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Abstract
In this puper. the flexural vibration analysis of moderate-thick rectangular plates with
slowly varying thickness using perturbation method is described, and the cxplict
expressions of free vibration frequencies for arbitrary thickness functions are derived.
Finally, several numerical examples have been given and comparisons have been made with
other proposed solution techniques. This comparison shows that the method yields very
good results, so that this method may be regarded us an alternative effective method for the

vibration und buckling analysis of plates and shells.

I. Introduction

It is well-known that computational methods for the analysis of the natural frequencies !
flexural vibration of plates based on the classical thin plate theory cannot present their accurate
values for the higher modes. and thus have limited application. Timosheko!*|(1921) was the first to
inctude the effects of both transverse deformation and rotary inertia in the study of the flexural
vibration of elastic beams. Later. Mindlin*'(1951) developed a theory for flexural vibration of
elastic plates which included the influence of transverse shear deformation and rotary inertia. Since
then. the application of Mindlin’s theory to plate problems has been considered by various authors
and a variety of methods have been developed to obtain approximate solutions, e.g.. the Rayleigh-
Ritz method™. the finite element method™ "'\ the finite strip method"* " But there are relatively
few analytical solutions’® 7!, and only plates of uniform thickness have been considered".

For the vibration of moderate-thick plate with variable thickness, the solutions of the problem
can be obtained only by approximate or numerical methods"'” owing to the mathematical difficulty
of solving the differential equations with variable coefficients. In this paper, the difficulty is
overcome by means of expanding the thickness function in power seriek in the thickness parameter

and using perturbation method and the generalized Hale Law'¥, and the explicit asymptotic
expressions of free vibration frequency parameters for thickness functions are derived.

To demonstrate the applicability of the method presented herein, the frequency analysis of
plates with linearly varying thickness and edges simply supported is made,and the results are
compared with those obtained by other.techniques. This comparison shows that the method yields
very good results, and estimated values for the higher modes can be obtained without any
difficulties. Finally, this method is applied to plates with bilinearly varying thickness, and some

interesting results are presented.
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I1. Equations of Motion

In Mindlin's theory™! the displacements are assumed to be
u(x,y.0)=—rzp (N, 1)
V(X1 8) == oy, (Xt L (2,1)
w(x,y,t)=w(x,y,t) l

The equations of motion of the plate are written as
J\’I,_,*}'Mx,,'—-Qx+,O/13!p,,“1/'12::0
)‘1,,,,*—.‘\I,,,—Qy+phs!{.‘,.ul/12:()
Qre+Q, ., —phw =0

The constitutive relations of the plate are written as

Mo=—=D(pzcvry,,)
My=—=D(p,, q+vy:,:)
May=—D(yery+ppe) (1~2) /2 (2.3)
Q:=kGh(w,: —ys)
Q,=kGh(w,,—w,)

where w, v, and ware displacements in the directions of x, v.and z.  yp, and g, represent
respectively rolations in the xz and yz planes due to bending only. M.. M. and M., arc the bending
and twisting moments per unit length, Q. and Q, are the transverse shear forces per umit lenpih.
£ 1s the material mass density and thickness /1 1s a function of xand y. D1s the flexural rigidity of the
plate. v Poisson’s ratio, G the shear modulus and K the shear coefficient.

To solve the equations conveniently. firstly we introduce the nondimensional parameters as

follows:
AMy My, My =h Dy iM ., M, M,
101, Qvi=hiD3 Q.. Q,t
15, abt=u Hx, b
{n, Bt=b6"Yy, I}
{w*, A*}=h7{w, b
r=wyit, ky=kGh}D7"
v=(phiwy)(12D,) "
in which a and b are the length and width of the plate. and 7 15 & factor releting to the tree
vibration frequency.
Substituting the above equations into Fgs.(2.3) and (2.2) teads to the nondimensional
governing equations {in which. for brevity, we omit the index * of nondimensional paramcters:

aM

s
ERA)

aMén.;+ﬁMn.1“Qq+“,'/-:hzvb-.n =0

+ ,HMH;!"‘Q; -+ ‘,»/.'/l”y);' Ly == U

1§

(2.4)
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L s /J,(;)q,g--» 120 ey = I

V! [ Ciiy e 1}"";"7.9)
Mo=—h (Ppra s ) |
Meg=—W (1= oy {

Wo=shiy (o, —

Qu=Fk, (P g—un
Now o 25) are substituted mto Eq24 W0 nnas SLatTone s noterimes of the
displacement variables
. J i ? .. » b
o Lomee e Ty g frn U e 0 rey e Yo
St .o S ' VL .
R B YTV o R U A LA 2 Y P i) U )
1 D R IS BT SO DI B O U TN IS A

-

I WA T

1—1'3ah‘h,;(l3w;.-+awv.;) + 38R A (Bya,a+vays,:) =0

AU T RTE s |
abby (@, oo — s, c) + Bk (B vn—pa.n) — 1 2pAhw
+ah, ky(aw, —y )+ phoky (pw g —ya) =0 '

(2.6)

In buasic B2 690 the thickness s o function of and 7L so these difterential cquations of

vartable coefficients are difficult to be sloved directly by analyucal method. In this paper. this
- . , . . in .

ditticulty is avorded by using the PLK method in perturbation theory'™ . Thickness A displacements

are expanded m power series in the follow g fom,,

W, w.. 1, andtheirequency tactor  4°

BEm =1+ S emhals,n) )

-l
A= 14 \:a“‘/i,‘,

mw=l
w(,n, )= c"wals.n,1) \
m=0 (27)

ve (4,0, T)=2_ e™piml$,7.7)

me=0
wa (&, 1, T) =D e™Paml(E,n, 7).

ma=0

J

is « small parameter related to thickness, the second cyuation 1s miroduced as o much

where &
A can be found by expanding ;2 | rather than

more accurate relation for the frequency factor
/. in a power scries in ¢ 1o the same order'™.
Substituting Eq.(2.7) into Eq.(2.6) and equating like powers of

recurrence differential equations with constant coefticients.

Order ¢£°

¢ lead to the tollowing
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2 1—v, .. )
(g 02+ vaPyng.ag) +T(5'W;o,n+ afes,ev)
+kl(awo,§—‘p€o)"')’w;o,u=0
1—v
=5 (aBygo,eat @tPag,e) + (Biag.aa+vaPyyg,ze) (2.8)
+kl(ﬁwcx‘_¢ﬂo)—}’w'n,u=0
aky(awy, s —yio,2) + PRy (Bwy,ve—Yay,0) — 129wy, ¢, =0 ]
Order '
. ) 1—v, o2, \
(@ Pey.eat vafay,eg) +—2-(I9 ey, 00+ aPyny,gn)
+hi(awy, s =ve;) = Vo1, ee=— 30 (P20, 20+ vaBYPag, 2v)
- 3hll ;v(ﬁzwto‘"‘"aﬁq"o'w) —kyhy(aw,, e —yeg) +yAivee. s
+ 3”1?‘{’;0.1'-3"1.4(02¢’4o,;+"aﬁ¢-om)
= —v3hm(ﬂ2¢’;m+ afyus,z)
i—;j(aﬁ%.uﬂLa:Wn,;;)*F (B a0t vafyer, o) (2.4)
+ ky (Bwy, e —Pa) —V¥ay,0e=—3h,(aPPso, 20+ TPa,2¢) (1—v) /2
— 3k, (B tpas.0r+vaByrg,3) — Ryby (Bw,. s —peg) + YAl Yag, 44
+ 3Ry Pag.ex ~ 3Ry, e (APPro, e+ T Pan. 1) (1—v)/2—3hy, 0 (Bpeo, 0+ vabss, )
k‘(azu{l,;;—agp;,,;)+k,(ﬁ*wi,"—-ﬁqp",,)—-12-);1,01,"
= — bk (@Pw,, 00— aeq, ) — Rt (B Wo, 00— Bpsg,s) + 1294 W, o«
_k!hl)s'(axwor‘;_a'pfb)_klher(WDrV‘ﬂ¢9b)+12‘yhlw0rvv
Iif. Perturbation Solution

Lei us consider the plate with edges simply supported. The displacements in Eq.(2.8) are
described as :

w(§,n.7)= Z Zw..sinmg-sinm-e" A

el a=l

P0.(£.1,7) =3 Y vaesinmnt:cosnnn- e’

mel gel

Peol£,m,T) =D Y tmacosmal-sinnan-e'”

m=1 ael

s

(2.1)

where m and n are the numbers of half waves in the x and y directions. [t is apparent that all the
following boundary conditions are satisfied.

we(0,7,7) =ue(0,7,7) =M (0,n,7) =0
w,o(1,n,7) =pae(1,7,7) =Mz (1,0,7)=0
wo(£,0,7) =9¥5,(£,0,7) =Me,(£,0,7) =0
wo(£,1,7) =920(8,1,7) =My (§.1,7)=0

(3.2)
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Substituting the displacements Exp.(3.1) into the governing Eq.(2.8), the resulting expressions
have the following forms:

Leis ALf1=0 (3.3)

where
[f]={ully Umny w-n}r

1—v, 0 a2 3
cu=y—k — —Z—-ﬁ‘n“n“—a'm-r

1+v
€12 =Cy = ~Taﬂmn:r2
C13=Cg|=amﬂkl

1—v 7 n
sz=y—k,————2 azm‘n‘—ﬂln‘nz

Czs=ca;=ﬂ'mkl

c“=12'))-—-k,(:l"rrlz.rrz—lz,ﬂznz.nz
The frequency factor ¥ in the zeroth order approximation is obtained from
[cis]1=0 (3.4)

The solution of Eq.(3.4) yields the estimated values for the three natural frequencies and the

correspouding eigenmodes.
Before solving Eq.(2.9), we change Eq.(2.9) into the following form
Lu=f (3.5)

in which
u={ths, ¢n, w;}T
f={Ply P27 PS}'T

9* 1—v ,, 0° a* 14v @* 3
2 2 —_ —_
dor g Per—hove Poamy kg
1+v &° 1—v , 8 | 2_62 oy d* g
L= Gﬂ D) aé-any 2 a a§2 Tﬁ ar_'T kl Y FRA .Bkl 677
- 0 a9 o ot
—aki 5 —5"2:'5,,—, azknwwL ﬂzk:a—nr e

-

Pl=2hlk|(awa,;—'/’4o)+VA§¢40.1¢—3}‘1';(02¢;0»4

+vaBing,n) — 310 (Bz0.0+ aBng,e) (1—v) /2
P2=2h1k1(ﬂwn.v"¢'lo)+V}‘§V’!o.u—3h1.€(aﬂw€or"
4+ aae,0) (1=9) /2= 3k 1 (B e+ vaByea.e)
P3=12'}’A~zxwo»ﬂ"‘klhl»é(azwo&"‘asb;o)_klhly’!(ﬂzwoﬂ_lgsf”?o)

Eq (3.5) is formally the same as the equation of forced vibration. Owing to the properties ot
eigenvalue y . in general, there are no solutions in Eq.(3.5) except that A is a characteristic
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valie Basea o the solhvabihiy condition, there must he

[\

j‘j b TEIOd =0 (3.6)

where U™ s the solutton of equation LTu* =0 . 71s the period of vibration., L Tis the transposed
operator of the differential operator L0 Intact, Eg.3.6) 1s the generalized form of Hale Law™ Here.

1L 1s apparent thad

¥y o b T -
U *"va"(\.vﬂnq lun} (-3,1)
Sabstituv s a0y Tyt g2 o) and muoducing the tollowmg parameters
D e
1T S @ T, Hon Vg CORDETISIN 2 0 = M (O Tl g

S b

AT ) hmaSIBMTSCOSMTESIN AT — 3oy 0 (30 Tlm

I N . “ - . N
4 AT e M macosTmTIsianTycosnTn - (1 —1) "24didn
¢ ) , . .
_‘13_:) ORI T W e — Ve ) UmaS T AT ECOS RTY — BF L (2B TUm A
o

+ a*mavpn ) Umncosmaisinmricos nan - (1—1v31/2L4 3k, o (3 nT10 pn

. h) M < . bt
T PAPINTU Ry ) Unasin i cosnansinnmn tdidy
2 . - . c
A= —-J (R, e (PMAW g — Al ) Wi psinmaicosmadsin nany
Q

+ by (B NTWag— Biimn ) Wmasin magsinnancosnan tdsdn

i 2 e 2 <2 < 2 . .
A-IU:S wiui costmuésininrn 4+ vk, sin*mafcostnan + 12wl sin’maésin’nan}didn
o

We have the resulting expression in the following form:

K

/H':Z?“/‘Ao (3.8)

r=l

Vor o arions plates with varving thickness, we can obtain the frequency factor Ay inthe first order
Seyrovimation b cadeulating integral Expo3.8).

Asar evemple the free vibration frequencies of the Mindlin plate with edges simply supported
cosSyand hinear (y=2) and bilinear (h;=£n) thickness distributions are discussed and the
rowalts are shown in Tihle 1 to Table 4. In order to compare them with the existing solutions based
on e di plate theony '™ and Mindlin plate theory!"". we consider the SSSS plate with a taper ratio
& 1.6 the wide thickness ratios of the plate varies from 10 to 500. The numerical results for the
tundamentat frequency are shown in Frg.i.

IV. Conclusions

It can be seen from the example, the results of the first-order perturbation solution agree very
well with the results of [15]. and therefore, for Mindlin plates with arbitrary variable thickness. it is
not difficult to calculate the free vibration frequencies by means of the method proposed herein.

As can be seen trom Fig. 1. the results obtained by the present method are close to the existing
solutions. which is obtained "y using the collocation method"", for the case of a/ A, > 100.it may
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Fig 1 Varation of fundamental frequency with (a/hoy for SSSS plate (b 1. 0.0)
iRl rm=n=| o=[0/(pah) 11 a.-[1+B(h)e]? NN 0s
a/he 10 20 30 40 50 60 80 160
a 19.06 19.56 19.66 19.62 19.73 19.74 19.84 20.04
all} 0.933 0.982 0.992 1.00 0.995 0.9986 0.988 0.968
Al U.466 0.491 0.496 0.500 0.498 0.498 0.494 0.484
Fable 2 m=n=0 =D (path) I 2L+ Al e
Ty n 20 a0 40 50 60 an 1on
I 69.71 76.23 77.70 78.75 78.50 TR.OH 77.0% 73.92
12 0.786 0.933 0.933 0.982 0.988 0.992 L.04 0.995
RERER! .398 0. 466 0.466 0.491 0.494 0.496 0.52 0.49¢%
Table 2 m=n=] o=[D/(pa%he) 12 -a-[1+B(h)e]?
a/hy 10 20 30 40 50 60 80 pen
a 139.8 164.8 171.5 174.1 175.4 176.1 176.9 177.9
) 0.637 0.863 0.933 0.960 0.974 £.982 0.992 0.984
A&n) 0.319 0.432 0.466 0.480 0.487 0.491 0.496 0.492
Table 4. m=n=/{ w=[D/(pathy) 1"ta-[1+B(h)e] ?
a/hy 10 20 30 40 50 60 30 100
a 219.9 278.8 297.3 304.9 308.7 310.8 KER N 314.0
A 0.514 0.786 0.888 0.932 0.955 0.968 0.986 0.98b
A(&n) 0.257 0.393 0.444 0.466 0.478 0.484 0.493 0.494

he ohserved that the present results are almost cotncide with the solutions obtained from classica!

thin plate theroy!'® so this method can avoid the “"lock ™ phenomenon which cannot be overcome

by the finite clement method!'.

Although the analysis is limited to plates with edges simply supported. the proposed method
may be extended. without special treatment. to the stability and vibration problems of Mindlin’s
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plate under initial stress and with other boundary conditions.
In the present paper. since the explicit expressions of the free vibration frequencies are

presented relating to the thickness function, it is very convenient to optimize further the thickness
for dynamic problems.

Acknowledgment Thanks are due to Prof. Dai Shi-giang, for his direction and help.
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