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1. The Bernstein polynomials belonging to a function f ( x )  defined on [0, 1] 
are, as well-known, the following 

(1.1) B. ( f ;  x) - ~ x k ( 1 - x )  "-k  (n = 1 , 2 ,  ...). 
-k~=o ~ ~ k - 

It is also known that if f ( x )  is continuous in the closed interval [0, 1] these 
polynomials converge uniformly to f (x) .  Bernstein polynomials piay an important 
role in approximation theory and in other fields of mathematics. On account of 
this a number of mathematicians have dealt with several generalizations of Bernstein 
polynomials, see e.g. [6]. 

In the present paper we are going to define Bernstein type rational functions 
and prove convergence theorems for them. Moreover, we prove an asymptotic 
approximation theorem and show that the derivatives of Bernstein type rational 
functions also converge to the derivative of the function. 

Let f ( x )  be a reat, single valued function defined in [0, ~). By Bernstein type 
rational functions belonging to f ( x )  we mean the following: 

(1.2) R , ( f ;  x) -- (1 k~=o f (a,x) k (n = 1, 2, ...), 

where a~ and b,, are suitably chosen real numbers, independent of x. 
To compare (1.1) and (1.2) set 

q~(x) = x " ( 1 -  x)  "-k  
and 

1 
rk(x) - - -  (aox) ~ (k = O, 1, 2, . . . ,  n) 

(1 + a , x ) "  

then we have rk (x )=  qk(t), where t -  a.____f__x 
1 +anX 

bn, 2. Let R, (f ;  x) be the functions defined by (1.2) with a, = ~ b, = n 2/3 (n = 1,2,. . .)  

and let co2a(6) be the modulus of continuity of the functionf(x) in [0, 2A]. We shall 
prove the following 

THEOREM I. Let f ( x )  be a continuous function defined in [0, ~) such that f ( x ) =  
---O(e ~) (x-~o~), for some real number ~. Then in any interval O<~x<=A (A>0) the 

Acta Mathematica Academ~ae Sc~entiarum Hungaricae 26, 1975 



124 KATALIN BAL/~ZS 

inequality 

(2.1) ] f ( x ) - R , ( f ;  x)l ~ c o (D2A [n.,aj n-W5 

is  valid i f  n is sufficiently large, where co is a constant depending on A and ~ only~ 

(In what follows c~=0, 1, 2, ... witl denote constants independent of n.) 
The inequality (2.I) shows that R,,(f; x ) ~ f ( x )  when x=>0 if n-+ ~, and this 

convergence is uniform in every finite interval O~x<=A. 
We remark that R , ( f ;  x) tends to f (x )  with other choices of a,,, and b,,, too. In 

the theorem such a choice of a, and b,, was motivated by the fact that these seemed 
the most suitable with respect to the rate of approximation. 

To prove the theorem some lemmas are needed. 

LEMMA 2.1. I f  x~O, then the following Mentities hoid: 

(2.2) 
1 a (h i  

~=otsZ/k/(a"x)k= 1 (n= 1,2 . . . .  ), (1 + a , x )  n 

(2.3) (l+a,x)~ Y ~ ( k - b , x )  (a,,x) k -  
k=o 1 - { - a ~ x  " 

(2.4) 1 ~ ' ( k _ b . x )  2 (a,x)1 ~ _ a ,b ,x  + b , x  
(1 + a,,x)" k=o (1 + a,x) 2 

where a,= b'--2' and b, > 0 is an arbitrary real number. 
n 

PRoov. (2.2) is evident from the obvious formula 

(2.5) = k (a"x)k = (1 +a,x)". 

b, 
Differentiating (2.5) by x, then multiplying both sides by x and using a , = - -  

n 
we have the equality 

Dividing both sides by (1 +a,x)", subtracting b~x and using (2.2) we get (2.3). 
Again differentiating (2.6) and multiplying by x we obtain 

Multiplying both sides of (2.5), (2.6) and (2.7) by the factors b2,x2(l+a,x) -", 
- 2 b ,  x(1 + a , x ) - "  and (1 +a~x) -" respectively, and summing up the three equalities, 
we get (2.4). 
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L~MMA 2.2. I f  x>=O then the inequality 
X 

k 11 
1 X e"b~. (a,x) k <= q 

(2.8) A , -  ( l+a ,x ) "  ~ - x  >=a k ( l+a ,x ) "  

holds for sufficiently large n where 3 > 0  and 7 are arbitrary fixed rea! numbers. 

a , = ~ - + 0 ,  b,,-- oo .(f n +  oo. 

PROOF. By Lagrange's theorem 

7 , ~ !  7 

7 b,, ? e~ ? e ~ - 1  = - - e  --<----  <=cl 
b, b, 

7 ~ 7 

l+a.xe'" "= l+~.~+a~ ~'- 1) "< <= e..x" 
(2.9) 

1 + a , x  t + a , x  -- n(1 + 

7 I I X 
- -  t'2 

~/ith the notation t=xeb,~ we have, if bT,,- ~ a, 

I • - ' : I b~ xe~ t g k (2. i0) = x §  ( )  => 

>= -b-7--x - I x l l l - e  = > a -  x �9 =>~'* 

fo x̀  sufficienty large n, where c5" > 0  is constant. If  - - - x ,  _>-6, then (2.10) shows that  

(2. t l )  (k - b,t) 2 
b~a* ~ 1. 

Using (2.9), (2.1t) and summing for all k, the inequality 

(2.12) A , , -  ( l+a, ,x)  n ~ - ~  =>a (a"x)k = 

3' 

= b~a*(l+a,t)" k=0~(k--b"t)z (a"t)k" 
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Y 
7 is true. By (2.12) and (2.4) applying t=xe~ ,  w h e r e - ~ 0 ,  if n ~ ,  we get 

A .<:: 
n~---C 3 

which proves the lemma. 

COROLLARY. lira A, = O. 

a~,t4 +_~. ~ 4 x 
a,x  + b-~ 

(l +a,t)2 ~ c~ ( l+a , ,x)  2 , 

It is well-known (see e.g. [6]) that if 2 and 6 are arbitrary positive values, then 

(2.13) co2 a (26) ~ O)2A (6) (2 + 1). 

Now we prove the convergence theorem. By (1.2) and (2.2) 

(2.14) A, ( f ;  x) = I f ( x ) - R , ( f ;  x)[ <= ~ f ( x ) - f  (a,,x)k<= 
(1 

1 
<= ( l + a . ~ ) ~  ( Z + Z ) = s l + s ~ .  

We obtain by (2,13) 

(2.15) f ( x )  - f  . <= O)2A -- = eO2A ~p.  -- <= 

(,02A ~-~ F/fl .X --  7 -  "~ 1 , 

We shall choose the number f i>0 suitably later on. By (2.14), (2.15) and (2.2) 

(2.16) 

$1 <= co2A ~-~ (1 + a,x)" ~ a  (a"x)~ + c~ -ff = S• + oo2a . 

Using the Schwarz inequality, then considering (2.4) and (2.2) we obtain 

' //[--~-~]nP[ 1 ~ ( b , x - k ) 2 [ ; } (  a .x)kX (2.17) Sl <= C02a t n~ j b, [ ( l + a,x)" k=o 

1 ~ (a ,x ) )  t/~ 1 n p a~b~x ~ + b , x t  
•  ~=o <= o ~  -~ ~. 0 +a .x )  ~ I " 

1 h 
Assuming f i = ~  and b,,=n 2/3, in this case a , = ~ n = n  -~/3, then by (2.16) and (2.17) 

t/ 
we have 

(2.18) S l ~  (D2A 1 ~  ] [(X4-~ x)~/~ ,+ 1]. 
kn-.-) 
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Since f ( x ) = O ( e  ~) (x~  ~,  ~ fixed), the estimation of Sz is an easy consequence o f  
Lemma 2.2, if 6 was chosen small enough: 

(2.19) $2 - 
k 

1 "v  b.  n ( a . x ) k  < 
(1 +a.x)" k ~' c~e k = 

- - > 2 A  
bn 

1 

<= (-]-+ a,, x)" ~-~=>a 
cGe ~ n (a.x)~ < cr a~x4+ <= - - ( x ~ + x ) .  

k = n 2/a 

Now, on the basis of (2.18) and (2.19) the inequality (2.14) may be written in the 
following way 

(2.20) A~(f; x) <= co COZA + (0 <= X <= A). 

This establishes the proof of Theorem [. 

3. E. V. VORONOVSKAYA proved in [9] for the Bernstein polynomials that 

+ f " ( x )  x ( 1 - x )  q Q" (3.1) B,,(f; x) = f ( x )  2n n '  

i f f (x)  is bounded in [0, 1], and has a finite second derivative at the point x. In (3.1) 
G tends to zero with n-~ ~. 

In this part of the paper we prove an asymptotic approximation theorem simi- 
lar to (3.1) for Bernstein type rational functions defined in (1.2). 

TI-~Eo~.E~ II. Let f ( t )  be a .function defined in [0, ~), for which f ( t ) = O ( e  ~*) 
(t-~ ~,  c~ is a fixed real number), then at each poin~ t=x ,  in which f " ( t )  exists and 
is finite 

(3.2) R. (f ;  x) = f ( x )  + G f "  (x) gl (x) + G f "  (x)gz (x) + a. ~., 

where O, -~ O, 
b n n 112 

a . , = - - ~ O  and --*0, i f  n ~ ,  moreover 

X 
- -  x 2 anb"x4 q- a--~ 

gl(x) - ~, + G x '  g2(x) = 2 b , ( l + G x )  ~ " 

We remark that satisfying the conditions concerning a, and b,, gl (x) and g~(x) 
remain under a limit depending only on x, so Theorem iI  is indeed an asymptotic 
appreximation theorem. 

It is immediately seen that R , ( f ;  x), similarly to B,,(f; x), is a linear operator. 
For certain linear operators asymptotic approximation theorems similar to our 
Theorem II were proved by a number of mathematicians, see e .g .O.  SzAsz [8], 
J. GRdF [2], R. G. MAMEDOV [4], M. W. MOLLER [5] and F. SCI~UR[R [71. 
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PROOF. By the conditions of the theorem, f"(x) is finite, thus we may write 

(3.3) f(t) = f(x)  +f" (x) (t - x) + § 3o (t) (t - x) 2 , 

where 2(0-*0,  if t-*x. By reason of this 

,(3.4) 
" x )  

Substituting this expression in R,( f ;  x) and taking into account the identities (2.2), 
(2.3) and (2.4) we get 

f (x)  ~ (Gx)k+ b ~ x ' "  Z (k -b"x)  (a'x)k+ .(3.5) R,( f ;  x ) -  ( l + a , x ) "  ~=0 ,k ~- ,~) k=0 

+ 2b~(1 +Gx)" k=0  

where 

(3.6) 

- a ,  x ~ a ,  2 b ,  x ~ + x 
~ f ~x~ ~ f ~ ~x~ 1 +a,x  +f ' ( x )  2b,(1 +a,:x) 2 ~-r,, 

r , -  ( l+Gx)"  k=0 ~ ~ , - - X  k (a"x)k" 

Now given an arbitrary small number 5>0,  let us choose c3>0 so small, that assure- 
lag [ t -x l<5,  then [2(t)l<e be satisfied. With such a 5, decompose the sum (3.6) 
into two parts: 

(3.7) r, = ~'1 + _,~.2 

where 21contains the members where '~ - x  <5,  andS2 the ones where k - =>5. 
b, 

By the property of 2 ( 0  and by (2.4) we obtain 

( 3 . 8 )  

X 
a;,x ~---  

b,, 
I~l l  < 5  ( l + a o x )  2" 

Now we give an upper estimation for 12;2!. (Henceforth cl, i=8 ,  9 . . . .  are positive 
numbers depending only on x and ~.) Byf ( t )=O(e  ~t) ( t~ ~, cz fixed) it follows from 
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(3.4) for some c8 

[ k k x 

f "  (x) - x < cse ~ (k = O, l ,  2, n). , , , ,  

Using (3.6), (3.7), (3.9) and (2.8) we get 
X 2 4 an x -t- --~n 

(3. lO) 

Let now 

(3.11) def r n 

an 

By (3.11), (3.7), (3.8) and (3.10) the relation 

X a2 X4 4- X 

a"2x4-~ bn . ' b, a .x  + 
(3.12) I~o.I < e a.(1 + a . x )  2+c9 a.(1 + a , x )  2 = Clo ~ 0 (n-~ ~ )  

b_ ni l2  
holds, because a , =  " ~ 0  and ,--z---~0, if n ~ .  (3.5), (3.6), (3.11) and (3.12) give 

n On 
the proof  of Theorem II. 

4. In this part we prove a convergence theorem concerning the derivative of 
Rn( f ;  x). The derivative by x of the rational function defined in (1.2) belonging to 
f ( x )  is denoted by R~(f;  x). 

THEOREM III. Let  f ( t )  be a function defined in [0, co), for  which f ( t ) = O ( e  ~t) 
(t-~ co, ~ is a fixed, real number), l f  f ' ( t )  exists at the point t = x ,  then 

(4.1) R' , ( f ;  x) - f ' ( x )  i f  n -- ~ ,  
bn 

where an = - - ~  O, and bn = n 2/z. 
n 

To prove Theorem III we need some lemmas. 

LEMMA 4.1. In the case x>=O, for  the rational functions 

(4"2) Sm(x)~r  1 " f } - -  (a .x )  (m = O, 1 2, .), ( l + a . x ) "  ~ ( k - b " x ) m  n k 
k=O k ~ "" 

the recurrent formula 

(4.3) Sm+ 3_ (X) : X [S~n (X) -~ m b  n a m_ 1 (x )  

b, 
holds, i f  a. = - - .  

n 

anbnx  ] 
1 + a n x  S, , (x)  (m - 1, 2 . . . .  ), 
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PROOF. Differentiating S,. (x), we get 

S~,(x) -- (1 +~2x)" k=o "~ (k -b"x)m-~ (a"x)~mb"+ 

-~ ( l + a . x ) "  k=0 

f a .b .x  ] 
• [ a . k -  a .b .x  + a . b . x -  1 + a.xJ" 

From this by appropriate transcription we have 

S~(x) = - m b ~ S m _ ~ ( x ) + l  Sm+l(X) + [b. 

which gives (4.3). 

( l b a . x ) ]  sm(x), 

LEMMA 4.2. The rational function S., (x) deJined in (4.2) is identical with 

1 ~A~i(x)  b~ (re=O, 1,2, ..), (4.4) S~(x) - (t +a,,x) m i=o ' " 

where the polynomials Am, i (x) are independent o f  b., and their coefficients are poly- 
nomials o f  a.. 

PROOF. The proof is carried out by induction concerning m. SG(x)_=I, S~(x) 
is identical with (2.3): 

S l ( x ) -  ( l+a.x)" ,  ~=, l + a . ~ -  l + a . x  ' 

where Al, o(x) = 0, Al, l(x) = -a,~x 2. 

Suppose now that (4.4) is true for m, and prove it also for m + 1. By the in- 
ductive assumption and by (4.3) 

[.~Y A~,, i(x) bi.(1 + a.x) m -  i~=. ~ A,,,, i(x)bi.ma.(1 + a.x) m-a 
& + l ( x )  = x [,=0 

(1 + anx) 2m 

m b  n ' m - 1  anbn x ] 
Z Am_I (1 + a . x )  "-1  ~=o ' (1 + a . x )  m+l i=o 1 

and hence by rearrangement we obtain 

] m+l 
Z S,.+l(x) - (1 +a.x)  m+l i=o 

where the polynomials A.,+l,i(x) obviously satisfy the statement of  the lemmao 
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LZMMA 4.3. In every interval O<=x<=A < ~, the inequality 

(4.5) IS,n(X)l- ( l §  ~=o 
b. 

holds f o r  sufficiently large n, where K m (A) is a number depending only on A, a, = - - ,  
n 

b n = n2/3. 

PROOF. By (4.4) 

(4.6) S . , ( x )  = g . , (x )  (m = O, 1, 2, ...), (1 + a. x)  m 
rrl 

where gin(X)= Z Am, i(x)bl," We show that gin(x) is a polynomial of x of degree 2m. 
i = 0  

By (4.5) 

P . + ~ ( x )  (m = o, 1, 2, ...), (4.7) Sm(x) - (1 +a,,x)" 

where the degree of P,+m(X) is n+m exactly. We have got (4.7) by multiplying the 
numerator and the denominator of (4.6) by (1 + a , x ) " - " ,  and this is possible only 
when the degree of gin(X) is 2m exactly. After these we show (4.5) by induction on 
m. In the case m = 0  So(x) = 1, thus (4.5) is trivially fulfilled. In the case m =  1 in the 
sense of (2.3) 

a,b, x2 ~ A2a, b, = Kl(A)a,b . .  [Sl(x)] - 1 + a , ~  - 

Now suppose that (4.5) is true for a natural number m, and prove it for m + i. By 
(4.6) and (4.3) 

(4.8) Sm+l(x) = x '-] g" (x)(1 + a,~x)" + gm(x)(1 § a ,x )" -  l ma,, 
(1 + a, x) ~m ~- [ 

mb,,gm_l(X) a,b, xg,,(x) ] 
( l + a . x )  '~-1 d+a.x)m+-------il = 

g~,(x)x gm(X)(xma. -a , ,b .x  2) gm_l(x)mb, x 
( l + a , x )  m -b ( l+anx)  m+l ~ (1 +a,x)  m-1 " 

The Markov inequality concerning polynomials states that if a polynomial Q(x) 
of degree k remains between - C  and C in an interval [a, b], then 

2Ck 2 
[ Q ( ) ]  if a<=x<=b. " x  ~ = b - a  

We apply the Markov inequality for gin(x). By the inductive assumption 
tit tn (4.9) lg,~(x)l ~ Km(A)a, b. (1 + a , x )  m, 
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thus 
2 m m 

8m K, . (A)a .b , ,  ( l + a . x )  m < " m m (4.10) Ig~(x)I ~ A = K~,(A)a.  b . ,  

ra + 1 ]~m~1  i f 0 = = x ~ A .  Using (4.8), (4.9) and (4.10) and taking oat a;i ~. �9 it follows 

Km(A)[  x m  ~} 

<= an b. [ a . b . ( l + a . x )  m ~ ( l+a, ,x)m+ ~ + 
ISm+~(x)l ~+~ m+l[ K:(A) -~- -x  

K m _ l ( A ) m x  

a2b.( l  +a . x )m-~  <= ~ + l ~ - J ~ .  ~. �9 

PROOF OF THEOREM III. Consider first the case when x > 0 .  By (1.2) and (2.2) 

( l + a . x ) "  k=O ~ . /  l + a n x ) "  
From this we have 

(4.12) R ; ( f ;  x)  - x(1 + a . x ) "  ~=0 [.b.J 

+ a.b, ,x ~. ~ _ ( k ]  

Since i f ( x )  exists and is finite, so 

where 2 ( t )~0 ,  if t ~ x .  Taking into consideration (4.12), (4.13), (2.4) and (2.3) it 
follows by simple modification that 

1 
(4.14) R~( f ;  x) = f ' ( x )  (t + a . x )  2 + A . ,  

where 

-~ (1 -~' ,,.~ ~j-"+l k~;'= ( a , , x )  k - x  = 

bn an bn x 

x(l+anx)" { k Z + + ( l + a . x ) . + l  

= A I + A ~ + A o o + A 4 .  
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Let e>0  be an arbitrary but fixed number, then by 2 ( t )~0  ( t ~ x )  there exists a 
number 5>0  for which 12(t)]<e is valid, if l t - x l < 6 ,  and so by (4.15) and (2.4) 

a2,b.x 3 + 1 
(4.16) ]All ~ 8 (1 + a . x )  2 < c~7~ 

for sufficiently large n. Similarly, iin sense of (4.15) and (2.3) 

a~b.x ~ 
(4.17) ]A31 ~ ~ (l +a,x)2 <: Cls~. 

Since f ( t ) =  O(e'O ( t~  ~),  thus by (4.13) 

~ I k (4.18) 2 < c~ie " if i - ~ - x  >- 6. 

We get from (4.15) and (4.18) 

c~1 ~, e b, anx)k(k_b,x)2. IA2f <= 
b,x(1 + anx)" I~-~" ->~ 

l b .  -- 

We apply the Cauchy--Schwarz inequality: 

"<=: e bn 
IA21 = ~ (1 +a,x)  n "~ (a"x)kX 

• ( l+a ,x )"  k=o 

Using (2.8) if 7 =2e and (4.5) we have 

(4.19) ]A2[ ~ ~ V (-]-T~x--~ c~(a ,b ,+a ,  bn ) ~ 0 (n -* 

It follows from (4.13), that 

(4.20) 2 k k x: ~- k - < c ~ e b ~  if - ~ , - x  ~ 3 .  

We can estimate IA[ using (4.20) and (2.8): 

I ( } a,,bnx ~ 2 (a,x) ~ x (4.21) 

- (1 + an x)" = c ~  (a .  ~ b .  + ,7.) -* 0 (n ~ o~). 
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134 KATALIN BALAZS: APPROXIMATION B~ BERNSTEIN TYPE RATIONAL FUNCTIONS 

W e  can see f rom (4.16), (4.17), (4.19) and  (4.21) 

IA.I <= Z IA,I <= c~e 

for sufficiently large n, thus it follows from (4,14) 

R ~ ( f ; x ) ~ f ' ( x )  if  n - ~  and  x > 0 .  

Let  now x = 0 ,  then  by the condi t ion  o f  The o re m I I I  f ( + 0 )  exists and  is finite, 
a n d s o  b y  the defini t ion o f  R~.(f; x) in (1.2) we have 

1 a ,x  ~t 
R ' ( f ;  x)!~=o = -(l + a , x ) , f ( O ) + n f  I =o- 

as b~-~ co, i f  n ~ co. This comple tes  the p r o o f  o f  Theorem III .  
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