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PERIODIC SOLUTIONS OF NONLINEAR
INTEGRO-DIFFERENTIAL EQUATIONS WITH
AN IMPULSE EFFECT

G. CH. SARAFOVA (Plovdiv) and D. D. BAINOV (Sofia)

Abstract

The paper applies a numerical-analytical method for finding periodic solutions of
the system of integro-differential equations

& = f(ts Z, if ‘P(ts 8, m(a))da) s bt tl(w) ’

Azfiopy(x) = L) .

Two theorems for existence of periodic solutions are proved for the cases when ¢ = {;
and ¢ = ().
*

In the present paper a numerical-analytical method is applied (see [2],

[3], [5]) for finding periodic solutions of a system of integro-differential equa-
tions of the following form:

1) & = f(t, x,ojt (p(t% s, z(8)) ds) , t 5= t,(x)
Ax!t=t‘(x) = Ii(=),
where
r = (xl’ Loy oo vy xn); f(t7 z, 2/) - (fl’(tf z, ?/), .o ’fn(t: z, ?/)),

o, s, 2) = (py(t, 8, 2), ..., @, (L, 8,2); I; = ae, ..., I§"’); t,(x)

are scalar functions, ¢ = 0, -1, +2,....

An analogous problem has been considered in [1], but for systems of
ordinary differential equations. The paper [6] is devoted to the problem of
finding periodic solutions of integro-differential equations without impulses.

Let the following conditions (A) hold:

Al. The functions f(t, x,y), ¢(t, s, ), I(x) and ¢,(x) are defined and
continuous with respect to their arguments in the region

() ¢ = RXRXD,XD,,
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where D, and D, are closed and bounded sets in the spaces R" and R™, respec-
tively, R= (—oo, +c>o).

A2. The functions f(f, x, y) and ¢(t, s, ) are periodic with respect to ¢, s
with a period 7'. ‘

A3. There exists a natural number p such that

(3) Iy o) = Ii(=), tipp(®) = ti(z) + T .
A4. The functions f(t, z, ¥), ¢(t, s, ) and I,(x) satisfy the inequalities
e, = ) — f6. 2, )| < Ky ] — 2| + Ky |ly — o)
@) lott, 2, 2) — gt 5, 2)]| < Ky |le — /|
li(@) — I@)|| < K, [Jo — 2]
in the region (2), uniformly in t€R, s€R, ¢=0,41,+2,..., where
K pJ=1,2,8,4, are positive constants.

A5. The surfaces ¢ = t,(x) are given by the continuously differentiable
functions in D, and '

)

<N, N = const. > 0.
ox

(5) sup

x¢Dy

Consider first the problem for existence of 7'-periodic solutions of the
system (1) in the case when the instantaneous change of the state of the system
occures at fixed moments, i.e. the hypersurfaces { = #,(z) are hyperplanes of
the type ¢ = ¢,. Then for each two solutions the moments ¢ = ¢#; only the values
of the jumps at these moments are different and the system (1) can be rewrit-
ten as

t
& = (¢, , j o(t, 8, x(s)) ds) , =t
(6) 0

Ay, = Ii) .
As it was noted in [6], the periodic solutions of the integrodifferential

equations have a specific character. A necessary condition for existence of
periodic solution is the equality

: . T
(7) 10, (0), 0) = (0, p(0), § (T, s, p(s)) ds) .
0
Particularly, (7) will hold if the following relation holds for each ¢:
T
(8) § olt, s, p(e)ds = 0.
0

We need the following conditions (B) as well:
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B1. There exists a nonempty closed set D, < D, contained in D, together

Mi 4
with its Y (1 + —Eg neighbourhood, where

(9) M = sup ||f(¢,x, 9)|| + max sup || Ifz)||
- telo, Tl 1<i<p x€ D1
» x€D1,y€ D2
B2. The constants K »7=123,4 satisfy
(10) % [Kl + K2K3TJ +2pK,<1.

Then the following theorem can be proved:

THEOREM 1. Let the conditions (A) and (B) hold for the system (6). Then,
if this system has a periodic solution x = y(t) with @ period T, having value t = 0
at 2 € Dy and such that (8) is fulfilled, this solution is a limit of a uniformly
convergent sequence of periodic functions {x, (¢, 2,)} given by the relations

t T
(11) xm+1(t’ xo) =%, +Oj {f(r! xm(fr xo)’oj [‘P(T: $, xm(’s’ xo)) -

- (P(‘t, 8, xm(s, xo))]ds) — f(":’ xm(r’ xo)ré‘ [‘P(T: 8, xm(s’ xo)) -

- (p(‘[, 8, xm(s, xo))]ds)} dz + 2 Ii(xm(ti - O)) - tI(xm(ti - O)) ’

o<tfi<t

f (r, x(r),aij)(t, s, x(8)) ds) = -Tl—jf (1:, :c(t),oj o(7, 8, 2(s)) ds) dr,

T
(T, s, x(?))—z —;—' Jq)(r, 8, x(8)) ds ,
(1]

Tl — 0 =7 3 Ifatt; — 0).

0<t;<T
Proor. Each of the functions of the sequence (11) is 7'-periodic with
respect to £. For x, € D, from Lemma 1 of [2] for ¢ € [0, T'] we get

(12) || 2(t, B) — % || < Ma(t) + 2pM
foreachm =1,2,3,... where

(13) alt) = 2 (1 - }t—) %
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- From (12) and (13) we obtain

MT

(14) |lm(E: o) — ol S% + 2pM =—— (1 + 4—p] .

T

From the last estimate it follows that foreachm = 1,2, ...; ¢ € R (from the
periodicity) and for each z, € D, the functions z,,(t, 2,) exist and belong to the
set D,. : '

Now we prove the convergence of the sequence (11). For this purpose
we estimate the expression

“xm+1(t: xo) - xm(t’ xo)” *

For m = 0 from (12), (18) and (14) we have

mT 4
(15) st ) — ol < Mat) + 2pM <= [1+ ?p) = ,.

For m = 1, using Lemma 1 from [2] and the inequalities (4) and (15)
we get

¢
flo(t, 2o) — 24(¢, 2l < (1 "“%) f {Kyll2s (7, 2o) — 2] +
0

+ K [ [g(x, 5, s, 7)) — (%5, 305, 2o)) }ds — of [9(%, 5, @) —
0
. y T T
- (p(‘t, 8, ‘”o)] dSH} dz + &,—f {Kﬂlfﬁ(f, xo)_xo” +K2”f [(p(’t, 8, xl('s’ xo)) -
t )]

- (P(T’ 8, xl(si xo))] ds — jt[¢(t’ 8, xo) - qm’_a;)] ds”}dt + 2pK4M1 < )
0

t T
<f-7|f {Kluxl(r, 70 — 2ol + Klaf1 — 7 [ lewtosz0) — ol ds +
0 ‘ 0

T T
t ,
+ KT f s, 20) — 2 ds} ao+ o | {Klnw, z0) — 7o) +
T t

T T
+ KKy (1 - %] f ll2s(s, &) — ol ds + KzKa_TT—J [[€1(s, o) — o] ds} drv +
0 T

K,K,T

+ 2pK M, < [K1 + } Mya(t) + 2pK M, <

+ 2pK, M, = M,.

- ( K, . KT ) M,T
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Hence
K,K,T
2

M,T

(16)  [lxy(2, 7g) — 242, )| < (K1 + S + 2pK,M, = M,.

Assume that for some m the following inequality holds:

K2K3T) M, T
2 2

(A7) |z, 2o) — Tp—a(E, o)l < (Kl + + 2pK,M,, =M, .

For m + 1 we find, using Lemma 1 from [2] and the inequalities (4) and
(17) that

t
t
"xm+1(t! xo) - xm(t’ xo)" g [1 - 'E,'] f {Kluxm(n ‘”o) - xm—l('[’ xo)" +
0
T T
T
+ K2K3 (1 - %] J ”xm(s’ xo) - xm—l(s’ xo)” ds + K2K3FJ "xm(sr xo) -
0 . T

T
t
- m—1(s! xo)" ds} dv + EJ Klllxm(":’ xo) - xm—l(t’ xo)” +
t

T T .
T T
+ KKy (1 - ;) [ tntor 20 — matoanlde + Kok j [[mf, ) —
0 T
K. T
— Xy (8, Z0)|l ds} dr + 2pK,M,, < [KI + —Igz—z—?'—) %z+
+ 2pK4Mm = m+l

By the method of the mathematical induction we conclude that, for
eachm=20,1,2,...,

sl ) — Zlts )| < [-7'2— (Kl + M) + 2pK4] M, =M,
where
M, = }-[5@ [1 + %{ij ’
M, =[§[K1+ Kf"'T} + 2pK4;m_1—ﬂg 1+ %pJ .
Hence, the last inequality can be rewritten as
(18) [malhs 20) — ity o) g-Mz—T (1 + 2 [% (Kl + —{{2}2{—3"") + 2pK4]m :

2 Periodica Math, 18 (2
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Then for ||, (£, %o) — #,,(t, %,)|| we obtain the estimate
ot 2 — it 2l < 22 1 1 42) |5 %+ ) 4 om]'x
(19) 1_[;(K1+£§£) +2PK4]

[ )

b

from which, by the condition B2 the uniform in (f, 2,) € RX D, convergence
of the sequence (11) follows. If we denote z_ (¢, ) = lim z, (¢, ;) then the
following estimation holds: m= e :

{5 5]

2
e B ]

(20) ”x,,(t, xo) - xm(t: xo)” g

Tending to the limit in (11) m — oo we get that z_ (t, #,) is a periodio
golution of the equation

) t T
(b, 2o) = @y + § {{(7, 2(7, %,), { [0(v, 5, #(s, 25)) — ¢(7, s, 2(s, z,))] ds) —
(1] (1]

(21) - f(ts x(ty xo), S [(P(T, s, x(S, xo))) - (P('C, S, x(s, xo))] dS)} dt +
0

+ 3 Lzt — 0)) — tL(x(t; — 0)) .

O<ti<t

On the other hand, since the function y(f) is a periodic solution of the
system (6), for which (8) holds, then from Lemma 1 of [1], the function will
satisfy the condition:

T

T
7t (t,«pm, [ ot vien 2 drt o 3 I —0) =o.
o

0<t;<T
0

Hence y(f) is a solution of the equation (21) as well.

In order to complete the proof we have to show the uniqueness of the
solution of the equation (21). Assume the opposite. Let x(z, 2,) and (¢, z,) be
two solutions of (21). Then for their difference we have
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‘

t ! .
lett, @) — 2(t, )| < (1 ~ tﬂ j {Klllx(r, 20) — 2z, )| +
T ° : T
+ KzKa(l ~ —;—,J f llx(s, 2o) — 2(s, o)l ds + K2K3-;7 J lle(s, xq) —
0 ) x
T
— (s, 2| ds} i+ | {Klnx(r, ) — ot 2l + KK 1~ 2 x
t

T T
x j Jete, 79 — lo, ol s + Kok [ Jols, ) — o, ) ds} dv +
0 T

+| = Bt — o) — et — o) — ¢ Tl — o) + tT6E — ) ”

o<li<t

Introduce the notation
(e, @) — 2(t, 2l = r(2), |r(B)]o = max | ()]

Then (22) can be rewritten as

1— %) f ‘{Kllr(t)lo +
0

K,K,T
2

(23) ") < %’S“E

It |o} d +

T

+ Et; f {Kﬂ"(t)lo + "”(t)lo} dr + 2pK,|r(t)], <
{ .

< (K1 + ‘I*{%gl '22’“ lrt)|o + 20K,|r()]o =

T
=[? K, + &sz_:,@’_] + 2PK4] [r®)lo -

If we replace the right hand side of the inequality (22) with the right hand
gide of the inequality (23) and continue this process further then, after the
m-substitution we have

EA ng

w0 < [Z (&, + 2pK4]m_1|r(t)|o,

which implies:

m
4

kol <L (&, + Kl 2pK] ol

2%
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Tending to the limit with m — oo in the last inequality from B2, we get
[r(t) |[o = 0, i.e., 7(t) = 0. The proof of the theorem is complete.

Consider the problem of existence of periodical solutions of the system
(6). Denote by A(z,) the expression

T t
(24) Amy) = —;,— J f (t, T (¢, %), f p(t, 8, 2. (s, o)) ds| dt +
0 0
+ L S Izt — 0),2)
T 0<t;<T

where 2_(t, z,) is the limit of the sequence (11).
Since z_ (¢, z,) is a periodic solution of the equation (21), then for
A(zo) = 0 and

o(t, s, z..(s, %)) = 0

the function z_(¢, x,) is a periodical solution of the system (6). In such a way
the existence of periodic solutions of the system (6) is connected with the
existence of zeroes of the function A(z,) and with the relation ‘

o, 8, T (5, %g)) = 0.

However, to find the function A(z,) is practically impossible. Then the fol-
lowing problem arises: how, using the function

T t
(25) Al = %j 16, it 20, j«p(t, 5, (s, o)) ds) dt +
0 0

LS It — 0,2 ,

+
T O<t;<T

to conclude about the existence of zeroes of the function A(x,). -
The following result holds:

THEOREM 2. Let the following conditions hold:

1. The conditions (A) and (B) are fulfilled.

2. For some integer m > 0 the function Am(xoy) has an isolated singular
point: A,,(x° = 0.

8. The index of this point is different from zero.

4. For each x4 € D, uniformly in ¢ € [0, T] there exists

T
Lim @t s, Tnu(s, %) ds = 0 .

m-—soo 0
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For this m for which Condition 2 holds, the condition

(p(t, 8, xm('g’ xo)) =0
i8 fulfilled.
5. There exists a closed convex region D < D, with a unique singular point
20 such that on its boundary the following inequality holds:

inf || 4p(2)l| >
x€l'p )
m
_l'_{[_zl (1 + .:1_2] (Kl + M + 2pK4] [g [Kl + KszT + 2pK4
> 2 T 2 2 2
1 _[E [K1 + _.I_{zK_ﬂ_,.] + 2pK4]
2 2
Then the system. (6) has a T'-periodic solution x = x(t), for which z(0) € D.

The proof of this theorem is analogous to the proof of Theorem 1 from
[8] and uses the inequality v
| Ag) — Amlzo)l|l <

MT (. 4p K,K,T T K,K,T m

= 1+ 2K, + =223 4 oK —|K, + =23 20K

> +T,[ 1t +p“)[2‘1+ 2 )+p"‘]
o

Consider now the equations with a general impulse effect. Let the impulse
effect occurs when the mapping point reaches the hypersurface ¢ = #,(x). Then
the system (1) differs essentially from the system (6). In this case we cannot
use an iteration process since at each step the function x, (¢) has discontinuities
different, in general, from the discontinuities of the function z,,_,(f). Moreover,
in the system (1) it is possible to get ‘rolling’* of some of its solutions on the
surface ¢ = #,(z), i.e., reaching of the same surface by the same solution several
times. We assume that there is no “‘rolling’* of the solutions of the system (1)
on the surface ¢ = ¢,(z), i.e., the solution goes through every surface only once.
For that purpose we need some additional ssumptions for the functions #,(x)
and I;(x) which are given by the following lemma:

<

LrmMa 1 (see [4]). Let the function I;(x) and #,(x) in the system of equa-
tions (1) satisfy the conditions (A) and (B) and the inequality

(26) sup <M_)_) R Ii(x)> <0
0<o<1 ox

forall i=1,2,...,p and z € D,. Then for sufficiently small N the solutions
of the equation (1) pass every surface ¢ = t(x), 1 = 1,2, ..., p only once.
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Further we consider such equations only, for which the conditions of
the Lemma 1 hold.

For constructing a periodic solutlon of the system (1), we proceed as in
[1]. We fix p points e D, j=12,...,p, and build a sequence of 7'
periodic functions

¢
(2T) Tpplt, Tg, 20,29, . .., 2P) = @+ [ {f(7, 2p(7, Tp, 20,29, ..., 2P,
0

{ [@(7, 8, 2m(s, 2o, 20,29, . . ., 2P))—0(7, 8, Ty(s, 7o, 2D, 2D, ..., ZP)) ] ds —
[

— (T, 2T, 2, 20,29, .., 2P), [ [p(7, 8, 28, 2o, 20,20, ..., ZP)) —
0

— @(7, 8, X8, %, 20,29, .. ., ZM)]ds)}dr + 3 I,(z0) — ¢I(z9).

O<hi(zO) <t

If this sequence cdnverges uniformly in ¢ € [0,7'] then the limit function
z (¢, T4, 2, 2@ . . . 2P) is a T-periodic solution of the system of equations

t
(28) T = f(t, x(t)’ 5 [(P(t, 8, x(s)) - ‘P(t; 8, :E(S))] dS) -

— fit, =(t), f [o(t, 8, 2(5)) — 9, 5, x(s»]ds)——; SLED), ¢ b0

{=1

Atagtry = Li(2D) .

If we choose z,, 2V, z® . . ., 2P from the conditions

t
(29) f(t3 xou(t) Loy z(l) 3 e ey z(P)) 5‘ [?(t, 8, x'c,(s, Zg z‘l), 22, e e ey Z(p))) —_
1}

— 5, 5.6, 2y 20, 2] do) + - ST = 0,

i=1
2D =z, (t(2D), g, 2D, ..., 2P), i=1,2,...,p

where

Pt 8, (8, g, #V, ..., 2ZP)) =0

identically in ¢, then the limit function x_(£, 2y, 27, ..., 2P) will be the
desired periodical solution of the system (1).
In such a way, for proving the existence of 7'-periodic solutions of the
system (1) we need the following:
" 1. Prove the uniform convergence of the sequence (27).
2. Solve the system. (29).
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For getting

(L, 8, (8, 2o, 2V, ..., 2P)) =0

it is sufficient to assume that for every point from D, uniformly in ¢ € [0,7']

T
lim El" olt, 3, 2(8, 2 2D, . . ., &P ds = 0 .

m-—o0

In order to simplify the exposition we assume that p = 1 in the system (1).
Then

(30) I(x) = I(x), t(x) = tx) + T,

and the sequence (27) can be written as

t T
xm+1(t: %y, 2) = %y + (5 {f("» Zn(7, 2o, z),of [o(7, s, T8, T4 2)) —

(B1) — @(7, 8, T(8, %o, 2))1 d8) — (7, Tr(T, Zps 2), § [P(7, 8, Tp(8, 7y, 2)) —
o

— T aG zy M)y de + 3 1) — -1’7 1), o0<t<T

0<t(z)<t
The conditions (29) can be written as

. t
32)  Alzy2) = f(t, Zult, 2y, 2), f o(t, 8, %o (8, %g,2)) ds| + %I(z) —o,

2z = Z,(8(2), %o, 2)
if the condition ‘

P(t, 8, (8, %y, 2)) = O

holds.

From the proof of Theorem 1 it follows that the sequence (31) converges
uniformly for every wx,€ D, and z €D, to the T-periodic limit function
2, (2, @y, 2).

We establish some properties of the functions z,,(t, z,, 2) and z__.

LeMmA 2. There exists a positive constant K' = K'(K,,' K,, K;, K,) such
that for every y, z € Dy, H(y) < t(z) the following inequality holds:
(33) » ”xm(t’ Tos ?/) - xm(t’ Zo, z)" S K’“?j - z"
uniformly in 0 <t < Hy), t(z) <t T foreachm =1,2,....
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Proor. From (31) for m =0 we have

t
e 2 30 — 2 A < (1 = ] [y o1 + Ky 1~ T
0
T T T
X [ty — oo + ko by — all sk + 7o [y —ot + K1 — )
0 T : t

X [y — o + KEs 7 [y — e as) e + Koy — ol <

K,ET

g(l—-;—”f(Kl+ ]lly—z”dr}+ %ﬂx‘ﬁ 5%'5"—) ly — o dv +
0 ‘ ) t

KT
+K4ny—zng[[Kl+ K, )£+

2

K] Iy —

when 0 <t <#y)ori) <t<T.
By the method of the mathematical induction we get that for each
m=12,....
”xm(t’ Zo 3/) - xm(t9 Zos z)” <

From the condition B2 we conclude that

s BEO T

Thus for completing the proof it is sufficient to take

o BEITT > )

2

CorOLLARY. The functions x,,(¢(2), ,, 2) satisfy the Lipschitz condition with
respect to z.
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ProoF. Let z € Dy, 2’ € D, and £(z) < #(2’). Then
(34) l2m(t(2), o, 2) — 2, (8(2"), %o, 2')]| < 2(E(2), T4, 2) —
— Zn(t(2), T 2| + 2mlt(@), T, ') — Blt), 2, 2| <
<K'z — 2 + |lam(t(), 2o 2') — 2mlt(2), 29, )| <

< K|z —7| + MN [2 + _117] Iz — 2] = [K' + MN (2 + %’]"z — 2|
foreachm = 1,2,....

LumMA 3. The function x,,(t(z), %o, 2) satisfies the Lipschitz condition with
respect to z with a constant

N =K +MN(2+%

The proof follows from the uniform convergence of the sequence z,,(¢, %,2)
and from the corollary of Lemma, 2.

If N' <1, the equation z = z_((2),z,, z) is solvable in the form
2z = z(%,). Then the problem of existence of 7'-periodical solutions of the equa-
tion (1) is transformed to the problem of existence of zeroes of the function
A(zx,, 2(x,)) and satisfying the condition

P(L, 8, Too(y, 8, 2(24))) =.0 .

In many cases this problem can be solved using the function A,_(2,, 2,,(%,))
under the condition that

T
lim ?1,' P, 8, (8, To, 2m(T)) ds = 0

m-~oo

0
uniformly in t¢€ [0, 7] where Zn(%,) is the solution of the equation z =
= z,(t(2), 7, 2).

The following theorem is true:

THEOREM 3. Suppose that the following conditions hold:

1. The conditions (A), (B) and (26) hold and N’ < 1.
2. For some integer m > 0 the mapping

Ar(y, Zm(%o)): Dy — R"

has an isolated singular point with a nonzero index.
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3. For each xy € D, uniformly in t € [0, T'] there exists
T

N

lim L ot s, x,)ds =0
m—oo T

0
and for this m for which Condition 2 is fulfilled, it holds

‘P(t, 8, xm(s, Lo, zm(xo)) =0.

4. There exists a closed convex region D C Dy having an tsolated singular
point such that on its boundary I'p, the following inequality holds:

inf [|4,,(xg, Zm(xo)|| >
x€Ilp
MT (. 4p KK T T KT K
2 (+TH'1+ 2 p4[2(1+ 2 )+p4]
1—[—"2- (K1+ (—I—{%"‘T—) + 2PK4]

Then the system (1) has a T-periodic solution x = x(t), 2(0) € D, and this
solution can be found as a limit of the sequence (31).

=

The proof of this result is analogous to the proof of Theorem 1 from [3]

and uses the inequality
14(xg) — Aol <

m
-ilg— 1+ iTI-’—) (K1 + .I_{‘égﬁ + 220K4”—12l (K1 + 52_1%?_) + 2pK4]

<
[ e ) 4 )
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