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1. In troduct ion  

The main purpose of this paper is to develop a harmonic analysis method for 
solving certain nonlinear periodic (in space variable) evolution equations, 
such as the nonlinear SchrSdinger equations (Part I) and the KDV equation 
(Part II). 

The initial value problem for the periodic nonlinear SchrSdinger equa- 
tion (NLSE). 

+ io,  + = 0 (p > 3) (1.1) 

u = u ( x , t )  is 1-periodic in each coordinate of the x-variable (1.2) 

with initial data 
u(x,0) = r (1.3) 

is our first concern. 
My interest in this problem results from the paper [LeRSp] of Lebowitz, 

Rose and Speer, in particular the first problem raised in section 5 of [LeRSp]. 
We will obtain here local and global results on the well-posedness of (1.1)- 
(1.2) in one and several space dimensions for initial data r e ga (Tn) ,  
$ n = R n / z  n for essentially optimal r giving at least a partial answer to 
the question from [LeRSp]. In the non-periodic case (i.e. R n) the NLSE 
has been studied by a number of authors, such as Kato [K1,2], Ginibre- 
Velo [GiV], Tsutsumi [Is], Cazenave-Weissler [CW] among others. It is 
known for instance in the Rn-case that if a - p - 2 = ~ then the NLSE 
(1.1),(1.3) has a global solution in time provided [[r is sufficiently small, 
see [CW]. The method is based on solving the equivalent integral equation 

I* where V( t )=e  

(1.4) 
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by Picard's fix point method. 
The nonlinearity is controlled in the iteration process by invoking 

Strichartz's inequality 

[Iu(.)oll.<d.~. _< CIIr where q = 
2 ( ~ + 2 )  

n 
(1.5) 

nent 

The main idea here is to try to adjust this approach to the periodic case. 
The main difficulties are the following: 

(i) The exact analogue of (1.5) where Lq(dxdt) is replaced by Lq(T "+1) 
fails. 

(ii) Inequalities of the form (1.5) may in the periodic case only hold locally 
in time (global solutions to (1.1), (1.2), (1.3) are not dispersive). 
As far as (i) is concerned, consider the case n = 1 with (critical) expo- 
q = 6 given by (1.5). We will prove the inequality 

I-I<N HL~(T2) 

The presence of the N~-factor in (1.6) is necessary as will be indicated later 
and constitutes a difficulty in performing the Picard iteration argument. 

Inequality (1.6) is a statement on the so-called hq-constant (q = 6) of 
the set of lattice points {(n, n2) l ln ] < N} C Z 2. 
DEFINITION (cf. [Bol]): Let d > 1 and S a subset of Z d. Let p > 2. Define 
Kn(S ) as the smallest constant (possibly infinity) satisfying the inequality 

7ES  I L ~ ( I  ~) 

for all scalar sequences (a~)~es. 
Thus (1.6) means that K6({(n,n 2) I I-I -< N} )  ~ g ~. In the higher 

dimensional case, we will need to consider sets { (~, [~l 2) ] ~ ~ z-, I~l < g},  
I~l 2 = E ~ ,  and evaluate appropriate Ap-constants of these sets. Our 

l_<i_<. 
method to achieve this will be either simple arithmetic or the analytic Weyl- 
sum approach. The results obtained here only cover certain ranges of p and 
somehow leave the picture incomplete. Some remaining questions lead to 
interesting number theory problems. 

In the non-periodic case global results are obtained in certain cases 
directly from the fix point method. In particular one gets global solutions 
for initial data r E H* with 0 < s < 1. The reason for this is the global 
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nature of Strichartz's inequality. In the periodic case, the estimates are 
local in time and hence at this stage only a local solution is obtained. All 
global results obtained here result from combining 

- existence of local solutions 
- conservation laws. 

A first conservation law is provided by the L2-norm: 
If u = u(x,t) satisfies (1.1), (1.2), (1.3), then 

.]'.,. =/.,.. ,or 
Next, consider the Hamiltonian 

H ( r  = ~1 J(T- IVr - Pl ~ , .  ir x (1.9) 

which is preserved by u(., t) for varying t, yielding a second conserved quan- 
tity. 

These conservation laws are well studied in the literature and we do 
not elaborate on them here. Prom (1.8), it will be possible to deduce global 
existence from local results with L2-data and from (1.9) global solutions 
for initial data r controlled in L 2 and H t in a suitable way (there is a 
problem in this context because of the minus sign in (1.9)). In particular, 
no global results are obtained here for initial data r E H 8 with fractional 
s. To achieve this in one of the main open problems. 

The NLSE (1.1),(1.2),(1.3) in the case n = 1, p = 4 has been studied 
by Zakharov and Shabat [ZS] using the method of inverse scattering. In 
this case the NLSE is shown to be integrable and global solutions may be 
obtained for L2-data. We will obtain here another (harmonic analysis) proof 
of this fact based on the method described above and the L2-conservation 
law. 

By "well-posedness" we mean existence, uniqueness and persistency of 
solutions in an appropriate function space in the (x, t)-variable. Here are a" 
few examples of results obtained in the paper. 

THEOREM 1 (n ---- 1). The NLSE (1.1), (1.2), (1.3) is locally well-posed for 
4 r E HS(T), provided o~ - p - 2 < i-28" 

THEOREM 2 (n = 2). The NLSE (1.1), (1.2), (1.3) is globally well-posed 
for cr = 2 with initial data r E H I ( T  2) and sufficiently small L2-norm. The 
same result holds for all cr > 2 for sufficiently small H 1-data. 

THEOREM S (n = 3). The NLSE (1.1),(1.2), (1.3) is globally we11-posed 
for 2 <_ tr < 4 and sufficiently small H 1-data. 



110 J. BOURGAIN GAFA 

THEOREM 4 (n >_ 4). The NLSE (1.1), (1.2), (1.3) is locally well-posed for 
3n 2 < a <  ~ a n d s >  n+4" 

The main feature of the approach followed here is an analysis on multi- 
ple Fourier series. This technique has lots of flexibility compared with other 
methods. A further result on global wellposedness for n = 4 and ~ = 1 
appears in [Bo2]. 

In Part II of this paper (to appear in the next issue) we discuss the 
Cauchy problem for the periodic KDV equation 

ut  + u u x  "t- uxx~: = 0 (1.10) 

with initial data 

u(x, 0) = r  (1.11) 

Results along these lines in the R-case were obtained by several authors, 
for instance in the papers of Kato [K3], Kenig, Ponce and Vega (see [Ke- 
PoVel,2]). In the periodic case, there seems to be a limited amount of 
literature on this issue. The paper of SjSberg [Sj] deals with H3-initial 
data. We will show here using the fix point method. 

THEOREM 5. The KDV-equation (1.10), (1.11) is in the periodic case 
globally well-posed (in a suitable space) for r E L2(T) of prescribed mean 
f r Moreover, for data r 1 6 2  E L2(T), of same mean, the corresponding 
solutions u, v satisfy flu(t) - v(t)[J2 _< eCt[J~ - r where C depends on 

11r lir 
This argument permits also to give an alternative proof of the [Sj]-result 

and shows that solutions with real analytic data are spatially real analytic 
for all time (cf. [Tr]). 

The conservation laws involved in the proof (for L 2 data) are simply 

f u(x,t)dx ; lu(x,t)12d  (1.12) 

Theorem 5 seems of interest because precisely the L2-norm is a naturally 
preserved quantity in this theory. The techniques of [MTr] may be reworked 
to prove that the solutions obtained in Theorem 5 are almost periodic in 
time. (This result is known for smooth data, see [L], [MTr].) 

Coming back to the KDV equation in the R-case, the introduction of a 
similar norm as in the proof of Theorem 5 permits to obtain also 
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THEOREM 8. The KDV-equation (1.10), (1.11) in the R-case, is globally 
well-posed for data in L2(R). 

There has been a list of investigations on this issue by many authors 
and subsequent inprovements were obtained, the record up to now being the 
results of [KePoVel], namely s > 3 (local) and s :> 1 (global) as regularity 
condition on the data r E Hs(R). Existence of weak solutions for L2-data 
were proved in [K3] and [KruF]. 

Next we briefly summarize the organization of the paper. In the next 
section we will establish L 4 and L 6 estimates relative to lattice sets 

I - e z ,  Inl N )  (1.13) 

and related multipliers. In section 3, we consider the higher dimensional 
analogues 

{(~,1~[2) I ( e I n , I~[ < N}  (1.14) 

for which we prove LP-moment inequalities. For n > 5, the best results 
will be obtained using the method of exponential sums and the Hardy- 
Littlewood circle method.  We will combine these ideas with the arguments 
of [T] and [St] in order to obtain the right hp-constants of sets (1.14) for 
certain p < 4. I believe these investigations are of independent interest. 
In section 4, we treat the 1-dimensional NLSE (1.1),(1.2),(1.3) with L 2- 
data. Section 5 gives the general scheme on how to make estimates in 1 and 
higher dimensional setting for H~-data, using the information from previous 
sections. In section 6 we list the consequences for existence of local (resp. 
global) solutions of the periodic NLSE and in particular prove Theorems 
1,2,3,4. Section 7 deals with the KDV equation and the proof of Theorem 
5. In section 8 we present further results on periodic KDV equations, with 
higher degree of nonlinearity based on the same method.  In section 9, the 
almost periodicity of the KDV flow with periodic L 2 data  is discussed. The 
proof of Theorem 6 is contained in section 10. 

The author benefitted from discussions with C. Kenig, J. Ralston, 
C. Levermore and E. Trubowitz on the subject. 

The reference list is by no means exhaustive. 

2. O n e - d i m e n s i o n a l  E s t i m a t e s  

Here and in the sequel we denote by c numerical constants. 
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PROPOSITION 2.1. The set {(n,n 2) In E z} has bounded h4-constant, i.e. 

I ~ a" ei(nz+nh) L'(TD < c(.~+zla"12) x/2 (2.2) 

, = �9 7111/2 where Proof: Letting f = ~ a ,  e i(n~+~20 write [[f[[4 [If Jii2 , 

fy = ~ la - I  2 + ~ a n , ~ . , e  ' ( ( " ' - " ' ) x + ( n ) - " D ~  �9 

n l ~ n 2  

(2.3) 

Obviously, if nl - n2 and nl 2 - n 2 = ("1 -- n2)(nl 4- n2) are specified, there 
is at most one choice for nl, n2 (nl # n2). Hence, the L2-norm of (2.3) is 
bounded by 

( ) 1 ,  
[[f[[~ -i- Z ia",~"=12 _ 2][fl[~. (2.4) 

nl :~n2 

Dualizing (2.1), it follows: 

COROLLARY 2.5 .  

(E)f(-, :)I') -< cHn.,,(,,>. 

Instead of the restriction one may formulate following stronger multi- 
plier inequality: 

PROPOSITION 2.6. Following estimate holds 

Hf[IL'(T2)--< C[ Z ( in m26 § 1)a/4if(m'n)[2]l/2 - ( 2 . 7 )  

m,nEZ 

Proof: Write 
f(x,t) = Z ei(mx+m20 fro(t) 

m 

hence f(m,n) = fm(n -  m 2) and the right number of (2.7) equals 

\ 1 / 2  ( n ~ E  z 

(2.8) 

(2.9) 
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One has 

(f .-f)(x,t)--- E eiAx eiA2tEe2irnAt (fm-frn+A)(t) 
AEZ m 

Ill - 2 _ f,. "/IIL=(V=)- ~ ~ e2imAt(f m :rn+A)(t) dr. 
AEZ r e E l  

Define for j >_ 0 

/ m , i ( t )  = fro(n) ~'-' 
I,q~2~ 

; Im=~_. fm, j  
i 

113 

(2.10) 

(2.11) 

(2.12) 

a Littlewood-Paley decomposition of fro. Estimate from triangle inequality 

EIz II 
and distinguish the contibutions 

A 2 <_ 2 j (2.14) 

A < 2 j _~ A 2 (2.15) 

2 j _< A .  (2.16) 

C o n t r i b u t i o n  of (2.14). Evaluate pointwise by Cauchy-Schwartz 

I (E )l/2(E )1/2 A..,~'~elmA'r ?m+:,,k -- < ]fm,j] 2 [fm§ 2 (2.17) 
m m m 

which L2-norm is at most 

( ~m Hfm'jH2) l/2l ( ~m 'fvnTA'k'2) l/21100 ~ 

~_ 2k/2(~ m Hfrn,jH2)i/2(~ m HfrnTA,kH2) 1:2 

~--2k/82-3j/8(~ m E (["["[-l)3/41f'm(n)[2)l/2 
I,q'-,2' 

" (~m E ({rt]+l)3/4[fm(n)]2) 1/2 (2.18) 

Inl~z~ 
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from definition (2.12). 
To evaluate (2.13), perform ~ (2.18) and estimate the k-summation 

j>k 
(k _< j) by Cauchy-Schwaxtz. This gives 

( 2 " 1 1 ) ~ - E {  E 2 - J / 4 ( ' ~  E 
AEZ j ,2J~A~ Inl~2~ 

Write E = E E and rewrite the first factor of (2.19) as 
AeZ e>o IAI , , ,2  t 

(2.19) 

s>0 In I,..,2~!+- 
E E  
e=o IAl~2t 

<-- E [~  s 2-s/4E E ( Inl +l)3'4lfm(n)12] 
e>o m In1,,,221+~ 

8 m 

(I,q 1)~/~1f~(~)1~)1/~}~ + (2.20) 

(2.21) 

(2.22) 

Hence the contribution of (2.14) to (2.11) is at most c( E A2) 2. 
m 

Contr ibut ion of (2.15). Observe that by construction (k < j) 

supp(fmj--fm+A,k) ^ C [- -2  j + l  , 2 / + 1 ]  (2.23) 

while for increasing m the frequency increment of e i m A t  is A. Splitting the 
2J 

in (2.13) in summations over arithmetic progressions of increment S ,  
m 
say A4, one gets by orthogonality 

E _imAt~ Jm,j Ym+A,k ~ ~ Ilfm,i fm+,',,kll2 (2.24) 
mEAd 2 mEAd 

Summing over the progressions jk4 yields then the bound 

i/2 _ 2,~ i/2 
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Estimate again 

Ilfmj" 7,~+:,,k112 --< IIf,',,Jll2 Ilfm+:',klloo '~ 2~/211fmr Ilfm+:',kl[2 �9 (2.26) 

So the contribution to (2.11) is at most 

E Z 
AEZ j > k  

A<2~<A2 

2k/2 ( ~  llf~sll~ IIf,-,,+,,.k 11.~)'/2}~ (2.27) 

-- Z 1( Z 2J]S2k[S[~m ( Z ('nl'4-1)3]41}m(rt)12)" 
AEZ j > k  [nl~2J 

" ( Z  ('rt'+l)3/41fm+A(rt)12)]l]2}2 
Inl~2~ 

(2.28) 

_ ~ + ~  = ( Z ~ : )  ~ 
AEZ m 

(2.29) 

Contr ibution of (2.16). From (2.23), one gets by orthogonality 

(2.3o) 

and the previous calculation yields now 

(2.31) 

instead of (2.28). One concludes similarly by applying the Cauchy-Schwartz 
inequality 

~, [~ ~m ~+~]-- (Z ~) ~ 
Hence (2.11)is bounded by ( •  A~) 2, which by (2.9) completes the proof. 

Again by duality, Proposition 2.6 implies 
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COROLLARY 2 . 3 2 .  

( ~--~ (In - m21 + 1)-~/4lf(m, n)12 ) 1/2 _< cllfllL,/,(T~). 
m,nEZ 

Combining (2.6), (2.32), one obtains following Fourier multiplier result 

PROPOSITION 2.33. Assume A = (A,~,,~).~,,~ez a multiplier satisfying 

[,Xm,n[ < (1 + In- m21) -3/4 for all m , n .  (2.34) 

Then A acts boundedly from L4/3(T2) to L4(T2), i.e. 

II ~-~ ~m,n }(re, n) e i(mx+nt) --< c l I f l I L * , ' ( T ' )  �9 (2.35) 
L4(T 2) 

Inequality (2.35) will be used in the Picard approach to the NLSE (1.1), 
(1.2), (1.3) with L2-data. 

3 in (2.7) is sharp. Consider for instance the func- Remark: The exponent 
tion 

f =  ~ e i(m~+nO �9 
I,~f<_N 
Inl_<N ~ 

Then Ilfl12 ~ N3/2 and Ilfl14 ~ N3N-3/4 = N9/4 "~ ( E l  n -m213/4 

. [}'(m, n)12) 1/2 . 

Next, we consider L6-estimates. 

PROPOSITION 2.36. Let SN = {(n, n2)I Inl_ N}.  Then 

log N 
K6(SN) < expc l og logN " (2.37) 

Hence, one has 

I Z anei(nx+n2t) 
n E Z  L e ( T )  

, Vc > 0.  (2.38) 
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N 
Proof :  Letting f = ~ ane  i ( ' ~+ '? t ) ,  one has by straight calculation 

1 

j~T2 
a n l a n 2 a n - n a - n 2  2 asl ~  Jss sl  = E E -< 

n,j n~+n]+(,~--,~--n2)2=j 

max r n , j "  lanl 2 < 
- -  I-I<_sN 

IJI_<SN 2 

(2.39) 

defining 

r . , j = # { ( n l , n 2 )  l ln, l <_ N and n 2 + n  2 + ( n - n l - n 2 ) 2 = j }  . (2.40) 

It remains to show that  rn , j  < exp c lo~ u The condition n 2 + n22 + log log N " 
(n - nl  - n2) 2 ---- j may be rewritten as 

j - -  n 2 
n21+ n 2 - n n l  - nn2  + n l n 2  - 

2 

~( r t  I --~ r t 2 )  2 .4- l ( r t l  - -  n 2 )  2 - -  r t ( r t  I -~- r t 2 )  - -  J - n 2 
2 

Put  ma = nl + n2, m2 = nl - -  n2 to get 

(2.41) 

(3ml - 2n) 2 + 3m 2 = 6j  - 2n 2 . (2.42) 

Consider the equation X 2 + 3Y ~ = A (X, ]I, A E l ) .  Denoting p = 

e-~2~' = xtiv~2 , Z + pZ is known to be an euclidean division domain. Conse- 
log A quently, the number  of divisors of A in l + p7 is at most  exp c log log A < 

exp c lo s N Finally, observe that  if X, Y E Z satisfy X 2 + 3Y 2 = A, then log log N " 

X + i v ~ Y  is a divisor of A in l + pZ.  This concludes the proof, since the 
pair ( 3 m l -  2n, m2) defines (n l ,n2)  uniquely. 

R e m a r k  I :  Results  on the number  of lattice points on algebraic and real 
analytic curves are provided by the work of Bombieri  and Pila  [BP]. For 
instance (see [BP]), if F is a real analytic image of the circle S 1, then for 
t ---* o o  

Itr n z21 << t (2.43) 

which of course applies in the context above (F = {X 2 + 3Y 2 = 1}). 
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Remark 2: The arithmetic analogue of Strichartz's inequality (1.5), i.e. 

is played by inequality (2.38). This estimate fails if one replaces N ~ by a 
constant. In fact 

1 N 6 V ~  ~ e i ' ' ( n ' + ' ~ ` )  ---*c~ for N---*cx~ (2.45) 
n----0 

(compare with the fact that the squares do not form a A4-set). This may 
be seen as follows. Let 1 < a < q < N 1/~, (a,q) = 1, 0 < b < q be integers 
and take 

ix~ :o(1) } ~.4~, 
f,~ o ( ~ )  

It follows then from the theory of exponential sums (see [Vi]) that 

N 

I z . . ~  I _ _ - ~,47~ 
n = 0  

in the context of (2.46). Denoting 

N 

/(x,t) = E e'"("+'"> (2.48) 

and .M(q, a, b) the region described by (2.46), it follows that 

L N3 
o(q,a,b) If16 dxdt  ~ q~ . (2.49) 

Hence, 

implying that 

f N3 Ill 6 dxdt  >_ c Z -~ >- c(logN)- N 3 
a < q  

( a , q ) = l  

(2.50) 

K6(SN)  > c( logN)  1/6 �9 (2.51) 
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P r o b l e m .  Is Kp(SN) bounded  for p < 6? This  was shown to be the case 
if p <  4. 

Remark 3: The exponent  �88 in inequali ty (2.7) may  be "explained" by in- 

terpolat ing T~: L 2 --. L p mapping  f to ~ ]'(m, n)[1 +ln -m2[] -Se  i(m~+nt) 
m,. 

b e t w e e n p = 2 ,  p = 6 .  If p =  2, T~ is bounded  for Res = 0 .  I f p = 6 ,  T~ 
is "almost" bounded  for Res = �89 The  interpolated value at p = 4 is then 
3/s. 

3. H i g h e r  D i m e n s i o n a l  E s t i m a t e s  

Fix d > 2 and consider the subsets of ;/~ 

{ ( n l , . . . , n d _ l ,  [~12) [ n j  E Z ,  Injl < N} = Sd,N (3.1) 

where ~ = ( h i , . . .  ,rtd_ 1 ), I 12 = nl  2 + . . . + n 2  1 . These sets were considered 
in previous section for d = 2. It seems reasonable to conjecture tha t  

{ ~p(Sd,N) < Cp 
Kv(Sd,N) << N" 

Kp(Sd,N ) < c v Nd~ 1 
_ d-}-i 

P 

2 ( d + l )  (3.2) for P < d-1 

2(a+1) (3.3) for P = d-1 

2(d+1) (3.4) for p >  d-1 

For d = 2, (3.2) for p < 4 and (3.3) were proved in previous section. Inter- 
polation with L ~r would yield (3.4) up to an N' - fac tor .  From the es t imates  
based on the Weyl-sum approach presented below, we will actual ly also 
deduce (3.4). 

For d = 3, we will prove est imates  (3.3), (3.4). 

Star t ing from d = 4, even a rough unders tanding  of the d iagram (ig- 
noring N~-factors) 
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~/--i 
2 

log Kp( S4,N) 
log N 

d - 1  
2 (d+ l )  

f p 

is only partial. 
F o r d = 4 w e g e t  (3.3) w i t h p = 4 a n d  (3.4) forp  > 4. If d >  5, the 

Weyl-sum approach mentioned above yields (3.4) in the restricted range 

p > 2(d + 3) (3.5) 
- d - 1  

2(d+1) for level sets Also the (sharp) distributional inequality with p = d-1 
[[f[ > A] may be obtained from this method provided A is large enough. 

PROPOSITION 3.6. 

K4(S3,N) << N ~ 

K4(S4,N) << N�88 +" 

K4(S5,N) << N�89 

g4(Sd,N) < Cd NJ~ -'~ for d_>6 

(3.7) 
(3.8) 
(3.9) 

(3.10) 

(We will show later that the N~-factor in (3.9) is not necessary.) 



f (x ,  t) = E a~ e 2~i((-ff'x)+l~l~t) 

I~I<N 
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Proof: The problem will reduce to estimating the number  of representations 
of an integer as a sum of squares. Let 

with (z, t) �9 -[d-1 • T . (3.11) 

H e n c e  

-~ -~  - 
(3.12) 

denoting 

IIL2(Td+,)< m a x  r~,j ( E ]an'J2)2 (3.13) 
1~I_<2N 
IJI<_2N 2 

r ~ , j = # { ~ � 9  a-1 [ I ~ I < N  and l~l 2 + l p - n l  2 = j }  �9 (3.14) 

Rewrite the equation I~l 2 + IP - nt 2 = J as 

(2.~ _ p , ) 2  + . . .  + (2 ,d_~ - pd_~) 2 = 2j  - Ipl 2 (3.15) 

so that  r-~,j may be bounded by the number of solutions of 

X• + . . .  + X~_ 1 = A ; A = 2j - I p l  2 . 

Hence, there are the estimates 

A t (d = 3) ~1 

A]  +~ (d = 4) 
A 1+~ (d = 5) " 

A ~  (d > 5) 

(3.16) 

(3.17) 

Since [A[ < N 2, (3.13), (3.17) yield (3.6). 

Remark: More details on representations of integers a.s sum of squares may 
be found in [Gr]. 

In the remainder  of this section, we will develop a more analytical 
method. It is based on two ideas 

- Tomas'  proof of the restriction theorem for surfaces S in R a 
- The "major arc" description of exponential sums. 
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Roughly speaking, the surface S in R d is replaced by the set  Sd, N in Z d. 
Let a be the surface measure of S (assumed compact). Tomas' argument 
consists then of analyzing the mapping properties of f ~ f * ~ by breaking 
up 3 in level sets and estimating their individual contribution by inter- 
polation between L 1 and L 2. Following the same scheme, 3 becomes the 
(higher-dimensional) exponential sum 

e27ri( (_ff,x ) + l~12 0 

In,I ..... I n a - ,  I<N 

which level sets o n  T d + l  correspond to the "major arc" description in the 
sense of Vinogradov [Vi]. This essentially explains our procedure. 

We will use following Weyl type lemma. Its proof is classical. We 
include it for selfcontainedness sake. 

LEMMA 3.18. Let {an} be a multiplier satisfying 

0 < a n < l ,  a n = l  on [-N,N] 

{an+l - a n }  is bounded by --~ and has variation bounded by --~ (3.19) 

suppan C [ -2N,  2N] 

and let 
f ( x , t )  = E on e 2~'(n'+n~~ �9 (3.20) 

I f0  < a < q < N, ( a , q ) =  1 and II t - 911 < ~ ,  then 

N 
If(x , t ) l  < c (3.21) 

v~ (1 + N I l  t - ~111/2) 

(the role of a = {an } is to avoid logarithmic factors in N and plays only a 
technical role). 

Proof: One has 

[ f ( z , t ) l  2 = E ~nl  6rn2 e21ri[(n'-n2)x+(n'-n2)(ni+n~)t] 

n I ~l't2 

and letting k = nl - n2, g = n l  "4- n 2  

_< v. I E ~ 
e k---~(2) 

aTt-~ e2~/k(~+et) I . (3.22) 
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Writing k = 2kl (if g even), k = 2kl + 1 (if g odd), each multiplier 7 = 
{rkl = a[t_~_~]+kl a[~]_k, } satisfies (3.19) (up to factor 2). Therefore (3.22) 
is bounded by 

1 
c Z (3.23) 

ItI<4N N(  l[ 2x + 2gt I[ + ~ ) 2  �9 

Write t = ~ +T,  IT[ < ~qq. Hence 2 x + 2 g t  = 2 x + 2 g ~  +297. Assume 
ft* a 1 a -2x E t ~,(g* + )~] = I a n d c ~  the orbit i n R / l o f 2 x + g a + g T .  q 

One easily verifies that the contribution (3.23) away from the interval I is 

N 1 
< c - -  Z ~ <cq. 

q (q ~)  0<~<q N + 
(3.24) 

The contribution around I may be estimated as 

< m i n { N . N ,  N + Z  
~<~ 

{ N  2 1 }  
<min  ' qlrl " 

1 

N(rqlr l  + _~)2 } (3.25) 

(3.26) 

Collecting estimates, (3.21) immediately follows. 
The (one-dimensional) major arcs appear on neighbourhoods as sets of 

rationals 

n Q = { q  ll  <_a<q, (a ,q )=l ,  Q<_q<2Q} . (3.26) 

More precisely, define for 1 ~ -  < ~ < ~ the function w~ 

-2e  - e  - e / 2  0 

/y< 
~/2 e 2e 
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1 1 - ~ r  0 

so that for I _ < Q _ < N  

1 1 ] (3.27) ~-'__.~ ~ ~. = 1  on 
N Q '  N Q  

N > 2 * > Q  

E w ~ is supported by 
N 2  R 

N > 2 ~  

L e t N l = o ( g )  anddef ineT~= U T~Q. 
Q<N1 

Observe that for Q1 _< Q2 _< N1 

@o,+[_• , 

(major-arc disjointness property). 
Write ( ~  = Dirae measure at point x) 

2 2 ] (3.2s) 
N Q ' N Q  

2 ,]) 
NQ2 ' NQ2 --- q} (3.29) 

QC--NI Q<2~ xET~Q 
Q d y a d i c  

We recall Dirichlet's lemma. 

LEMMA 3.31. Given t E T, there is fraction q, (a,q) = 1, q ~_ N such that 
a 1 

Observe that if for given t E T, the first term in (3.30) differs from 1, 
i.e. p(t) ~ O, then q given by (3.31) has to satisfy q > N1, so that by Lemma 
(3.18), for all x E T 

Our next aim is to evaluate the Fourier transform of ~ ~ (which is a 
xERQ 

function on 7). 
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LEMMA 3.33. Denote d(n; Q) the number of divisors of n less than Q. Then 
for n # O 

' -  - ' 1\ "e'~Q ] ' l (  ~-"~ ' ~ ) A ( n ) [ < < d ( n ; Q ) Q ' + ~  (3.34) 

and obviously 

~x (0) ~, Q2 . (3.35) 

Proof: We have to evaluate 

Z ( ~ - ~  e2~i~=) " (3.36) 
Q<q<2Q a<q 

- -  ( a , q ) = l  

Fix q with prime decomposition q = p~l p~  . . . .  Hence 

a al  a2 rj (3.37) q - p ~  + p~--7 + " "  0 <_ aj < pj 

and the condition (a, q) = 1 is equivalent t o  (aj,pj) ---= 1 for each j .  Therefore 

,-j _ ,-j - 1 
[ p ~ _ ~ l  27ri.ff7 n p j ~ l  2~rira_l n'lj 

e27rin~ --~ H e ", - e " /  (3.38) 
a<q  j " a = 0  0 

(a ,q)=l  

~- rj --1 / rj --1 ) ]  II [p;" c(.,p?) 
J 

(3.39) 

where one denotes 

c ( n , q ) = l  if q l n  and c ( n , q ) = O  otherwise .  

It follows from (3.39) that  

~_, e2'~in~ = q ) - -~j c tn ,p j  ) �9 
a<q 

( a , q ) = l  

1 r r j  - 1  \ If pj [ n, estimate c(n,p~ ~ ) - pJ c[n,pj ) by 1. Otherwise 

1 ~ r i -- 1 
c(n, py r - p-~. c(n,pj  ) = 0  if rj > 2 

1 
= - - -  if r j = l  

Pj 

(3.40) 

(3.41) 
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so that  for (n,pj) = 1 

1 / rj--X\[ 1 c(n,p~ ~) - pj - pj - -  ckn,pj )[ < r-"7 �9 (3.42) 

Write q = q'q" where the prime factors of q' divide n and (n, q") = 1. It 
follows then from the preceding that  

Z 2'~i'*-~ ] q (3.43) a<q,(a,q)=le q <_ q. 

Consequently 

z I 1 Z e2~in~ <Q Z Z q,, 
Q<q<2Q a<q,(a,q)=l qt<Q with prime q t t ~  

- -  ftLctOrS dividing n q, 
(n,qtt)=l 

< Q #  {q < Q [ prime factors of q divide n} . (3.44) 

I f p l , p 2 , . . .  ,pk are the prime factors of n, an element q appearing in (3.34) 
has the form 

q = p~l . . .p~ ,  with rj > 0 (3.45) 

and 
k 

E rj logpj _< l o g Q .  (3.46) 
j = l  

log O .d(n; Q). This proves Hence their number may be estimated by exp c log log Q 
(3.34). 

Related to the quantities d(n, Q), we recall Lemma 4.28 from [Bol]. 

LEMMA 3.47. # { 0  <_ n < g [ d(n;Q) > D} < c~,B(D-BQ~N + QB) 
whenever T > 0, B < cr are given constants. 

Proof: For 2 _< q < Q, define the function ffq on [0, N], putt ing 

,Tq(n) = 1 if q ln 1 (3.48) 
= 0 otherwise " 

Fixing an integer power B _> 1, write from Tchebychev's inequality 

N 

# { O < n < N I d ( n ; Q ) > D } < - D - B ~ _ , (  ~_, 
1 2<q<Q 

Jq(n)) B (3.49) 
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Denote [ql,q2,.. . ,qB] the smallest common multiple. Expanding the B- 
power in (3.49), one finds 

( 1 E ,.7"q(rt) ,~ E [ql'''"qB]-I + 
N 1 q<Q q,...q~<Q 

1 QB ( logQ ) QB 
F_, q ~(q)" + 7  < exp CB ~ q<_QO loglogQ + N " 

(3.50) 

Thus (3.49) is bounded by 

N . D  - B . e x p ( C B  2 logQ ) Qt~ 
log log Q ] + 

(3.51) 

and the lemma follows. 
Define following function on l d 

E " 2 2 K an~ Gn2 "'O'nd_ 1 6(n, ..... ng_, ,nl+.. .+nd_l)  
nl,...~nd--1 

(3.52) 

where {an} is the sequence of weights considered in (3.19). 
Thus suppK C [-2N, 2N] d-1 x [0,4dN2]. Also K(x, t )  on -[d-1 X T 

appears as the product 

d - 1  

j = l  

From (3.30), (3.35) one has 

Q 2  

1-< E E i2~ 
Q<~, Q<_2~<N 

Q dyadic 

- -  +~(o) 

g l  [~(0)- 1[ < -~ - .  

Define coefficients aQ,, such that 

(3.54) 

]  ̂
~x �9 ~ A .  (o1 = ~o, ,  ~(o) 

x 

(3.55) 
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hence by (3.54) 

oLQ, s < c - -  

Based on (3.30), one has the identity 

k ( z , t )  = 

= E  E 
Q<N1 Q < 2 o < N  

Q d ytLdlc 

+[1+ 
Q<_N1 

Q dyadic  

Define the multipliers 

Q 2  

N2" (3.56) 

N2 s 
X 

) - crQ,~ " P] (tt3"57) 

E (~Q,~]~[(x't)p(t) . (3.58) 
Q<_2"<_N 

xE77,.Q 

It follows from Lemma 3.18, (3.32), (3.53), (3.56) that 
d - 1  

O2 ( v /~ ' )d-1 
IAQ,,I Z (1 ' + (3.60) 

v ~  + ) N2 ,"  " 

Since 2 ~ > Q, there is the pointwise estimate 
d- - I  

IAQ,,I g (3.61) 

Next, estimate AQ,8. From (3.59) 

XQ,, = K *  E 5x "WN~. --C~O'~" " (3.62) 
xET~Q " 

By definition (3.55) of aQ,,, the second factor vanishes outside {(0 , . . . ,  0) E 
Z d - ' }  • (Z\{0}). Hence 

)^ ] ?~q,,(z,,...,zd)= ~ O,,'''o,d_, ~ "~ ' --'~Q,,'~" 
"held-' ~ N2. (3.63) 

�9 ( Z  1 - -  n l , . . . ,  Zd__ 1 - -  T t d _ l , Z  d - - I~12)  

�9 ' ' a z d _ l  ~X " ~  1 - - O ~ Q , s  " 

N2- (3.64) z 

O 'z l  

�9 ( z d -  z~ . . . . .  z L 1 ) .  
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If zd z 2 + ' ' ' -4 -  z 2 (3.64) vanishes. Otherwise (3.34), (3.56) imply -'~ d--l~ 

Ql+e 
IXQ,,(zi , . . . ,zd)l  << ~ d ( z , -  21 . . . . .  z,~_l; Q)-{- 

Q2 
+ ~-~ I~(z~- z~ . . . . .  z L ~ ) l  

(3.65) 

It follows from (3.30), (3.34) that for n # 0, Inl < N2 

d(n, Q)Q 1+~ N e 
I~(n)l _< ~ ~ N2 �9 << -~- Q<_tr Q<_2o<N 

Q dyadic 

(3.66) 

so that by (3.65) 

IXQ's(Zl'''"Zd)[ << N~  [ Qed(zd- z21 . . . . .  z~i_l;Q)-~ N ~  e] (3.67) 

Q 
<< N2---- S (3.68) 

We assume here ]zl] , . . . ,  ]za-ll < N and Izal < cN  2. 
Inequalities (3.61) and (3.67), (3.68) are the key estimates in what will 

follow. From (3.61) one gets 

d--1 

II/* AQ,,IIL~(T~) < I1/111 IIAQ,,II~ _ c Ilfll, (3.69) 

Prom (3.68) 

Ill * AQ,slIL~(Td) ~ Ilfll211XQ,slle~(zd) << N--~N~IlYlI2 " (3.70) 

In fact, more precisely 

] 1/z 
ll~, AQ,~II~ <_ ~-~ ~ I}(z , , . . . ,~) l~aIz~-  z~ . . . . .  z~_~;ol ~ 

~ # ~ + ' " + ~ _ ,  

Q2 
+ 2~:v~-----~ IJ f IJ~ �9 

(3.71) 
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It follows easily from L e m m a  3.47 tha t  for given D and constants  % B 

#{(Zl,...,zd) llzll,...,Iza-ll < N,  Izal < CN: 
and d ( zd -  z21 . . . . .  z2_l;Q) > D} 

< C,.,B(D -B Q~" N 2 + QB)Nd-1 (3.72) 

Hence, combined with (3.71) and using the trivial es t imate  

II/11  (3.73) 

Ill* Ao,~II2 -< % 2  D Itfl12-4- N-~.Q. Cr,B(D-B/eQ"N+ QB/2). 

2-1 Q2 
�9 N - r -  1[ f [11 ~ 2sN2_ e [[fl[2 �9 

Take M > 1 and D = MQ ~ and assume 

(3.74) 

B > 6  and N > ( M Q )  B (3.75) 
T 

(3.74) then  yield 

Q l + r .  M ,t,i 2-s  M-B~2 N-r A 
[If * Ao,~II2 _< N-2; ~ 2 + C ~ , .  �9 Ilflll �9 (3.76) 

Consider  p0 = 2(d+1) (which is the conjugate of the critical exponent)  and 
d + 3  

1 1 -0o .0o  (00 d-1 - -  = = ~--~) interpolate  between (3.69) and (3.70). Thus  with po 1 - 2 

IIf * AQ,'IILP;(T~) << -ZV~IIflIL~o(T ~) �9 (3.77) 

If (3.75) holds, one may  also write by (3.69), (3.76) for 0 < d-1 1 _ d + l + 2 r  ~ p 
~ - o + o  

Ilf * AQ,~I[,' <- Q-~ M~ ~;' (1-~176 
(3.7s) 

+ C~,BQ -I/42~('~~(1-~176162 N-4~ Ilfllx 
d 1 ! _ - - 1  

_< Q - ~ ' M ( N 2 ~ )  ( + ) ( . . o ) l l f l l , +  
(3.79) 

"4-Cr,B Q-1/4 M-B~6 N ~  .---z~ " 2~(d+l)(-~-~o)llfl[1 
where 

a = a ( r , p ) > O  for p as above .  
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Finally interpolation between (3.69) and (3.70) also yield for p < P0 

II /* AQ:IIp, << N" - -  Ilfllp �9 (3.80) 

We will use inequalities (3.77), (3.79), (3.80) in the proof of the follow- 
ing distributional properties for polynomials of the form 

F(x,  t) = Z a-ff e 2ri((x'-ff)+tl-ffl2) ( 3 . 8 1 )  

Inll  ... . .  ] n d - l l < N  

where ~ = (n l , . . . ,  nd-1), d > 2. This statement is the main result of this 
section. 

PROPOSITION 3.82. Let F be given by (3.81), IIFl[2 = 1 
(i) mes{(x, t )  E TdllF(x,t)[ > A} << N ~ A--~-~-: for A > N d71 

(ii) mes{(x,t)  E W I [F(x,t) I > ~} < Cq N ~ q  -(~+1) ~-q 

N a ~-.--! 1 2 (d+1)  [o rA> , q >  d-x 

Proof: Consider a set C of ( ~  •  --~ x :~-r) disjoint intervals in -I -a 
exhausting the level set [IFI > ;q. Denote f a -I-l-valued function on the 
union of these C-intervals such that 

](F, f)l  Z A. IEI N -(d+x) �9 (3.83) 

Recall the definition (3.52) of K. Thus from definition (3.19) of the weights 
{a~} one has 

F = F �9 ( v ~ )  ^ (3.84) 

and by (3.83) 

A2 ISI2 N-2(d+') < I<r'f * (v~)^)12 < Ill * (v/K)^H~ = (3.85) 

= (:,1 , ( v ~ )  ^ �9 ( v ~ ) ^ )  = (:,f, g-). 

Consider the representation (3.57), (3.58) and define 

A =  (3.86) 
Q<N1 Q < 2 s < N  

Q dyadic 

where AQ: is given by (3.59). Writing 

K = A +  (fi t ' -  A) (3.87) 
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I ( / , / *  A)I + I(/ ,S * ( R -  n))l (3.88) 

-< IISII~ IIf * A]lp, + IIfll~ IIR - Al ia .  (3.89) 
Taking p = P0 and summing inequalities (3.77) over Q and s, the first term 
of (3.89) is bounded by 

[[f[[po Z [ I f  * AQ,~Hp" << N~[[fll2o = N~ [IC[ N-(d+l)] p-~~ (3.90) 
Q,s 

The expression K - A corresponds with (3.58), which by (3.32), (3.53), 
(3.56) is bounded by 

d - - 1  

[[R" - AH~ < c Y  2 ( 3 . 9 1 )  

The second term of (3.89) is therefore bounded by 

C N ~  [IEI. g-(d+l)] 2- (3.92) 
Collecting inequalities, it follows 

~2. i~.12 " g-2(d+ l )  << g ~ IEI~ N - ( a + l ) ~  + i~.12 N-3a:5 (3.93) 

d - - I  
from (3.93), it follows immediately that  if we assume A > C N - r - ,  then 

I~'[ << g ~ N a+l A - 2 ~  . (3.94) 

This proves (3.82), (i). 
The proof of (ii) is a bit more delicate. It is clear from (i) that  if 

q > ~ is fixed, then (ii) will hold unless A is "large", i.e. 

N ~  1 -~ A > (3.95) 

Fix constants v, B > _6 and consider Q satisfying (3.75), i.e. 
T 

N > ( M Q )  B . (3.96) 

Take p as in inequality (3.79). Summing (3.79) over s and dyadic Q in the 
range (3.96), we get 

IIf * n l l l p ,  _< Cp,~MN2(d+~)(~-~)llfllp+ 
(3.97) 

+ c~,B M -~/6 NC~+r162 
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denoting 
AQ,, (3.98) 

Q dyadic Q<2s<N 
Q<QI 

and Qt the largest Q-value satisfying (3.96). 
For the values Q > Q1, use (3.80) with same p. Hence 

IIf*(A- A,)[[ ,  ,, << N ~ f kQ-;-a ] Ilfllp (3.99) 

(3.97), (3.99) give an estimate on Ill * hllp, and proceeding as before with 
p instead of P0, (3.89) yields 

A 2 [El 2 N -2(d+1) << Cp,r N 2(d+l)(~-vAg) M + r)(4+1)(~_~) �9 

"~1  

�9 [le'IN-("+')] ~ (3.1o0) 
3t'Cr,B M -B/6 N'qTT(d+l)(}-  rag) Jig[ x - ( d + l ) ]  1+~ (3.101) 

+ c g ~  [It:l N - ( d + l ) ]  2 �9 (3.102) 

d--I 
For A > C N - 7 - ,  the last term (3.102) may be dropped. 

Assume Q1 = N a where 5 > 0 has to satisfy (3.96) 

(MN~)  B < N .  (3.103) 

Also (d + 1)(} - ~ )  > a(r)  > 0. Hence 

(3.10o) < cp,~ N2(~+1)(~-~ ). M[I~[" N-(d+l)] ~ (3.104) 

and it follows that  

[E[ < Cp,r M I/2 N d~-'~l p' A -p' .-b Cr,B M -By'~6 N (d-1)v' A -2p' �9 (3.105) 

Choose 

and 

M = (3.106) 

12 
B = - -  . (3.107) 

T 
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Thus (3.105) yields 
p ~ + r  

(3.108) 

(3.103) becomes because of the assumption (3.95) on ~ and (3.107) 

(N ~. N~) ~ < N (3.109) 

(for ~ choosen arbitrarily small). 
! - 1-0 4-~ ~ < d-1 let 5 = ~0 so that Assume r > 0 given, p - 1 , d+l+2r' 

(3.109) holds. The value q = p' + T satisfies (3.82, ii) by (3.108) and may 
2 ( d + l )  clearly be taken any exponent > d-1 �9 

This completes the proof of (3.82). 

Coming back to the statement (3.5) 

PROPOSITION 3.110. Ford  > 5 and p > 2 ( d + 3 )  
- -  - -  d - 1  

d - I  d - l - 1  Kp(SJ,N) < C~V 2 p 

Proof: Write with F given by (3.81) 

/T IFIP "~ /,~p--1 m e s  [IFI> A]> - ~ d_~ + ~ d--I 
< N - -  > N  4 

d - i  
N T  

~ N.~-!(p-2) / ,F,2 + N-~q-(d+l) ( ~ #~l .~p-1 .X-q d)~) (3.111) 

choosing ~ < q < p and applying (3.82, ii). Thus 

IF] p ~ Nd71 (P -2) + N'~'~P-(d+l) (3.112) 

and the first term is at most the second by assumption on p. 

PROPOSITION 3.113. Assume p2 > Pl > Po = ~ and Kpl(Sd,N) <~ 
d--1 _ dp_.~l .t.e ~-1 d-i-1 

N -r-  . Then Kp2(SJ,N) < Cp~ N 2 1,2 
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/ iFlp2 ~ f )~p2--1 rues  [IF{ > A] . 

From the assumption on Kpl only )~ > N ~  -~ has to be considered. In 
this case (3.82), (ii) holds and we conclude similarly as above, letting p0 < 
q< P2. 

p > 6  (3.115) 

(3.116) 

(3.117) 

As a corollary of (3.113) and (2.35), (3.8), we get 

PROPOSITION 3.114. 

1 3 
Kp(S2,N) = Kp(SN) < Cp N ~ - ;  for 

K p ( S 3 , N ) < C p N I - ~  for p > 4  
3 

gp(S4,g) < Cp N~-p  for p > 4 

(3.118) 

Remark: From (3.110), it follows that 

K4(S5,N) < C N  1/2 

improving on (3.9). Observe that the arithmetic approach amounts to 
counting the number of representations of an integer n as sum of 4 squares, 
which may be at least cnloglogn >> n (see [Gr], p. 121). 

4. P r o o f  of  t h e  1 -Dimens iona l  L 2 - T h e o r e m  

Consider the NLSE 

Au + iOtu + uIul '~ 

with initial condition 

= 0  a _ = p - 2 ,  p > 2  (4.1) 

~(x, o) = r 

u is periodic in x-variable 

and the equivalent integral equation (setting w = ulu[ '~) 

u ( . , t ) = U ( t ) r  U ( t - r )  w(. ,r)dr ; U ( t ) = e  ira . 

(4.2) 

(4.3) 
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We will seek for a solution of (4.3) local in time, i.e. consider a function 
0 _< r _< 1, r = 1 on a neighborhood [-gi, ~] of 0 and supp r C [-26, 26]. 
Using a fixpoint argument, we will construct a fimction u satisfying 

u(. , t)  = Ct(t) U ( t ) r 1 6 2  U ( t - r )  w ( . , r ) d T .  (4.4) 

Write r u, w as Fourier series 

~EZd-~ 

s u(x , t )  = Z e2"i(~'~) e 2~ia' ~(~,A)dA (4.6) 

F ~(~,t) = ~ e ~<~'~> e ~ '  ~ ( ~ , ~ / e a  (4.7) 

(4.4) then becomes 

u ( x , t ) = r  ~ r 
~Ez,~-~ 

+ ~  r  ~EI a-IZ e2~i((x'()+tl~l~) f _  ~ 2z~i(a-'~12)' - ~ _ 1~12 ~(~, A)dA . (4.8) 

In the integral appearing in (4.9), we distinguish fl~-ICPl<O and fla_l~121>B. 

Thus consider another cutoff function r 0 < r < 1, r = 1 on 
[ - B , B ]  and suppr C [-2B,2B].  Assume 

1 
B < (4.9) 

1006 

Write 

_~~ e2~i( a-1~12)t - 1 

(2~i)k f Y~ k----~-. r  r162 - I~1=)  k - x  Wff, A)dA (4.10) 
k > l  

-t- Ca(t) f ( 1  -- r  Igl =) 7 -  ~]~ ~(r (4.11) 

- r  (1 - r  - I~12) X - I~12 d A .  (4.12) 
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Thus in order to control the right member of (4.8), we have to consider 
following contributions 

r E r (4.13) 
~EZ ~ - ,  

2B1 E (27ri)kk! (2Bt)k r 
k > l  {~ [/~32()~-- 1~12) (/~ 2~12)te--1 ~(~,)t)d,~]e21ri((x,~)+t'~'2))(4"14) 

el( t)  E e2~ri(x'~) / (1 -- r  Ir e2~,x, 
~ez'-, ~ : . - ~  z~(~, s (4.15) 

r ~ez~-' ~ e2'~'((~'~)+tl~l~) f (1 - r W(s . (4.16) 

Consider the one-dimensional case, i.e. d = 2 and a <_ 2 in (4.1). 

CLAIM. Given sut~ciently large M, the map naturally defined by (4.8) is a 
contraction of the ball of radius M in L 4 (-I- X [-1, 1]) into itself, provided 
6, B are well choosen. 

The estimates needed are provided by the L4-estimates of section 2. 
Because they are local in t, the inequalities for 1-2 are applicable here. 

(i) (4.13) becomes 
r ~ ; ( , )  e 2~'r247 (4.17) 

n E Z  

which L4(dxdt)-norm is bounded by 

c( = c11r (4.18) 

invoking (2.2). 
(ii) Because of (4.9), the L4-norm of (4.14) is bounded by 

[ , X _ n  2 k-1 

(4.19) 
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(iii) 

(iv) 

and again by (2.2), 

()~:_rt2 k-1 X)d)~ 2)1/2 . (4.20) 

":'._'l(Zn ,. ) 
From the definition of flY2 and (2.5), (4.20) may be estimated by 

" 4 ,n 3 / 4  c'BIIwllL..(..~,)=c'B[Jlul(l+~ < c,~Bllul l l  +~  (4.21) 

assuming a _< 2. 
(4.15) becomes 

e2, i , ,  [ (1 - r - n 2) e2,~ia, ~bl(t) E ~(n, )t )d,k (4.22) ~ - n ~  J nEZ 

We use here Proposition 2.31. Thus the (n, A)-multiplier is given by 
(~_~)(~_,2) which is clearly bounded by B-U4 (l+])~_n 2 I) -3/4. Hence X-n 2 
the L4-norm of (4.22) is at most 

CB-1/411wlI4/3 <_ CB-1/41tul I~+'~ . (4.23) 

(4.16) becomes 

e2~i(n~+,h ) f (1 - r - n 2) ~l(t) E ~(n, ,~ )dA (4.24) 
J nEZ 

which L4-norm is bounded by 

by (2.2). 
from definition of r (2.30) yields the bound 

C( ~n  f ( 1 -  ~2) (~-  n2)W(rt, ~)d/~ 2)1/2 -~--nj  (4.25) 

Estimating again (1-V'~)(a-"2) by B-U4(1 + I A -  n2[) -3/4 X-n 2 

CB-1/411wl14/3 < CB-1/411ulll+~. (4.26) 
Denote T the transformation defined by (4.9), i.e. 

(Tu)(x,t) = r ~ ~b(nle2'~i(n~+nh)+ 

,~ez (4.27) 
1 E e27ri(nx+n2t) f ~  e2~ri(X-n~)t -- 1 +-~-~ r ),_ n2 (ul,,l~)^(n,)Od)~ . 

nEZ oo 
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We proved that  

IITull4 < c1{11r + 6BIlull 1+" + B-1/41lull~4 +~} �9 (4.28) 

Hence 
[[u[[4 _< M => [[Tu[[4 <_ M (4.29) 

provided 
C1(11r + 5BMI+'~ 4- B- ' /4  M'+'~) < M . (4.30) 

If M is sufficiently large, (4.30) may clearly be achieved for suitable B, 
5. Consider next Tu - Tv. The first term in (4.27) disappears and in the 
second, u[u[ '~ has to be replaced by w = u]ul '~ -vlv] '~. Since now by nSlder 's  
inequality 

I lwl l4/3 < c( l lu l l4  + I lvl l,,) ' : ' l l  u - vi i4 (4.31) 

(~ _< 2), the contribution of (ii), (iii), (iv) above is est imated by 

IITu- Tvll4 _< c](,~B + B-]/4)(IINI4 + llvl14)'~ll u - vii, <_ 

< 2clM'~( fib 4- B - 1 / 4 ) 1 1 ~  - vlt4 �9 
( 4 . 3 2 )  

Hence, for suitable B, 

IITu- Tvll4 <_ �89 vii4 �9 (4.33) 

This establishes the claim made above. Picard's theorem yields a function 
u E L4(-I - x [ -1 ,  1]) satisfying Tu -- u, hence (4.4). Moreover this solution 
is unique and persistent. At this point, we proved local well-posedness (in 
generalized sense) of (4.1) for n -- 1 (d - 2) and a _< 2 (p _< 4). 

To derive the global result from previous fact and the L2-conservation 
l aw 

fT lU(x,t)12dx (4.34) 

is a routine procedure. 
In the previous construction of local solutions, one may consider norms 

of the form 

I I l u l l l  = IlullL'(dxdO 4- s PkllO(~k)UllL'(dxdt) (4.35) 
k > l  

where Pk > 0 are some weight, assuming the da ta  r E H(T) ,  i.e. 

~-~ IIr < oo. (4.36) 
k=0 
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In performing the estimates (ii), (iii), (iv) above for x-derivatives, one will 
have to replace the function w = u lu[  ~ or w = u t u [ "  - v l v l  '~ by O ( k ) w .  

Assume here 
s < l + c ~  or o r = 2 .  (4.37) 

Since one may bound for w = u[u[  '~ - vlvl ~ 

IlO~k)wll4/3 < 

c{llo,: (u- v)[[,(114114 + 11~114)% 
(4.38) 

114- vlla(llO(~)ull~ + IIO(~k)~ll~)(llull~ + 11~114) ~  } 
we get 

[[[Tu - Tr i l l  ~ c(6B + B -1 /4)  Hu-- "114(tlu114 + Ilvl14) '~ + E p k ( 4 . 3 8 )  
k=l 

(4.39) 

< c(6B + B-1/4){ (llull4 + [Ivll4)~ 4 - v i i i+  

(114114 + Ilvl14) ':'-1 (1114111 + IIiv111)114 - ,,4 } 
(4.40) 

(4.41) < c(,SB + B- l /4) ( l l lu l l l  + IIIvlll)'~lll 4 - vi i i .  
Start by fixing M such that 

]]r -[- EPk]]r  < M (4.42) 
k----1 

and consider the set of functions on T x [ -1 ,  1] satisfying 

]][u]]] < 1 0 M .  (4.43) 

By letting B and 6 satisfy 

(i~B -}- B - I / 4 ) M  c'-I < c (4.44) 

(c is sufficiently small constant). 
(4.41) implies that T is a contraction on (4.43) and hence the fixpoint 

argument applies to get a local unique solution u of (4.3) of bounded ]]1 Ill- 
norm. Observe at this point that  the time interval 6 is independent of the 
weights Pk in (4.35). This observation permits in particular the carrying 
out of a regularization procedure on the initial data r in order to justify the 
conservation law (4.34) for the "generalized NLSE". This requires taking 

>_ 2, assuming a > 1. 
The conclusion is the following. 
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T H E O R E M  4.45. The generalized periodic one-dimensional NLSE (4.1) 
with p < 4 is globally well-posed in the space L4(T x Riot) for L2-data. 
For p = 4 and data r E H~(T) (s integer) this solution u will satisfy 
moreover 

o~u e n4(T x aloe) k < s .  (4.46) 

Remarks: (i) In the previous statement,  one has in fact a uniform estimate 

sup lu(x,t')l 4 d r '  (447) 
tER  ,It  

Statement (4.46) is understood as 

/TfoTlO(k)  u(x, t )14dt<o0 for all T (4.48) 

(the stronger uniform statement in the form (4.47) is valid also but its proof 
requires the use of higher order conservation laws for a = 2, see [ZS]). 

(ii) Some comments on the derivation of (4.38). For k = 1, the argu- 
ment is straightforward. The case k > 1 is based on following inequality. 

1 =  1 _ _ + . . . + ~ ,  LEMMA 4.49. Let s = Sl + s2 +. �9 �9 + sm be integers and p p~ 

1 < pe < cx~. Let fT fe = O. Then 

II I m U f~ t )  < c~--~ 1-I Ilft'ltp,," IIf~')llp, �9 (4.50) 
e = l  P ~=1 t '~e 

Proof: Take m = 2. The general argument is similar. Write f = ~_,j Qj ( f )  
for the Litt lewood-Paley decomposition of f .  Denote f* the usual Hardy- 
Littlewood maximal  function of f .  One has 

Write 

Qj(f)(8) <_ c 2 j8 Qj(f)* ~ Qj(f(~))" (4.51) 

(~;) (~) 
If1 f~ I ~ E 2j'sl Qj,( f l )* 2 j2s2 Qj2(f2)* + ~ (4.52) 

h >_j2 jl <_j2 

Consider the first term in (4.52) (second term is similar). One gets by (4.51) 

E 2-a~ E 2i'~ Oj,( f l )* Ojl-d(f2)* <_ 
d > 0  j l  

d_>O j j 
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We assume s2 > 0 (otherwise the statement is obvious). Estimate (4.53) by 
H51der's inequality 

The proof is then completed by invoking following standard facts 

llfllp 
for 1 < p <  c~. 

Similar estimates may be found in the appendix of [KePoVe2]. 

(4.55) 

(4.56) 

5. E s t i m a t e s  in H ' ,  s > 0 

In this section we describe a method to obtain (local) solutions for the 
generalized NLSE (4.1) with H'-init ial  data. The approach is the same as 
in previous section and we need to introduce appropriate function spaces 
to perform the iteration (they will replace the space L4(dxdt) and are in 
fact defined from Fourier transform properties). The exponent s may be 
fractional here. There will be no significant difference between the one 
and higher dimensional situation as far as the method  is concerned. We 
consider the equation Au + iOtu + ulu P = 0 with c~ > 2. Call an exponent 
p "admissible" if (if section 3) 

2 ( d +  1) and Kp(Sd,N) << N~N ' - , (5.1) 
P-> d - 1  

The dependence of gp(Sd,N) Oil N is the reason for most of the complica- 
tions in what follows. 

Consider the sets (K, N positive integers) 

AK,N----{~----(~,~)�9 n •  and K <  I)~-1~121 < 2 K } .  
(5.2) 
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If I is an interval in I n, let 

AKJ = {( ~ z • R I K  < [A-I~l~l < 2z(} . (5.3) 

For a function 

,~EZ" 

in L2(T n x R), define 

(5.4) 

IIMII = sup(K + 1) U2 (N + 1 )~( fA  
K , N  K,N 

I~(()l 'dC) ~/~ (5.5) 

Fixing an interval [-6,6],  we will in fact consider the restriction norm 
Illulll - inf II1~111 where the infimum is taken over all function ~ coincid- 
ing with u on -I n • [-6,  6] (in order to avoid technical difficulties). Thus 
time restriction acts as a contraction wrt this norm. 

Let P0 be admissible. Then , by (3.113), for p > P0 

_ N ~---z' - ~-~-~ ' E a ,  E i((x''}4-'' '12) ~ ( E [ a , 1 2 )  1/2 (5.6) 

I~I<N Le(Td) 

Let I be a (d - 1)-interval (or ball) of size N in Z d - l ,  centered at ~0- Write 

( x , ~ )  W tl~12 = (X , s  + tl~ol2 -t- ( x  + 2t  ~o ,~  - ~o) -t- t]~ - ~ol 2 . (5.7) 

A change of variable x' = x + 2t ~o, t' = t immediately yields that  also 

I I ) E a ~  e i((x'~)+tt~12) s N --r--  , la~l 2 1/2 

~EI P 

It follows from (5.8), (5.3) and triangular inequality, writing A = I~12 + k, 
]k] < K,  that  the map 

L~,~,, , LP(T"  x Rlor { a r 1 6 2  ' fA ar e 2~i((x'~)+~)  d ( ( 5 . 9 )  
K , /  

a- i  a-l- ! 
has norm bounded by K I / 2 N  2 p 

Obviously the map (5.9) from L 2 to L2(T n • Riot) is of bounded AK,I 
norm. Interpolation between these last two facts implies 
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--I ---- 1--O.~_~.0 T h e n  t h e  map (5.9) LEMMA 5.10. Let Pl > PO, Pl > 1)2 > 2, P2 p~ 
ranging into LP2(T n x Rloc) has norm bounded by 

K�89 N ( ~ - d ~  ~ )O-0) . (5.11) 

It is our aim to prove the existence of a solution of (4.5) by performing 
a fixpoint argument with respect to the norm III III. We first show how 
to control the expressions (4.13), (4.14), (4.15), (4.16) in II] III by II]ulll. 
Minor modifications will yield the contractive property, assuming a >_ 2. 

We introduce some further notation. 
For dyadic M, define 

-- E e21ri(~'x) / ~(~,A) e 2~riAt d)~ (5.12) U M  

K)<_M 
A M U  : U M -- U ~  . (5.13) 

If I is an interval in l " ,  let 

A,u = / e 2 ~ i A t  dA (5.14) 

= E /A u(~)e2'~i((r (5.15) 
Kdyadic Kd 

The control of (4.13) in ][[ Ill-norm is clear, assuming r e H~($  ") (n = 
d -  1). The r multiplication is harmless. Observe that even letting r = 
X[-~,~], the condition 

( E  [r 1/2gK-1/2 (5.16) 
lkl~K 

is fulfilled. But it is convenient to consider cutoff functions with more 
smoothness properties in order to get better  localization properties of the 
Fourier transform. 

To evaluate (4.14), (4.15), (4.16) one mainly need an estimate on 

K -1/2 NS(~,N[i~(~)[2d~) 1/2 (5.17) 

Write with notation (5.12) 

w = u]ur= E ( uMluMr - UM~IUMr)~ �9 (5.18) 
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In the analysis of (5.17), one gets contributions of (5.18) terms for 

M > N .(*) (5.19) 

Since a > 1, one may  write for complex z, w 

zlzl ~ - w l w l  ~ = (z  - w)  el(Z,  w) -~ ( ~ - w )  r w) (5.20) 

where r r satisfy 

Ivo,(z, w) I ~< c(lzl  + Iwl) ~-x (5.21) 

Substitute in (5.20) 

to get 

Z = ~t M ~ W = l t M  
2 

UMlUMr -- UM~ UMT l a  = A M Z t "  q ) I ( U M '  / t M )  -'1- A M ? . t "  r  ~ t M )  . ( 5 . 2 2 )  

The est imates of both  terms in (5.22) are identical and we only consider the 
first. 

Defining 

V M = r  ttA~.) (5.23) 

write again 

VM = (VM -- V ~ )  + (V§ -- V_~) + . . . .  (~M, -- ~ )  �9 (5.24) 
M 1 dyLdlc 

M 1 <M 

Since r is Lipschitz, one has by (5.21) 

where 

V M 1  - -  V .M.1. = A M ,  u . ~1 ( U M , , U M_M_A. , U M___I. ) 
2 2 4 

" ~ A M I U "  r  ") -~- A M 1 / t "  ~ D 3 ( ' " )  -iv A M 1  / t "  ~ 3 4 ( ' ' ' )  
2 2 

(5.25) 

I < c(luM, I + I ~ 1  + l u l l )  ~ - '  . (5.26) 
2 4 2 4 

(*) This is obvious if a is an even integer. In general some more technicalities 
are needed which we skip for the sake of the exposition. 
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Considering (5.22), (5.25), we have to evaluate (5.17) with w replaced by 

AMU . AM, u . r , u._~., u . ~  ) (5.27) 
2 4 

where M1 < M,  M > N. 
Parti t ion M < I~1 --< M is intervals of size M1 and write with notation 

(5.14) 
~ , u  = ~ ~ , , .  (5.2s) 

The functions 
W I = A I U "  A M 1  U "  r  , U_M_I., U_M_A " ) (5.29) 

2 4 

have essentially disjointly supported Fourier transform for varying I.(**) 
Thus the contribution of (5.27) to (5.17) becomes 

(z,Z K - 1 / 2  �9 g ' .  K,, [~' (O[2d( (5.30) 

and our next purpose is to estimate these integrals. 
Choose 

p l > p o ,  Pl > p 2 > 2 ,  1 _ - - 1 - 0 2  +--02 . (5.31) 
P2 Pl 2 

The dual form of (5.10) yields 

1/2 K�89 ~/~(--'-~--Pl )(1-02) 
J~,  (OJ2d (  < c _ . ,  IJ w ,  Ilv~ �9 (5.32) 

K , I  

By (5.29) and Hblder's inequality 

P2 p t P2 -- pt 

]lwliifl <HAIuHv,(iiAM, u'+'~) ~ . (5.33) 

For the first factor of (5.33), write 

A I u =  E [ L  u(~)ei((x'D+:~t)d~] (5.34) 
K1 dyadic K1,I 

(**) This is clear if ~=2. In general there are again some extra technicalities in 
which we do not want to sidetrack the reader. 
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and use t r iangle inequal i ty  and  (5.10) to e s t ima te  

!(1--02) ( a; '  -- d~'~11 )(1--02) ( f A ) llAlull.. S c ~ K} M i 1/2 
K1 dyadic ,~,I 

(5.35) 
and using the  definit ion of the no rm II1~111 

( ~  II~X,~llL)'/2 _< 

~ cM:~-2-~v'~211)(1-~ {K ~dy,dK?~ [1(~/2" (fAK,. . 

' cM:~-2-p~_~ll)(l_O,){K, d~yadicK?~t ~ [/~'I" (fAKI.M ]'(~)[2)]} ''2 
(d--~ d .+..J.//1 _ O:z 1 

< c  M~ 2 "~ '" ' .M-*l l lu l l l  

(5.36) 

(5.37) 

Collecting es t imates  (5.32), (5.33), (5.35), (5.37), it follows tha t  

t 

.,)f d--I d-J-I ,~ ( N )  tl (I ' ) 
(5.30) z K-~-M~ <'- "-~-- "' ". "ltlulll- IAM,~'r ~ 

(5.38) 
We es t ima te  the  last factor  in (5.38) again by HSlder 's  inequality.  

Let 

1 
P3 > PO , P3 > P4 > 2 , - -  = 

P4 

2 1 1 - /94 + 04 and  assume 1 > - -  + - -  . (5.39) 
P3 2 P2 P4 

Then 

IIAM'U'r ~2~I S IIAM,@p, "llr �9 (5.40) 
la2 -- P2 

Similarly to (5.35) 

c 

K1 dyadic K1,M1 

""(~-i2- ~-~3' ) (1 -~  I[lu[[[ . (5.42) <~ CJVI 1 
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Consider the second factor in (5.40), which amounts to estimate, by (5.26), 

IHUM o~--1 (5.43) 

Take Ps, P6 such that 

p5 > p0, p5 > p6 > 2,  

Then 

1 1 - 0 6  06 a -  1 
- --- + and assume - -  < 1 

P6 P5 2 p6 

2 1 

P2 P4 
(5.44) 

(5.43) < i[uM, I[p~ -1 and liuM~lIp~ <_ 

M2~M 1 
M 2 dyadic 

provided s satisfies 

( ~ - ~ ) ( 1 - o o ) - s  I IlZX.~ullpo < c ~  Mi Ilulll _< c, llull, 
M2 

(5.45) 

d - 1  d + l  
s > - -  (5.46) 

- 2 P5 

Collecting estimates (5.40), (5.42), (5.45) 

I[~M,u. r ,~p'~ 
P2 --P2 

( d ~ l -  d+' )(1--0')--s [i[?t[[p 
~_ c M  1 p3 (5.47) 

and with (5.38) 

d--I  d _ ~  d--I  
(5 .30)  ~ c K  -~'2 .M12(1-02)( -5--  " )+ (1 -P i ) ( -W--  ,a ) - s  

Assume s also satisfies the condition 

�9 ( N ) S - i l , u [ i [ l - I - a  . 

(5.48) 

s > 2 (  d-12 d + l ) +  ( d - 1  Pl 2 d + l )  p3 (5.49) 

One may then estimate 

(5.17) _< c K - ~ .  lilull[ 1+" (5.50) 

performing the summations over M1 and M > N (s > 0). 
It remains to analyze the conditions on s, c~ and the various exponents 

introduced above. Consider the conditions (5.39), (5.44), (5.46), (5.49). 
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Since p0, Px, 192 (resp. P3, p4 and ps, p6) may be choosen arbitrarily close, 
these conditions may be replaced by 

2 1 
1 > - - + - -  

where 

PO P 3  

a - 1  2 1 
- - < 1  

P5 Po /)3 
d - 1  d + l  

s >  
2 P5 

3 ( d -  1 ) - 2  d + l  d + l  s > ~ p---j- p~ 

P3 , P5 _> PO �9 
Choose P5 with approximative equality in (5.53), assuming 

d - 1  d + l  
s >  

to ensure Ps _> Po- (5.52) becomes 

1 2 
- - < l - - - -  
p3 po 

Rewrite (5.54), (5.55) as 

d + l  

P3 

2 Po 

d - l - 2 s  
( a - l )  2 ( d + l )  

3 ( d -  1 ) - 2  d + l  
~ >  2 Po 

1 1 

P3 PO 
and verify the existence of P3 fulfilling (5.57), (5.5S), (5.59). 

Their compatibility requires 

2 ( a -  1) d -1 -2~)  3 ( d -  1) - 2 4+1 _ s (d + 1) (1 - vo - 2 ( d + l )  ] > 2 P0 

3 ( d - 1 ) - 2  a + l _ s  

and the resulting conditions become 

4 ( d 2 1  ) 
a <  d - l - 2 s  s < - -  

2(d+  1) 
/9o< 2 d - l - - ~ s  

(5.63) also implies (5.56). 
Hence we proved 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.5s) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 
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LEMMA 5.64. I f  (5.62) and (5.63) hold, then so does (5.50), i.e. 

for s o m e  O > O. 

Now come back to the estimate in Ill 

(4.14). Observe that Itkr (A)I < c k 6 k IA1-1. Hence by (4.9) 

<~ c'B1/2NS(K~<BfAK,N Iw(()12d()l/2 

< c ~ B  I I 1 ~ 1 1 1 1 + ~  . ( 5 . 6 6 )  

Ill-norm of (4.14), (4.15), (4.16). 

(4.15). One gets 

K1/2 N~ ( 1  - r -I~12) ~(~) dg (5.67) 

(5.67) vanishes, unless g _> B. One then has by (5.64) the estimate 

K - in  N ~ ( ~ , , , ,  [~(()12d()1/2 �9 �9 . _< cB-elllulll 1+~ . (5.68) 

(4.16). 
to 

Contribution to Ill I1[ appears mainly for bounded I f  and amounts 

___ c N 8 K -(1-~). 1 ( )12d  _< 
K>B K,N 

K dya.dic 

K dyadic 

< c B -~ Illulll 1+~ 

Ill.Ill ~+~ 

(5.69) 
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again invoking (5.65). 
Collecting est imates  (5.66), (5.68), (5.69), it follows tha t  the terms 

(4.14), (4.15), (4.16) contribute in ]11 III -n~  for 

c(5. B + B - ~  . (5.70) 

At this point,  one finds that  the t ransformat ion associated to (4.4) maps  
the ball {u I IIlulll < M} into itself, for sufficiently large M.  If a _> 2, one 
may perfom one more differentiation of the function zlzl '~ and obtain an 
estimate 

l i l t s -Tr i l l  <_c(5.B+B-~ (5.71) 

where 

jfo t T u  = r 1 6 2  + i ~'1 (t) U( t  -- T) W(', T) dT (5.72) 

instead of (5.70). Details are rather  straightforward ad jus tments  of above 
arguments and we leave them to the reader. Choosing 6, B in a suitable 
way, T may  be given Lipschitz constant  < 1 so that  Picard 's  theorem may 
again be invoked to get a local solution to (4.3). This  solution is unique 
and persistent.  Hence we established 

PROPOSITION 5.73. Consider the generalized period NLSE (4.1) with a >_ 2 
and initial data r E H~(T") ,  s > 0 (n = d -  1) with s, ~ satisfying the 
condition 

4 
a < - -  (5.74) 

// - -  28 

Assume moreover we dispose of an admissible exponent 

2(. + 2) 
p< (5.75) 

2 n-~s 

Then the problem is locally well-posed in the space 

IIMII = s u p ( K  + 1) 1/2 (N + 1) 8 I~((, A)12d(d)~ (5.76) 
K,N I~l~~ 

iX--1r 

(understood as "restriction" norm wrt time variable"). 
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Remarks: (i) Condition (5.74) corresponds to the subcritical case in the 
non-periodic setting, the HS-critical exponent being 4 Thus this re- n - - 2 8  " 
lation between n, s, (~ is not unexpected. In view of the failure of the 

~(a+a)  
L ~  (T a) - Lz(Z a-a) restriction theorem in the periodic case (i.e. for sets 
{ (~, ]~[2) E Z n x Z }), it is unlikely one may include the critical exponent, 
at least for s --- 0 (cf. [CW]). 

(ii) One may replace Ill [[[ by a Hilbert-space norm, for instance 

[l[u]]iz---- { fZ"• (1 + i~l)2s(1 + ]A--1~]2[) i~(~, A)12d~} 1/2 (5.77) 

and conclude for c~ _> 1 under the assumptions (5.74), (5.75) to a local 
solution, invoking Schauder's fixpoint theorem. We loose uniqueness here 
however, which is a major consideration in these problems. 

(iii) Observe that in particular the solution u satisfies 

2 ( .  + 2) 
u C LP(T" x [-6,51) for p < (5.78) 

n - -  2 8  

(iv) The regularization method discussed in section 4 applies equally 
well here, considering norms of the form 

Illulll + IIID r (5.79) 
(r 

(r = r , ) ,  = i li + . . ' +  
(v) It follows from (5.73) and (2.34) (p = 6 is admissible) that for n = 1 

the periodic NLSE is locally well-posed in the space with norm (5.76). This 
specifies Theorem 1. 

6. Consequences and Global Results 

Recall the two conserved quantities for the NLSE 

IT. Ir (L2 - norm) 

1 1 
H( r  = ~ JfT-IVCl2dx-  P /T - I r  (Hamiltonian) . 

Global results for Hi-da ta  will be derived from 

(6.1) 

(6.2) 
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- the local result (given by (5.73)) 
- the conservation of H(u(.,  t)) and (6.1) 

(+ a s tandard regularization process in order to justify the conservation 
law for the generalized equation we are dealing with here). 

The negative sign of f 101 p in (6.2) leads to some problems when es- 
timating the H i -no rm from the Hamiltonian. In order to interpolate the 
LP-norm between L 2 and H 1, one needs the condition 

O = _ n ( ~ - ~ )  < 1  (6.3) 

in which case 

IlfllLp(rn) --- cllf l l  1 - ~  I l f l l~  �9 (6.4) 

Let u = u(z, t) be a solution of the periodic NLSE iOtu + Au  + u[ulP-2 = 0 
with initial data  r Assuming sufficient smoothness (which may be achieved 
using a regularization), one gets from (6.1), (6.2), (6.4) (assuming (6.3) 
valid) 

1 ~ 1 1 u t 2 1 
~11011.1 - pllr  = (,)ll. ,  - p l l~( . , t ) l lg  (6.5) 

< ~11011~, + c[[u( ' , t ) l l~<~-~176 = 
(6.6) 

1 

= EIIr + cl l r176176 �9 

We distinguish 3 cases 
(I) p~ < 2 :  Then (6.6) yields an a priori bound on Ilu(',t)llH,. 

(II) p~ = 2 :  (6.6) implies a bound on Ilu(', t ) l I , , ,  provided the initial data  
is sufficiently small in L 2. One has 

i i~( . , t ) l l~  ' < I1~11%, 
- 1 - 2c11r -2 " 

(6.7) 

(III) p > p0 > 2 :  If [lu(.,t)[IH ~ is sufficiently small, one may write 

I lu( . , t )HH~ < 11r . (6.8) 
- 1 -  2c l l r162176176  - 2  

In particular,  if II u(.,t) HH1_< 1 and II r 112 sufficiently small, (6.8) 
yields [lu(., t)llH~ <_ 211r So for sufficiently small L 2 and Hi -da ta ,  
one gets again an apriori control on Ilu(., t)[[H~. 
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n = 1 : For p < 4, see Theorem 4.45. 

Propostion 5.73 yields a local well-posedness result provided 

, ( 1 )  
s > 0 ,  4 _ < p <  1 _  2-----~ + 2  s_< (6.9) 

Global results for H 1 initial data  are discussed in the paper [LeRSp]. 

n = 2 : Since 4 is an admissible exponent, (5.73) yields local well-posedness 
for r E Hs(-f  2) provided 

4 
4 _< p < 2 ( 1 ) s  - - - - - -S-  + 2 (0 < s _< 1) . (6.10) 

From the preceding, one gets global well-posedness if p = 4 and r E H 1 has 
sufficiently small L2-norm and for arbitrary p > 4 assuming the initial data 
sufficiently small in H 1. The function space is given by (5.76) with s = 1 
and u replaced by UT(X, t) = u(x, t) X[-T,T] (t), for arbitrarily choosen finite 
t ime restriction T. 

This proves in particular Theorem 2 from the introduction. 

n = 3 : The smallest admissible exponent we know off is q = 4 (see Propo- 
sition 3.6). Hence (5.73) implies local well-posedness in the space (5.76), in 
the parameter  range 

4 3 3 
4 _< p < 3 -  2-------~ + 2 , ~ < s < ~ .  (6.11) 

For 4 g p < 6 one gets global well-posedness for sufficiently small H 1 data 
(this is case III above). This proves Theorem 3. 

2(n+4)  (see  n _> 4 : The smallest critical exponent at our disposal is q = n 
Proposition 3.110). Hence (5.73) implies local well-posedness in the space 
(5.76), in the parameter  range 

4 < p <  4 3n n 
n 2--------~ + 2 ~ < s < (6.12) 

- - ' n + 4  - 2 " 
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