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0. I n t r o d u c t i o n  

The main purpose of this note is to prove the following finiteness theorem: 

T H E O R E M  0.1. For positive constants D, v, A and A, the collection o f  

dosed, connected Riemannian n-manifolds 3/I" satisfying the bounds 

diam(3//'~) _< D , 

vol(M) _> v , (0.2) 

IRicM,,I _< A , 

and 

iM IRI "12 <_ , 
A (0.3) 

contains at most a finite number,  c = c(n, vD -n,  ,~D 2, A) of diffeomorphism 

types. 

Of course, Theorem 0.1 generalizes the finiteness theorem of the sec- 

ond author,  [C2], which proves the same conclusion under the sectional 

curvature bound, [R I _< A. But in contrast  to the situation in that  case, 

there is no smooth compactness theorem for the space of Riemannian man- 

ifolds satisfying (0.2), (0.3) (compare e.g. [GLP]). In fact, its closure in the 

Gromov-Hausdorff topology contains Riemannian spaces with isolated sin- 

gular points. However, as we explain in Remark 3.2, the extent of the failure 

of the compactness theorem in our setup can be specified precisely in terms 

of a finite number  of additional parameters.  

Partially supported by NSF Grants. 
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Let us recall some previous results concerning the class of manifolds in 
Theorem 0.1. By [GLP], any sequence of closed n-manifolds (Mi, gi) satisfy- 
ing diam(Mi) < D and RicM~ > --A, has a subsequence which converges in 
the Gromov-Hausdorff metric to a length space Moo, with diam(Moo) < D. 
By [An2, Theorem 2.6], if in addition, the remaining hypotheses of Theo- 
rem 0.1 hold, then Moo is an orbifold with at most N = N(n,  vD -n, AD 2, A) 
singular points (the set of singular points is empty if A < di(n, vD -n, AD 2) 
is sufficiently small). Away from these, the metrics converge in the L 2,p 
topology (for all p < oo), and hence in the C 1,~, topology (for all c~ < 1). 
At the set of points of Mi which lie close to the singular points of Moo (rel- 
ative to a suitable Hausdorff approximation) the geometry is not uniformly 
bounded with respect to i. Thus, to prove Theorem 0.1, we must show 
that the degeneration of the metric can only happen in a tightly controlled 
fashion. 

Building on the results in [Anl] and [BKN], Bando has studied this de- 
generation for Einstein manifolds, satisfying (0.2),(0.3); see [n]. In this case, 
the degeneration can be modeled in terms of a finite sequence of rescalings of 
Ricci-flat orbifolds V1,... ,  Vk, each of which is complete and non-compact, 
but well-behaved at infinity (so called ALE or asymptotically locally Eu- 
clidean). In slightly more detail, as indicated above, given a sequence of 
compact Einstein manifolds (Ni, gi) satisfying (0.2) and (0.3), a subsequence 
converges in the Gromov-Hausdorff topology to a compact Einstein orbifold 
V0, with a finite number of singular points {qi}. Near each singular point 
q E {qj}, one can find a suitable rescaling, { r i }  --~ 0 of the metrics gi, so 
that the new sequence of pointed manifolds (~li, ri-2gi, xi), with xi --* q, 
converges in the pointed Gromov-Hausdorff topology to a complete, non- 
compact Ricci-flat orbifold V1, with a finite number of singular points, and 
with 

v IRt n/2 _> 8 ,  (0.4) 

for a fixed positive constant 0 = O(n, vD -n,  AD2). If V1 is not smooth, then 
one can find a second sequence of rescalings associated with each singular 
point of V1, and so on. Using the bounds (0.3) and (0.4), one shows this 

process terminates after a finite number of iterations. 

The topology of the Einstein manifolds Ni, for i sufficiently large, in 
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a Hausdorff neighborhood of the limit singular point, q E V0, is then de- 

termined by a finite sequence of orbifolds, V1, . . . ,  V~, as follows. A neigh- 

borhood of infinity of V1 is diffeomorphic to an annulus about the singular 

point q. Thus one can remove a small ball about q and glue in the orbifold 

V1. This process is repeated on the singular points of V1, and so on. At 

the final stage, one is glueing in smooth manifolds. This determines the 

topology of Ni near q. 

As it turns out, the above description, suitably formulated, is also valid 

for manifolds satisfying the bounds (0.2) and (0.3). (We note however that  

the explicit s tatement of Theorem 0.1 is new even for Einstein manifolds). 

To a significant extent, our argument is inspired by that  of Bando [B]. 

However, partly due to the more general hypothesis IRicM~ I ~ )~, technically 

it is somewhat different. 

There are now numerous examples showing that  orbifold singular limit 

spaces actually occur for sequences satisfying the bounds (0.2),(0.3); see 

[Anl], [H], and Remark 3.6. On the other hand, the degeneration of the 

metric for such sequences is so well-behaved, that  many geometric invariants 

are controlled almost as well as in the case of a family which is C 1,~ compact. 

For example, apart from at most a finite set of eigenvalues which are 

equal to or approach zero, the spectrum on p-forms of (Mi, g~) can be shown 

to converge to that  of Moo (the spectrum of Moo is well defined). Further, 

the number of such small eigenvalues can be bounded in terms of the bounds 

(0.2),(0.3). 

1. T h e  N e c k  T h e o r e m  

The proof of Theorem 0.1 will entail consideration of regions which are of 

three distinct types. These are the regions on which the curvature does not 

concentrate strongly, in L "/2 norm, the regions on which it does concentrate, 

and the regions of transition between those of the previous two types. 

The main purpose of this section, is to prove the technical result, The- 

orem 1.18, needed to handle the transition regions. We will make use of a 

result which concerns the connectedness of small annuli. 

Let Bp(r) (or just B(r))  denote the metric ball of radius r about p. 

In this paper, we will always be dealing with balls such that  for s < r, the 
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closure of Bp(s) in Bp(r) is complete.  Let Sp(r) (or S(r)) denote  OBp(r), 
the set of points  at distance r from p. 

Let A,,,~,(p) (or A,, ,~,) denote  a geodesic annulus.  Thus,  for some 

p E M ,  

A, , , , , (p)  = B p ( r 2 ) -  Bp( r l ) .  (1.1) 

LEMMA 1.2. Given n ,~ , v  > 0 there exist Co = co(n,v~n/2), R' -'  
R~(n, v)~ n/2) > 0 with the following property. Let M n be a Riemanrdan 
manifold such that for all q E M n, 

R/cB,(r) _> - , ~ ,  (1.3) 
vol Bq(r) > vr n , for r < dist(q, OM) . 

Then i f  

s _< c0~ -1/2 , 

RI < R ,  

Rs  < dist(p, OM) , 

(1.4) 

the annulus A,,R, has at most one component whose intersection with 
Sp(Rs) is nonempty. 

Proof: By an obvious scaling argument ,  it suffices to  assume A = 1. Suppose 

there are at  least two such components  {Di}. We may  assume t h a t  if 

C = D1 f3 Bp(�89 then  for any i r 1, 

v o l C  _< volDi  N Bp(�89 . (1.5) 

In part icular ,  

volA,,�89 , _< 2 vol(B(�89 \ C ) .  (1.6 

Now choose a poin t  q E C N S(~Rs)  and note  t ha t  any minimal  geodesic 

?( t )  f rom q to a dist inct  componen t  of A,,�89 , has length a t  most  ~Rs and 
intersects B(s)  for some t @ [~Rs - s, ~Rs + s]. Let A~ denote  the set 

of poin ts  on such 7(t) ,  for t e [u, v]. Thus,  

S(1Rs)  \ C C A~R,_o,]R,(q) , (1.7) 
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while, by the triangle inequality, 

0 A , _  ' R,+,(q) C B(3s) . T~$--o ,T (1.8) 

Putting these together, we obtain 

volA,,�89 volB((�89 \ C) vol 0 
A�89 C(n, coR)R 

< 2 volB(3s) <- volA~189 . .  <- volB(3s) 

(1.9) 

where the last inequality follows from the proof of the relative volume com- 

parison theorem. But the relative volume comparison theorem also gives 

vol A,,�89 R, vol B�89 R, 
> 

volB(3s) volB(3s) 
1 > c(n, Co)vR n - 1 . (1.10) 

The lemma then follows by choosing R' = R'(n,  vA "/2) sufficiently large, 

and say Co = (R') -1. [] 

In the next corollary, the hypotheses and notation are as in the previous 
lemma. 

COROLLARY 1.11. Let qi,q2 6 Sp(r), with r < coR'A -1/2. Then ql,q2 can 
be connected by a curve lying in A~( R,)-~,r, of length at most cl (n, v)~n/2)r. 

Proof: Given Lemma 1.1, this follows immediately from [AG, Proposi- 

tion 1.1], or a similar argument given in [Anl]. 

Before proceeding to Theorem 1.18, we introduce some notation and 

preliminary concepts. 

Let C(Sn-1/F) denote the metric cone on a spherical space form, 

Sn-1/F, where F C O(n) is a finite subgroup, possibly trivial. Thus, 

C(S"-I/F) is isometric to R"/F. Let C~I,~(Sn-I/F) denote the annu- 

lus, A,~,r,(O) C C(S"-I/F),  with center O, the vertex of C(S"-I/F).  In 

the course of proving Theorem 1.18, we will compare certain annuli in the 

manifold Mn, with corresponding "standard" annuli in C(S"-I/F).  
If (M, 9) is the open Riemannian manifold, the metric space completion 

of M is denoted by M and we put 

M~ = {x E M[ dist(x, OM) > e} ,  (1.12) 
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where OM = -M \ M .  

A diffeomorphism of Riemannian manifolds f : (M,g )  --* (N,  h) is 

called an e-quasi isometry if 

e - ' g  < f*(h)  < e ' g .  (1.13) 

Note that  this concept is scale-invariant, in the sense that if one rescales 

the metrics g and h by a fixed common factor, then f remains an e-quasi 

isometry. 
Recall that  a sequence of Riemannian manifolds (Mi,  gi) converges to 

a Riemannian manifold (M, g) in the C l 'a topology if there are diffeomor- 

phisms Fi : M --, Mi  such that the pullbacks, F{gi converge to g in the 
C t," topology on M. 

For fixed (x, e > 0, we define the Cl'~-harmonic radius at p, rH(tx, e,p), 

to be the largest r such that there exists a harmonic coordinate chart, 

r : U --* Bo(r),  with r = 0, in which the metric satisfies 

]gij - 5ij]cl. o < e .  (1.14) 

We now recall the following basic result which is behind the convergence 

theorem of [An2] employed below; see also [Ga] (Theorem 1.15 is not used 

explicitly until Section 2). 

THEOREM 1.15. Given n, v, )~, a, ~, e > O, there exists 5 = 5(n, v, )~a2, (~), 

p = p(n, v, )~a 2, ea -(1+~), c 0 ), such that if (M",  p) satisfy 

then 

vol(Bp(r)) _> v r " ,  /'or r < d i s t (p ,0M) ,  

[RiCM. ]< IX, 

dist(p, OM) > a , 

fM IRI"/  <_ , 

(1.16) 

rhr((~, ea-(l+~),p) >_ a p .  (1.17) 

The foUowing Neck Theorem provides control over the geometry and 

topology of the transition regions. A version of it is given for Ricci fiat 

manifolds in [Anl], [BKN]. 
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NECK T H E O R E M  1.18. Given n, v, A, a, ~, e > O, there exist 5o = 
60(n,v,)ta2,(~,.), c2 = c2(n,v,)ta2,~,e) > 0 and # (v )  �9 l f+, such that 
the followJng holds. Let M "  (n > 3) satisfy 

vol(Bp(r) ) > v r n for r g dist(p, OM) , 

I RicM[ <_ A,  

a < dist(p, OM) ,  

and let A~,.2 (P) C M n, be such that 

(1.19) 

and 

fA IRI "/2 5o (1.21) < 
o 

Then for some F C O(n), acting freely o n  S n - 1  , with IF] < #,  there is an 
e-quasi isometry r with 

A($;1/,+.),.1,~.2(1_.) C r  ( s n - 1 / F )  C A(6;,/ ,_.)r, ,~,. ,(l+,) , 

(1.22) 

such that for all C�89 /F) C C6o,/%1,~r,.2 (Sn-1/F ), in local normal 

coordinates (based on a [rame), one has 

- 6 , 1c,.o < (1.23) 

Proof: By scaling, it suffices to consider the case a -- 1. 
The proof is divided into two claims. 

C l a i m  1. There exist 50, c:, # such that  for each r as above (1.22), (1.23) 
hold for some r : C�89 --* A6~1/~. ,,.~,.~, where a priori r F~ 

might depend on r. 

C l a im  2. The subgroup F.  is independent of r and (after slight modifi- 
cation) certain of the individual maps, Cr, can be pieced together to yield 

the map, r of (1.22). 
Claim 1 is proved by contradiction in the following four steps. 

r2 < c2a , (1.20) 

rl _< 50r2 , 
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Step  1. (Construction of a fiat model Boo). 
Suppose Claim 1 is false. Then for some e0, there exists a sequence 

of Riemannian manifolds (M~,gl) and annuli A i �9 (6~)_,/,~1,~,~ C (Mi,gi) 
satisfying (1.20), (1.21) for some sequences {r~}, {r~} --~ 0, {6t} --* 0, such 

that some sub-annuli, Ai -- A�89 with rescaled metrics, r~-2gi, are not 

e0-close, in the C 1'~ topology, to annuli in any cone C(Sn-X/F). 
For each such Mi, we pick a base point xi E S(ri). Then there exists 

a subsequence of rescaled manifolds (M n, r~-2g, xi) which converges in the 

pointed Gromov-Hausdorff sense, to a complete length space, Boo. The 

arguments of [An1] or [BKN] show that Boo is a Ricci flat manifold with at 

most a finite number of singular points, ql ""  qN. 

Let poo be the limit of the center points, pi, of the annuli. Possibly one 

has poo E {qj} but in any case, there are no other singular points in Bp•(2). 
Away from the singular points, the convergence is actually in C l 'a NL 2'p, for 

all p. By taking p = n/2, we see that Boo is flat at points of B p . ( ~ )  \poo. 
From the unique continuation property for Einstein metrics, it follows that 

Boo \ t3qj is a fiat manifold. 
We will prove in Steps 2-4 that Boo is isometric to the cone on a 

spherical space form, C(Sn-1/F) with IFI < #(v)  (in particular there is 

just one singular point, qj = ql). By a standard (and obvious) argument 

this leads to a contradiction, thereby proving Claim 1. 

S t ep  2. (Local connectedness of Boo \ qj). 

It follows immediately from Corollary 1.11 that for all qj E Boo, there 

exists a neighborhood basis of open sets, V, such that V \ qJ is connected. 

S tep  3. (Tangent cone analysis). 

We will prove that for any singular point, qj, there exists U C Boo \ qJ, 

with qj E U, such that  zl(U) is finite. In fact, 

l  (U)l __ #(v) .  (1.24) 

To prove (1.24) we examine the tangent cone to Boo at some qj. First, 

note that since Boo is a rescaled limit of smooth manifolds satisfying (1.20), 

it follows that for any geodesic ball, B~(r) C Boo, 

vo lB, ( r )  < c3 , (1.25) c31 < - 
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where c3 = Ca(V, a2/~) ~> 0. Similarly, the ratio, 

v(r) = volB, ( r )  
r'* ' (1.26) 

is monotone nonincreasing in r, since (by the Bishop comparison theorem) 
the ratio is almost monotone on each (Mi, r~-2gi). 

Now let T be a tangent cone of Boo at qj. Thus, T is a limit as 

si --, 0, (in the pointed Gromov-Hausdorff topology) of a pointed sequence 

of rescaled spaces (Boo, qj, s'f2gBoo ). Of course, any such T is again a flat 
manifold, with isolated singular point O, and the convergence to T is smooth 

away from O (compare [An2]). 

As in Step 2 above, T \ O is connected. 
From (1.23), one immediately sees that T is a volume cone, in the sense 

that 
volBoT(r) 

= v0 , (1.27) 
r n 

for some v0 and all r > 0. One may then apply for instance the argument 

of [BKN, Lemma 5.13] to conclude that T is a Euclidean cone, i.e. T 

is isometric to C(Sn-1/F(T)), for some F(T) C O(n). Essentially, the 

argument of [BKN, Lemma 5.3] goes as follows. If/5 denotes the distance 
to {O} in T, then from (1.20) and (1.26), one finds that A/5 g n~. 1, while 

the fact that T is a volume cone implies that A~5 = ,,-1~, weakly in ~tocr!'2 on 

T. Elliptic regularity then implies that p is smooth, and from this it follows 

easily that T is a Euclidean cone. 

In the next paragraph, some details are omitted, since the situation is 

essentially the same as in the proof of Claim 2 below, where these details 
are given. 

Since the rescaled convergence to any such T is smooth, away from qj, 
it follows that a punctured neighborhood U of qj in Boo \ qj, is covered by 

a sequence of domains Ci (for i large) each of which is diffeomorphic to, 

and, after rescaling, C 1," close to a standard domain, say, C�89 
Further, Ci C Az-~-2 2-~+~ (0) and Ci N Ci-1 is diffeomorphic to, and after 
rescaling, C1, a close to C�89 and to C�89 as well. In 

particular, Fi = F is independent of i. Finally, the punctured neighborhood 

U is diffeomorphic and quasi isometric to Co,z(Sn-1/F). In particular, in 

view of (1.27), the fundamental group of U satisfies (1.24). 
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Step  4. (Developing map). 

Consider the universal cover U-LU. The developing map j3 gives an iso- 

metric immersion ~ :  U --4 R". Since V is quasi-isometric to Co,2(Sn-1/F), 
there is a unique point ~j in the completion, U, such that the canonical 

extension of ~3 to U carries ~j to 0 E R". The map ~ preserves the lengths 

of geodesics, and it follows that f~ extends to a continuous map ~ : U --~ R n. 

If Sij (s) is the universal cover of Sqj(S), then we see that the developing 

map sends S~ (s) into So(s), the sphere of radius s about 0 =/~(~j). Clearly, 

f~ is an isometric immersion of S~j (s) into So(s), and since S~j (s) is compact, 

f~]Sq~(s) is a covering map onto So(s). Since n _> 3, it follows that/~lSij (s) 

is actually an isometry. Hence/3 is an isometry of U into R n. Thus, qj is 

an orbifold singular point of B~ ,  i.e. qj has a neighborhood isometric to 

Co,2(Sn-1/F). In particular, Boo is a complete flat orbifold. 

According to [H, 13.2.2], a complete flat orbifold, Z, of dimension > 3, 

with singular set, (zj) ,  is isometric to ~" /F ,  for some discrete subgroup 

F C Isom(Rn). (To prove this one observes that the developing map of the 

universal cover of Z \ Uzj maps isometrically and bijectively onto R '~ punc- 

tured at a countable, discrete set of pints {xk). Thus, its metric completion 

is isometric to R'~). By applying this result to Boo and recalling that Bo~ 

has Euclidean volume growth (see (1.25)), w e  conclude that F is a finite 

group. 

We claim that  if F is not trivial then it has a unique fixed point. To 

see this, note that the center of mass of any orbit is a fixed point x0 of F. If 

x ~ x0 is also fixed under the subgroup generated by some h E F, then so is 

the line ~ from x to x0. But then ~/F lies on the singular set in Boo = Rn/F, 

contradicting the fact that the singularities are isolated. Thus, x0 is the only 

fixed point; in fact it is the only point whose isotropy subgroup is nontrivial. 

This proves our assertion that Boo is isometric to C(Sn-1/F). Moreover, 

either p ~  or a point lying outside Bp., (2) corresponds to the vertex. In the 

latter case the injectivity radius at points of Sp.. (1) is at least ~ .  In either 

case Claim 1 follows (note that in the second case the annulus one obtains 

is isometric to a standard annulus in R ~, compare also Remark 1.29). 

C l a i m  2. We have proved that for any e > 0, there exist ~f0, c2, # such that 
1 r the annulus, is e-quasi isometric for any r, with rl~f -1/~ _< r _< ~ 2, A�89 
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and Er - ( l + a )  Cl'~-close to an annulus,  C�89 To see tha t  F ,  is 

independent  of r, take e < e(v) sufficiently small, and  for fixed r, consider 

very close to r. Since, on its maximal  domain  of definition, the map  r162 

is a 2e-quasi-isometry, it follows directly tha t  F ,  is locally constant ,  and 

hence independent  of r. 

Now, let tl = -~ ~ 2 ~ i - 1 _  ( ~ )  r2 and choose fixed maps,  r  -- r  Let 7a : 
C(Sn-1/F) --* C(Sn-1/F), be defined by (r,0) --* (at,6). After succes- 

sively modifying the maps  r Ca , . . . ,  by isometries, we can assume tha t  

the map  (r162 is 2e-close in the C l 'a  sense to the ident i ty  on 

its maximal  domain  of definition. Then  using the isotopy extension theo- 

rem we can modify  (r  so tha t  it agrees with r 
on C~,�89 ( S n - t / F )  and is left unchanged on C~,�89 ( S " - t / F ) ;  compare  [C1]. 

Call the result ing map  r The  maps  r  fit together  to define the  

map r tha t  we are seeking. Moreover, it is clear tha t  ( r  can be chosen 

so tha t  (1.23) holds with e replaced by some e' = e'(n, e), where e' --* 0 as 

e --, 0. By interchanging,  the roles of e, e', the theorem follows. [] 

Remark 1.28: We ment ion  tha t  it is also possible to show by more  el- 

ementary  purely geometric arguments ,  tha t  (1.27) implies tha t  T is iso- 

metric to C(Sn-1/F). Briefly, a volume comparison a rgument  shows tha t  

each y G T \ O lies on a unique ray emanat ing  from {O}. Then  the  basic 

construction of totally convex sets for complete manifolds of non-negative 

curvature can be used to show tha t  geodesic balls are total ly convex. This  

implies tha t  there are no geodesic loops on the vertex, from which the  claim 

easily follows. In particular,  one may  bypass the use of elliptic regularity. 

Remark 1.29: Let (N 4, g) be an ALE manifold. As i ~ oc, the sequence of 

(suitably) poin ted  manifolds, (N 4, i-4g), converges in the Gromov-Hausdorff  

topology to a cone, C(S3/F). Thus,  for i large, we may speak of points  in 

(N4,i-4g) which lie at distance approximately i -1 from the vertex. By 

considering such a sequence, pi G (N 4, i-4g), it becomes clear why  the 

outer radius of the  annulus  in Theorem 1.18 must  be chosen to be (roughly) 

< JL-- r - #(v) 2. More-or-less equivalently, the  second possibility at the  end of 

Step 4 above cannot  be ruled out.  However, this case does not  occur in the 

application to the  proof  of Theorem 0.1 given in w where the  points  pi are 

points of "maximal  curvature concentrat ion".  
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Remark 1.30: The proof of Theorem 1.18 uses the rigidity of flat structures 
in dimensions > 3, in Step 4. However, it is straightforward to formulate 
and prove a version of Theorem 1.18 valid in dimension 2. 

2. F in i teness  and Control led Degenera t ion  

Let M = be a manifold satisfying the conditions of Theorem 0.1. To prove 
Theorem 0.1, we will decompose M "  into a definite number of regions of two 
different types. These are (mutually disjoint) connected regions, y~, whose 
geometry and size become bounded after suitable rescaling of the metric, 
and neck regions, e~ (as in Theorem 1.18) which connect pairs of regions 

The pattern of connections is that of an ordered tree whose vertices 
and edges, denoted g and ~ ,  are in 1-1 correspondence with the g ,  e~. 
Here, ~ is the final vertex of ~ and y~ intersects the smaller of the two 
boundary components of the neck e~. Also, 4 ,  -1 is the initial vertex of 

j-1 and Yt, intersects the larger of the two boundary components of e~. 
The region y0, corresponding to the initial vertex, ~0, has bounded 

geometry and a definite size. The rescaling factor for the region y~ is the 
smaller radius rl,  of the neck e~. Alternatively, this factor can be taken as 
the larger radius, r2, of any neck ~t,~J+l, such that  ~it is the initial vertex of 

To obtain the above decomposition, we proceed as follows. 
Fix c~,e > 0. Let ~ = ~ (n , v , $D2 ,a )  be as in Theorem 1.15. Let 

~o(n, v, SD 2, ~, E), c2(n, v, $ 0  2, ~, e) be as in Theorem 1.18. Put 

= 51 . (2.1) 

Let X C M "  be open. Assume 

x lR[ /2 > 2 1, (2.2) 

and 
T. IRln/2 -< 

(ax) 
(2.3) 
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where 
T~(OX) = {p e MnI dist(x,OX) < ~/}. (2.4) 

Let d(p) = dist(p, OX) and let r(p) be the largest radius < d(p), satis- 

fying 

/B,(,(,,)) IRI"/~ < Ix IRI:'/~ - '~'" (2.5) 

Further, let s(p) be defined by the equality 

B ]RIn/2 = 51 (2.6) i 

,(,@)) 

Fix a, to be determined later, with 0 < a < ~//4. Then the X belongs 
to exactly one of the following three cases. 

Case 1. s(p) > a, for all p E X.  
If, on the other hand, s(p) < a for some p, then (with the notation of 

(1.12)) for any such p, 

and by (2.2), 

p E X�88 

1 
s(p) <__ T7 

(2.7) 

s(p) < , ( p ) .  (2.s) 

Case 2. For some Po E X,  s(po) < a, while r(p0) _> 2a. 
We consider the annulus A0 = Aa,2a(P0) C X and note that 

Ao IRI"/2 --- fx IRI"/2 - 2~1. (2.9) 

Set A0 = fAo IRpI2 and let [x] denote the greatest integer contained in x. 
The annulus Ao can be divided into 1 + [~]  concentric annuli {A'} ,  i = 

1,. . . ,  1 + [ ~ ] ,  ofinner and outer radii a ( l +  z+[Aol6ql-z ) and a(1 + z+[^o/611),' 
respectively. It follows that there is (at least) one annulus AJ E {A i} such 
that 

AJ IRI"/2 < ~1 (2.10) 
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We may  then  divide X into domains X1 and X~. wi th  

�9 1 

1 4: rZ07~] ) 

). 
1 + [Ao/~d 

Note tha t  

for i = 1, 2 and  

X1 = {x E X :  dis t (x,po)  < a(1  + 

X2 = {x e X : dis t(x,p0)  _> or(1 + 

where 

fx,  IRI"/= < Ix  IRI"/~ - ~ ' 

(ox4 

b= 2a(1  + [Ao/51]) -1 . 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

C a s e  3. For all p E X ,  s(p) <_ a and r(p) <_ 2a. 
Note  tha t  in this case, 

Bp(r(p) ) C X�88 . (2.15) 

LEMMA 2.16. There exist constants w(n,v,)~rl2), ~(n,v, Ag 2) > 0 and 
~ ( . , v , ~  2) > 1, such that/fr(p) takesits  minimum at pl ,  and r(pl) < ~ ,  
then 

x IRl"n ~ ~ (2.17) 
\Bpl (~ ~(pl) ) 

Proof:  By scaling, it suffices to consider the  case ,7 = 1. The  a rgument  is 

essentially the  same as one already given in the proof  Cla im 1 of the  Neck 

Theorem,  to which we refer for further  details. 

The  proof  is by contradict ion.  If the l emma is not t rue,  then  there exist 

sequences (X~,p~,gi) as above, with  wl -+ 0, ~i --+ 0, #~ --+ 1, such t ha t  

x IRI"I= < e~ I 

By definition, this  implies t ha t  

A JRJ"I= >- ~1 - 8~ 

(2.18) 

(2.19) 
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so that curvature is concentrating on the sphere of radius r(p~) about pl.  
X i r  i - 2  Consider the sequence ( i,Pl, (Pl) gi). A subsequence converges to 

(Xoo,poo, goo), which is a complete Ricci-flat manifold with a finite number 

of isolated orbifold singularities. 

By (2.18) and [An2], the convergence is smooth on the interior ~ of 

Xoo \ Bpoo (1), so that  in fact 

f lRI /2 = o .  (2.20) 

By the unique continuation property of Einstein metrics, this implies that  

Xoo is actually flat away from its singular points, all of which are located 

in the closure of Bpo o (1) C Xoo. 
Since the flat orbifold, Xoo, has Euclidean volume growth, Xoo has at 

most one singular point, qoo. 

There is at least one singular point on Spoo(1). For if not, by [An2, 

Remark 3.3] the convergence of Xi to Xoo would be smooth in a neighbor- 

hood of Sp~ (1). Thus, the L "/2 norm of curvature on neighborhoods of 

Sp~ (r(p~)) would converge to 0, contradicting (2.19). 

Since the convergence of Xi to the flat orbifold Xoo is smooth away from 

its singular point qoo, it follows that  all of the L "/2 norm of the curvature 

of Xi is concentrating near qoo. This however contradicts the definition of 

{p~} (converging to poo), as the sequence of points of 'maximal'  curvature 
concentration. [] 

We now fix a by put t ing 

1 
a = ~-6~/. min(w,$0Cz) , (2.21) 

where 80, c2 are as in (1.20) of Theorem 1.18. 

We now divide the region X into domains Z1 and Z2 with 

Z1 = {x �9 X : dist(x, pl) ~ # r (p l )}  , (2.22) 
Z2 = {x  �9 x : dist(x,pl) _>/~ r(pl)} �9 

Since by (2.8), s(pl) < r(pl),  the above discussion implies 

~-< L IRI"/~ -</x IRW2-0, (2.23) 
1 
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and 

Note that 

where 

e <_/z IRI"/2 <- ~ " (2.24) 
2 

fr, IRI"/2 <- 61 , (2.25) 
,(OZD 

b' = (#- I) r(pl) . (2.26) 

We now return to consideration of the manifold M", itself, which we 

decompose as follows. 

If fM IRI "/2 -< 261 or if M" is as in Case I, no further decomposition 

is required. 

If M n is as in Case 2, we write M n = XI U X2 as in (2.11). We 

set aside those Xi (i = I, 2) which are as in Case 1. If there are any Xi 

(i = 1, 2) which are as in Case 2, we again subdivide their interiors as in 

(2.11). It follows from (2.12), that by continuing in this way, after at most 

N(61, A) steps, we obtain a decomposition of M n into closed domains, with 

disjoint interiors, each of which is either of the type considered in Case 1 or 

in Case 3. A typical domain is denoted F ~ if it is as in Case I and by V ~ 

if it is as in Case 3. 

Suppose that M itself is as in Case 3 or that M is as in Case 2 and we 

have arrived at the decomposition 

M = (UkF~) U (Uk V~) (2.27) 

of the previous paragraph. For each domain, V ~ write 

V ~ = Z~ U Z ~ , (2.28) 

as in (z22). 

We temporarily set aside the domains Z~. Each domain, Z ~ can be 

decomposed as 

Z~ = G I u e I U W ~ . (2.29) 

Here, e I is a maximal neck as constructed in Theorem 1.18. Also, G I is the 

component of Z ~ \e I which intersects the corresponding sphere, Sp, (ju r(p,)) 
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(see (2.22)) and W ~ is the remaining component of Z ~ \ e 1. Note that  W ~ 
is of the type considered in Case 1. Pu t  

= u (uW~ (2.30) 

It is easy to see that  y0 is connected. 

Now, start ing with each of the domains Z~, we repeat the process just 

described. Thus, we decompose each Z~ as a union of domains of type F 1, 
Z~ = G 2 U e 2 U W 1 and Z12. We write 

= u u (ukw ), (2.31) 

where by definition, the sets y~ are the components of the set on the right- 

hand side of (2.31). 

By continuing in this fashion, we obtain a decomposition of M into a 

definite number of domains, y~, and necks, e~, where 

Z2 j = G 1+1 U e j+l U W j , (2.32) 

and 

U,y~ ---- ( Uk G{ +I) U (UkF~)U (U~W~) . (2.33) 

Using (2.12), (2.23) and induction, it follows that  the total number of do- 

mains so obtained is at most, N(St,  A0). It is clear by inspection that  for 

j > 0, each yJ meets a unique neck, e~, a possibly empty set of necks, ~j+t t:i~t , l 
and no others. 

We are now in a position to prove Theorem 0.1. 
We will say that  the C 1'~ geometry of a subset, K C M,  is (Q, e, C, r) 

controlled if 

i) there exist C 2'~ coordinate charts, Cj : Uj ---* Bo(r), Q in number,  in 

which the metric satisfies 

[g~i - ~i~[c,,- _< E, (2.34) 

ii) The transitions maps are uniformly bounded by C in the C 2 ' '  norm in 

these coordinates. 
iii) K C UjCj - l (B0( l r ) ) .  
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Proof of Theorem 0.1: By using Theorem 1.15 (see also (2.13), (2.25)), 
a standard covering argument (compare JAn2]) and induction, we easily 
obtain the following. There exist constants Q = Q(n, vD -n,AD2,~,e),  
C = C(n, v, )~D 2, (~, e), v = v(n, v, AD z, ~, e) such that with respect to the 
rescaled metric, r~-2g, the region y0 is (Q, e, C, v)-controlled, and the regions, 
g,  are (Q,e, C, v)-controlled. Here, r l  = rl(e~) is the smaller radius 
corresponding to the neck, e~. Also, if e~ +1 is any neck meeting y~, it is 
clear that 

r2(e{ +1) >_ prl(e{) ,  (2.35) 

for some p ---- p(n, v, )~D 2, (~, e). Thus, the above control could be expressed 
in terms of r2(e~ +1) as well. 

Finally, let r denote the map of (1.22) parametrizing the neck e~ and 
let r denote a harmonic chart corresponding to the covering providing the 
control of yJ Then with respect to the rescaled metric, [rl(eit)]-2g, on its t "  

maximal domain of definition, the map, r162 satisfies 

Ir162 < c ,  (2.36) 

(C = C(n, v, AD2,~,e)). Similarly, if r parametrizes a neck e~ +1 meeting 
y~, then with respect to the rescaled metric, [r2(eie+')]-~g, 

Ir162 _< c .  (2.37) 

These estimates follow directly from elliptic regularity theory (and the con- 
struction of r (compare JAn2]). 

Now the conclusion of Theorem 0.1 follows by an obvious modification 
of the standard proof of the finiteness theorem (compare [C1]). The point 
here is that M is covered by a definite number of bails and necks and that 
all change of coordinates maps are C2+a-bounded after rescaling by the 
inverses of the radii of the balls, o 

3. F u r t h e r  R e m a r k s  

Let (Mi, gi) be a sequence of metrics satisfying (0.2) and (0.3), converging in 
the Gromov-Hansdortf topology to an orbifold (V0, g), as in the introduction. 
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Remark 3.1: To see how the Ricci flat ALE orbifolds arise in this degen- 

eration, choose a singular point q e {qk} = (Vo)olng. As in the discussion 

of Case 3 and Lemma 2.16 above, there are points pl E Mi, (converg- 

ing to q) and a sequence rl = ri(pl) --* 0 such that  the rescaled sequence 

(Mi, Pl, ri-2gk) converges to a complete Ricci-flat ALE orbifold V1 (= V1 (q)), 

whose end is asymptotic to C(S"-x /F) ,  for some F, and whose singular 

points lie in the closure of Bp**(1), with poo = limp/,  in the Gromov- 

Hausdorff topology. By the discussion of Case 3 above, small annuli about 

Pi E Mi are also diffeomorphic to an annulus in C(Sn-1/F) ,  so that,  to a 

first approximation, the topology of Mi near {q} is that  of V1. Now for 
2 each singular point q2 E {q~} C Bp| C V1, define the sequence r i as 

previously to replace a neighborhood of q2 in V1 by another ALE orbifold 

Vz (= V2(q2)); this gives a 2 na order approximation to the topology of M 

near q2; etc. The proof of Theorem 0.1 shows that  this process terminates 

after a finite number of iterations. In fact, at the last stage, one is glueing 

in a smooth Ricci-flat ALE manifold V,~. 

Following the work of Sacks-Uhlenbeck on minimal 2-spheres, each ALE 

orbifold V/arising from a singular point of a previous orbifold Vj_I is known 

as a bubble. To each bubble is associated a scaling sequence, {rJi}, or more 

briefly, a scale, with {r~} --* 0 and _i /_j-1 __, O. I i / r  i 

This process not only determines the topological description of the 

degeneration, but also much of the metric description (see also Remark 3.2). 

For example, the convergence of Mi to V0 is in C 1'~ N L 2,J', for any p < cr 

away from the singular points of V0. Since the integral f IRI"/2 is lower 

semi-continuous in this topology, one finds from (0.3) that  fro IRI "/2 < A. 

By scale invariance, the same is true for each of the orbifolds Vk constructed 

above. From the proof of Theorem 0.1, especially the Neck Theorem 1.18, 

one then easily obtains that  

as well as 
m 

t--~oo J M~ k=O 

where px(r) is the Chem-Gauss-Bonnet integrand. Here, the summation is 
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over all the ALE orbifolds associated with each singular point of V0. Similar 
formulas hold also for other scale-invariant curvature integrals. 

Remark 3.2: Recall that in the situation considered in [C1], [GLP], con- 

dition (0.2) is replaced by the stronger condition, IR] ~ A. In this case, 

one actually has a Cl,a-compactness theorem. Alternatively, if one thinks 

in terms of total boundedness (or more particularly in terms of e-quasi- 

isometry type), then one has the following formulation (in which we assume 
D = d i a n a ( i ' ,  g)). 

Given e, there exist at most N(n, vD -n, ~D 2, e) representative man- 
ifolds, (M[',gi), with diam(M~,gi) -- 1, such that for every (Mn,g) as 
above, (M'*, D-Ug) is e-quasi-isometric to some (M~, gi). 

Inspection of the proof of Theorem 0.1 leads immediately to the conclu- 
sion that in the present setup, this statement has a natural generalization. 

Given e, there exist Nl(n, vD-n, AD2, e) families of manifolds, 

(M~,g~r)), with diam(M~,g~ ~)) = 1, each depending on at most 

N2(n, vD-n, AD2,E) additional parameters, 0 < rt(e~) < 1 (where (r) = 

(r t(e~), . . - ))  such that for any (M",g) as in Theorem 0,1, (Mn, D-2g) is 

e-quasi-isometric to some (Mi n, g~r)). 

Remark 3.3: Let M be close, in the Gromov-Hausdorff topology, to an 

orbifold V0 as above. It is an interesting open question whether a neighbor- 

hood in M,  sufficiently close to a neighborhood of a singular point q E V0, 

admits a complete Ricci-flat ALE metric. For instance this is the case in 

the examples discussed in Remark 3.6 below. In the special case where M is 

a 4-dimensional Kahler-Einstein manifold, Bando [B] has shown the answer 

to be affirmative. 

Remark 3.~: We also point out that for orientable manifolds, if the dimen- 

sion n is odd, then the limit (V, g) is a C x'~ Riemannian manifold and one 
has C 1,a convergence above; see [An2, CoroUary 2.8]. In particular, the fam- 

ily of orientable manifolds satisfying (0.1) and (0.2) with n odd, is compact 

in the C t,a topology. This follows since for n odd, there are no non-trivial 

flat cones C( S'~-t /F), with F ~ (e),  provided Sn-1/F is orientable. (For 

a much deeper result of this type for K~ihler Einstein manifolds of complex 

dimension > 3 and nonzero first Chern class, see [Ti]). 

Note that  in any dimension, if the orbifold limit V0 is in fact a smooth 

manifold, then one has C t ' '  convergence of (Mi, gi) to (V0, g), see also JAn2, 
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Remark 3.3]. 

Remark 3.5: It is interesting to note that  while a bound on the number 

of singular points of V requires control on the total energy f [RI n/2, the 

number of scales at each singular point of V may be controlled by the lower 

bound on the volume, vol(M) _> v (in the presence of arbitrary bounds on 

the remaining quantities in (0.2), (0.3)). This is obtained from the fact 

that there are only finitely many cones C ( S " - I ) / F  with vo l (S" - l /F )  _> 
v > 0. More precisely, since the region of transition between scales (as in 

Remark 3.1) is determined as in the Neck Theorem 1.18, one is reduced to 

verifying that if Y is a complete Ricci-flat, asymptotically locally Euclidean 
orbifold, and there is a point q E Y such that 

lim vol(Bq(r)) _ lim vol(Bq(r)) 
r--*O r n r--*~ r n 

then Y is a cone on a spherical space form. This follows easily from standard 
volume comparison arguments. 

Remark 3.6: We point out that there are numerous examples where this 

hierarchy of scales near a singular point does in fact occur. Perhaps the 
simplest examples are given by the Gibbons-Hawking metrics. This is a 

family, 2", of complete, Ricci-flat ALE manifolds (M, gy), parametrized by 

the configurations of a finite set of distinct points, the center points, {p/}~ E 

R a, see [GLP]. By letting these points converge to a strictly smaller set of 

points {q~) E R 3, one produces the above set of scales. For example, for 

any e < 1, let Pi = e/(1,0,0), i = 1 , . . .  ,N .  Then the corresponding family 

(M, g~) has N distinct scales, each degenerating to a Ricci flat orbifold Vj 

with a single singular point; V0 is the cone C($3/7N) while VN-1 is the 

Eguchi-Hanson metric on the tangent bundle T(S:)  of S 2. 

Remark 3.7: Finally, we note that Theorem 0.1 is false if one relaxes the 

bound IRicMI _< A to the bound [RicMILp _< A, for somep < cr This follows 

from the construction of graph manifolds of infinite topological type, as in 

[CG]; see IV] for further details. 
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