PERIODIC SOLUTIONS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS WITH AN IMPULSE EFFECT

G. CH. SARAFOVA (Plovdiv) and D. D. BAĬNOV (Sofia)

Abstract

The paper applies a numerical-analytical method for finding periodic solutions of the system of integro-differential equations

$$\dot{x} = f(t, x, \int_0^t \varphi(t, s, x(s)) ds), \quad t \neq t_i(x),$$

$$\Delta x|_{t=t_i(x)} = I_i(x).$$

Two theorems for existence of periodic solutions are proved for the cases when $t = t_l$ and $t = t_l(x)$.

In the present paper a numerical-analytical method is applied (see [2], [3], [5]) for finding periodic solutions of a system of integro-differential equations of the following form:

(1)
$$\dot{x} = f(t, x, \int_{0}^{t} \varphi(t, s, x(s)) ds), \qquad t \neq t_{i}(x)$$

$$\Delta x|_{t=t_{i}(x)} = I_{i}(x),$$

where

$$x = (x_1, x_2, \dots, x_n); \quad f(t, x, y) = (f_1, (t, x, y), \dots, f_n(t, x, y));$$

$$\varphi(t, s, x) = (\varphi_1(t, s, x), \dots, \varphi_m(t, s, x)); \quad I_i = (I_i^{(1)}, \dots, I_i^{(n)}); \quad t_i(x)$$

are scalar functions, $i = 0, \pm 1, \pm 2, \ldots$

An analogous problem has been considered in [1], but for systems of ordinary differential equations. The paper [6] is devoted to the problem of finding periodic solutions of integro-differential equations without impulses.

Let the following conditions (A) hold:

A1. The functions f(t, x, y), $\varphi(t, s, x)$, $I_i(x)$ and $t_i(x)$ are defined and continuous with respect to their arguments in the region

(2)
$$G = \mathbf{R} \times \mathbf{R} \times D_1 \times D_2,$$

AMS (MOS) subject classifications (1980). Primary 34C25; Secondary 45J05. Key words and phrases. Periodic solutions, integro-differential equations, impulse effect.

where D_1 and D_2 are closed and bounded sets in the spaces \mathbb{R}^n and \mathbb{R}^m , respectively, $\mathbb{R} = (-\infty, +\infty)$.

A2. The functions f(t, x, y) and $\varphi(t, s, x)$ are periodic with respect to t, s with a period T.

A3. There exists a natural number p such that

(3)
$$I_{i+p}(x) = I_i(x), \quad t_{i+p}(x) = t_i(x) + T.$$

A4. The functions f(t, x, y), $\varphi(t, s, x)$ and $I_i(x)$ satisfy the inequalities

$$\begin{aligned} ||f(t,x,y)-f(t,x',y')|| &\leq K_1 \, ||x-x'|| + K_2 \, ||y-y'|| \,, \\ ||\varphi(t,s,x)-\varphi(t,s,x')|| &\leq K_3 \, ||x-x'|| \,, \\ ||I_i(x)-I_i(x')|| &\leq K_4 \, ||x-x'|| \,. \end{aligned}$$

in the region (2), uniformly in $t \in \mathbb{R}$, $s \in \mathbb{R}$, $i = 0, \pm 1, \pm 2, \ldots$, where K_i , j = 1, 2, 3, 4, are positive constants.

A5. The surfaces $t = t_i(x)$ are given by the continuously differentiable functions in D_1 , and

(5)
$$\sup_{x \in D_1} \left\| \frac{\partial t(x)}{\partial x} \right\| \leq N, \qquad N = \text{const.} > 0.$$

Consider first the problem for existence of T-periodic solutions of the system (1) in the case when the instantaneous change of the state of the system occurs at fixed moments, i.e. the hypersurfaces $t=t_i(x)$ are hyperplanes of the type $t=t_i$. Then for each two solutions the moments $t=t_i$ only the values of the jumps at these moments are different and the system (1) can be rewritten as

(6)
$$\dot{x} = f(t, x, \int_{0}^{t} \varphi(t, s, x(s)) ds), \qquad t \neq t_{i},$$

$$\Delta x|_{t=t_{i}} = I_{i}(x).$$

As it was noted in [6], the periodic solutions of the integrodifferential equations have a specific character. A necessary condition for existence of periodic solution is the equality

(7)
$$f(0, \psi(0), 0) = f(0, \psi(0), \int_{0}^{T} \varphi(T, s, \psi(s)) ds).$$

Particularly, (7) will hold if the following relation holds for each t:

(8)
$$\int_{0}^{T} \varphi(t, s, \psi(s)) ds = 0.$$

We need the following conditions (B) as well:

B1. There exists a nonempty closed set $D_0 \subseteq D_1$ contained in D_1 together with its $\frac{Mt}{2} \left(1 + \frac{4p}{T}\right)$ neighbourhood, where

(9)
$$M = \sup_{\substack{t \in [0,T] \\ x \in D_1, y \in D_2}} ||f(t,x,y)|| + \max_{1 \le i \le p} \sup_{x \in D_1} ||I_i(x)||$$

B2. The constants K_j , j = 1, 2, 3, 4 satisfy

(10)
$$\frac{T}{2} \left(K_1 + \frac{K_2 K_3 T}{2} \right) + 2p K_4 < 1.$$

Then the following theorem can be proved:

THEOREM 1. Let the conditions (A) and (B) hold for the system (6). Then, if this system has a periodic solution $x = \psi(t)$ with a period T, having value t = 0 at $x_0 \in D_0$ and such that (8) is fulfilled, this solution is a limit of a uniformly convergent sequence of periodic functions $\{x_m(t, x_0)\}$ given by the relations

(11)
$$x_{m+1}(t, x_{0}) = x_{0} + \int_{0}^{t} \left\{ f\left(\tau, x_{m}(\tau, x_{0}), \int_{0}^{\tau} \left[\varphi(\tau, s, x_{m}(s, x_{0})) - \frac{\tau}{\varphi(\tau, s, x_{m}(s, x_{0}))}\right] ds \right) - f\left(\tau, x_{m}(\tau, x_{0}), \int_{0}^{\tau} \left[\varphi(\tau, s, x_{m}(s, x_{0})) - \frac{\tau}{\varphi(\tau, s, x_{m}(s, x_{0}))}\right] ds \right) \right\} d\tau + \sum_{0 < t_{i} < t} I_{i}(x_{m}(t_{i} - 0)) - t \overline{I(x_{m}(t_{i} - 0))};$$

$$\overline{f\left(\tau, x(\tau), \int_{0}^{\tau} \varphi(\tau, s, x(s)) ds\right)} = \frac{1}{T} \int_{0}^{T} f\left(\tau, x(\tau), \int_{0}^{\tau} \varphi(\tau, s, x(s)) ds\right) d\tau ,$$

$$\overline{\varphi(\tau, s, x(s))} = \frac{1}{T} \int_{0}^{T} \varphi(\tau, s, x(s)) ds ,$$

$$\overline{I(x(t_{i} - 0))} = \frac{1}{T} \sum_{0 < t_{i} < T} I_{i}(x(t_{i} - 0)) .$$

PROOF. Each of the functions of the sequence (11) is T-periodic with respect to t. For $x_0 \in D_0$ from Lemma 1 of [2] for $t \in [0, T]$ we get

(12)
$$||x_m(t, x_0) - x_0|| \le M\alpha(t) + 2pM$$
 for each $m = 1, 2, 3, \ldots$ where

(13)
$$\alpha(t) = 2t \left(1 - \frac{t}{T}\right) \leq \frac{|T|}{2}.$$

From (12) and (13) we obtain

$$||x_m(t,x_0)-x_0|| \leq \frac{MT}{2} + 2pM = \frac{MT}{2} \left(1 + \frac{4p}{T}\right).$$

From the last estimate it follows that for each $m=1, 2, \ldots; t \in \mathbb{R}$ (from the periodicity) and for each $x_0 \in D_0$ the functions $x_m(t, x_0)$ exist and belong to the set D_1 .

Now we prove the convergence of the sequence (11). For this purpose we estimate the expression

$$||x_{m+1}(t, x_0) - x_m(t, x_0)||$$
.

For m = 0 from (12), (13) and (14) we have

(15)
$$||x_1(t, x_0) - x_0|| \le M\alpha(t) + 2pM \le \frac{MT}{2} \left(1 + \frac{4p}{T}\right) = M_1.$$

For m = 1, using Lemma 1 from [2] and the inequalities (4) and (15) we get

$$\begin{split} \|x_2(t,x_0) - x_1(t,x_0)\| &\leq \left(1 - \frac{t}{T}\right) \int\limits_0^t \left\{K_1 \|x_1(\tau,x_0) - x_0\| + \right. \\ &+ \left. K_2 \|\int\limits_0^\tau \left[\varphi(\tau,s,x_1(s,x_0)) - \overline{\varphi(\tau,s,x_1(s,x_0))}\right] ds - \int\limits_0^\tau \left[\varphi(\tau,s,x_0) - \right. \\ &- \overline{\varphi(\tau,s,x_0)} \left] \, ds \|\right\} \, d\tau + \frac{t}{T} \int\limits_t^\tau \left\{K_1 \|x_1(\tau,x_0) - x_0\| + K_2 \|\int\limits_0^\tau \left[\varphi(\tau,s,x_1(s,x_0)) - \right. \\ &- \overline{\varphi(\tau,s,x_1(s,x_0))} \right] \, ds - \int\limits_0^\tau \left[\varphi(\tau,s,x_0) - \overline{\varphi(\tau,s,x_0)}\right] \, ds \|\right\} d\tau + 2pK_4 M_1 \leq \\ &\leq \left(1 - \frac{t}{T}\right) \int\limits_0^t \left\{K_1 \|x_1(\tau,x_0) - x_0\| + K_2 K_3 \left(1 - \frac{\tau}{T}\right) \int\limits_0^\tau \|x_1(s,x_0) - x_0\| \, ds + \right. \\ &+ \left. K_2 K_3 \frac{\tau}{T} \int\limits_\tau^\tau \|x_1(s,x_0) - x_0\| \, ds \right\} d\tau + \frac{t}{T} \int\limits_t^\tau \left\{K_1 \|x_1(\tau,x_0) - x_0\| \, ds + \right. \\ &+ \left. K_2 K_3 \left(1 - \frac{\tau}{T}\right) \int\limits_0^\tau \|x_1(s,x_0) - x_0\| \, ds + \left. K_2 K_3 \frac{\tau}{T} \int\limits_\tau^\tau \|x_1(s,x_0) - x_0\| \, ds \right\} d\tau + \\ &+ \left. 2pK_4 M_1 \leq \left(K_1 + \frac{K_2 K_3 T}{2}\right) M_1 \alpha(t) + 2pK_4 M_1 \leq \\ &\leq \left(K_1 + \frac{K_2 K_3 T}{2}\right) \frac{M_1 T}{2} + 2pK_4 M_1 \equiv M_2 \, . \end{split}$$

Hence

$$(16) ||x_2(t,x_0)-x_1(t,x_0)|| \leq \left(K_1+\frac{K_2K_3T}{2}\right)\frac{M_1T}{2}+2pK_4M_1 \equiv M_2.$$

Assume that for some m the following inequality holds:

$$(17) \quad \|x_m(t,x_0)-x_{m-1}(t,x_0)\| \leq \left(K_1+\frac{K_2K_3T}{2}\right)\frac{M_{m-1}T}{2}+2pK_4M_{m-1} = M_m.$$

For m + 1 we find, using Lemma 1 from [2] and the inequalities (4) and (17) that

$$\begin{split} \|x_{m+1}(t,x_0) - x_m(t,x_0)\| &\leq \left(1 - \frac{t}{T}\right) \int\limits_0^t \left\{ K_1 \|x_m(\tau,x_0) - x_{m-1}(\tau,x_0)\| \right. + \\ &+ \left. K_2 K_3 \left(1 - \frac{\tau}{T}\right) \int\limits_0^\tau \|x_m(s,x_0) - x_{m-1}(s,x_0)\| \, ds + \left. K_2 K_3 \frac{\tau}{T} \int\limits_\tau^T \|x_m(s,x_0) - x_{m-1}(s,x_0)\| \, ds \right\} d\tau + \frac{t}{T} \int\limits_t^T K_1 \|x_m(\tau,x_0) - x_{m-1}(\tau,x_0)\| + \\ &+ \left. K_2 K_3 \left(1 - \frac{\tau}{T}\right) \int\limits_0^\tau \|x_m(s,x_0) - x_{m-1}(s,x_0)\| \, ds + \left. K_2 K_3 \frac{\tau}{T} \int\limits_\tau^T \|x_m(s,x_0) - x_{m-1}(s,x_0)\| \, ds \right\} d\tau + 2p K_4 M_m \leq \left(K_1 + \frac{K_2 K_3 T}{2}\right) \frac{M_m T}{2} + \\ &+ 2p K_4 M_m \equiv M_{m+1} \, . \end{split}$$

By the method of the mathematical induction we conclude that, for each $m = 0, 1, 2, \ldots$,

$$||x_{m+1}(t,x_0)-x_m(t,x_0)|| \leq \left[\frac{T}{2}\left(K_1+\frac{K_2K_3T}{2}\right)+2pK_4\right]M_m \equiv M_{m+1},$$

 \mathbf{w} here

$$M_1 = rac{MT}{2} \left(1 + rac{4p}{T}
ight)$$
 ,
$$M_m = \left[rac{T}{2} \left(K_1 + rac{K_2 K_3 T}{2}
ight) + 2p K_4
ight]^{m-1} rac{MT}{2} \left(1 + rac{4p}{T}
ight)$$
 .

Hence, the last inequality can be rewritten as

$$(18) \quad \|x_{m+1}(t,x_0) - x_m(t,x_0)\| \leq \frac{MT}{2} \left(1 + \frac{4p}{T}\right) \left[\frac{T}{2} \left(K_1 + \frac{K_2 K_3 T}{2}\right) + 2pK_4\right]^m.$$

Then for $||x_{m+k}(t, x_0) - x_m(t, x_0)||$ we obtain the estimate

$$\begin{aligned} \|x_{m+k}(t,x_0) - x_m(t,x_0)\| &\leq \frac{MT}{2} \left(1 + \frac{4p}{T} \right) \left[\frac{T}{2} \left(K_1 + \frac{K_2 K_3 T}{2} \right) + 2pK_4 \right]^m \times \\ &\times \frac{1 - \left[\frac{T}{2} \left(K_1 + \frac{K_2 K_3 T}{2} \right) + 2pK_4 \right]}{1 - \left[\frac{T}{2} \left(K_1 + \frac{K_2 K_3 T}{2} \right) + 2pK_4 \right]}, \end{aligned}$$

from which, by the condition B2 the uniform in $(t, x_0) \in \mathbb{R} \times D_0$ convergence of the sequence (11) follows. If we denote $x_{\infty}(t, x_0) = \lim_{m \to \infty} x_m(t, x_0)$ then the following estimation holds:

$$(20) \quad \|x_{\infty}(t,x_0) - x_m(t,x_0)\| \leq \frac{\frac{MT}{2} \left(1 + \frac{4p}{T}\right) \left[\frac{T}{2} \left(K_1 + \frac{K_2K_3T}{2}\right) + 2pK_4\right]^m}{1 - \left[\frac{T}{2} \left(K_1 + \frac{K_2K_3T}{2}\right) + 2pK_4\right]}.$$

Tending to the limit in (11) $m \to \infty$ we get that $x_{\infty}(t, x_0)$ is a periodic solution of the equation

$$x(t, x_0) = x_0 + \int_0^t \left\{ f(\tau, x(\tau, x_0), \int_0^\tau \left[\varphi(\tau, s, x(s, x_0)) - \overline{\varphi(\tau, s, x(s, x_0))} \right] ds \right) - \frac{1}{f(\tau, x(\tau, x_0), \int_0^\tau \left[\varphi(\tau, s, x(s, x_0)) - \overline{\varphi(\tau, s, x(s, x_0))} \right] ds)} \right\} d\tau + \frac{1}{0 < t_i < t} I_i(x(t_i - 0)) - t\overline{I(x(t_i - 0))}.$$

On the other hand, since the function $\psi(t)$ is a periodic solution of the system (6), for which (8) holds, then from Lemma 1 of [1], the function will satisfy the condition:

$$\frac{1}{T}\int_{0}^{T}f\left(\tau,\psi(\tau),\int_{0}^{\tau}\varphi(\tau,s,\psi(s))\,ds\right)d\tau+\frac{1}{T}\sum_{0< t_{i}< T}I_{i}(\psi(t_{i}-0))=0.$$

Hence $\psi(t)$ is a solution of the equation (21) as well.

In order to complete the proof we have to show the uniqueness of the solution of the equation (21). Assume the opposite. Let $x(t, x_0)$ and $z(t, x_0)$ be two solutions of (21). Then for their difference we have

$$\begin{split} \|x(t,x_0) - z(t,x_0)\| &\leq \left(1 - \frac{t}{T}\right) \int_0^t \left\{K_1 \|x(\tau,x_0) - z(\tau,x_0)\| + \right. \\ &+ \left. K_2 K_3 \left(1 - \frac{\tau}{T}\right) \int_0^\tau \|x(s,x_0) - z(s,x_0)\| \, ds + \left. K_2 K_3 \frac{\tau}{T} \int_\tau^T \|x(s,x_0) - z(s,x_0)\| \, ds \right\} d\tau + \frac{t}{T} \int_t^T \left\{K_1 \|x(\tau,x_0) - z(\tau,x_0)\| + K_2 K_3 \left(1 - \frac{\tau}{T}\right) \times \right. \\ &\times \int_0^\tau \|x(s,x_0) - z(s,x_0)\| \, ds + \left. K_2 K_3 \frac{\tau}{T} \int_\tau^T \|x(s,x_0) - z(s,x_0)\| \, ds \right\} d\tau + \\ &+ \left. \left\| \sum_{0 < t_i < t} I_i(x(t_i - 0)) - I_i(z(t_i - 0)) - t \, \overline{I(x(t_i - 0))} + t \, \overline{I(z(t_i - 0))} \right\|. \end{split}$$

Introduce the notation

$$||x(t, x_0) - z(t, x_0)|| = r(t), |r(t)|_0 = \max_{t} |r(t)|$$

Then (22) can be rewritten as

$$(23) r(t) \leq \left(1 - \frac{t}{T}\right) \int_{0}^{t} \left\{ K_{1} |r(t)|_{0} + \frac{K_{2}K_{3}T}{2} |r(t)|_{0} \right\} d\tau +$$

$$+ \frac{t}{T} \int_{t}^{T} \left\{ K_{1} |r(t)|_{0} + \frac{K_{2}K_{3}T}{2} |r(t)|_{0} \right\} d\tau + 2pK_{4} |r(t)|_{0} \leq$$

$$\leq \left(K_{1} + \frac{K_{2}K_{3}T}{2} \right) \frac{T}{2} |r(t)|_{0} + 2pK_{4} |r(t)|_{0} =$$

$$= \left[\frac{T}{2} \left(K_{1} + \frac{K_{2}K_{3}T}{2} \right) + 2pK_{4} \right] |r(t)|_{0}.$$

If we replace the right hand side of the inequality (22) with the right hand side of the inequality (23) and continue this process further then, after the *m*-substitution we have

$$r(t) \leq \left[\frac{T}{2}\left(K_1 + \frac{K_2K_3T}{2}\right) + 2pK_4\right]^{m-1}|r(t)|_0$$

which implies:

$$|r(t)|_0 \le \left[\frac{T}{2}\left(K_1 + \frac{K_2K_3T}{2}\right) + 2pK_4\right]^{m-1} |r(t)|_0.$$

Tending to the limit with $m \to \infty$ in the last inequality from B2, we get $|r(t)|_0 = 0$, i.e., r(t) = 0. The proof of the theorem is complete.

Consider the problem of existence of periodical solutions of the system (6). Denote by $\Delta(x_0)$ the expression

(24)
$$\Delta(x_0) = \frac{1}{T} \int_0^T f\left(t, x_{\infty}(t, x_0), \int_0^t \varphi(t, s, x_{\infty}(s, x_0)) ds\right) dt + \frac{1}{T} \sum_{0 \le t_i \le T} I_i(x_{\infty}(t_i - 0), x_0)$$

where $x_{\infty}(t, x_0)$ is the limit of the sequence (11).

Since $x_{\infty}(t, x_0)$ is a periodic solution of the equation (21), then for $\Delta(x_0) = 0$ and

$$\overline{\varphi(t,s,x_{\infty}(s,x_{0}))}=0$$

the function $x_{\infty}(t, x_0)$ is a periodical solution of the system (6). In such a way the existence of periodic solutions of the system (6) is connected with the existence of zeroes of the function $\Delta(x_0)$ and with the relation

$$\overline{\varphi(t,s,x_{\infty}(s,x_{0}))}=0.$$

However, to find the function $\Delta(x_0)$ is practically impossible. Then the following problem arises: how, using the function

(25)
$$\Delta_m(x_0) = \frac{1}{T} \int_0^T f(t, x_m(t, x_0), \int_0^t \varphi(t, s, x_m(s, x_0)) ds) dt + \frac{1}{T} \sum_{0 < t_i < T} I_i(x_m(t_i - 0, x_0)) ,$$

to conclude about the existence of zeroes of the function $\Delta(x_0)$.

The following result holds:

THEOREM 2. Let the following conditions hold:

- 1. The conditions (A) and (B) are fulfilled.
- 2. For some integer $m \geq 0$ the function $\Delta_m(x_0)$ has an isolated singular point: $\Delta_m(x^0) = 0$.
 - 3. The index of this point is different from zero.
 - **4.** For each $x_0 \in D_0$ uniformly in $t \in [0, T]$ there exists

$$\lim_{m\to\infty}\int_0^T \varphi(t,s,x_m(s,x_0))\,ds=0.$$

For this m for which Condition 2 holds, the condition

$$\overline{\varphi(t,s,x_m(s,x_0))} = 0$$

is fulfilled.

5. There exists a closed convex region $D \subseteq D_0$ with a unique singular point x^0 such that on its boundary the following inequality holds:

$$\geq \frac{ \inf\limits_{\mathbf{x} \in \varGamma_{D}} \|\varDelta_{m}(\mathbf{x})\| \geq }{ 1 - \left[\frac{T}{2} \left(K_{1} + \frac{K_{2}K_{3}T}{2} + 2pK_{4} \right) \left[\frac{T}{2} \left(K_{1} + \frac{K_{2}K_{3}T}{2} \right) + 2pK_{4} \right]^{m} }{ 1 - \left[\frac{T}{2} \left(K_{1} + \frac{K_{2}K_{3}T}{2} \right) + 2pK_{4} \right] } \; .$$

Then the system (6) has a T-periodic solution x = x(t), for which $x(0) \in D$.

The proof of this theorem is analogous to the proof of Theorem 1 from [3] and uses the inequality

$$\|arDelta(x_0)-arDelta_m(x_0)\|< < rac{MT}{2} \Big(1+rac{4p}{T}\Big)\Big(K_1+rac{K_2K_3T}{2}+2pK_4\Big)\Big[rac{T}{2}\Big(K_1+rac{K_2K_3T}{2}\Big)+2pK_4\Big]^m}{1-\Big[rac{T}{2}\Big(K_1+rac{K_2K_3T}{2}\Big)+2pK_4\Big]}$$

Consider now the equations with a general impulse effect. Let the impulse effect occurs when the mapping point reaches the hypersurface $t=t_i(x)$. Then the system (1) differs essentially from the system (6). In this case we cannot use an iteration process since at each step the function $x_m(t)$ has discontinuities different, in general, from the discontinuities of the function $x_{m-1}(t)$. Moreover, in the system (1) it is possible to get "rolling" of some of its solutions on the surface $t=t_i(x)$, i.e., reaching of the same surface by the same solution several times. We assume that there is no "rolling" of the solutions of the system (1) on the surface $t=t_i(x)$, i.e., the solution goes through every surface only once. For that purpose we need some additional ssumptions for the functions $t_i(x)$ and $I_i(x)$ which are given by the following lemma:

Lemma 1 (see [4]). Let the function $I_i(x)$ and $t_i(x)$ in the system of equations (1) satisfy the conditions (A) and (B) and the inequality

(26)
$$\sup_{0 \le \sigma \le 1} \left\langle \frac{\partial t_i(x + \sigma I_i(x))}{\partial x}, I_i(x) \right\rangle \le 0$$

for all i = 1, 2, ..., p and $x \in D_1$. Then for sufficiently small N the solutions of the equation (1) pass every surface $t = t_i(x)$, i = 1, 2, ..., p only once.

Further we consider such equations only, for which the conditions of the Lemma 1 hold.

For constructing a periodic solution of the system (1), we proceed as in [1]. We fix p points $z^{(j)} \in D_1$, $j = 1, 2, \ldots, p$, and build a sequence of T-periodic functions

$$(27) \quad x_{m+1}(t, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)}) = x_0 + \int_0^t \left\{ f(\tau, x_m(\tau, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)}), \right. \\ \left. \int_0^\tau \left[\varphi(\tau, s, x_m(s, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)})) - \overline{\varphi(\tau, s, x_m(s, x_0, z^{(1)}, z^{(3)}, \dots, z^{(p)}))} \right] ds - \\ \left. - f(\tau, x_m(\tau, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)}), \int_0^\tau \left[\varphi(\tau, s, x_m(s, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)})) - \overline{\varphi(\tau, s, x_m(s, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)}))} \right] ds} \right) \right\} d\tau + \sum_{0 \le t \in \mathbb{Z}^0} I_i(z^{(i)}) - t\overline{I(z^{(i)})}.$$

If this sequence converges uniformly in $t \in [0, T]$ then the limit function $x_{\infty}(t, x_0, z^{(1)}, z^{(2)}, \dots, z^{(p)})$ is a T-periodic solution of the system of equations

(28)
$$\dot{x} = f(t, x(t), \int_{0}^{t} \left[\varphi(t, s, x(s)) - \overline{\varphi(t, s, x(s))} \right] ds) - \int_{0}^{t} \left[\varphi(t, s, x(s)) - \overline{\varphi(t, s, x(s))} \right] ds) - \frac{1}{T} \sum_{i=1}^{p} I_{i}(z^{(i)}), \quad t \neq t_{i}(z^{(i)})$$

$$\Delta x|_{t=t_{i}(z^{(i)})} = I_{i}(z^{(i)}).$$

If we choose $x_0, z^{(1)}, z^{(2)}, \ldots, z^{(p)}$ from the conditions

(29)
$$f(t, x_{\infty}(t, x_{0}, z^{(1)}, \dots, z^{(p)}) \int_{0}^{t} [\varphi(t, s, x_{\infty}(s, x_{0}, z^{(1)}, z^{2}, \dots, z^{(p)})) - \frac{1}{\varphi(t, s, x_{\infty}(s, x_{0}, z^{(1)}, \dots, z^{(p)}))] ds)} + \frac{1}{T} \sum_{i=1}^{p} I_{i}(z^{(i)}) = 0,$$

$$z^{(i)} = x_{\infty}(t_{i}(z^{(i)}), x_{0}, z^{(1)}, \dots, z^{(p)}), \qquad i = 1, 2, \dots, p$$

where

$$\overline{\varphi(t,s,x_{\infty}(s,x_0,z^{(1)},\ldots,z^{(p)}))}=0$$

identically in t, then the limit function $x_{\infty}(t, x_0, z^{(1)}, \ldots, z^{(p)})$ will be the desired periodical solution of the system (1).

In such a way, for proving the existence of T-periodic solutions of the system (1) we need the following:

- 1. Prove the uniform convergence of the sequence (27).
- 2. Solve the system (29).

For getting

$$\overline{\varphi(t, s, x_{\infty}(s, x_0, z^{(1)}, \ldots, z^{(p)}))} = 0$$

it is sufficient to assume that for every point from D_1 uniformly in $t \in [0, T]$

$$\lim_{m\to\infty}\frac{1}{T}\int_{\mathbf{a}}^{T}\varphi(t,s,x_m(s,x_0,z^{(1)},\ldots,z^{(p)}))\,ds=0.$$

In order to simplify the exposition we assume that p=1 in the system (1). Then

(30)
$$I_i(x) = I(x), \quad t_i(x) = t(x) + iT,$$

and the sequence (27) can be written as

$$x_{m+1}(t, x_0, z) = x_0 + \int_0^t \left\{ f(\tau, x_m(\tau, x_0, z), \int_0^\tau [\varphi(\tau, s, x_m(s, x_0, z)) - \varphi(\tau, s, x_m(s, x_0, z))] ds \right\} - \frac{\tau}{f(\tau, x_m(\tau, x_0, z), \int_0^\tau [\varphi(\tau, s, x_m(s, x_0, z)) - \varphi(\tau, s, x_m(s, x_0, z))] ds} \right\} d\tau + \sum_{0 < t(z) < t} I(z) - \frac{t}{T} I(z), \qquad 0 \le t \le T$$

The conditions (29) can be written as

(32)
$$\Delta(x_0,z) = f\left(t, x_{\infty}(t,x_0,z), \int_0^t \varphi(t,s,x_{\infty}(s,x_0,z)) ds\right) + \frac{1}{T}I(z) = 0,$$

 $z = x_{\infty}(t(z), x_0, z)$

if the condition

$$\overline{\varphi(t,s,x_{\infty}(s,x_{0},z))}=0$$

holds.

From the proof of Theorem 1 it follows that the sequence (31) converges uniformly for every $x_0 \in D_0$ and $z \in D_1$ to the *T*-periodic limit function $x_{\infty}(t, x_0, z)$.

We establish some properties of the functions $x_m(t, x_0, z)$ and x_{∞} .

LEMMA 2. There exists a positive constant $K' = K'(K_1, K_2, K_3, K_4)$ such that for every $y, z \in D_1$, $t(y) \le t(z)$ the following inequality holds:

$$||x_m(t, x_0, y) - x_m(t, x_0, z)|| \le K'||y - z||$$

uniformly in $0 \le t < t(y)$, $t(z) < t \le T$ for each $m = 1, 2, \ldots$

PROOF. From (31) for m=0 we have

$$\begin{split} \|x_1(t,x_0,y)-x_1(t,x_0,z)\| &\leq \left(1-\frac{t}{T}\right)\int\limits_0^t \left\{K_1\|y-z\|+K_2K_3\left(1-\frac{\tau}{T}\right)\times \right. \\ &\times \int\limits_0^\tau \|y-z\|\,ds+K_2K_3\frac{\tau}{T}\int\limits_\tau^T \|y-z\|\,ds\right\}d\tau + \frac{t}{T}\int\limits_t^T K_1\|y-z\|+K_2K_3\left(1-\frac{\tau}{T}\right)\times \\ &\times \int\limits_0^t \|y-z\|\,ds+K_2K_3\frac{\tau}{T}\int\limits_\tau^T \|y-z\|\,ds\right\}d\tau + K_4\|y-z\| \leq \\ &\leq \left(1-\frac{t}{T}\right)\int\limits_0^t \left\{K_1+\frac{K_2K_3T}{2}\right)\|y-z\|\,d\tau_1^2 + \frac{t}{T}\int\limits_t^T \left\{K_1+\frac{K_2K_3T}{2}\right)\|y-z\|\,d\tau + \\ &+ K_4\|y-z\| \leq \left[\left\{K_1+\frac{K_2K_3T}{2}\right\}\frac{T}{2}+K_4\right]\|y-z\| \end{split}$$

when $0 \le t < t(y)$ or $t(z) < t \le T$.

By the method of the mathematical induction we get that for each $m = 1, 2, \ldots$

$$||x_m(t, x_0, y) - x_m(t, x_0, z)|| \le$$

$$\leq \left\{ \left[\left(K_1 + \frac{K_2 K_3 T}{2} \right) \frac{T}{2} \right]^m + K_4 \frac{1 - \left[\left(K_1 + \frac{K_2 K_3 T}{2} \right) \frac{T}{2} \right]^m}{1 - \left[\left(K_1 + \frac{K_2 K_3 T}{2} \right) \frac{T}{2} \right]} \right\} \|y - z\| .$$

From the condition B2 we conclude that

$$\left(K_1 + \frac{K_2 K_3 T}{2}\right) \frac{T}{2} < 1$$
.

Thus for completing the proof it is sufficient to take

$$K' = \frac{K_4}{1 - \left(K_1 + \frac{K_2 K_3 T}{2}\right) \frac{T}{2}} \, + \left(K_1 + \frac{K_2 K_3 T}{2}\right) \frac{T}{2} \; .$$

COROLLARY. The functions $x_m(t(z), x_0, z)$ satisfy the Lipschitz condition with respect to z.

PROOF. Let $z \in D_1$, $z' \in D_1$ and t(z) < t(z'). Then

$$\begin{aligned} \|x_m(t(z),x_0,z) - x_m(t(z'),x_0,z')\| &\leq x_m(t(z),x_0,z) - \\ &- x_m(t(z),x_0,z')\| + \|x_m(t(z),x_0,z') - x_m(t(z'),x_0,z')\| \leq \\ &\leq K'\|z-z'\| + \|x_m(t(z),x_0,z') - x_m(t(z'),x_0,z')\| \leq \\ &\leq K'\|z-z'\| + MN\left(2 + \frac{1}{T}\right)\|z-z'\| = \left[K' + MN\left(2 + \frac{1}{T}\right)\right]\|z-z'\| \end{aligned}$$
 for each $m=1,2,\ldots$

Lemma 3. The function $x_m(t(z), x_0, z)$ satisfies the Lipschitz condition with respect to z with a constant

$$N' = K' + MN\left(2 + \frac{1}{T}\right)$$
.

The proof follows from the uniform convergence of the sequence $x_m(t, x_0, z)$ and from the corollary of Lemma 2.

If N' < 1, the equation $z = x_{\infty}(t(z), x_0, z)$ is solvable in the form $z = z(x_0)$. Then the problem of existence of T-periodical solutions of the equation (1) is transformed to the problem of existence of zeroes of the function $\Delta(x_0, z(x_0))$ and satisfying the condition

$$\overline{\varphi(t,s,x_{\infty}(x_0,s,z(x_0)))})=0.$$

In many cases this problem can be solved using the function $\Delta_m(x_0, z_m(x_0))$ under the condition that

$$\lim_{m \to \infty} \frac{1}{T} \int_{0}^{T} \varphi(t, s, x_{m}(s, x_{0}, z_{m}(x_{0})) ds = 0$$

uniformly in $t \in [0, T]$ where $z_m(x_0)$ is the solution of the equation $z = x_m(t(z), x_0, z)$.

The following theorem is true:

THEOREM 3. Suppose that the following conditions hold:

- 1. The conditions (A), (B) and (26) hold and N' < 1.
- 2. For some integer $m \geq 0$ the mapping

$$\Delta_m(x_0, z_m(x_0)): D_0 \to \mathbb{R}^n$$

has an isolated singular point with a nonzero index.

3. For each $x_0 \in D_0$ uniformly in $t \in [0, T]$ there exists

$$\lim_{m\to\infty}\frac{1}{T}\int\limits_0^T\varphi(t,s,x_m)\,ds=0$$

and for this m for which Condition 2 is fulfilled, it holds

$$\overline{\varphi(t,s,x_m(s,x_0,z_m(x_0))}=0.$$

4. There exists a closed convex region $D \subseteq D_0$ having an isolated singular point such that on its boundary Γ_D the following inequality holds:

$$\inf_{x \in I_{\mathcal{D}}} \| arDelta_m(x_0, z_m(x_0)) \| \geq \ \geq rac{MT}{2} \Big(1 + rac{4p}{T} \Big) \Big(K_1 + rac{K_2 K_3 T}{2} + 2p K_4 \Big) \Big[rac{T}{2} \Big(K_1 + rac{K_2 K_3 T}{2} \Big) + 2p K_4 \Big]^m}{1 - \Big[rac{T}{2} \Big(K_1 + \Big(rac{K_2 K_3 T}{2} \Big) + 2p K_4 \Big]} \,.$$

Then the system (1) has a T-periodic solution x = x(t), $x(0) \in D_0$, and this solution can be found as a limit of the sequence (31).

The proof of this result is analogous to the proof of Theorem 1 from [3] and uses the inequality

$$\| arDelta(x_0) - arDelta_m(x_0) \| < rac{MT}{2} \left(1 + rac{4p}{T}
ight) \! \left(K_1 + rac{K_2 K_3 T}{2} + 2p K_4
ight) \! \left[rac{T}{2} \left(K_1 + rac{K_2 K_3 T}{2}
ight) + 2p K_4
ight]^m}{1 - \left[rac{T}{2} \left(K_1 + rac{K_2 K_3 T}{2}
ight) + 2p K_4
ight]} \; .$$

REFERENCES

[1] N. A. Perestjuk and V. N. Šovkopljas, Periodičeskie rešenija nelinešnyh differencial nyh uraveniš s impul'snym vozdešstviem (Periodic solutions of nonlinear differential equations with an impulse influence), Ukrain. Mat. Z. 31 (1979), 517-524. MR 80j: 34042

517-524. MR 80j: 34042

[2] A. M. SAMOĬLENKO, Čislenno-analitičeskiĭ metod issledovanija periodičeskih sistem obyknovennyh differencial'nyh uravneniĭ, I (A numerical-analytic method for investigation of periodic systems of ordinary differential equations, I), Ukrain. Mat. Z. 17 (1965), no. 4, 82-93. MR 33: 3469a

investigation of periodic systems of ordinary differential equations, I), Ukrain.

Mat. Z. 17 (1965), no. 4, 82-93. MR 33: 3469a

[3] A. M. Samoĭlenko, Čislenno-analitičeskii metod issledovanija periodičeskih sistem obyknovennyh differencial'nyh uravnenii, II (A numerical-analytic method for investigation of periodic systems of ordinary differential equations, II), Ukrain.

Mat. Z. 18 (1966), no. 2, 50-59. MR 33: 3469b
[4] A. M. Samoĭlenko and N. A. Perestjuk, Ustoĭčivost' rešeniĭ differencial'nyh uravneniĭ s impul'snym vozdeĭstviem (Stability of the solutions of differential equations with impulse action), Differencial'nye Uravnenija 13 (1977), 1981-1992. MR 53: 11703

[5] А. М. Samoĭlenko and N.I. Ronto, Čislenno-analitičeskie metody issledovanija periodičeskih rešenii (Numerical-analytic methods for the study of periodic solutions), Višča Škola, Kiev, 1976. MR 58: 22817
[6] G. Vahabov, Čislenno-analitičeskii metod issledovanija periodičeskih sistem integredifferencial nyh uravnenii (A numerical-analytic method of investigation of periodic systems of integro-differential equations), Ukrain. Mat. Z. 21 (1969), 675—683. MR 41: 773

(Received November 10, 1982)

UNIVERSITY PAISII HILENDARSKI PLOVDIV BULGARIA

OBORIŠČE 23. BG-1504 SOFIA BULGARIA