the sharp result also 
beyond the range of the L2-restriction theory. For instance, if d = 3. 

3_ and p > ~ .  PROPOSITION 7.15. mx is bounded for A > 1 - z 

TalCe P0 = ~ -  By discretization of Proposition 6.47 and application of 
Pisier's factorization theorem (see [Pi]), one gets the following analogue to 
inequality (6.30) 

(7.16) 

where the {aa} are -~-separated on $2. 
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Let P0 < p < 4 
1 0 1 - 0  

p p0 4 

Interpolating (7.16) and the inequality 

(7.20) 

(7.21) 

yields 

[ ~ ei(Z"'6) Lv(B(O,R)) < R~S+(1-e)+" ( Z [a'~lq)l/q (7.22) 

where q is given by 
1 0 1 - 0  

- + - -  (7.23) 
q Po 2 

One may then replace inequality (7.3) by 

]tv 11 _< 
p 

(7.24) 

If q satisfies 

the previous reasoning involving the Nikodym maximal function leads now 
to the estimate 

6 ~ - - - r - + ~ - , ,  -~ 6_~+_~_~ 
(7.26) 

3 Analyzing (7.25) yields the This correspond to the condition )t > 1 - ~. 

restriction p > ~ .  This number in particular may be improved. 

Added in proof: The reader may find some refinements of the techniques 
and results of the present paper in [Bo2]. Using similar ideas the author 
obtains in [Bo3] results on the L p behaviour of oscillatory integrals in R 3, 
making progress on L. HSrmander's problem described in [Ho]. 
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