Acta Mathematica Academiae Scientiarum Hungaricae
Tomus 26 (1--2), (1975), 123—134.

APPROXIMATION BY BERNSTEIN TYPE
RATIONAL FUNCTIONS

By
KATALIN BALAZS (Budapest)

1. The Bernstein polynomials belonging to a function f(x) defined on [0, 1]
are, as well-known, the following

(1.1) B,(f; x) :zébf[%] {Z] xXFl—xy % (n=1,2,..).

1t is also known that if f(x} is continuous in the closed interval [0, 1] these
polynomials converge uniformly to f(x). Bernstein polynomials play an important
role in approximation theory and in other fields of mathematics. On account of
this a number of mathematicians have dealt with several generalizations of Bernstein
polynomials, see e.g. [6].

In the present paper we are going to define Bernstein type rational functions
and prove convergence theorems for them. Moreover, we prove an asymptotic
approximation theorem and show that the derivatives of Bernstein type rational
functions also converge to the derivative of the function.

Let f{x) be a real, single valued function defined in [0, -). By Bernstein type
rational functions belonging to f(x) we mean the following:

n K —
1D R =y Zf[ ][k]((w (n=1,2,...)

where a, and b, are suitably chosen real numbers, independent of x.
To compare (1.1) and (1.2) set

qk(x) = xk(l _— x)n—k

and
o —_ 1 k .
ik(x)—m(anx) (k—-O, 1, 2, ...,n)
then we have r(x) = q,(¢), where ¢ = OnX
a % = qgill), wnere I = 1+anx.

2. Let R,(f; x) be the functions defined by (1.2) with an:%, b,=n?(n=1,2,..)

and let w,4(6) be the modulus of continuity of the function f(x) in [0, 24]. We shall
prove the following

THEOREM 1. Let f(x) be a continucus function defined in [0, =) such that f(x)=
=0(e"™) (x> o=}, for some real number o. Then in any interval 0=x=4 (4=0) the
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inequality :
@1 £G) = Ry(f; 9] = {w [n—l—] +;17}

is valid if n is sufficiently large, where c, is a constant depending on A and o only.

{In what follows ¢;=0, 1, 2, ... will denote constants independent of n.)

The inequality (2.1) shows that R,(f; x})~f(x) when x=0 if n—oo, and this
convergence is uniform in every finite interval 0=x=4,

We remark that R,(f; x) tends to f(x) with other choices of a,, and b,, too. In
the theorem such a choice of a, and b, was motivated by the fact that these seemed
the most suitable with respect to the rate of approximation.

To prove the theorem some lemmas are needed.

Lemma 2.1, If x=0, then the following identities hold:

1 zn - -
(22) F«]Wk;; [k] (anx) =1 (I’l = 1, 2, ),
v @b, X"
2.3) T o b r)[ }(anx) =
. n . _ abix*+b,x
@ e U M e

b . .
where a,=— and b,=0 is an arbitrary real number.
n

Proor. (2.2) is evident from the obvious formula

n

(2.5) [ ](anX) = (I +a,x)".

k 0

: o . . b
Differentiating (2.5) by x, then multiplying both sides by x and using anzl—:
we have the equality

(2.6) Zn k [Z] (@, %) = b,x(1+a,x)" "~

Dividing beth sides by (1 +a,x)", subtracting b,x and using (2.2) we get (2.3).
Again differentiating (2.6) and mu]tlplymg by x we obtain

Q.7 ﬁ’kz [Z] (@, x) = (B2x*+ b, x) (1 +a,x)" 2
k=0
Multiplying both sides of (2.5), (2.6) and (2.7) by the factors Bb2x2(1+a,x)"",

—2b,x(14a,x)"" and (1 +a,x) " respectively, and summing up the three equalities,
we get (2.4).
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Lemma 2.2. If x=0 then the inequality

i

(2.8) Ay =

- (17-62 )&) !

x
k agxt4+—

> e e (a,xf =c ——b'f—
7T M (4 a,x)?

|

HV

holds for sufficiently large n where 3=0 and vy are arbitrary fixed real numbers.

n___ﬁ—bo’ bn-—>oo Z:f H— oo,
n
Proor. By Lagrange’s theorem
¥ 7 ki
s y - =
er 1:—b—ne i gneb”éclb-i
for some 0<8<1, if y is fixed and b,—~ <. By this ( -—-%”—}
i
i
¥ ¥ v
B B b,xcy — i
| fob“ n , b”__ " hA A1
(2.9) 1+a,xe 1+a,x+a,x(e"— 1) =g b, = g
14a,x 14+a,x n(l+a,x j
|k .
“With the notation z‘—xe”n we have, if 5 =4,
| k k R o
(2.10) }b;z —t = !—i— xeb”} = !b—n* x+x(l—e™)| =
e ] = =
z—l—); x! |x] 1— bl; —[x\-ll—e“‘léé“

for sufficienty large n, where 0% =0 is constant. If ‘b—~ x! =4, then (2.10) shows that

@11

|
(k_bnz‘)2

5 = 1.

Using (2.9, {2.11) and summing for all k, the inequality

(2.12) 4, =

(I+ay

¥

1 vE
i n

—_— e n

L
5

(@) =

¥

Ik =

_{1+a,xe
- 1+a,x

= e can

77; ]n 1

Z] (a,xe™

eCZ x

(k —b,1)?

g ] {a, "
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A "
is true. By (2.12) and (2.4) applying ¢=xeb», where —;——»0, if B>, we get

o t X
a;t4+b— a,z,x4+—5—
n n

A= S T an

which proves the lemma.

CoRoLLARY. lim 4, = 0.

n->coo

It is well-known (see e.g. [6]) that if 1 and & are arbitrary positive values, then
2.13) @W54(10) = w4 () (A+1).

Now we prove the convergence theorem. By (1.2) and (2.2)

(214 4,(f; %) = [f()—R.(f; x}[_~(—fl—i—x),; lf(x) f[ ”[ ](anx) =
1
= (I+a,xr EATﬁiA)::Sl+Sz-
b b

n n

1
— . B
= L7
J 24 (i’tﬁﬁ

Il
X"Ef— +1].

i

We obtain by (2.13)

)1 [{ill = o[+

1
= o) [

We shall choose the number >0 suitably later on. By (2.14), (2.15) and (2.2)

2.16)
:n‘ [k] (@, %)+ 24 {}:J = Si+myy [nt’]

1 nf
oot 2
Using the Schwarz mequahty, then considering (2.4) and (2.2} we obtain

(I+a,x)"
B
2.17) S) = wy, [5—] 1 {(1+a . Z(b x— k)z[ 1] (@ x)* X

i nfn . 1/2< 1 n"{aﬁbﬁx4+bnx 12
“Araxy Eo[k}(”"x) } = 2|3 ) 5, 0 T @

Assuming ﬁzé— and b,=n*"?, in this case a,,=—l;1'1=n‘1/3, then by (2.16) and (2.17)

fIA

(2.15) X — x——bli

1

we have

(2.18) S1 = w4 [;171,—3] [e*+x)V2+ 1]
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Since f(x)=0(e™) (x— =, & fixed), the estimation of S, is an easy consequence of
Lemma 2.2, if 6 was chosen small enough:

k

_ 1 < . bR I
(2.19) S, = GTaxy cse [k] (@, x) =
—=>24
1 £ X c
a—~1pn ) -
= Tz e Zi cge [k] (a,x) = ¢, [aﬁx‘“rz—} = nTjg(xLl-x),
" ——x]Zd "
b}'l

Now, on the basis of (2.18) and (2.19) the inequality (2.14) may be written in the
following way

(2.20 1,075 = oo, [;],—] o

I—lﬁ} O=x=4).
This establishes the proof of Theorem L

3. E. V. Voronovskaya proved in [9] for the Bernstein polynomials that

£

Nyl
—A)+n,

G.D B,(f; ) =f)+

if f(x) is bounded in [0, 1], and has a finite second derivative at the point x. In (3.1)
¢, tends to zero with 72— oo,

In this part of the paper we prove an asymptotic approximation theorem simi-
lar to (3.1) for Bernstein type rational functions defined in (1.2).

TreoreM II. Ler f(¢) be a function defined in [0, =), for which f(t)=0/(e")
(t—oo, o is a fixed real number), then at each poins t=x, in which f(t) exists and
is finite

3.2) R,(f: x) = f(3) + a,f (X) g1 (%) +a, /" (%) g2(x) + @, 05>
b n2
where ¢, > 0, a, = 7" -~ 0 and 5 0, if n— o, moreover
" a,b,x* + X

—y -
g:1(x) = Trax g (x) = Shtaxr

We remark that satisfying the conditions concerning a, and &,, g,(x) and g,(x)
remain under a limit depending only on x, so Thecrem II is indeed an asymptotic
approximation theorem.

It is immediately seen that R,(f; x), similarly to B,(f; x), is a linear operator.
For certain linear operators asymptotic approximation theorems similar to our
Theorem II were proved by a number of mathematicians, see e.g. O. SzAsz [8],
J. GrOF 2], R. G. MameDoV [4], M. W. MULLER [5] and F. ScHURER [7].
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Proor. By the conditions of the theorem, f”(x) is finite, thus we may write

@3 110 = 1094700~ + [ w2,

where A(¢)—~0, if t—x. By reason of this

I R o R i (S

Substituting this expression in R,(f; x) and taking into account the identities {2.2),
(2.3) and (2.4) we get

R T L L [ e e | [

S (x) ) N
A Lo o (k by x) [ ](an)»)’”r

1 n ) & *(n )
a2 [z?] [b—ﬁ] [k] @)" =

" @b, x* +x .
O3 o

.+.

=) e

where

3.6) . _____1_____ ﬁ'i ;'7_{_ [li“x]z[n (a,x)
A0 " (1+anx)n k=0 bn bﬂ k "J'

Now given an arbitrary small number £=0, let us choose §=>0 so smali, that assum-
ing [f—x|<4, then |A(¢)|<¢ be satisfied. With such a §, decompose the sum (3.6)
into two parts:

3.7 ry= 21+ 2

. k
where X, contains the members where 5 x’ <d, and X, the ones where
n

By the property of A(¢) and by (2.4) we obtain
aixt+ -g;

(3.8) '211 = A Tax

Now we give an upper estimation for |Z,|. (Henceforth ¢;, i=8,9, ... are positive
numbers depending only on x and «.) By f(¢)=0(e*) (t - =<, o fixed) it follows from
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o]

(k)
2 [KZ"‘]

Using (3.6), (3.7), (3.9) and (2.8) we get

(3.4) for some ¢,

3.9

lf{;lf—] ) —F (%) [bﬁ— x] -

k
o

<ce (k=0,1,2,..,n0).

a2x4+_}£‘
n bn
(3.10) | Zsl < S Tran
Let now
def Fp

By (3.11), (3.7), (3.8) and (3.10) the relation
X X
b, b,
(T a7 (T a

aixt+ aixt+

(G.12) loa <&

o 4 d - - oo
= clo[a,,x + anan 0 (n )
1/2
b,

holds, because an:'—i—”-»o and 0, if n—<0. (3.5), (3.6), (3.11) and (3.12) give

the proof of Theorem II.

4. In this part we prove a convergence theorem concerning the derivative of
R,(f; x). The derivative by x of the rational function defined in (1.2) belonging to
f(x) is denoted by Ri(f; x).

TueoreMm IIL. Let f(¢) be a function defined in [0, =), for which f(t)=0 (")
(t—oo, o is a fixed, real number). If f(t) exists at the point t=x, then

4.1) R(fsx) ~f'(x) if e,

b
where a, = —n—" -0, and b, = n?3

To prove Theorem I we need some lemmas.
Lemma 4.1, In the case x=0, for the rational functions
def 1 Ll n B

Ty 2 &b [k] @0" (m=0,12,..),

the recurrent formula

(4.2) S (x)

a,b,x
1+a,x

(43)  Spa(0) = xI:S;rz(x)+mbnSm—1(x)_

holds, if a, = %_

S,,,(x)] m=12 ..,
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Proor. Differentiating S,,(x), we get

S,:,(X) m Z (k b x)m 1[ 1] (anx)kmbn+

a,b,x
P [ank —~a,b,x+a,b,x —m] .
From this by appropriate transcription we have

b,

S;"(x) = _mbnSzn—l(x)+%Sm+1(x)+{ —(1+——)

which gives (4.3).

Levua 4.2. The rational function S,,(x) defined in (4.2) is identical with

1 m .
(H—a T 2’ Ap (0B, (m=0,1,2,..),

] S (%),

4.4) Sp{x) =

where the polynomials A, ;(x) are independent of b,, and their coefficients are poly-
nomials of a,.

Proor. The proof is carried out by induction concerning m. S, (=1, §(x)
is identical with (2.3):

1
(I+a,x)" ¢

where A; 4(x) =0, 4;,(x) = —a,x%

Z(k byx)- [ ](a x)* = — 0,0, x* A0 () + A1, (%),

14a,x 14a,x

Si(x) =

Suppose now that (4.4) is true for m, and prove it also for m-+1. By the in-
ductive assumption and by (4.3)

S A OB+ a3 — 3 Ay () Bima, (1 + a, 5y

- i=0 =
Sm+1(x) - X]: (1 +a,,x 2m +
mb,  mt ; a,b,x
W 2 Ap,:(x) by, mﬁ ZAm ,(x)b]

and hence by rearrangement we obtain
i m+1

)m+1 Zc: Am+1,i(x)b£u

Spa1(X) = AT a0 2

where the polynomials 4, ., ;(x) obviously satisfy the statement of the lemma.
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LeMMA 4.3. In every inferval 0=x= A <<, the inequality

1

(1+a,x)"

n

> (k-b,,x)’"[Z](a,,x)"i =K (D@t (m=0,1,..)

k=0

(4.5) 1Sa(0)| =

1

holds for sufficiently large n, where K,,(4) is a number depending only on A, @Gy=,
b,=n*?,

Proor. By (4.4)
(4.6) S(x) = ﬁ%%)? (m=0,1,2,...),
where g, (x)= Zm' A, :(x)b},. We show that g, (x) is a polynomial of x of degree 2m.
By (45

_ Pn+m(x) .
(47) Sm(X) = m (m = 0, 1, 2, ),

where the degree of P, ,,(x) is n+m exactly. We have got (4.7) by multiplying the
numerator and the denominator of (4.6) by {1-+4,x)""™, and this is possible only
when the degree of g, (x) is 2m exactly. After these we show (4.5) by induction on
m. In the case m=0 Sy(x)=1, thus (4.5) is trivially fulfilled. In the case m=1 in the
sense of (2.3)

a,b,x?

isl(x)] = l—l—a x

= A%a,b, = Ky(4)a,b,.

Now suppose that (4.3) is true for a natural number m, and prove it for m+1. By
(4.6) and (4.3)

4.8) S () = x [g;(x)(l +8,%)" 4 g, () (1 +2,0)" " ma,

(1 +a,x)™"

-

Wlbngm—l(x)__ anangm(x) .
(1+a,xy"* (1+a,x)y*+1|

_ gr’n(x)x gm(x)(xman—anbnxz) gm—l(x)mbnx
- (+ax)r (1 +a,x)"*1 (A +axmt -

The Markov inequality concerning polynomials states that if a polynomial (x)
of degree k remains between —C and C in an interval [a, &], then

o 2K
0@ =5— if a=x=b

We apply the Markov inequality for g,(x). By the inductive assumption
(4.9) lgn ()} = Kn(A)ag by (1+a,x)",
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thus
, 8m* K., (d)ay by
(410 g =~ DA

if 0=x=4. Using (4.8), (4.9) and (4.10) and taking cut ¢?*1567*1 it foliows

XM e
K K [ b, " ]
abd ra (AT aa)E

(1+a,0" = Kn(d)azby,

1S (0)] = a,’i’“bz"“[ +

Kp_1(Amx
azb,(1+a,x)y"~* —
Proor oF THEOREM III. Consider first the case when x=0. By (1.2) and (2.2)

b 1 k-1 by x
@I R0 = g 2 []{]a(ax [ 1+anx]'

+ Ky 1 (A)ag 1072,

From this we have

(4.12) RS x) = x(l +a U _, [—;i} [ ] (a, )k — b, x) +

a,b,x

t T (I+a,xrt Zf[zk‘] [ (@)

Since f’(x) exists and is finite, so

@13 ) =l reoea [ [+,

where A(¢t)—-0, if f—x. Taking into consideration (4.12), (4.13), (2.4 and (2.3) it
follows by simple modification that

(4.14) O R(fix)= f(X)m+ o
where
_ bn 2 k n k k 2
) e | 1 e e
a,b,x n | & _
T 2 [ ] [k] (@) [EZ"‘] =
— bn a, b X < .
"x(1+anx)"{k Z 3+ Fa0T kZ’ o2 y=
b—n—xl<5 - !% b—n—xl<5 E‘—xlga
= A1+A2+A3+A4.
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Let £>0 be an arbiirary but fixed number, then by A(#)~0 (¢—x) there exists a
number §>0 for which [A(r)|<e is valid, if [f—x|<d, and so by (4.15) and (2.4)

a2b,x®+1
(416) ) ]A]_] = Em << C178
for sufficiently large n. Similarly, in sense of (4.15) and (2.3)
azb,x?
4.17) |dg] = e — a7 < 8.
Since f(t)=0/(e”) (t—==), thus by (4. 13)
ALK o |
(4.18) li[bn]|< clle l—b~—
We get from (4.15) and (4.18)
%
e C11 _ F k 2
] = b,x(t+a,x)" ;5_%1!>6 [ }(a X = bux)
b, "1

We apply the Cauchy—Schwarz inequality:

k
1 fag-In
=5 ‘/”(TW L2 (1)

— =
3 xl_é

n

! S Kl — B x)
Ve & ) e
Using (2.8) if y=2u and (4.5) we have

X
aixt4 —
b,
(4.19) !Agl = "bc_l%l/ (1+ )2 $K4(A)a4b4 -~z C13(a3b +anb1/2) —_ 0 (n - oo).

It follows from (4.13), that

w0 -

We can estimate |4,] using (4.20) and (2.8):

|k

b
<cye " i |——x] = 0.

 a,b,x (k n <k
4.21) 4, = W > t-b*) [ i | @) E_x] =
a,b,xc140, {a§x4 -l—i]
= - = o (@b,+a) ~ 0 (n—> =)

(1+a,x)°
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134 KATALIN BALAZS: APPROXIMATION BY BERNSTEIN TYPE RATIONAL FUNCTIONS

We can see from (4.16), (4.17), (4.19) and (4.21)
2
|4,] = ;; 4]l = cag8

for sufficiently large n, thus it follows from (4.14)
R(f;xy—~f(x) if n—>o and x=0

Let now x=0, then by the condition of Theorem III f(+0) exists and is finite,
and so by the definition of R,(f; x) in (1.2) we have

1 1

4!
o I S S oS 5 T & R
R (f, -x)‘.x=0 - {(1 +anx)n f(O)_'_nf[bn] (1 —{—anx)"} x=0—

1 4
= b, [—f(ﬂ) +f {-Z;;H =10,

as b,—» oo, if n—cc. This completes the proof of Theorem IIL.
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