Acta Mathematiea Academiae Scientiarum Hung aricae Tomus 26 (1-2), (1975), 41-52.

FREE INVERSE SEMIGROUPS ARE NOT FINITELY PRESENTABLE

By

B. M. SCHEIN (Saratov)

In the memory of Professor A. Kert&z

Free inverse semigroups became a subject of intense studies in the last few years. Their existence was proved long ago: as algebras with two operations (binary multiplication and unary involution) inverse semigroups may be characterized by a finite system of identities, i.e. they form a variety of algebras [10]. Therefore, free inverse semigroups do exist.

A construction of a free algebra in a variety of algebras (as a quotient algebra of an absolutely free word algebra) is well known. Free inverse semigroups in such a form were considered by V. V. VAGNER [14] who found certain properties of such semigroups. A monogenic free inverse semigroup (i.e. a free inverse semigroup with one generator) was described by L. M. GLUSKIN [2]. Later this semigroup was described by H. E. SCHEIBLICH in a slightly different form [8]. The most essential progress in this direction was made in a paper $[9]$ by H. E. SCHEIBLICH who described arbitrary free inverse semigroups. A relevant paper [1] by C. EBERHART and J. SELDEN should be mentioned. There are papers on some special properties of free inverse semigroups. N. R. REILLV described free inverse subsemigroups of free inverse semigroups [7], results in this direction were obtained also by W. D. MUNN and L. O'CARROLL.

Let $\mathscr{F}\mathscr{I}_X$ denote the free inverse semigroup with the set X of free generators. A monogenic free inverse semigroup will be denoted $\mathscr{F}\mathscr{I}_1$. Time and then we will write $\tilde{\mathscr{F}}\tilde{\mathscr{I}}$ instead of $\mathscr{F}\mathscr{I}_X$. We do not consider $\mathscr{F}\mathscr{I}_\varnothing$, a one-element inverse semigroup.

This paper contains two main results. The first one coincides with the title, the second consists in a description of free inverse semigroups (if a free inverse semigroup is presented as a quotient algebra of a free involuted semigroup, then each element of $\mathscr{F}J$ is a class of equivalent words, we give a canonical form of the words). Certain corollaries with properties of free inverse semigroups follow.

All results of the paper were reported by the author at a meeting of the seminnar "Semigroups" in the Saratov State University on October 21, 1971.

THEOREM *I. Free inverse semigroups are not finitely presentable either as semigroups or as involuted semigroups.*

The proof of the theorem is subdivided in a series of lemmas.

LEMMA *1. A semigroup F generated by two elements u and v satisfying the infinite list of defining relations: 1)* $uvw=u, vuv=v; A_{m,n}$ $u^mv^{m+n}u^n=v^n u^{m+n}v^m$ for all natural *m and n, is a free inverse semigroup.*

42 B.M. SCHEIN

PROOF. F is inverse by a lemma from [12]. Since the defining relations $A_{m,n}$ are valid in any inverse semigroup generated by two mutually inverse elements u and v , F is free. F is a monogenic free inverse semigroup generated by u in the variety of all inverse semigroups considered as involuted semigroups (i.e. as algebras with two operations).

LEMMA 2. *The set of defining relations of F given in Lemma 1 is not equivalent to any finite subset of these defining relations.*

PROOF. Consider two partial transformations u and v of a finite set $A = \{0, 1, 2, \ldots, n\}$:

$$
u = \begin{pmatrix} 0 & 1 & 2 & \dots & n-2 & n-1 \\ 1 & 2 & 3 & \dots & n-1 & n \end{pmatrix}, v = \begin{pmatrix} 0 & 1 & 2 & \dots & n-1 & n \\ 0 & 0 & 1 & \dots & n-2 & n-1 \end{pmatrix}.
$$

Here v is defined on the whole set A and u is defined on every element of A except n. It is easy to verify that $uvw = u$ and $vw = v$ (here *xy* denotes the partial transformation obtained when y acts after x). One can compute without difficulty that for $k \le n$ $u^k = \begin{pmatrix} 0 & 1 & 2 & \dots & n-k \\ k & k+1 & k+2 & \dots & n \end{pmatrix}$ and for $k>n$ u^k is the empty partial transforma $k = n - k + 1 + 2...$ *n* $j =$
tion \emptyset . Analogously we may verify that for $k \le n v^k = \begin{pmatrix} 0 & 1 & \dots & k & k+1 & k+2 & \dots & n \\ 0 & 0 & \dots & 0 & 1 & 2 & \dots & n-k \end{pmatrix}$. If $i > n$ or $j > n$ then both sides of the defining relation $A_{i,j}$ contain \emptyset as a factor, therefore, $A_{i,j}$ holds. Now let $i \leq n$ and $j \leq n$. Then

$$
u^i v^i = \begin{pmatrix} 0 & 1 & \dots & n-i \\ i & i+1 & \dots & n \end{pmatrix} \begin{pmatrix} 0 & \dots & i & i+1 & \dots & n \\ 0 & \dots & 0 & 1 & \dots & n-i \end{pmatrix} = \begin{pmatrix} 0 & 1 & \dots & n-i \\ 0 & 1 & \dots & n-i \end{pmatrix},
$$

\n
$$
v^j u^j = \begin{pmatrix} 0 & \dots & j & j+1 & \dots & n \\ 0 & \dots & 0 & 1 & \dots & n-j \end{pmatrix} \begin{pmatrix} 0 & 1 & \dots & n-j \\ j & j+1 & \dots & n \end{pmatrix} = \begin{pmatrix} 0 & 1 & \dots & j & j+1 & \dots & n \\ j & j & \dots & j & j+1 & \dots & n \end{pmatrix}.
$$

 $A_{i,j}$ means that partial transformations $u^i v^i$ and $v^j u^j$ commute. We may compute now that

$$
u^i v^{i+j} u^j = \begin{pmatrix} 0 & \dots & n-i \\ j & \dots & j \end{pmatrix} \quad \text{if} \quad n-i < j,
$$

and

$$
u^i v^{i+j} u^j = \begin{pmatrix} 0 & \dots & j & j+1 & \dots & n-i \\ j & \dots & j & j+1 & \dots & n-i \end{pmatrix} \quad \text{if} \quad n-i \geq j.
$$

Analogously, $v^j u^{i+j} v^i = \emptyset$ if $i+j > n$, and

$$
v^j u^{i+j} v^i = \begin{pmatrix} 0 & 1 & \dots & j & j+1 & \dots & n-i \\ j & j & \dots & j & j+1 & \dots & n-i \end{pmatrix} \quad \text{if} \quad n-i \leq j.
$$

Therefore, $A_{i,j}$ is satisfied whenever $i+j \leq n$ and is not satisfied otherwise.

Let S_n denote the semigroup of partial transformations of A generated by u and v. We have seen that the defining relation $A_{i,j}$ does not hold in S_n if and only if $i, j \leq n < i+j$.

Suppose now that the defining relations given in Lemma 1 are equivalent to a finite subset B of these relations. Let $n = \max\{i+j: A_{i,j} \in B\}$ and if $\{i+j: \overline{A_{i,j}} \in B\} = \emptyset$ let *n* be any natural number. If $A_{i,j} \in B$ then $i+j \leq n$; it follows that $A_{i,j}$ holds in

Acta Matheznatica Academiae Scientiarum Hungaricae 26, 1975

 S_n . Therefore, all defining relations from B hold in S_n . Therefore, all the relations given in Lemma 1 hold in S_n . However, $A_{1,n}$ does not hold in S_n . This contradiction completes the proof.

LEMMA 3. *The inverse sernigroup F is not finitely presentable either as a semigroup or as an involuted semigroup.*

PROOF. 1. Consider F as a semigroup. Suppose F is finitely presentable over a set X of generators by means of defining relations R. We may replace X by $\{u, v\}$ and every relation from R is substituted by a relation resulting from replacement of all occurrences of elements of X by their expressions as products of u and v. Thus, F is definable over the alphabet $\{u, v\}$ by a finite set D of defining relations. Therefore, all the relations from D can be deduced from the defining relations given in Lemma 1. During such an inference one cannot use but a finite number of defining relations among those given in Lemma 1. Since the relations I and $A_{i,j}$, in their own turn, may be deduced from D , the defining relations from Lemma $\tilde{1}$ are equivalent to their own finite subset which contradicts Lemma 2. Thus, the semigroup F is not finitely presentable.

2. Now consider F as an involuted semigroup. Let S be a semigroup generated by two elements u and v satisfying the defining relations I and $A_{i,j}$ for $i+j \leq n$. Since $A_{1,n}$ does not follow from these relations, $A_{1,n}$ does not hold in S. For every word α in the alphabet $\{u, v\}$ define a word α^{-1} inductively: $u^{-1} = v$, $v^{-1} = u$, if β^{-1} and γ^{-1} are defined then $(\beta \gamma)^{-1} = \gamma^{-1} \beta^{-1}$. E.g. $(uvvw)^{-1} = uvuuv$. Clearly, $(\alpha^{-1})^{-1} = \alpha$ and $(\alpha \beta)^{-1} = \beta^{-1} \alpha^{-1}$ for all words α , β . Suppose the words α and β represent the same element of S. Then α^{-1} and β^{-1} also represent equal elements of S. In effect, all defining relations of S are invariant under the involution $^{-1}$. the relations from I are transformed one into the other, $A_{i,j}$ is transformed into $A_{j,i}$ if ⁻¹ is applied to both parts of $A_{i,j}$. Since $A_{i,j}$ and $A_{j,i}$ are valid or not valid in S simultaneously, every chain of elementary transformations which transforms α into β turns into a chain of elementary transformations transforming α^{-1} onto β^{-1} if the involution $^{-1}$ is applied to all terms of the first chain. Thus, α^{-1} and β^{-1} represent the same element of S.

It follows that S may be considered as an involuted semigroup with one generator u satisfying the defining relations $J: uu^{-1}u = u$ and $B_{i,j}: u^{i}u^{-i-j}u^{j} = u^{-j}u^{i+j}u^{-i}$ for $i+j \leq n$. Since S does not satisfy $A_{1,n}$, the relation $B_{1,n}$ does not follow from J and $B_{i,j}$ for $i+j \leq n$ in the class of involuted semigroups. Therefore, defining relations *J* and $B_{i,j}$ for all *i* and *j*, which define a monogenic free inverse semigroup are not equivalent to a finite subset of these relations. To prove that F is not finitely presentable we proceed now along the same lines as in case 1 where F was considered as a semigroup.

Let \mathscr{FI}_x be a free inverse semigroup. Suppose it is finitely presentable with a finite set Y of generators by means of defining relations R . We may express each element of Y as a product of elements of X. Thus without loss of generality we may suppose $Y=X$. If X is infinite then some elements of X do not occur in the defining relations from R, therefore, $\mathscr{F}\mathscr{I}_x$ cannot be an inverse semigroup (if $x \in X$ does not occur in R then $xx^{-1}x=x$ does not hold in $\mathscr{F}\mathscr{I}_X$). Therefore, if $\mathscr{F}\mathscr{I}_X$ is finitely presentable, then X should be finite.

Now add to R a finite set of all defining relations of the form $x_i = x_j$ for all $x_i, x_j \in X$, $i \neq j$. Then we obtain an inverse semigroup F_0 which is a homomorphic image of $\mathscr{F}I_X$. Clearly, F_0 is a monogenic inverse semigroup (since all the generators X of $\mathscr{F}\mathscr{I}_X$ are identified in F_0). Clearly, F_0 is a free inverse semigroup since $\mathscr{F}\mathscr{I}_X$ is free. Thus, F_0 is a monogenic free inverse semigroup and F_0 is finitely presentable which contradicts Lemma 3. Thus, $\mathscr{F}\mathscr{I}_X$ is not finitely presentable. This argument is valid both for semigroups and involuted semigroups.

Theorem 1 is proved.

REMARK. Defining relations given in Lemma 1 are not independent. E.g., the relations I, $A_{1,1}$, $A_{1,2}$, $A_{2,1}$ and $A_{3,1}$ imply $A_{2,2}$ and $A_{3,2}$:

$$
u^2v^4u^2 = u^2v(vuv)(vuv)vu^2 = u^2v^2(uv^2u)v^2u^2 = u^2v^2(vu^2v)v^2u^2 =
$$

= $u(uv^3u^2)v^3u^2 = u(v^2u^3v)v^3u^2 = (uv^2u)u^2v^4u^2 = (vu^2v)u^2v^4u^2 = vu(uvu)uv^4u^2 =$
= $vuuuv^4u^2 = v(u^3v^4u)u = v(vu^4v^3)u = v^2u^2(u^2v^3u) = v^2u^2(vu^3v^2) =$
= $v^2u(uvu)u^2v^2 = v^2uuu^2v^2 = v^2u^4v^2$.

The relation $A_{3,1}$ may be deduced analogously.

It would be interesting to study interdependence of the defining relations given in Lemma 1 and, if possible, to find a set of independent defining relations for a monogenic free inverse semigroup.

Now we give a construction for $\mathscr{F}\mathscr{I}_{X}$. Let $X^{-1} = \{x^{-1} : x \in X\}$ and suppose the alphabets X and X^{-1} are disjoint. Let $Y=X\cup X^{-1}$ and $\mathscr{F}\mathscr{S}_Y$ be a free semigroup over Y. The elements of $\mathcal{F}\mathcal{G}_Y$ are all non-empty words over Y. Clearly, $\mathcal{F}\mathcal{G}_Y$ admits an involution defined inductively: $(x)^{-1} = x^{-1}$, $(x^{-1})^{-1} = x$, $(\alpha \beta)^{-1} = \beta^{-1} \alpha^{-1}$ for all $\alpha, \beta \in \mathscr{F} \mathscr{S}_{\gamma}$. Together with this involution, $\mathscr{F} \mathscr{S}_{\gamma}$ is an involuted semigroup: a free involuted semigroup $\mathscr{F}I_{n_x}$ with the set X of generators. We visualize $\mathscr{F}I_x$ as a quotient semigroup of $\mathscr{F}\mathscr{I}_{n_X}$. Thus, the elements of $\mathscr{F}\mathscr{I}_{X}$ are classes of equivalent words over Y, we say that equivalent words *represent* the same element of $\mathscr{F}\mathscr{I}_x$.

A word α over Y is called *reduced* if it is empty or if it does not contain occurrences xx^{-1} and $x^{-1}x$ for $x \in X$. A word $w \in \mathscr{F} \mathscr{I} n_X$ is called *left canonical* if $w = (a_1 a_1^{-1})...$ \ldots $(a_n a_n^{-1})$ a where a, a_1, \ldots, a_n are reduced words, for every i the word a_i is not a beginning of the word *a* or of the word a_i for $j \neq i$. In particular, the words a_1, \ldots, a_n are nonempty, a may be empty, n is any nonnegative integer (if $n=0$, then $w=a$, in this case a cannot be empty). Speaking of left canonical words, we will omit "left" since no other types of canonical words occur in this paper.

Note that for words $v, w \in \mathscr{F} \mathscr{I} \mathscr{N}_X$, $v=w$ means that v and w are the same word; $v \equiv w$ means that v and w represent the same element of $\mathscr{F} \mathscr{I}_{x}$.

If $w=(a_1a_1^{-1})\dots(a_na_n^{-1})a$ is a canonical word then the *prefix* of w is the word Pr $(w)=(a_1a_1^{-1})$... $(a_na_n^{-1})$, the words a_1, \ldots, a_n are called *components* of Pr (w) , the *root* of w is the word $R(w) = a$.

Let \mathscr{FG}_{X} be a free group with the set X of generators. The elements of \mathscr{FG}_{X} are all reduced words from $\mathscr{F}\mathscr{I}_{n_x}$ and the empty word, the operations of multiplication and involution in $\mathscr{F}\mathscr{G}_X$ are usual [3]. Then $R: w \rightarrow R(w)$ is a mapping of the set of all canonical words onto \mathscr{FG}_{x} .

Now we give an algorithm which transforms every word from $\mathscr{F}\mathscr{I}_{n_x}$ into a canonical word. Let $w_0 \in \mathscr{F} \mathscr{I} \mathscr{R}_X$.

Algorithm. 1. Read w_0 from left to right. If w_0 is reduced, stop. Otherwise, pass on to 2.

Acta Mathematica Academiae Scientiarum Hungaricae 26, 1975

2. Let $w = byy^{-1}c$ for some $y \in Y$ and this is the first occurrence of yy^{-1} for some $y \in Y$ in w_0 . Find the longest beginning d of c such that d^{-1} is an end of b. Then $b=ed^{-1}$ and $c=df$ for some words e and f. Let $a_1=by$, $w_1=ef$. Now pass on to 3.

3. Apply 1 and 2 to w_1 .

Applying 1-3 to w_0 we obtain successively the words a_1, w_1 ; then the words a_2, w_2, \ldots , after a finite number of steps we obtain the words a_n, w_n such that w_n is a reduced word. This follows from the fact that $|w_0| > |w_1|$ where $|w|$ denotes the length of the word w. Notice that the words a_1, \ldots, a_n are reduced and nonempty.

In the list $\{a_1, \ldots, a_n\}$ check every word: if a_1 is a beginning of some of the words $\{a_2, ..., a_n, w_n\}$, omit a_1 ; otherwise, retain it. Pass on to a_2 in the new list (with omitted or retained a_1). After a finite number of steps one obtains a list of words where no word is a beginning of another word or of w_n .

Suppose $\{b_1, \ldots, b_m\}$ is such a list. Then the final canonical word is $C(w_0)$ $=(b_1b_1^{-1})... (b_mb_m^{-1})w_n$. Clearly, $C(w_0)$ is a canonical word. If $m=0$ then $C(w_0)=w_n$.

EXAMPLE. Let $w_0 = x_1 x_2^{-1} x_2 x_2^{-1} x_3 x_3^{-1}$. Then $a_1 = x_1 x_2^{-1}$, $w_1 = x_1 x_2^{-1} x_2 x_3^{-1}$; $a_2 = x_1 x_2^{-1} x_3$, $w_2 = x_1 x_2^{-1}$. Now w_2 is a reduced word. The word a_1 is a beginning of a_2 and of w_2 and should be omitted. Now $C(w_0)=(x_1x_2^{-1}x_3)(x_3^{-1}x_2x_1^{-1})x_1x_2^{-1}$. Now we prove that $w_0 \equiv C(w_0)$ for every $w_0 \in \mathscr{F} \mathscr{I}_{\ell x}$. Clearly,

$$
w_0 = byy^{-1}c = ed^{-1}yy^{-1}df \equiv ee^{-1}ed^{-1}yy^{-1}df \equiv ed^{-1}yy^{-1}de^{-1}ef =
$$

= $byy^{-1}b^{-1}ef = a_1a_1^{-1}w_1$.

Analogously, $w_2 \equiv a_2 a_2^{-1} w_2$, whence, $w_0 \equiv (a_1 a_1^{-1})(a_2 a_2^{-1}) w_2$. After a finite number of steps we obtain $w_0 \equiv (a_1 a_1^{-1}) \dots (a_n a_n^{-1}) w_n$. Suppose a_i is a beginning of a_i for $j \neq i$. Then $a_i = a_i g$ for some (possibly, empty) word g. Now

$$
(a_1a_1^{-1})\ldots(a_na_n^{-1})w_n \equiv (a_ia_i^{-1})(a_ja_j^{-1})(a_1a_1^{-1})\ldots(a_na_n^{-1})w_n.
$$

Here we have written $(a_i a_i^{-1})$ and $(a_i a_i^{-1})$ at the very beginning. Now

$$
a_i a_i^{-1} a_j a_j^{-1} = a_i a_i^{-1} a_i g g^{-1} a_i^{-1} \equiv a_i g g^{-1} a_i^{-1} = (a_j a_j^{-1}),
$$

therefore,

$$
(a_1a_1^{-1})\ldots(a_na_n^{-1})w_n\equiv (a_1a_1^{-1})\ldots(a_{i-1}a_{i-1}^{-1})(a_{i+1}a_{i+1}^{-1})\ldots(a_na_n^{-1})w_n,
$$

i.e. the factor $(a_i a_i^{-1})$ may be omitted. Analogously, $(a_i a_i^{-1})$ may be omitted in case when a_i is a beginning of w_n . Omitting all factors $(a_i a_i^{-1})$ where a_i is a beginning of some other word a_i or w_n , we obtain $C(w_0)$. Thus, $w_0 \equiv C(w_0)$.

LEMMA 4. *Every element of* $\mathscr{F}I_{x}$ *may be represented by a canonical word.*

PROOF. Every element of $\mathscr{F}\mathscr{I}_X$ may be represented by a word $w \in \mathscr{F}\mathscr{I}_{n_x}$. Since $w \equiv C(w)$, the element of $\mathcal{F}I_X$ may be represented by $C(w)$, the latter word having the canonical form.

LEMMA 5. Let $w=(a_1a_1^{-1})$... $(a_ma_m^{-1})a$ and $v=(b_1b_1^{-1})$... $(b_nb_n^{-1})b$ be canonical *words. Then w* $\equiv v$ *if and only if* $\{a_1, \ldots, a_m\} = \{b_1, \ldots, b_n\}$ and $a = b$, *i.e. two canonical* *words represent the same element of* $\mathcal{F}I_X$ *if and only if the components of prefixes of these words coincide and the roots of these words coincide.*

PROOF. The "if" part is trivial. Now suppose $w \equiv v$. Let \overline{w} be the element of $\mathscr{F}\mathscr{I}_x$ represented by w. Then $\overline{w}=\overline{v}$. Let Δ_x be the identical mapping of X onto the set X of generators of $\mathscr{F}\mathscr{G}_X$. This mapping can be extended to a uniquely defined homomorphism $f: \mathscr{F} \mathscr{I}_x \rightarrow \mathscr{F} \mathscr{G}_x$. Clearly, f is surjective. Λ_x can be extended to a homomorphism $g: \mathscr{F}I_{n_x} \rightarrow \mathscr{F}I_x$. Obviously, $g(w)$ is a reduced form of a word w (i.e. $g(w)$ may be obtained from w after all occurences of yy^{-1} for $y \in Y$ are omitted from w and from all words obtained from w in this way). If $h: \mathscr{F}I_{\alpha} \rightarrow \mathscr{F}I_{\alpha}$ is the natural homomorphism, then $f \circ h = g$. It follows that $g(w) = g(v) \leftrightarrow f(h(w)) = f(h(v)) \leftrightarrow$ $\leftrightarrow f(\overline{w})=f(\overline{v})$ for all $w, v \in \mathscr{F}I_{n_x}$. Clearly, $R(C(w))$ is a reduced form of w. Since every word has a uniquely determined reduced form [3], $g(w) = R(C(w))$, and since w and v are canonical words, $C(w) = w$ and $C(v) = v$. Therefore, $g(w) = g(v)$, i.e., $R(w)=R(v)$.

Let R be the set of all nonempty reduced words. A nonempty finite subset $A \subseteq R$ is called *closed* [9] if for every $w \in A$ and every nonempty beginning v of w $v\in A$. Let E be the set of all closed subsets of R. Since the union of two closed subsets is closed, E is a semilattice with multiplication \cup . Let T_F denote the inverse semigroup of all isomorphisms between principal ideals of E [5]. For every $x \in X$, $\{x\} \in E$. Let $(\{x\})$ denote the principal ideal of E generated by $\{x\}$. Then $(\{x\})$ = $=\{A\in E: x\in A\}$. Define an isomorphism f_x of $(\{x\})$ onto $(\{x^{-1}\})$: let $A\in (\{x\})$, i.e. $x \in A$; then $f_x(A)$ consists of the word x^{-1} and all words of the form $g(x^{-1}w)$ for $w \in A$, $w \neq x$. It is a matter of straightforward computation to check that $f_x(A) \in (\{x^{-1}\})$ and f_a is an isomorphism. Thus, $f_x \in T_E$. Let \bar{f} denote the mapping of X into T_E such that $\bar{f}(x)=f_x$. Then f may be extended in a unique way up to a homomorphism \bar{f} : $\mathscr{F}I_{\bar{X}} \to T_E$ (we denote this homomorphism by the same letter f as the mapping $X \rightarrow T_F$).

Let $u=(a_1a_1^{-1})$... $(a_na_n^{-1})$ be a canonical word with an empty root. Let I_u denote the set of all $A \in E$ such that $\{a_1, \ldots, a_n\} \subset A$. Then I_u is an ideal of E. Let A_{I_u} denote the identical automorphism of this ideal. Then $A_{I_u} \in T_E$. It can be computed that $f(\bar{u})=A_{I_u}$ (we omit this straightforward but tedious computation).

Let $\hat{t}\in\mathscr{F}\mathscr{I}_{n_X}$ represent an idempotent of $\mathscr{F}\mathscr{I}_X$. Then $g(t)$ is the identity of \mathscr{FG}_X , i.e. $g(t)$ is an empty word. If t is a canonical word, then $R(t)=g(t)$, i.e. t has the empty root. Thus, a canonical word represents an idempotent of $\mathscr{F}\mathscr{I}_X$ if and only it it has the empty root.

Let $u = (c_1 c_1^{-1}) \dots (c_p c_p^{-1})$ and $t = (d_1 d_1^{-1}) \dots (d_q d_q^{-1})$ be two canonical words representing idempotents of $\mathscr{F}\mathscr{I}_X$. If $u=t$, i.e. $\bar{u}=\bar{t}$, then $A_{I_u}=A_{I_v}$. It follows that $I_u = I_t$, $\{c_1, ..., c_p\} = \{d_1, ..., d_q\}$. In particular, $p = q$.

Since $w \equiv v$, $(a_1 a_1^{-1}) \dots (a_m a_m^{-1}) (aa^{-1}) \equiv (b_1 b_1^{-1}) \dots (b_n b_n^{-1}) (aa^{-1})$ (we have already proved that $a=b$). However, the latter words need not be canonical. If they are canonical, then $\{a_1, \ldots, a_m, a\} = \{b_1, \ldots, b_n, a\}$, therefore, $\{a_1, \ldots, a_m\} = \{b_1, \ldots, b_n\}.$

If a is a beginning of one of the words $\{a_1, \ldots, a_m\}$, then $(a_1 a_1^{-1}) \ldots (a_m a_m^{-1}) (aa^{-1}) =$ $\equiv (a_1a_1^{-1})\dots(a_ma_m^{-1})$. Suppose the word $(b_1b_1^{-1})\dots(b_nb_n^{-1})(aa^{-1})$ is canonical. Then ${a_1, \ldots, a_m} = {b_1, \ldots, b_n, a}$. Let a be a beginning of a_i and $a_i = b_j$. Then a is a beginning of b_{i} , a contradiction. Therefore, a_{i} is a beginning of a which contradicts the supposition that $(a_1a_1^{-1})$... $(a_ma_m^{-1})a$ is canonical. Thus, a is a beginning of one of the words $\{b_1, \ldots, b_n\}$ and $\{b_1b_1^{-1}\ldots (b_n b_n^{-1})(aa^{-1})\equiv (b_1b_1^{-1})\ldots (b_nb_n^{-1})$. It follows. that $\{a_1, ..., a_m\} = \{b_1, ..., b_n\}$. Lemma 4 is proved.

Ar Mathema~'ica Acaclemiae Scientiarurn Hungaricae 26, 1975

Let \mathscr{C}_X be the set of all canonical words. Then \mathscr{C}_X is a cross-section of $\mathscr{F}\mathscr{I}_X$, i.e. every element of \mathscr{FI}_X is represented by a uniquely determined canonical word. Thus, there exists a natural bijection of $\mathscr{F}\mathscr{I}_x$ onto \mathscr{C}_x . We have proved

THEOREM 2. Let \mathcal{C}_x be the set of all canonical words over the alphabet $X \cup X^{-1}$. *For w, v* $\epsilon \ll g_x$ define w=v if and only if $R(w)=R(v)$ and $P(w)$ possesses the same *components as P(v). Define* $w \cdot v = \mathscr{C}(wv)$, $w^{-1} = \mathscr{C}(w^{-1})$. Then \mathscr{C}_x is a free inverse *semigroup isomorphic to* $\mathscr{F}I_{X}$.

REMARK. Let $w=(a_1a_1^{-1})$... $(a_ma_m^{-1})a$ and $v=(b_1b_1^{-1})$... $(b_nb_n^{-1})b$ be canonical words. Then

$$
w^{-1} = (g(a^{-1}a_1)g(a_1^{-1}a)) \dots (g(a^{-1}a_m)g(a_m^{-1}a))a^{-1} \in \mathscr{C}_X
$$

is the inverse for w in \mathscr{C}_x .

$$
w \cdot v \equiv (a_1 a_1^{-1}) \dots (a_m a_m^{-1}) \big(g (a b_1) g (b_1^{-1} a^{-1}) \big) \dots \big(g (a b_n) g (b_n^{-1} a^{-1}) \big) (a a^{-1}) g (a b).
$$

To obtain a canonical form of $w \cdot v$ one needs to delete those factors $(a_i a_i^{-1})$ and $(g(ab_i)g(b_i^{-1}a^{-1})$, (aa^{-1}) whose components are beginnings of the other components.

As corollaries to Theorem 2 we obtain some properties of free inverse semigroups. Now we identify $\mathscr{F}\mathscr{I}_X$ with \mathscr{C}_X and consider the elements of $\mathscr{F}\mathscr{I}_X$ as canonical words.

COROLLARY 1. A canonical word w is an idempotent of \mathscr{FI}_X if and only if $R(w)$. *is an empty word, i.e. if* $P(w) = w$.

The proof is incorporated in the proof of Lemma 4.

COROLLARY 2. R is the maximum group homomorphism of $\mathscr{F}\mathscr{I}_X$, it maps $\mathscr{F}\mathscr{I}_X$ *onto the free group* $\mathcal{F}\mathcal{G}_X$ *; if 1 is the identity of* $\mathcal{F}\mathcal{G}_X$ *then R⁻¹ (1) is the set of all idempotents of* $\mathscr{F}\mathscr{I}_X$.

PROOF. The same as for Corollary 1.

COROLLARY 3 ([9]). The semilattice $E(\mathscr{F}\mathscr{I}_X)$ of all idempotents of $\mathscr{F}\mathscr{I}_X$ is iso*morphic to the semilattice E of all closed subsets of nonempty reduced words.*

PROOF. The isomorphism between $E(\mathscr{F}\mathscr{I}_X)$ and E maps every idempotent $w \in (\mathscr{FI}_X)$ onto the closed set consisting of all nonempty beginnings of all components of $P(w)$.

Let \leq denote the canonical (natural) order relation on \mathscr{FI}_X . The same symbol \leq will denote the canonical order of the inverse semigroup \mathscr{FI}^1_X which is the free inverse semigroup $\mathscr{F}\mathscr{I}_X$ with identity adjoined. If $w \le v$, then w is called a *minorant* of v and v is called a *majorant* of w. For every $w=(a_1a_1^{-1})\dots(a_na_n^{-1})a_i\in\mathcal{C}_X$ let $W(w)=n$ denote the *weight* of w.

COROLLARY 4. For every w, $v \in \mathscr{F} \mathscr{I}_X$ $w \leq v$ if and only if $R(w) = R(v)$ and each *component of P(v) is a beginning of a (necessarily uniquely defined) component of P(w). In particular,* $W(v) \leq W(w)$ *.*

PROOF. Let $w \leq v$. Then $w=uv$ for an idempotent $u \in \mathscr{F} \mathscr{I}_X$. By Corollary 1, $R(w)=R(w)=R(v)$. Each component of $P(v)$ is a beginning of a component of $P(w)$ or of a component of $P(u)$, the latter being the case, the component of $P(u)$ containing a component of $P(v)$ as a beginning should be a beginning of a component of $P(w)$. Two different components of $P(v)$ are not one a beginning of the other, therefore, they cannot be beginnings of the same component of $P(w)$. It follows that $P(v)$ cannot possess more components than $P(w)$, i.e. $W(v) \leq W(w)$.

Now let $R(w)=R(v)$ and each component of $P(v)$ be a beginning of a component of $P(w)$. By a straightforward computation we obtain $w = ww^{-1}v$, i.e. $w \leq v$.

COROLLARY 5. *Majorants of idempotents of a free inverse semigroup are idempotents.*

COROLLARY 6. *Every element w of* \mathscr{FI}_X *possesses no more than* $(|a_1|+1)...$... $(|a_n|+1)$ different majorants if $w \notin E(\tilde{\mathscr{F}}I_X)$ and no more than $(|a_1|+1)...(|a_n|+1) - 1$ *different majorants if w is an idempotent. In particular, as an ordered set,* $\mathscr{F}I_X$ satisfies *the ascending chain condition,*

COROLLARY 7. *Free inverse semigroups satisfy the ascending chain condition for principal right ideals.*

PROOF. The latter condition is equivalent to the ascending chain condition for the semilattice $E(\mathscr{F}\mathscr{I}_x)$.

Corollary 7 has been obtained independently by H. E. SCHEIBLICH.

COROLLARY 8 ([14]). *Every element of* \mathcal{FI}_{X}^{1} *has a uniquely defined maximal majorant (namely, if* $w \in \mathcal{F} \mathcal{I}_{X}^{1}$, then $R(w)$ is the maximal majorant of w). $\mathcal{F} \mathcal{I}_{X}$ and \mathscr{FI}_{x}^{1} are generated by their maximal elements.

Let \mathscr{FG}_X be prefix ordered (i.e. for *w*, $v \in \mathscr{FG}_X$ $w \leq v$ means that *w* is a beginning of v). Then $\mathscr{F}\mathscr{G}_X$ is a tree semilattice.

COROLLARY 9. $E(\mathscr{F} \mathscr{I}_{X}^{1})$ is a free semilattice over a partially ordered set dual $to \mathcal{FG}_{x}$.

PROOF. By Corollary 3, $E(\mathcal{FI})$ is isomorphic to E^1 which is the set of all closed subsets including an empty subset. Corollary 8 follows by Theorem4.2 from [6].

COROLLARY 10. An element w of $\mathscr{F}\mathscr{I}_x$ is maximal if and only if $W(w) = 0$.

Let σ denote the smallest group congruence on $\mathscr{F}\mathscr{I}_{X}^{1}$. It is known [13] that $w \equiv v(\sigma)$ if and only if w and v have a common minorant. It follows that $w \equiv v(\sigma) \leftrightarrow$ $\leftrightarrow R(w) = R(v)$. In particular, every σ -class contains the largest element: if w belongs to a σ -class then $R(w)$ is the largest element of this σ -class [14]. Thus, \mathscr{FI}_{X}^{1} is an F-inverse semigroup in the sense of [4]. This fact has been proved independently by L. O'CARROLL.

COROLLARY 11. *Every* σ *-class of* $\mathscr{F}I_X^1$ *is a distributive lattice relative to* \leq . *In particular,* $E(\mathscr{F} \mathscr{I}_{X}^{\perp})$ *is a distributive lattice. Moreover, for every u, v, w* $\in \mathscr{F} \mathscr{I}_{X}^{\perp}$ *such that* $u \equiv v(\sigma)$ we have $(u \lor v)w = uw \lor vw$ and $w(u \lor v) = wu \lor wv$. Here \lor denotes *the operation or forming the least upper bound. Elements from different a-classes are incomparable relative to* \leq .

Acta Mathemafiea Acaderniae Sc~enfiarum Hungaricae 26, 1975

PROOF. If $w, v \in \mathcal{FI}_X^1$ and $w \leq v$ or $v \leq w$ then, by Corollary 4, $R(w) = R(v)$, i.e. $w \equiv v(\sigma)$. Therefore, two elements from different σ -classes cannot be comparable relative to \leq . Now let $w=v(\sigma)$. Then $R(w)=R(v)$ is a common majorant of w, v. However, two elements of an inverse semigroup which possess a common majorant, possess also the greatest lower bound [13], i.e. $w \wedge v$ exists. Let $\{a_1, ..., a_n\}$ be a list of all components of $P(w)$. Let c_i denote the longest beginning of a_i which is also a beginning of some component of $P(v)$. Clearly, such c_i always exists (c_i may be empty). Let $u = C((c_1 c_1^{-1}) \dots (c_n c_n^{-1}) R(w))$. By Corollary 4, $w \le u$ and $v \le u$. Suppose now $w \leq t$ and $v \leq t$ for some $t = (d_1/d_1^{-1}) \dots (d_k/d_k^{-1})a$. By Corollary 4, every d_i is a beginning of some $a_{i(i)}$ and of some component of $P(v)$. It follows that d_i is a beginning of $c_{i(i)}$. By Corollary 4, $u \leq t$, i.e. $u=v \forall w$. Therefore, every σ -class of $\mathscr{F}\mathscr{I}_{X}^{\bar{1}}$ is a lattice.

Let A_a denote the σ -class containing a word $a \in \mathcal{FG}_x$. Then a is the largest element of the lattice A_a . It is well known that the set A_a of all minorants of a is orderisomorphic to anyone of the ordered sets $A_{aa^{-1}}$, $A_{a^{-1}}$, $A_{a^{-1}a}$ (here $A_{aa^{-1}}$ denotes the set of all minorants of $aa^{-1}(\mathcal{F}\mathcal{J}_X^1)$. Clearly, the lattice $A_{aa^{-1}}$ is a principal ideal of the lattice $A_1=E(\mathscr{F}\mathscr{I}_X)$, therefore, the lattice A_a is distributive if A_1 is. Clearly, the distributivity of A_1 follows from the identities $(u \lor v)w = uw \lor vw$ and $w(u\vee v) = w(u\vee wv)$ for all *u, v,* $w \in \mathscr{F}(\mathscr{F})$, $u \equiv v(\sigma)$. On the other hand, these identities follow from distributivity of A_1 [11]. We give an independent proof of this fact here.

Clearly, $u^{-1}u\vee v^{-1}v \leq (u\vee v)^{-1}(u\vee v)$. Since $u = uu^{-1}u \leq (u\vee v)u^{-1}u \leq (u\vee v)(u^{-1}u\vee v)$ $\forall v^{-1}v$) and, analogously, $v \leq (u \lor v)(u^{-1}u \lor v^{-1}v)$, we obtain $u \lor v \leq (u \lor v)(u^{-1}u \lor v^{-1}v)$ $\sqrt{v^{-1}v}$, whence,

$$
(u\vee v)^{-1}(u\vee v)\leq (u\vee v)^{-1}(u\vee v)(u^{-1}u\vee v^{-1}v)\leq u^{-1}u\vee v^{-1}v.
$$

Thus,

$$
(u\vee v)^{-1}(u\vee v)=u^{-1}u\vee v^{-1}v.
$$

Since $uw \leq (u \vee v)w$ and $vw \leq (u \vee v)w$, we obtain $uw \vee vw \leq (u \vee v)w$. Using distributivity of A_1 , we obtain

$$
((u \vee v) w)^{-1} (u \vee v) w = w^{-1} (u \vee v)^{-1} (u \vee v) w = w^{-1} (u^{-1} u \vee v^{-1} v) w =
$$
\n
$$
= w^{-1} (ww^{-1} (u^{-1} u \vee v^{-1} v) ww^{-1}) w = w^{-1} (ww^{-1} u^{-1} uww^{-1} \vee ww^{-1} v^{-1} vww^{-1}) w \le
$$
\n
$$
\leq w^{-1} (w (w^{-1} u^{-1} uw \vee w^{-1} v^{-1} vw) w^{-1}) w \le
$$
\n
$$
\leq w^{-1} u^{-1} uw \vee w^{-1} v^{-1} vw = (uw \vee vw)^{-1} (uw \vee vw).
$$

If for two elements g and h of an inverse semigroup $g \leq h$ and $hh^{-1} \leq gg^{-1}$ hold, then

 $h = hh^{-1}h \leq gg^{-1}h = g$, i.e., $g = h$.

Therefore, $(u \vee v)w = uw \vee vw$. Now

$$
w(u \vee v) = ((u \vee v)^{-1}w^{-1})^{-1} =
$$

= ((u⁻¹ \vee v⁻¹)w⁻¹)⁻¹ = (u⁻¹w⁻¹ \vee v⁻¹w⁻¹)⁻¹ = wu \vee wv.

COROLLARY 12. An element w of $\mathscr{F}I_X$ is an idempotent if and only if ww⁻¹= $= w^{-1}w$.

PROOF. The "only if" part is trivial. To prove the "if" part suppose

$$
ww^{-1} = w^{-1}w \text{ and } w = (a_1a_1^{-1}) \dots (a_n a_n^{-1})a \in \mathscr{C}_X.
$$

Then

$$
ww^{-1} \equiv (a_1 a_1^{-1}) \dots (a_n a_n^{-1}) (aa^{-1})
$$

and

$$
w^{-1}w \equiv a^{-1}(a_1a_1^{-1})\dots(a_na_n^{-1})a \equiv
$$

$$
\equiv (g(a^{-1}a_1)g(a_1^{-1}a))\dots(g(a^{-1}a_n)g(a_n^{-1}a))(a^{-1}a).
$$

It may be verified by straightforward computation that the latter word is canonical if and only if all the words $\{a_1, \ldots, a_n, a\}$ begin with the same letter; otherwise, the canonical equivalent of the latter word is $(g(a^{-1}a_1)g(a^{-1}a))\dots(g(a^{-1}a_n)g(a^{-1}a))$.

Case 1. Let the words $\{a_1, \ldots, a_n, a\}$ begin with the same letter. Then $W(ww^{-1}) =$ $= W(w^{-1}w) = n+1$, therefore, the words $\{a_1, \ldots, a_n, a\}$ are the components of ww^{-1} and the words $\{g(a^{-1}a_1), ..., g(a^{-1}a_n), a^{-1}\}\$ are the components of $w^{-1}w$. Thus, the two sets of components coincide. If $a^{-1} = a$ then $g(a^2)$ is an empty word; it follows that *a* is empty and *w* is an idempotent.

Now let $a^{-1}=a_i$. Then $g(a^{-1}a_i)=g(a^{-2})=a_i$ for some j, $g(a^{-3})=g(a^{-1}a_i)=a_k$ for some k etc. After a finite number of steps we obtain $g(a^{-p})=g(a^{-1}a_q)=a$, i.e. $g(a^{p+1})$ is an empty word. Therefore, a is empty and w is an idempotent.

Case 2. Let the words $\{a_1, \ldots, a_n, a\}$ do not begin with the same letter. Then the components of $w^{-1}w$ are $\{g(a^{-1}a_1), ..., g(a^{-1}a_n)\}\$ and $W(ww^{-1}) = W(w^{-1}w) = n$. Therefore, a is a beginning of some of the words $\{a_1, \ldots, a_n\}$, say, of the word a_i , and the components of ww^{-1} are $\{a_1, \ldots, a_n\}$. Now $a_i = ab$ for a nonempty word *b*, it follows that $ab = a_i = g(a^{-1}a_i)$, i.e. $g(a^2b) = a_i$. Therefore $g(a^2b) = a_i = g(a^{-1}a_k)$ for some k. It follows that $g(a^3b) = g(aa^{-1}a_k) = g(a_k) = a_k = g(a^{-1}a_n)$ for some p. Proceeding along these lines we obtain after a finite number of steps that $g(a^q b)$ = $=g(a^m b)$ for different q and m, i.e., in case $q>m$, $g(a^{q-m}b)=g(b)=b$. It follows that $g(a^{q-m})$ is an empty word, i.e. *a* is empty and *w* is an indempotent.

COROLLARY 13. $\mathcal{F}\mathcal{I}_X$ does not contain nontrivial subgroups.

PROOF. Suppose G is a nontrivial subgroup of $\mathscr{F}\mathscr{I}_X$ and $w \in G$, w is not an idempotent. Then ww^{-1} and $w^{-1}w$ are the identity of G, therefore $ww^{-1} = w^{-1}w$ and, by Corollary 12, w is an idempotent, a contradiction.

COROLLARY 14 ([7]). *The Green equivalence* \mathcal{H} *on* $\mathcal{F}I_X$ *is the identical equivalence.*

PROOF. Suppose
$$
w \equiv v(\mathscr{H})
$$
. Then $ww^{-1} = vv^{-1}$ and $w^{-1}w = v^{-1}v$. Now
\n
$$
(wv^{-1})(wv^{-1})^{-1} = wv^{-1}vw^{-1} = ww^{-1}ww^{-1} = ww^{-1} =
$$
\n
$$
= vv^{-1} = vv^{-1}vv^{-1} = vw^{-1}wo^{-1} = (wv^{-1})^{-1}(wv^{-1}).
$$

By Corollary 12, wv^{-1} is an idempotent. Therefore, $wv^{-1} = (wv^{-1})^{-1} = vw^{-1}$. We obtain

$$
w = ww^{-1}ww^{-1}w = wv^{-1}vw^{-1}w = (wv^{-1})(wv^{-1})^{-1}w =
$$

=
$$
(wv^{-1})^{-1}w = vw^{-1}w = vv^{-1}v = v.
$$

Thus, \mathscr{H} is the identity on $\mathscr{F}\mathscr{I}_{X}$.

Acta Mathematica Academiae Scientiarum Hungaricae 26, 1975

We could find the other Green equivalences on $\mathscr{F}\mathscr{I}_{x}$, however, we omit their description which is a matter of simple computations. Notice that equivalence classes of all Green equivalences on $\hat{\mathscr{F}}\mathscr{I}_X$ are finite. In particular, $\hat{\mathscr{F}}\mathscr{I}_X$ does not contain a bicyclic subsemigroup (such a subsemigroup is included into a single \mathcal{D} class, the latter class should be infinite, a contradiction). Every nonidempotent element of $\mathscr{F}\mathscr{I}_x$ generates an infinite subsemigroup of $\mathscr{F}\mathscr{I}_x$ (since the homomorphic image of such an element in $\mathscr{F}\mathscr{G}_X$ is not identity and generates an infinite subsemigroup of \mathscr{FG}_{x}). Therefore, \mathscr{FG}_{x} does not contain nontrivial Brandt subsemigroups.

Since $\mathscr{F}\mathscr{I}_X$ does not contain bicyclic subsemigroups, the Green equivalences $\mathscr D$ and $\mathscr J$ coincide on $\mathscr F\mathscr I_X$. In effect, $\mathscr D\subset\mathscr J$ in any semigroup. Let an inverse semigroup S do not contain bicyclic subsemigroups. If s, $t \in S$ and $s \equiv t(f)$, then $t = xsy$ and $s = utv$ for some $u, v, x, y \in S$. Therefore, $s = u x s y v$. Let $w = s s^{-1} u x s s^{-1}$. It is easy to compute that $ww^{-1} = ss^{-1}$ and $w^{-1}w \leq ss^{-1}$. If $w^{-1}w < ss^{-1}$ then $w^{-1}w <$ $\lt \ ww^{-1}$ and the element w generates a bicyclic inverse subsemigroup of S, a contradiction. Therefore, $w^{-1}w = ss^{-1}$. Analogously, $zz^{-1} = z^{-1}z = s^{-1}s$ for $z = s^{-1}sys^{-1}s$. It follows that $s \equiv xs(\mathcal{L})$ and $xs \equiv xsv(\mathcal{R})$, whence $s \equiv xsv(\mathcal{Q})$, i.e. $s \equiv t(\mathcal{Q})$. Therefore, $\n $\mathscr{L} \subset \mathscr{D}$, i.e. $\mathscr{D} = \mathscr{L}$.$

Note added on January 31, 1973. After the paper had been submitted for publication, we received the following relevant papers $[15-17]$. In $[15]$ a new construction for $\mathscr{F}\mathscr{I}_X$ (in terms of "birooted word trees") is given. It is proved also that $\mathscr{F}\mathscr{I}_X$ is Hopfian if X is finite, it is residually finite and completely semisimple. In $[16]$ the first part of our Corollary 11 is proved, there are given new proofs for a number of other results on $\mathscr{F}\mathscr{I}_X$ (e.g. those from [7, 14]), it is proved also that $\mathscr{F}\mathscr{I}_X$ is Hopfian (i.e. endomorphisms onto are automorphisms) if \overline{X} is finite. In [17] a construction for $\mathscr{F}\mathscr{I}_X$ is given which is rather alike to ours. Of course, all the constructions for $\mathscr{F}\mathscr{I}_X$ (namely, those of [9], [15], [17] and from this paper) could be deduced one from another. E.g., a construction quite similar to ours has been actually deduced from that of [15] in [18]. Every construction has merits and drawbacks of its own. E.g., the Green relations on \mathscr{FI}_x seem to have the simplest expressions when the constructions [9] and [15] are used. The fact that the word problem for $\mathscr{F}\mathscr{I}_{x}$ is soluble (first proved in [15]) follows immediately from our construction (since an a!gorithm transforming every word to a canonical form is given).

References

- [1] C. EBERHART and J. SELDEN, One-parameter inverse semigroups, *Trans. Amer. Math. Soc.*, 168 (1972), 53-66.
- [2] Л. М. Глускин, Об инверсных полугруппах, Записки механико-математического факультета Харьковского государственного университета и Харьковского математичес*кого общества*, 28 (1961), серия 4, 103-110.
- [3] M. HALL, JR., *The theory of groups,* Macmillan (New York, 1959).
- [4] R. McFADDEN and L. O'CARROLL, *F*-inverse semigroups, *Proc. London Math., Soc.*, 22 (1971), 652--666.
- [5] W. D. MUNN, Uniform semilattices and bisimple inverse semigroups, *Quarterly J. Math.* Oxford, (2) 17 (1966), 151-159.
- [6] A. HORN and N. KIMURA, The category of semilattices, *Algebra Univ.,* 1 (1971), 26--38
- [7] N. R. REILLY, Free generators in free inverse semigroups (preprint; 21 pp.).
- [8] H. E. SCHEIBLICH, A characterization of a free elementary inverse semigroup, *Semigroup Forum,* 2 (1971), 76-79.
- [9] H. E. SCHEmL_TCH, Free inverse semigroups, *Semigroup Forum, 4* (1972), 351--359.
- [10] Б. М. Шайн, К теории обобщенных групп, *Доклады АН СССР*, 153 (1963), 296--299.
- [11] Б. М. Шайн, *Алгебры отношений*, докторская диссертация (Саратов, 1965).
- [12] Б. М. Шайн, Симметрическая полугруппа преобразований покрывается своими инверсm, ilvm no~noslyrpylmaM~i, *Acta Math. Acad. Sci. Hungar.,* 22 (1971), 163--170.
- [13] B. B. Barнеp, Теория обобщенных груд и обобщенных групп, *Матем. сб.*, 32 (1953), 545--632.
- [14] В. В. Вагнер, Обобщенные груды и обобщенные группы с транзитивным отношением совместности, Ученые записки Саратовского государственного университета, Выпуск *~exammo-mamemamu~ecKuh,* 70 (1961), 25--39.
- [15] W. D. MUNN, Free inverse semigroups, Preprint (8 pp.).
- [16] L. O'CARROLL, On free inverse semigroups, Preprint (13 pp.).
- [17] (3. B. PRESTON, Free inverse semigroups, Preprint (22 pp.).
- [18] W. n. MUNN, Further remarks on free inverse semigroups (private communication).

(Received October 3, 1972.)

410 600 SARATOV UL. VAVILOVA 2, KV. 111 USSR