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FOURIER TRANSFORM RESTRICTION PHENOMENA
FOR CERTAIN LATTICE SUBSETS
AND APPLICATIONS TO
NONLINEAR EVOLUTION EQUATIONS

Part I: Schrédinger Equations

J. BOURGAIN

1. Introduction

The main purpose of this paper is to develop a harmonic analysis method for
solving certain nonlinear periodic (in space variable) evolution equations,
such as the nonlinear Schrédinger equations (Part I) and the KDV equation
(Part II).

The initial value problem for the periodic nonlinear Schrédinger equa-
tion (NLSE).

Ayu+idu+ufulff2=0 (p>3) (1.1)

u = u(z,t) is 1-periodic in each coordinate of the z-variable (1.2)
with initial data

u(z,0) = 4(2) (13)

is our first concern.

My interest in this problem results from the paper [LeRSp] of Lebowitz,
Rose and Speer, in particular the first problem raised in section 5 of [LeRSp].
We will obtain here local and global results on the well-posedness of (1.1)-
(1.2) in one and several space dimensions for initial data ¢ € H(T"),
T" = R™/Z" for essentially optimal o, giving at least a partial answer to
the question from [LeRSp]. In the non-periodic case (i.e. R®) the NLSE
has been studied by a number of authors, such as Kato [K1,2], Ginibre-
Velo [GiV], Tsutsumi [Ts], Cazenave-Weissler [CW] among others. It is
known for instance in the R™-case that if a = p—2 = then the NLSE
(1.1),(1.3) has a global solution in time provided ||¢|| 7+ 'is sufﬁcnently small,
see [CW]. The method is based on solving the equivalent integral equation

u(-,t) = U(t)g + z'/ot U(t - 7)(Ju(-, 7)|P~%u(-, 7))dr where U(t) = €2
(1.4)
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by Picard’s fix point method.
The nonlinearity is controlled in the iteration process by invoking
Strichartz’s inequality

2(n+2
“U(')’/’"Lq(dzdt) < Cl¥llLa(dzy) where g = _(_n—) . (1.5)

The main idea here is to try to adjust this approach to the periodic case.

The main difficulties are the following;:

(i) The exact analogue of (1.5) where L(dzdt) is replaced by LI(T"+!)
fails.

(ii) Inequalities of the form (1.5) may in the periodic case only hold locally
in time (global solutions to (1.1), (1.2), (1.3) are not dispersive).
As far as (i) is concerned, consider the case n = 1 with (critical) expo-

nent ¢ = 6 given by (1.5). We will prove the inequality

Z an e2mi(nz+n’t) < N¢ (Z Ian|2)1/2 ) (1.6)

Inl<N

LS(T?2)

The presence of the N®-factor in (1.6) is necessary as will be indicated later

and constitutes a difficulty in performing the Picard iteration argument.
Inequality (1.6) is a statement on the so-called Ag-constant (¢ = 6) of

the set of lattice points {(n,n?) | |n| < N} C Z2.

DEFINITION (cf. [Bol]): Letd > 1 and S a subset of Z¢. Let p > 2. Define

K,(S) as the smallest constant (possibly infinity) satisfying the inequality

Yo e <g(5) (Tlasf)” (L7)

€S

Ly(T4)

for all scalar sequences (a,),es-

Thus (1.6) means that Kg({(n,n?) | |n| < N}) < N¢. In the higher
dimensional case, we will need to consider sets { (¢, [¢]?) | £ € I, || < N},
€2 = 3. €2, and evaluate appropriate A,-constants of these sets. Our

1<i<n
method to achieve this will be ejther simple arithmetic or the analytic Weyl-
sum approach. The results obtained here only cover certain ranges of p and
somehow leave the picture incomplete. Some remaining questions lead to
interesting number theory problems.

In the non-periodic case global results are obtained in certain cases
directly from the fix point method. In particular one gets global solutions
for initial data ¢ € H* with 0 < s < 1. The reason for this is the global
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nature of Strichartz’s inequality. In the periodic case, the estimates are
local in time and hence at this stage only a local solution is obtained. All
global results obtained here result from combining
— existence of local solutions
- conservation laws.
A first conservation law is provided by the L?-norm:
If u = u(z, t) satisfies (1.1), (1.2), (1.3), then

/T Ju(a, ) dz = /T |p@de=N($) forall t.  (18)

Next, consider the Hamiltonian

BW) =3 [ 1VoPds—3 [ Wia)pds (19)
™ pJrn
which is preserved by u(-, t) for varying ¢, yielding a second conserved quan-
tity.

These conservation laws are well studied in the literature and we do
not elaborate on them here. From (1.8), it will be possible to deduce global
existence from local results with L2-data and from (1.9) global solutions
for initial data ¢ controlled in L? and H! in a suitable way (there is a
problem in this context because of the minus sign in (1.9)). In particular,
no global results are obtained here for initial data ¢ € H* with fractional
s. To achieve this in one of the main open problems.

The NLSE (1.1),(1.2),(1.3) in the case n = 1, p = 4 has been studied
by Zakharov and Shabat [ZS] using the method of inverse scattering. In
this case the NLSE is shown to be integrable and global solutions may be
obtained for L2-data. We will obtain here another (harmonic analysis) proof
of this fact based on the method described above and the L2-conservation
law.

By “well-posedness” we mean existence, uniqueness and persistency of
solutions in an appropriate function space in the (z,t)-variable. Here are a’
few examples of results obtained in the paper.

THEOREM 1 (n = 1). The NLSE (1.1),(1.2),(1.3) is locally well-posed for
¢ € H*(T), provided a =p -2 < 13-

THEOREM 2 (n = 2). The NLSE (1.1),(1.2),(1.3) is globally well-posed
for ot = 2 with initial data ¢ € H'(T?) and sufficiently small L%-norm. The
same result holds for all o« > 2 for sufficiently small H'-data.

THEOREM 3 (n = 3). The NLSE (1.1),(1.2),(1.3) is globally well-posed
for 2 < @ < 4 and sufficiently small H!-data.




110 J. BOURGAIN GAFA

THEOREM 4 (n > 4). The NLSE (1.1),(1.2),(1.3) is locally well-posed for

2§a<nf28 a.nds>-;%"—4.

The main feature of the approach followed here is an analysis on multi-
ple Fourier series. This technique has lots of flexibility compared with other
methods. A further result on global wellposedness for n = 4 and o = 1
appears in [Bo2].

In Part II of this paper (to appear in the next issue) we discuss the
Cauchy problem for the periodic KDV equation

U+ Uy + Ugee =0 (1.10)

with initial data
u(z,0) = ¢(z) . (1.11)

Results along these lines in the R-case were obtained by several authors,
for instance in the papers of Kato [K3], Kenig, Ponce and Vega (see [Ke-
PoVel,2]). In the periodic case, there seems to be a limited amount of
literature on this issue. The paper of Sjoberg [Sj] deals with H3-initial
data. We will show here using the fix point method.

THEOREM 5. The KDV-equation (1.10),(1.11) is in the periodic case
globally well-posed (in a suitable space) for ¢ € L?(T) of prescribed mean
[ ¢. Moreover, for data ¢, € L*(T), of same mean, the corresponding
solutions u,v satisfy ||u(t) — v(t)||2 < €®!|l¢ — ¢||2, where C depends on

lI6ll2, ll1l2-

This argument permits also to give an alternative proof of the [Sj]-result
and shows that solutions with real analytic data are spatially real analytic
for all time (cf. [Tx]).

The conservation laws involved in the proof (for L? data) are simply

/ru(x,t)dx ; /T|u(:c,t)lzdz (1.12)

Theorem 5 seems of interest because precisely the L?-norm is a naturally
preserved quantity in this theory. The techniques of [MTr] may be reworked
to prove that the solutions obtained in Theorem 5 are almost periodic in
time. (This result is known for smooth data, see [L], [MTx}.)

Coming back to the KDV equation in the R-case, the introduction of a
similar norm as in the proof of Theorem 5 permits to obtain also
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THEOREM 6. The KDV-equation (1.10),(1.11) in the R-case, is globally
well-posed for data in L(R).

There has been a list of investigations on this issue by many authors
and subsequent inprovements were obtained, the record up to now being the
results of [KePoVel], namely s > 3 (local) and s > 1 (global) as regularity
condition on the data ¢ € H*(R). Existence of weak solutions for L?-data
were proved in [K3] and [KruF].

Next we briefly summarize the organization of the paper. In the next
section we will establish L* and L® estimates relative to lattice sets

{(n,n?) | nel, |n|< N} (1.13)

and related multipliers. In section 3, we consider the higher dimensional
analogues

{61 |eezm, lg) < N} (1.14)

for which we prove LP-moment inequalities. For n > 5, the best results
will be obtained using the method of exponential sums and the Hardy-
Littlewood circle method. We will combine these ideas with the arguments
of [T] and [St] in order to obtain the right A,-constants of sets (1.14) for
certain p < 4. I believe these investigations are of independent interest.
In section 4, we treat the 1-dimensional NLSE (1.1),(1.2),(1.3) with L2-
data. Section 5 gives the general scheme on how to make estimates in 1 and
higher dimensional setting for H*-data, using the information from previous
sections. In section 6 we list the consequences for existence of local (resp.
global) solutions of the periodic NLSE and in particular prove Theorems
1,2,3,4. Section 7 deals with the KDV equation and the proof of Theorem
5. In section 8 we present further results on periodic KDV equations, with
higher degree of nonlinearity based on the same method. In section 9, the
almost periodicity of the KDV flow with periodic L? data is discussed. The
proof of Theorem 6 is contained in section 10.

The author benefitted from discussions with C. Kenig, J. Ralston,
C. Levermore and E. Trubowitz on the subject.
The reference list is by no means exhaustive.

2. One-dimensional Estimates

Here and in the sequel we denote by ¢ numerical constants.
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PROPOSITION 2.1. The set {(n,n?) | n € Z} has bounded A4-constant, i.e.

1/2
Z an ei(n$+n7t) S C( Z 'an'2) . (2.2)
L+(7?)

nel n+Z

Proof: Letting f = Y a, €=+’ write ||flls = || - Flls/%, where

fF=Y1aaP + Y an,n,ei((rrmmet(iznidn (2.3)

ny#Eng

Obviously, if n; — ny and n? — nZ = (n; — ny)(n; + n2) are specified, there
is at most one choice for n;, ny (n; # ny). Hence, the L2-norm of (2.3) is
bounded by

1/2
1713 + ( S Janan, 12) <271 (2.4)
ni#Eng

Dualizing (2.1), it follows:

COROLLARY 2.5.

i~ /
(S 17, m)) " < ellfllzascrs -

Instead of the restriction one may formulate following stronger multi-
plier inequality:

PROPOSITION 2.6. Following estimate holds

R 1/2
”f”L‘(Tz) S C[ Z (|n —_ m2| + ]_)3/4|f(m,n)l2] . (27)

m,ne€l

Proof: Write
flz,t) =Y eltmetm™ g (1) (2.8)

m

hence f(m,n) = Fm(n — m?) and the right number of (2.7) equals

<;A3,.)1/2 where Am=(Z(InI+1)“’4 |fm(n)|2)1/2. (2.9)

nel
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One has
(f - Pla,t) =3 edw ey e2imat (f F L)1) (2.10)
A€ m
. _ 2
I - Flarn = 3 [ | 30 i i) . 210)
A€l mel
Define for j > 0
fm,](t Z fm(n ' fm = me,j (2’12)
Inj~2s1 J
a Littlewood-Paley decomposition of f,,. Estimate from triangle inequality
l‘ > e Frta <Y D €™ o T (2.13)
m LA (T) >kt m 2
and distinguish the contibutions
A? <2 (2.14)
A <2 <A? (2.15)
2 <A (2.16)

Contribution of (2.14). Evaluate pointwise by Cauchy-Schwartz

imAt
I Z fm] m+Ak

which L%-norm is at most
1/2
(X msaaP)

1/2
(Z ||fm,,-||%)
m 7111/2
S2'°/2(Z||fm,j||§> (Z||fm+A,k||%)
1/2
< 2k/8 2—31/8(2 3 (|n|+1)3/4|fm(n)|2) :

R 1/2
(S (a4 )il 219)

™ |n|~zk

1/2

(Zlfm,;lz)llz(;lfm+A,k|2) (2.17)

<

oo
1/2
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from definition (2.12).

To evaluate (2.13), perform ) (2.18) and estimate the k-summation
ik
(k < j) by Cauchy-Schwartz. This gives

(2.11) < Z{ 3 2-1/4(2 3 (Inl+ 1) Fn(n )|) }2-

A€Z ™ ;21>A2 |n|~27
§ 2
( Am) .
m

Write > =) Y  and rewrite the first factor of (2.19) as
AEZ €30 |A|~2t

2. 2 2“{22”’4<Z > (Il + 1) )I)/2}2(2.20)

(2.19)

£=0 |A|~2¢ 320 m |n|~23¢+s
<y [22—3/42 Y (nl+ 1) )| ] (2.21)
£20 ] m |n|~22¢ts

<y oA (2.22)

Hence the contribution of (2.14) to (2.11) is at most ¢( Y Afn)z.
Contribution of (2.15). Observe that by construction (k < j)
Supp(fmj 7m+A,k)A C [—2j+172j+1] (223)

while for increasing m the frequency increment of e™A! is A. Splitting the
Y- in (2.13) in summations over arithmetic progressions of increment %J-,

m
say M, one gets by orthogonality

_ 1/2
~ ( 2 fms fm+A,k||%) . (224)

meM

A
Yo emAtf fmm

meM

Summing over the progressions M yields then the bound

o _ 9i 1/2 3 \ 1/2
“Ze'm fmj Fmgak 25 (K) (Z“fmj fm+A,Ic”2> . (2.25)
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Estimate again

1 fms - Fentsillz S Wmsllz |t aklloo S 2572 fmsllz Nl frmsa illz - (2:26)

So the contribution to (2.11) is at most

>{z (sz)l/zz““’(;nlfmjllz||fm+A,k||§)1/2}2 (227)

Aex A<€’JZ:A7
~Yx{ T e[S (X ()l
A€z A<i3>'2A2 m In|~2j
y o s (2.28)
( Z (In]+1) |fm+A(")| )] }
|nj~2k
<cy” <ZA2 Am+A)=(ZA$n)2. (2.29)
Ael m

Contribution of (2.16). From (2.23), one gets by orthogonality

. B B 1/2
“ Y e i Frnpan| S (Z | fmj 'fm+A,k“g) (2.30)
m 2 m

and the previous calculation yields now

2{22"’82“31’8[2( > (Inl+ 1) | Fu(m)] )

A€L N >k m N |n|~2i
(S @9 msor’)] ) o
. n m+A\T
|nj~2k

instead of (2.28). One concludes similarly by applying the Cauchy-Schwartz

inequality
3 [ZAZ Am+A] = (ZAEn)z

AeZ m

Hence (2.11) is bounded by (ZAgn)z, which by (2.9) completes the proof.

Again by duality, Proposition 2.6 implies
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COROLLARY 2.32.
-3/4, % 2 1/2
(5 Gn=m?l+ )™ fon) < lilzssces
m,n€l

Combining (2.6), (2.32), one obtains following Fourier multiplier result

PROPOSITION 2.33. Assume A = (A n)m.nez @ multiplier satisfying

—3/4

Amal € (14 |n—m?|) for all m,n . (2.34)

Then X acts boundedly from L*/3(T?) to L*(T?), i.e.

“ Z Amn f(m,n) eilmetnt)

L4(T?) S C"f”Lua(Tz) . (235)

Inequality (2.35) will be used in the Picard approach to the NLSE (1.1),
(1.2), (1.3) with L2-data.

Remark: The exponent % in (2.7) is sharp. Consider for instance the func-

tion
f= Z ei(ma:+nt).

fm|<N
Inj<N?Z

Then [|flls ~ N%2 and [[flls § N*N=3/4 = N/ ~ (S |n — m2[?/*
-~ 2\1/2
Next, we consider L®-estimates.

PROPOSITION 2.36. Let Sy = {(n,n?) | [n| < N}. Then

log N
Ks(Sn) < expc -l—ogigo—_ﬁ . (2'37)
Hence, one has
Y a einz+n®t) < NE(Z |a |2)1/2 Ye>0. (2.38)
L(T)

nel
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N . 2

Proof: Letting f = Y a,e'(»**"")_ one has by straight calculation
1

2
E an1 angan—nl—ng S

ni+nit(n—ni—n;3)?=j

3
2
< max vy (3 bl

1i1<3n? n<N

[ =1 =%

n,J

(2.39)

defining
rn; = #{(n1,n2) | Inil <N and n} +nj+ (n—n; —n2)? =j}. (2.40)

It remains to show that r, ; < expc TS:;BFo?NTv" The condition n? + n? +

(n — nj — ny)? = j may be rewritten as
.2
n%+ng—nn1 —nng +ning = 2n
3 . 1 9 j—n?
Z(nl + le) + Z(nl —_ ng) - n(nl + ’ng) = 2 (241)
Put m; = ny + ng, my = ny — ny to get
(3my — 2n)? + 3m2 = 65 — 2n? . (2.42)

Consider the equation X? + 3Y? = A (X,Y,A € Z). Denoting p =
= %é, Z + pZ is known to be an euclidean division domain. Conse-
quently, the number of divisors of A in Z 4+ pZ is at most expc ﬁ’ﬁ)ﬁ <
expc l—ol?ofogv—lv. Finally, observe that if X,Y € Z satisfy X2+ 3Y? = A, then
X +iV/3Y is a divisor of A in Z + pZ. This concludes the proof, since the
pair (3m; — 2n,my) defines (n;, ny) uniquely.

2xs
3

e

Remark 1: Results on the number of lattice points on algebraic and real
analytic curves are provided by the work of Bombieri and Pila [BP]. For
instance (see [BP]), if ' is a real analytic image of the circle S, then for
t— 00

[t NZ?| < t* (2.43)
which of course applies in the context above (I' = {X2 +3Y? = 1}).
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Remark 2: The arithmetic analogue of Strichartz’s inequality (1.5), i.e.

1/2
< c( / |¢(/\)|2d/\) (2.44)
Lé(dzdt)

is played by inequality (2.38). This estimate fails if one replaces N° by a
constant. In fact

”/ei()\z-l-z\gi) ¢(/\)dA

N

. 2
Z e121r(n:c+n t)

n=0

1

vN

(compare with the fact that the squares do not form a A4-set). This may
be seen as follows. Let 1 < a < g < N'/2 (a,q) =1, 0 < b < q be integers

— o0 for N — oo (2.45)
6

and take
=q=(&)
gl  T\N
2.46
_al_ (1 (2.46)
q N?
It follows then from the theory of exponential sums (see [Vi]) that
N
; N
e21rz(n.r-{>712t) ~ (247)
% %
in the context of (2.46). Denoting
N ) s
flz,t) =) erritnadny) (2.48)
=0
and M(q, a,b) the region described by (2.46), it follows that
N3
/ I dedt ~ (2.49)
Mao(q,a,b) q
Hence,
6 N? 3
IfI® dzdt > ¢ Y 7 > c(logN)-N (2.50)
a<q
(a.9)=1

implying that
Kg(Sn) > c(log N)/® . (2.51)
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Problem. Is K,(Sn) bounded for p < 67 This was shown to be the case
if p< 4.

Remark 3: The exponent 2 in inequality (2 7) may be “explained” by in-
terpolating 7, : L? — LP mapping f to Z f(m n)[l+[n—-m |]—s i(mz4nt)

between p = 2, p = 6. pr—2 T, 1sboundedforRes—0 Ifp=6,T,
is “almost” bounded for Res = 3. The interpolated value at p = 4 is then
3/8.

3. Higher Dimensional Estimates

Fix d > 2 and consider the subsets of Z¢

{(nl,...,nd_l,lﬁ|2) |n_j€Z, |nj|<N}=Sd,N (3.1)

where @ = (ny,...,n4-1), [7)* = n?+---+n?_,. These sets were considered
in previous section for d = 2. It seems reasonable to conjecture that

K,(San) < cp for p< 2(d+1) (3.2)
K,(San) € N¢ for p= 2l (3.3)
Kp(San) <oy NT =5 for p> 2t (3.4)

For d = 2, (3.2) for p < 4 and (3.3) were proved in previous section. Inter-
polation with L* would yield (3.4) up to an N¢-factor. From the estimates

based on the Weyl-sum approach presented below, we will actually also
deduce (3.4).

For d = 3, we will prove estimates (3.3), (3.4).

Starting from d = 4, even a rough understanding of the diagram (ig-
noring N°¢-factors)
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log KB(SJ N)
\ log N

e
|
—

N[

= =

is only partial.
For d = 4 we get (3.3) with p = 4 and (3.4) for p > 4. If d > 5, the
Weyl-sum approach mentioned above yields (3.4) in the restricted range

p> 2(d+3)

> A4 (33)

Also the (sharp) distributional inequality with p = %dd%lﬂ for level sets
[|f] > A] may be obtained from this method provided A is large enough.

PRroOPOSITION 3.6.

K4(S3,n) < N°© (3.7)
K4(Ssn) € Nite (3.8)
K4(Ss.n) < N1t (3.9)
Ky(San) < ca NT° for d>6 (3.10)

(We will show later that the N*-factor in (3.9) is not necessary.)
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Proof: The problem will reduce to estimating the number of representations
of an integer as a sum of squares. Let

flz,t) = Z oy 2T TP with (,t) e T 1 xT. (3.11)
T <N

Hence

P n

flz,t)? =) i) [Z arap_7e’ ™ fﬁlzﬂ?—ﬁi’)’} (3.12)

172 Brcrens { ma, 72 (o)’ (3.13)

IFlg2N
li1g2N?
denoting
rs; = #{R €I | Al <N and R+ p-7°=j}. (3.14)

Rewrite the equation [A|? + [p — 7|2 = j as
(201 —p1)* + -+ (2naey — pa-1)’ = 25 — |p}? (3.15)
so that r5 ; may be bounded by the number of solutions of
XP4+-+ X3, =A; A=2-|p. (3.16)

Hence, there are the estimates

A= (d=3)

$+e =
e asot (3.17)
AT (d>5)

Since |A] < N?, (3.13), (3.17) yield (3.6).
Remark: More details on representations of integers as sum of squares may
be found in [Gr].
In the remainder of this section, we will develop a more analytical
method. It is based on two ideas
~ Tomas’ proof of the restriction theorem for surfaces S in R¢
~ The “major arc” description of exponential sums.
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Roughly speaking, the surface S in R? is replaced by the set Sy in Z%.
Let o be the surface measure of S (assumed compact). Tomas’ argument
consists then of analyzing the mapping properties of f +— f % by breaking
up & in level sets and estimating their individual contribution by inter-
polation between L! and L2. Following the same scheme, G becomes the
(higher-dimensional) exponential sum

Y ey
Intleslna—1|SN
which level sets on T%*! correspond to the “major arc” description in the
sense of Vinogradov [Vi]. This essentially explains our procedure.

We will use following Weyl type lemma. Its proof is classical. We
include it for selfcontainedness sake.

LEMMA 3.18. Let {0,} be a multiplier satisfying

0<o,<1,0,=1 on [-N,N]
{0n+1 — 0o} is bounded by 4 and has variation bounded by & (3.19)
supp o, C [-2N,2N]

and let . ,
f(z,t) = Zan e?rilne+ntt) (3.20)

If0<a<q< N, (a,q)=1 and ||t~g|| < -, then
N
va(1+Ne— 2"

(the role of o = {0,} is to avoid logarithmic factors in N and plays only a
technical role).

|f(z,t)| < c (3.21)

Proof: One has

|f((l,‘,t)|2 — E On, o,n2621ri[(n1-ng)x+(n1—-ng)(n1+ng)t]

ni,n2

and letting k = ny — ng, £ =ny + no

HEDEDD

£

2mwik(x+L4t)
Z Orpe Ok € . (3.22)
k=£(2)
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Writing £ = 2k; (if £ even), k = 2k; + 1 (if ¢ odd), each multiplier 7 =
Tey = O &4k, a[é]_k]} satisfies (3.19) (up to factor 2). Therefore (3.22)

is bounded by
1
c Y > (3.23)
i<an N(I12z 426t || +5)

Write t = 2 + 7, |r] < Tvl'q' Hence 2z + 2(t = 2z + 20 + 2{7. Assume
-2z € [@*%, (& + 1)1;-] = I and consider the orbit in R/Z of 2z + £ + (7.

One easily verifies that the contribution (3.23) away from the interval I is

<c—1!2 —————1————5<cq. (3.24)

9 05% N(§+%)

The contribution around I may be estimated as

q oy N(quTl-i-}—v-)
2
<m1n{N ! } (3.26)
g " ql7|

Collecting estimates, (3.21) immediately follows.

The (one-dimensional) major arcs appear on neighbourhoods as sets of
rationals

RQ={§|1Sa<q»(a,q)=1,QSq<2Q}- (3.26)

More precisely, define for 7 < € < % the function w,

T

- —6/2 0

m
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1 1
-~ 0 w7

sothat for 1< Q<N

1 1
Z wa, =1 on [——-—-—— ) ———] (3.27)
N22°3Q NQ " NQ
2 2
Z w_1, is supported by [-———— , ———] . (3.28)
N3Z2Q NQ " NQ
Let Ny = o(N) and define R = | Rg.

Q<N
Observe that for @1 < @2 < M

([ sal)o (s [ ) =0 o0

(major-arc disjointness property).
Write (6, = Dirac measure at point z)

=y > [(Zé)wl] . (3.30)

QLN <2¢<
Q dyu}m Q 2 N xERQ

We recall Dirichlet’s lemma.

LEMMA 3.31. Givent € T, there is fraction ﬁ, (a,q) =1, ¢ < N such that
a 1

t-¢l<am
Observe that if for given t € T, the first term in (3.30) differs from 1,

i.e. p(t) # 0, then ¢ given by (3.31) has to satisfy ¢ > Ny, so that by Lemma
(3.18), forallz € T

lp(t)(z:an ez”i(”’+"2t))| <cVN. (3.32)

Our next aim is to evaluate the Fourier transform of ) 6, (which is a
T€RQ

function on Z).
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LEMMA 3.33. Denote d(n; Q) the number of divisors of n less than Q. Then

forn #0 )
(xgq 62) (n)

( > 5,>A(0)~Q2. (3.35)

zG'RQ

< d(n; Q) Q1+ (3.34)

and obviously

Proof: We have to evaluate

> ( > e“’“‘%n). (3.36)

Q<q<2Q (a‘tq<)q=l
Fix ¢ with prime decomposition ¢ = p|* p;*---. Hence
a aj a9y .
- =—+5+ 0<a;<p/ (3.37)

and the condition (a, ¢) = 1is equivalent to (aj, p;) = 1 for each j. Therefore

ri—1

2wi—4-n p]-’ “1 om ey L
Z 2ming _ H[ Z e rl Z e 7y’ ] (338)
a<gq 0
(a,9)=1
=T [p} etnp?) =7 ™" eln, 57 ™)] (3.39)
J
where one denotes
c(n,g)=1 if ¢g|n and c(n,q) =0 otherwise . (3.40)
It follows from (3.39) that
Z e?mn— _qH C(Tl p] (n p;J—l) . (341)
a<g
(a,9)=1

If p; | n, estimate c(n,p;’) - ,,lj c(n,p;’_l) by 1. Otherwise

riy 1 r .
c(n,p;’) - > — ¢(n,p;’~ “=0 if rj > 2
j
1

=—— if r. =1
P; ’
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so that for (n,p;) =1

1 i 1
e(n,pi’) - Py c(n,p;’ 1)’ < ol (3.42)
J J

Write ¢ = ¢'q"” where the prime factors of ¢’ divide n and (n,q") = 1. It
follows then from the preceding that

Yy i< L (3.43)
a<g,(a,q)=1 q"
Consequently
> | X dMi<e X X &
QLa<2Q e (e=1 LSS
(n, q") 1
< Q# {q < Q| prime factors of ¢ divide n} . (3.44)
If py,pa, ..., pr are the prime factors of n, an element ¢ appearing in (3.34)
has the form
g=py"---pF with 7; >0 (3.45)
and
Zr] logp; <logQ . (3.46)

j=1

Hence their number may be estimated by expc Elfl%fﬁ -d(n; Q). This proves
(3.34).
Related to the quantities d(n, @), we recall Lemma 4.28 from [Bol].

LEMMA 3.47. #{0 < n < N | d(n;Q) > D} < ¢, 5(D7BQ"N + QP)
whenever T > 0, B < oo are given constants.

Proof: For 2 < q < @, define the function J, on [0, N], putting

Tan)=1 if q|n } (3.48)

=0 otherwise

Fixing an integer power B > 1, write from Tchebychev’s inequality

#{0<n<N|dn;Q) >D}<DBZ( > Jq(n)) . (3.49)

2<q<Q
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Denote [g1,q2,...,gp] the smallest common multiple. Expanding the B-
power in (3.49), one finds

%i[zjqn)] ~ Z ([‘11,---,43]”4-%)5

1 q<Q a1-+98<Q
QB 2 log@ QF
EQ d(q + <exp|CB Toglog O + N (3.50)
Thus (3.49) is bounded by
- log @
. B 2 VoW B
N.-D exp (CB Tog logQ) +Q (3.51)

and the lemma follows.
Define following function on Z¢

K= Z Ony Ong " Ony_, 6(111 ..... ng_1,ni+-4nd_) (352)

N1yeenyd—1

where {0,} is the sequence of weights considered in (3.19).
Thus supp K C [-2N,2N]¢"! x [0,4dN?]. Also K(z,t) on T* 1 x T
appears as the product

d-1
=TI (S om emmitmssno) (3.53)
i=1

From (3.30), (3.35) one has

1<ZZ

Q<N Q<2°<N
Q dyadic

|p(0) — 1| < %‘ : (3.54)

Define coeflicients ag , such that

[( 2 5w> *wwz,-,]A(O) = aq,s p(0) (3.55)

z€Rq
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hence by (3.54)
2

aQ,s <cC Nos
Based on (3.30), one has the identity

K(z,t) =
=3 Y K@= [(( ) 5x> *w_N_;T) —aQ,s-p](t)(3"57)

QN <2s<N R
Q dy-«ilc Q 2 z€ @

[1+ > aqs] (z,t)p(t) . (3.58)

Q<N; Q<2°<N
Q dyadic

(3.56)

Define the multipliers
Ag s(z,t) = K(z, t) [(( Z 6 ) L ) —aQ,s-p](t) . (3.59)
xG'RQ

It follows from Lemma 3.18, (3.32), (3.53), (3.56) that
-1

N
,AQ,sls |:\/Q(1+N(‘ﬁl§7)l/2):| N2s

Since 2* > @, there is the pointwise estimate

(\/_ )it (3.60)

d—1

N2\
Aq,s s( ) : 3.61
|Aq,| ) (3.61)

Next, estimate KQ,s. From (3.59)
A
Ag.=K x [( Z 61‘) W1, —aQ,s-ﬁ] : (3.62)
ZERQ

By definition (3.55) of ag ,, the second factor vanishes outside {(0,...,0) €
Z9-1} x (Z\{0}). Hence

A
AQ’S(Zl,...,Zd):: Z 0"1"'0nd—1[( Z 52) w_n%_’_ —Oth p]

nexd-1 z€Rq (3 63)
(21 =71,y 2d=1 — Nd-1, 24 — |ﬁ|2)
=az,~-az,,_,[(26) 5 ,aQsp]
IGRQ (364)

(za =2t = =24 -
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If 20 =22 +---+ 2%_,, (3.64) vanishes. Otherwise (3.34), (3.56) imply

14¢

lKQ,S(zly- . 7zd)l < %28 d(Zd — zf —_ e - Zg_l;Q)_*_
(3.65)

N23|p<zd - R

It follows from (3.30), (3.34) that for n # 0, |n| < N2

d(n Q1+s Ne¢
< Y. Y e <w (3.66)
Q<N Q<2°KN
Q dyadic
so that by (3.65)
~ Q [.. Q
|AQ,S(21""’zd)| << st Q d(zd—zf—...-zZ—I;Q)+ Nl_e (3'67)
Q
< N - (3.68)
We assume here |21}, ...,]24—1] < N and |z4] < cN2.

Inequalities (3.61) and (3.67), (3.68) are the key estimates in what will
follow. From (3.61) one gets

N .28
”f*AQ.s||L°°(Td)S||f||1||AQ,s||oo§C< Q) W 369
From (3.68)
I * Aollzzcrsy < IFlReulleman < s N¥lfle - (370)

In fact, more precisely
2 f 2 2 s
”f*AQSHQ > st [ Z lf(Zl,...,Zd)' d(zd—z% — .”—zd—l;Q) ]
T youe g

Q?
23N2_5 ” f “2 ‘

+
(3.71)
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It follows easily from Lemma 3.47 that for given D and constants 7, B

#{(zl,...,zd) l lz1]y - - -5 |za=1] S N, 24| < CN?
and d(zg— 22 —---—22_,;Q) > D}
<Crp(D7? QT N? 4+ QP)N"" . (3.72)

Hence, combined with (3.71) and using the trivial estimate

~

|f (2150 20)| < W Fl (3.73)
17 % Agalle < T2l fll + 3z - @ Crp(D™Q7N + QP17
Q2 (3.74)
NS F b+ gl

Take M > 1 and D = MQ" and assume

B> g and N > (MQ)P (3.75)
(3.74) then yield
Q1+-r M _ —BJ2 d—1

15 # Agalle < TPl + o 272 - M=% N gl . (3.76)
Consider py = 2(;:31 (which is the conjugate of the critical exponent) and

interpolate between (3.69) and (3.70). Thus with — 1 =1zf % (=41 +})

15 % AQusll 1o} (ay € NN fllLroray - (3.77)
If (3.75) holds, one may also write by (3.69), (3.76) for 8 < d+1+2r, lp =
1-0 , 8
1 2
I * Agally < Q7% MO(N2°) T =077 £+

+ C, pQ Y425 1=0=0) pr=B/6 N4y )1
< QTOM(N2 ) VG| £+

(3.78)

(3.79)
+CTB Q 1/4 M—-B/G N—— 23(d+1)(—“—‘)”f”1

where
o =o(r,p) >0 for p as above.
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Finally interpolation between (3.69) and (3.70) also yield for p < po

N D (3-35)
2)

We will use inequalities (3.77), (3.79), (3.80) in the proof of the follow-
ing distributional properties for polynomials of the form

1 % Agually < N° ( 1l (3.80)

F(z,t) = Z as e2mil{z R+t (3.81)
Inilysna-1|<N
where @ = (n1,...,nq-1), d > 2. This statement is the main result of this

section.
PROPOSITION 3.82. Let F be given by (3.81), ||[Flj. =1

(i) mes{(z,t) € T¢ | |F(z, 1) > A} < N¢ X5 for A > N

(ii) mes{(z,t) € T¢| |F(z,1)| > A} < C, N*T 9-(d+1) x\=a
for)\>N£{_}',q> %dijTl).

Proof: Consider a set £ of (% X e X 4 —,‘}-,-) disjoint intervals in T¢

X
N
exhausting the level set [|F| > A]. Denote f a %1-valued function on the
union of these £-intervals such that

[F, )] S A- €} N~ (3.83)
Recall the definition (3.52) of K. Thus from definition (3.19) of the weights

{on} one has
F=Fx(VE)" (3.84)
and by (3.83)

A2 |2 N=2HD < [(F, £ 5 (VEY < || + (VN2
=(f,f*(VE)"« (VE)*) = (f, f+ K) .

Consider the representation (3.57), (3.58) and define

A= ) ) Ags (3.86)

Q<N; Q<2°<N
Q dyadic

(3.85)

where Ag , is given by (3.59). Writing

R=A+ (K- A) (3.87)
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estimate (3.85) as
[(£, £ % M) + |(f, f = (K = A))| (3.88)

< 1£lp IF * Allyr + NI UK = Alloo - (3.89)

Taking p = pp and summing inequalities (3.77) over @ and s, the first term
of (3.89) is bounded by

_ 2
1Flloo D11 * Aguallyy < NEIIFIIG, = Ne[l€] N~ D] . (3.90)
Qs

The expression K — A corresponds with (3.58), which by (3.32), (3.53),
(3.56) is bounded by

1K = Aljoo < eNF* . (3.91)
The second term of (3.89) is therefore bounded by
CNT [jg]- N~(+1)? (3.92)
Collecting inequalities, it follows
AZ. |8|2 ‘N_2(d+l) < N¢ 'gl;% N—(d+1)-,% + |512 N_gg_;—_s_ (3.93)
from (3.93), it follows immediately that if we assume A > CN 7 then
€] « N* N+ -2 (3.94)
This proves (3.82), (i).
The proof of (ii) is a bit more delicate. It is clear from (i) that if
2!d+1! . . . LT e
q > =y=7* is fixed, then (ii) will hold unless A is “large”, i.e.
d-1
A>NT ¢, (3.95)
Fix constants 7, B > g and consider @ satisfying (3.75), i.e.
N> (MQ)B . (3.96)
Take p as in inequality (3.79). Summing (3.79) over s and dyadic @ in the
range (3.96), we get
1f * Aallyr < Cp e MN* VG750

3.97
+C,p M~B/S Nd’;l*'(“l)(%—#)”f"l (.97
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denoting

M= D D Ao

Q dyadic Q<20<N
Q< - =

and @Q; the largest Q-value satisfying (3.96).
For the values @ > @1, use (3.80) with same p. Hence

2y (d+1)(3-5=
|f+(A=AD], <N (‘E—) ’

Ql “f”P

133

(3.98)

(3.99)

(3.97), (3.99) give an estimate on ||f * Al|,» and proceeding as before with

p instead of pg, (3.89) yields

A2 g2 N~2HD « N2A+D(E-55) (M+ N*

1

: [lg|N—(d+1)]%

+Crp MB/8 NI HEHDG=H) g N-(@+D] 3
+CNT[|g] N-@+D)?

For A > C’N!:-], the last term (3.102) may be dropped.
Assume @, = N% where 6§ > 0 has to satisfy (3.96)

(MN®B < N .
Also (d+1)(3 — =) > o(r) > 0. Hence

2
P

(3.100) < Cp, NXHDG=3) . pr[jg[. N—(¢+D)]

and it follows that

|g| < Cp,r M1/2 Né_;_l_pr )‘_p, +C-r,B M_Bp'/e N(d—l)p' /\_zp, .

Choose

NET

B=—.

and

(d+1)(3 -5

(3.100)

(3.101)
(3.102)

(3.103)

(3.104)

(3.105)
(3.106)

(3.107)
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Thus (3.105) yields
et L
2
|€] < Cp,r [—/\—-} . (3.108)
(3.103) becomes because of the assumption (3.95) on X and (3.107)
(N*-NOY# < N (3.109)

(for € choosen arbitrarily small).

Assume T > 0 given, % = 1=6 0 + g, 0 < d+1+2r’ let § = & so that

(3.109) holds. The value q = p’ + T satisfies (3.82, ii) by (3. 108) and may

clearly be taken any exponent > M

This completes the proof of (3 82)

Coming back to the statement (3.5)

ProPoOSITION 3.110. Ford > 5 and p > ﬂj—ffg’l
K,(San) < CNT =5

Proof: Write with F' given by (3.81)

Jrr~ [e-tmesiiots Nz [+ [
Td AN T A>N"T

d—1
4-1(p-2) 2 4l o (d+1 N -1 y-
S NT( |F| + N7 9~(d+1) iy APTUATIdA (3.111)
N~7T

choosing Z%f—le) < g < p and applying (3.82, ii). Thus
/|F|p < N 0-2) 4 NFr-(d+D) (3.112)

and the first term is at most the second by assumption on p.

PROPOSITION 3.113. Assume ps > p; > po = —Q_Lll and K, (Sqn) <
P

NT =%+, Then K,,(San) < Cp, N T 7%
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Proof: Write again
/|F|”2 ~ ‘//\”’—l mes [|F| > A] .

From the assumption on K, only A > N 431 -¢ has to be considered. In
this case (3.82), (ii) holds and we conclude similarly as above, letting py <
q < pa.

As a corollary of (3.113) and (2.35), (3.8), we get

PRrROPOSITION 3.114.

K,(S2n) = Kp(Sy) < C, N¥*=3 for p>6 (3.115)
K,(Ssn) <Cp, N'"3 for p>4 (3.116)
K,(San)<Cp, Ni~% for p>4 (3.117)

Remark: From (3.110), it follows that
K4(Ss n) < CNY/? (3.118)
improving on (3.9). Observe that the arithmetic approach amounts to

counting the number of representations of an integer n as sum of 4 squares,
which may be at least cnloglogn > n (see [Gr], p. 121).

4. Proof of the 1-Dimensional L?-Theorem

Consider the NLSE
Au+idu+tulu/*=0 a=p-2,p>2 (4.1)

with initial condition
u(z,0) = ¢() (4.2)
u is periodic in z-variable

and the equivalent integral equation (setting w = u|u|®)

u(-,t) =U(t)p + i/(; Ut — 1) w(-,7)dr ; U(t) = €2 . (4.3)



136 J. BOURGAIN GAFA
We will seek for a solution of (4.3) local in time, i.e. consider a function

0 <y <1, 91 = 1 on a neighborhood [~6, 8] of 0 and supp v, C [—28, 26].
Using a fixpoint argument, we will construct a function u satisfying

u(-,t) = $u(t) Ut + ity (1) / Ut—1) w(r)dr . (4.4)

Write @, u, w as Fourier series

plz)= 3 B 0 (4.5)
561"_]
u(z,t)= Y e / 2™ M (€, A)dA (4.6)
tezi-1 —00
w(z,t) = Z e2riz:t) / e2™M (€, N)dA (4.7)
feld 1

(4.4) then becomes
u(z,t) = 1 (t) Z B(£)e2m U+

Eeld—-l

1 2mi((2,6)+1I€]%)
tomta(t) Yo e

13 L —oe

00 221ri(,\—|£|2)t -1 (48)
e w(é, A)dA .

In the integral appearing in (4.9), we distinguish f‘/\~|€',|<B and fl/\—IEIZI>B'

Thus consider another cutoff function 19, 0 < ¢9 < 1, ¥ = 1 on
[-B, B] and supp v, C [-2B,2B). Assume

1

B < 1505 - (4.9)
Write
0o G2mi(A-lE)t 1 _
¥1(t) / _ P D€, \)d)\ =
(27”) k k=1
> L ot [war - ) (- 6P (6 N (410)
k>1

2ri( A= J€1*)
+ Y1(t) /(1 —P2)(A = Iflz)f“'—lﬁi’

~ () (- (- ) o (4.12)

B(E, \)dX (4.11)
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Thus in order to control the right member of (4.8), we have to consider
following contributions

Yi(t) Y G(E) exmilimatiie) (4.13)
CGZ"’
27rz)
S5 20 ol (B0t 4 (t)
k21 (4.14)

{ [ / Un I&I( |g|2) ({,/\)dA]ez’fi((z,f)Hlfl’)}

i) 3 e U*’ﬁ‘{(l"é l;'flz) M G(E, A (4.15)

£eld—-l

P (t) Z e2mil{ )+ 11E1%) / (- ’/’2 If|2 —16F) W(E,N)dX . (4.16)
tegd-1

Consider the one-dimensional case, i.e. d =2 and o < 2 in (4.1).

CrLAM. Given sufficiently large M, the map naturally defined by (4.8) is a
contraction of the ball of radius M in L*(T x [~1,1]) into itself, provided
6, B are well choosen.

The estimates needed are provided by the L*-estimates of section 2.
Because they are local in ¢, the inequalities for T2 are applicable here.

(i) (4.13) becomes

1) G(n) e2ritnz+n®n (4.17)
nel
which L*(dzdt)-norm is bounded by
- 1/2
(T 18mf)" = clisle (418)

invoking (2.2).
(1i) Because of (4.9), the L*-norm of (4.14) is bounded by

| w3

cé sup

n2 k-1 } N
) @(n,/\)d)\] e?m(nx+n t)
k>1 4

(4.19)
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and again by (2.2),

c5i1§1) (; /¢2(A —n?) (’\ 2)1/2 . (4.20)

From the definition of ¥, and (2.5), (4.20) may be estimated by

n2 k—1
) @(n, A

3/4
cbBl|lwll pas3(grary = 6B [/ |u|(1+°‘)3} < cdBljullite (4.21)

assuming o < 2.
(iii) (4.15) becomes

() 3 errine / 1-v _nz_"z) 2N Gin NdA . (4.22)

nel
We use here Proposition 2.31. Thus the (n, A)-multiplier is given by
Q——'/’A—’Eii\al'ﬁ which is clearly bounded by B=1/4(1+|A—n?|) ~3/* Hence

n

the L*-norm of (4.22) is at most
CB™|wllyys < CB™4ju|l}** . (4.23)
(iv) (4.16) becomes

i) Y ermitnatn’y / Qo)1) G (@20)

A —n?
n€l

which L*-norm is bounded by

( /(1“’/’2 YA =1 Gin, A)A

2 ) v (4.25)

g
by (2.2). Estimating again Qﬂx—’\,il by B=Y4(1 + |A — n?|)” s
from definition of 5, (2.30) ylelds the bound
CB~Y4w|ys < CB™Y4ullj*> . (4.26)
Denote T the transformation defined by (4.9), i.e.
(Tu)(z,) = () Y_ B(n)e?n=+m0+
nizm'(,\-n’)t _1 (4.27)

+___ 'wl(t Z 2ri(nz+n t)/

n€el —o©

B e E— (ful®) " (n, X)dX
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We proved that

ITulls < ci{llgll2 + 8Bllulls* + B~H/*|ul**} . (4.28)
Hence
lullsa < M = ||Tulls <M (4.29)
provided
Ci(ll6ll + EBM+= 4 B=1/4 p+e) < M (4.30)

If M is sufficiently large, (4.30) may clearly be achieved for suitable B,
6. Consider next Tu — Tv. The first term in (4.27) disappears and in the
second, uju|* has to be replaced by w = u|u|* —v|v|*. Since now by Hélder’s
inequality

lwllasa < e(llulls + lvlle) *llu - vla (4.31)

(a £ 2), the contribution of (ii), (iii), (iv) above is estimated by

ITu ~ Tolls < c1(6B + B~*)(Jlulla + Jlofla) *flu — wlls <

< 2e;M*(6B + B~ V") |lu — v)ls . (4.32)

Hence, for suitable B, §
Tu - Tolls < 3flu— vl . (4.33)

This establishes the claim made above. Picard’s theorem yields a function
u € L*(T x [—1,1]) satisfying Tu = u, hence (4.4). Moreover this solution
1s unique and persistent. At this point, we proved local well-posedness (in
generalized sense) of (4.1) forn =1(d=2) and a < 2 (p < 4).

To derive the global result from previous fact and the L2-conservation
law

/ |u(z, t)|"dx (4.34)
T

1S a routine procedure.

In the previous construction of local solutions, one may consider norms
of the form

el = lull cscaean + D orll08 ) ull 14 (azary (4.35)
k>1

where p, > 0 are some weight, assuming the data ¢ € H(T), i.e.

> N6P L2y < o0 (4.36)

k=0
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In performing the estimates (ii), (iii), (iv) above for z-derivatives, one will

have to replace the function w = ulu|* or w = uful® — v|v|™ by 8k,

Assume here
s<l4+a or a=2. (4.37)
Since one may bound for w = ufu|* — vjv|*
1089 wllazs <
{10 = )| (ulla + Iwlla)“+ wss)
= olla (0P ulla + §OP o) (ks + o)™}

we get

17w = Toll| < c(8B + B-“‘*){uu — olla(lulla + lolle) =+ :pk<4-38>}
k=1
(4.39)

< (8B + BTN (lulla + llolla) “lllu = olll+
(s + lelha) ™" (1l 1ol e - v }

(4.40)
< (6B + B~ (Il + 11wl 1w ~ ]I - (4.41)
Start by fixing M such that

%
lgllz + > prlldllas < M (4.42)

k=1

and consider the set of functions on T x [~1, 1] satisfying

IlJu]]) < 10M . (4.43)

By letting B and § satisfy
(6B + B YYHM>t < ¢ (4.44)

(¢ is sufficiently small constant).

(4.41) implies that T is a contraction on (4.43) and hence the fixpoint
argument applies to get a local unique solution u of (4.3) of bounded ||} |||-
norm. Observe at this point that the time interval § is independent of the
weights py in (4.35). This observation permits in particular the carrying
out of a regularization procedure on the initial data ¢ in order to justify the
conservation law (4.34) for the “generalized NLSE”. This requires taking
k > 2, assuming o > 1.

The conclusion is the following.
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THEOREM 4.45. The generalized periodic one-dimensional NLSE (4.1)
with p < 4 is globally well-posed in the space L*(T x Rioc) for L%-data.
For p = 4 and data ¢ € H*(T) (s integer) this solution u will satisfy
moreover

OFue LY (T xRioe) k<s. (4.46)

Remarks: (i) In the previous statement, one has in fact a uniform estimate

t+1 .
sup// |u(z, t")|" dt’ . (4.47)
teR JT Jt

Statement (4.46) is understood as

T
// Iagk) u(m,t)|4dt <oo forall T (4.48)
T Jo

(the stronger uniform statement in the form (4.47) is valid also but its proof
requires the use of higher order conservation laws for a = 2, see [ZS]).

(ii) Some comments on the derivation of (4.38). For k = 1, the argu-
ment is straightforward. The case k > 1 is based on following inequality.

LEMMA 4.49. Let s =814+ 82+ -+ 85p beintegersand%:}}—l+---+;1:,
1 < pe < oo. Let fog=0. Then

T (s0)
[
He

Proof: Take m = 2. The general argument is similar. Write f = 2, Qi)
for the Littlewood-Paley decomposition of f. Denote f* the usual Hardy—
Littlewood maximal function of f. One has

<eS TT Wellpe - 1FMpe - (4.50)

P =1 €'#¢

Qi(NH <2 Qi) ~Q; (). (4.51)
Write
|f§s’)fés2)| < Z 97181 Qi (f1)* 94292 Qi (f2)" + Z . (4.52)
J1232 1<z

Consider the first term in (4.52) (second term is similar). One gets by (4.51)

Y 2mde Zw )* Qji—a(f2)* <

d>0

<Z2“’“(Z[Q, O] ) (Z[Qj(,g)*f)m.

d>0 J

(4.53)
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We assume s > 0 (otherwise the statement is obvious). Estimate (4.53) by
Hoélder’s inequality

3 g-den (Z [Qj(ff”)*]z)l/z

d>0 7

(S teswrt)”

3 P2

(4.54)

P1

The proof is then completed by invoking following standard facts

I( ) [Qjm*]"’)m <

p

Cp

(Z [@; f]z)l/z ~ (4.55)

I1£1l» (4.56)

for 1 < p < 0.
Similar estimates may be found in the appendix of [KePoVe2].

5. Estimates in H*, 8 > 0

In this section we describe a method to obtain (local) solutions for the
generalized NLSE (4.1) with H*-initial data. The approach is the same as
in previous section and we need to introduce appropriate function spaces
to perform the iteration (they will replace the space L*(dzdt) and are in
fact defined from Fourier transform properties). The exponent s may be
fractional here. There will be no significant difference between the one
and higher dimensional situation as far as the method is concerned. We
consider the equation Au + i9,u + u|u|* = 0 with o > 2. Call an exponent
p “admissible” if (if section 3)

by 244D

> =~ and K,(San) € NENT-5 (5.1)

The dependence of K,(S4,n) on N is the reason for most of the complica-
tions in what follows.
Counsider the sets (K, N positive integers)

Ak n={C=(NET"xR|N<|f]<2N and K < |A-|¢] <2K})-
(5.2
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If I is an interval in Z™", let

Aki={CeIxR|K<|)~|¢? <2K} . (5.3)
For a function
u= Z /d/\ i(¢) e?miliee)+at) (5.4)
{ez

in L2(T" x R), define

1/2
= sup(k + 02 (v [ fa@lac) L 69)

Ak,N

Fixing an interval [—é, 6], we will in fact consider the restriction norm
[|lul|| = inf|||u]|| where the infimum is taken over all function @ coincid-
ing with v on T™ x [-6, 6] (in order to avoid technical difficulties). Thus
time restriction acts as a contraction wrt this norm.

Let pg be admissible. Then , by (3.113), for p > po

“ > agettoni®)| N (The) L 60)

EISN
Let I be a (d — 1)-interval (or ball) of size N in Z¢1, centered at &. Write

Lr(Td)

(@,€) + tle]* = (2, &0) + tleol* + (z + 2t &,6 — &) + e~ &of* . (5.7)

A change of variable ' = z + 2t &, t' = t immediately yields that also

,, SNF-% (Zmdz) 2. (5.8)

gel

" ag el
eel

It follows from (5.8), (5.3) and triangular inequality, writing A = |£[? + k,
k| < K, that the map

L2

Ag,1

- Lp(Tn X RIOC) : {aC}CEAK,I - ag ezﬂ((x'6>+t)\) d( (5'9)

A1

has norm bounded by K1/2N 7 -5
Obviously the map (5.9) from L2 , to L*(T" x Rioc) is of bounded
horm. Interpolation between these last two facts implies
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LEMMA 5.10. Let py > po, p1 > p2 > 2, o= = 152 + 4. Then the map (5.9)
ranging into LP?(T™ x Ryoc) has norm bounded by

K3a-0 yEF-SHa-e (5.11)

It is our aim to prove the existence of a solution of (4.5) by performing
a fixpoint argument with respect to the norm [|| |]]. We first show how
to control the expressions (4.13), (4.14), (4.15), (4.16) in ||| ||| by |]}ul}}-
Minor modifications will yield the contractive property, assuming o > 2.
We introduce some further notation.

For dyadic M, define

Z e2mi6,x) / 5 /\) 2midt gy (5.12)
KisM
AMuzuM—u%; . (5.13)
If I is an interval in Z7, let
Au = Zezwi(f,x) /a(f, /\) PRLLEVIP Y (5.14)
tel
= Y u(() eI g (5.15)

Kdyadic Ak

The control of (4.13) in |}| |||-norm is clear, assuming ¢ € H*(T") (n
d — 1). The v, multiplication is harmless. Observe that even letting 1
X[-5,6), the condition

( > |:Z1(k)[2)1/2 S K-Y? (5.16)

k|~ K

is fulfilled. But it is convenient to consider cutoff functions with more
smoothness properties in order to get better localization properties of the
Fourier transform.

To evaluate (4.14), (4.15), (4.16) one mainly need an estimate on

1/2
K12 Ns( / |m(<)|2d<) . (5.17)
LY 'S
Write with notation (5.12)

w=u|u|°‘=Z(uM|uM|"-u%1_lu_n21|“) . (5.18)
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In the analysis of (5.17), one gets contributions of (5.18) terms for

M>N . (5.19)

Since a > 1, one may write for complex z, w
z|2|% — wlw|® = (z — w) ¢1(z,w) + (Z = W) ¢o(z,w) (5.20)
where @1, @2 satisfy
|Véi(z,w)| < CI2] + )" (5.21)

Substitute in (5.20)

zZ=uy o, W= U%
to get
UMIUMIQ — u_;;ilu% Ia =Apu- ¢1(UM, U%J_) + Apu- ¢2(UM, u_Azi) . (5.22)
The estimates of both terms in (5.22) are identical and we only consider the

first.
Defining

UM =q51(uM,u%4_) (5.23)

write again

UM=(UM-—’U%)+(U%-’U

»'2

Y+ = Z (UMI‘_UL;.L)' (5.24)

M, dyadic
M;<M

Since ¢, is Lipschitz, one has by (5.21)

UM, —-v_y_;l =AM1u-¢1(uM1,uL;l,u_A_?)

where

a—1
|¢i(“M17“i‘%m“_"§L)| < c(|up, |+ lusg | + Iu%d) - (5.26)

(*) This is obvious if « is an even integer. In general some more technicalities
are needed which we skip for the sake of the exposition.
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Considering (5.22), (5.25), we have to evaluate (5.17) with w replaced by
AMu-AMlu-i,[)(uM],Um,u_y_l) (527)

where M} < M, M > N.
Partition & < |£] < M is intervals of size M; and write with notation
(5.14)

Ayu=)Y Aqu. (5.28)

The functions
wr=Aru- Apu- Plup,,um,um, ) (5.29)
2 4

have essentially disjointly supported Fourier transform for varying I.(**)
Thus the contribution of (5.27) to (5.17) becomes

I Nk, T

and our next purpose is to estimate these integrals.
Choose

1 _1-6, 6

pP1>po, >ps> 2, + = . 5.31
1>po, P1>p2 - o 5 (5.31)

The dual form of (5.10) yields
1/2 d-1_diiyq_g
(/ |1 (<)|2dc> <o KH=0) 3T TR, (5.82)
Ak,1

By (5.29) and Holder’s inequality

, p2—p)
P28l N\ ot
leorlly < Narul ([ 1800 w777 ) (5.33)

For the first factor of (5.33), write

Apu= ) [ /A u(¢) el=E)+At) d(] (5.34)

K, dyadic

(**) This is clear if a=2. In general there are again some extra technicalities in
which we do not want to sidetrack the reader.
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and use triangle inequality and (5.10) to estimate

1(1-65) , (552 —21)(1-6,) a2\
fArullp, <c Z Ky )Ml A IU(C)’
Ky, 1

K dyadic
(5.35)
and using the definition of the norm ||jul||

(Sram) " <
ey T z,:{ > K# k1 (/AK la«)l?)m] }2}1/2

K, dyadic
(451 - 2H1y(1g,) 5 oA\
<cM, g { Z K 7 [Kl : (/ [@(¢)| )]} (5.36)
K, dyadic AryMm
(G -Ltiy(i~g,
<eMy TP ) (5.37)

Collecting estimates (5.32), (5.33), (5.35), (5.37), it follows that

o 2003 -4t N AN
(5.30) S K '%.Ml 1 (Xl—) 'I”““l'(/'AMIU"I,/)'—_Z’-”-%) '

(5.38)
We estimate the last factor in (5.38) again by Hélder’s inequality.
Let
1 1-6, 6 2 1
P3>po,p3>pys >2, —= 4+—i and assume 1> —+— . (5.39)
Ps ps 2 P2 Pa

Then

”AMIU’!/}“ 2P} < ”AMluuzu : ”¢(UM1’uﬁgl’u%l)“(l—_p%—L)-l : (540)

- Ps
Pz P,

Similarly to (5.35)

) a1 ety g, ~ 1/2
”Aqunzu <c Z Kl‘%(l 94)M1( 3 > )1 )(/ IU(C)’z) (541)
Kidyadic Ascyn

fifull - (5.42)
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Consider the second factor in (5.40), which amounts to estimate, by (5.26),
a-1

“uMl ”("“1)(1“‘,?2";1;)—] - (543)

Take ps, pg such that

1 1—6¢ 6 -1 2 1
Ps>Po,Ps>pe>2, — = 6+——f-s- andassumea <l————.
Pe Ds 2 Pe P2 Pa
(5.44)

Then

(5.43) < |lua, lI5, " and [lum, |lpe <

- L) (1-66)~s
< D lAmullp <) My T Hulll < ellfull]
My <My M,
Mg dyadic
(5.45)
provided s satisfies
d-1 d+1
g2l e+l (5.46)
2 pPs
Collecting estimates (5.40), (5.42), (5.45)
(451 -4)(1-00)-s «
AM,u- Y| 5ppy < M [ Teal] (5.47)

P2—P)

and with (5.38)

2(1-6;) (451 — 2114 (1-6,) (%51 — 442y N\?
(5.30) < cK=F . p 0T TSI S50 (KZ) lful e

(5.48)
Assume s also satisfies the condition
_ d — 1
s>2(d 1_ +1)+(d 1_d+ ) (5.49)
2 P 2 D3
One may then estimate
(5.17) < ¢ K™% - |||u]| [+ (5.50)

performing the summations over M; and M > N (s > 0).
It remains to analyze the conditions on s, & and the various exponents
introduced above. Consider the conditions (5.39), (5.44), (5.46), (5.49).
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Since po, p1, p2 (resp. ps, ps and ps, pe) may be choosen arbitrarily close,

these conditions may be replaced by

2 1
1> —+4 —
Po P3

where
P3, Ps 2 Po -
Choose ps with approximative equality in (5.53), assuming
d-1 d+1

2 Po
to ensure ps > po. (5.52) becomes
1 2 d-—1-2s
LR P OV M
p3 Po ( ) 2(d+1)
Rewrite (5.54), (5.55) as
dtl, 3 @-n-241
P3 2 Do
1 1
—< =
' p3  Po
and verify the existence of p; fulfilling (5.57), (5.58), (5.59).
Their compatibility requires

(d+1)(1-p—i——(a—-1) '12'(';;12)3)>%(d-—1)——2%1—s

Gl 2d-1)-24l_;

and the resulting conditions become

a < 4 s<£i———:-l
d—1-2s 2

< 2(d+1)
Pos 412 %s
(5.63) also implies (5.56).
Hence we proved

(5.51)
(5.52)
(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)
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LEMMA 5.64. If (5.62) and (5.63) hold, then so does (5.50), i.e.

-1/2 s ~ 2 1z -0 14+o
K N A |&(¢)|"d¢ <c K% |||ul]l (5.65)

for some 6 > 0.
Now come back to the estimate in ||| |||-norm of (4.14), (4.15), (4.16).

(4.14). Observe that |tk1,/b-1\(t) (A)| < ¢ k 6% |A|71. Hence by (4.9)

sz ( ([ sens))

Jel~N
) 1/2
< c6B1/2N"( > / |@(¢)] dc)
K<BYAKN
<c 8B |||t (5.66)

(4.15). One gets
(1= ¥2)(A = [¢]°)

2 1/2
K12 N* d 67
(/AK,N A— IEI2 C) (5 )

(5.67) vanishes, unless K > B. One then has by (5.64) the estimate

w(¢)

1/2
K—l/z.Ns.(/A |@(<)|2d<) < B~ |[ul||+e . (5.68)

(4.16). Contribution to ||| ||| appears mainly for bounded K and amounts
Ns( >

to
2\ 1/2
)
[El~N

1/2
ScN"( > K-“-f)-/ |zﬁ(<)|2d<) <
AN

K>B
K dyadic

1/2
sC( > K*”ﬂ) lallf
K>B

K dyadic

(1-g2)(A =[P .

< ¢ B79Fe |||ulj|t* (5.69)



Vol.3, 1993 FOURIER TRANSFORM RESTRICTION PHENOMENA 151

again invoking (5.65).
Collecting estimates (5.66), (5.68), (5.69), it follows that the terms
(4.14), (4.15), (4.16) contribute in ||| |||-norm for

c(6- B+ B 2)|||u)|} T . (5.70)

At this point, one finds that the transformation associated to (4.4) maps
the ball {u | [[|ul|]| < M} into itself, for sufficiently large M. If o > 2, one
may perfom one more differentiation of the function z|z|* and obtain an
estimate

ITu = Tolll < (6 - B+ B=)(Illulll* + Mol llu = ofll (5.71)

where

Tu=¢vi()Ut)p+ ¢ wl(t)./o Ut —-71) w(7)dr (5.72)

instead of (5.70). Details are rather straightforward adjustments of above
arguments and we leave them to the reader. Choosing é, B in a suitable
way, T' may be given Lipschitz constant < 1 so that Picard’s theorem may
again be invoked to get a local solution to (4.3). This solution is unique
and persistent. Hence we established

PrRoPoOsITION 5.73. Consider the generalized period NLSE (4.1) with o > 2
and initial data ¢ € H*(T"), s > 0 (n = d — 1) with s,« satisfying the
condition

4

. 5.74
a < 9 ( )
Assume moreover we dispose of an admissible exponent
JUntD) (5.75)
n— 38

Then the problem is locally well-posed in the space

1/2
Il = sup( + 172 (Ve[ faenaea) T 60)
K,N SN

IA-1€12|~K

(understood as “restriction” norm wrt time variable”).
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Remarks: (i) Condition (5.74) corresponds to the subcritical case in the
non-periodic setting, the H*-critical exponent being nfh. Thus this re-
lation between n, s, « is not unexpected. In view of the failure of the
L5 (T4) — L%(Z4~1) restriction theorem in the periodic case (i.e. for sets
{(¢,1€]?) € I™ x Z}), it is unlikely one may include the critical exponent,
at least for s = 0 (cf. [CW]).

(ii) One may replace ||| ||| by a Hilbert-space norm, for instance

1/2
lelle={ [+l (+ A= P Pac) G

and conclude for a > 1 under the assumptions (5.74), (5.75) to a local

solution, invoking Schauder’s fixpoint theorem. We loose uniqueness here
however, which is a major consideration in these problems.
(iii) Observe that in particular the solution u satisfies

2(n+2) .

n—2s

u€ LP(T" x [-4,68]) for p< (5.78)

(iv) The regularization method discussed in section 4 applies equally
well here, considering norms of the form

ulll+ > piry NIDE | (5.79)
(r)
(t=(m1,...,m), |7l = 1|+ + |7al)-
(v) It follows from (5.73) and (2.34) (p = 6 is admissible) that for n =1

the periodic NLSE is locally well-posed in the space with norm (5.76). This
specifies Theorem 1.

6. Consequences and Global Results

Recall the two conserved quantities for the NLSE

/T.n |¢(m)|2dz (L? — norm) (6.1)
HW) =5 [ [VoPda -~

Global results for H1-data will be derived from

/ |¢(z‘)|pdz' (Hamiltonian) . (6.2)
T'I
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— the local result (given by (5.73))
— the conservation of H(u(-,t)) and (6.1)
(+ a standard regularization process in order to justify the conservation
law for the generalized equation we are dealing with here).
The negative sign of [ |¢|? in (6.2) leads to some problems when es-
timating the H'-norm from the Hamiltonian. In order to interpolate the
LP-norm between L? and H!, one needs the condition

05n(%—1)<1 (6.3)

p

in which case

I lzrcrmy < el fll™° A% - (6.4)

Let u = u(z,t) be a solution of the periodic NLSE i8yu + Au+ ujulP~2 =0
with initial data ¢. Assuming sufficient smoothness (which may be achieved

using a regularization), one gets from (6.1), (6.2), (6.4) (assuming (6.3)
valid)

ol = S = S0l — S0l 69)

1 1 -
Sl 0l < 5l +elluC Ol . Dl =

L o p(1-0) pé (6.6)
= gl +cllgllz luC, )5 -

We distinguish 3 cases

(I) pf < 2 : Then (6.6) yields an a priori bound on ||u(-,t)|| 1.

(I) pd = 2 : (6.6) implies a bound on ||u(-,t)}| g1, provided the initial data
is sufficiently small in L%. One has

2 ll611%:
O € e (6.7)
“ )”H 1— 2C”d)”2 2
() p>ph > 2: If “u(, t)”Hl is sufficiently small, one may write
2
a3 < 1Ml 5 - (6.8)

= .y

1- 2C”¢”g(1 )”u(’ t)l H
In particular, if || u(,t) ||[g2:< 1 and || ¢ ||2 sufficiently small, (6.8)
yields ||u(-, t)||g: < 2||$|lg1. So for sufficiently small L? and H'!-data,
one gets again an apriori control on ||u(:, t)|| 5.
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n =1 : For p < 4, see Theorem 4.45.
Propostion 5.73 yields a local well-posedness result provided

4 1
< <=1. .
3>0,4_p<1_2s+2 <3_2) (6.9)

Global results for H?! initial data are discussed in the paper [LeRSp].

n = 2 : Since 4 is an admissible exponent, (5.73) yields local well-posedness
for ¢ € H*(T?) provided

4

< -
1sr<3a—y

+2 (0<s<1). (6.10)

From the preceding, one gets global well-posedness if p = 4 and ¢ € H! has
sufficiently small L2-norm and for arbitrary p > 4 assuming the initial data
sufficiently small in H'. The function space is given by (5.76) with s =1
and u replaced by ur(z,t) = u(z,t) x(-r,1) (t), for arbitrarily choosen finite
time restriction 7.

This proves in particular Theorem 2 from the introduction.

n = 3 : The smallest admissible exponent we know off is ¢ = 4 (see Propo-
sition 3.6). Hence (5.73) implies local well-posedness in the space (5.76), in
the parameter range

4<p< : (6.11)

4
- 3-2s

N

+2 %<s_<_

For 4 < p < 6 one gets global well-posedness for sufficiently small H! data
(this is case IIT above). This proves Theorem 3.

n > 4 : The smallest critical exponent at our disposal is ¢ = Aﬂf—ﬂ (see
Proposition 3.110). Hence (5.73) implies local well-posedness in the space
(5.76), in the parameter range

4<p< (6.12)

+2 <s<n
n—2s ' n+4 -2
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