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FREE INVERSE SEMIGROUPS 
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By 
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In the memory of  Professor A. Kert&z 

Free inverse semigroups became a subject of intense studies in the last few 
years. Their existence was proved long ago: as algebras with two operations (binary 
multiplication and unary involution) inverse semigroups may be characterized by a 
finite system of  identities, i.e. they form a variety of algebras [10]. Therefore, free 
inverse semigroups do exist. 

A construction of a free algebra in a variety of algebras (as a quotient algebra 
of an absolutely free word algebra) is well known. Free inverse semigroups in such 
a form were considered by V. V. VAO_',,~ER [14] who found certain properties of  such 
semigroups. A monogenic free inverse semigroup (i.e. a free inverse semigroup 
with one generator) was described by L. M. GLUSKIN [2]. Later this semigroup 
was described by H. E. SCHEIBLICH in a slightly different form [8]. The most essential 
progress in this direction was made in a paper [9] by H. E. SCHEIBLlCrI who described 
arbitrary free inverse semigroups. A relevant paper [1] by C. EBERHART and J. SELDEN 
should be mentioned. There are papers on some special properties of free inverse 
semigroups. N. R. REILLV described free inverse subsemigroups of free inverse 
semigroups [7], results in this direction were obtained also by W. D. MUNN and 
L. O'CARROLL. 

Let ff'-'cx denote the free inverse semigroup with the set X of free generators. 
A monogenic free inverse semigroup will be denoted f f d  1. Time and then we will 
write ~ r  instead of Y J x .  We do not consider ~ J o ,  a one-element inverse semi- 
group. 

This paper contains two main results. The first one coincides with the title, 
the second consists in a description of flee inverse semigroups (if a free inverse 
semigroup is presented as a quotient algebra of a free involuted semigroup, then 
each element of f f J  is a c]ass of equivalent words, we give a canonical form of  
the words). Certain corollaries witb~ properties of free inverse semigroups follow. 

All results of the paper were reported by the author at a meeting of the semin- 
nar "Semigroups" in the Saratov State University on October 21, ~971. 

THEOREM I. Free inverse semigroups are not finitely presentable either as semi- 
groups or as involuted semigroups. 

The proof of the theorem is subdivided in a series of  lemmas. 

LEMMA 1. A semigroup F generated by two elements u and v satisfying the infinite 
list o f  defining relations: I) uvu=u, vuv=v; Am,,) umv"+"u"=v"u"+"v'~ for  all natural 
m and n, is a free inverse semigroup. 
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42 B . M .  SCHEIN 

PRoov. F is inverse by a lemma from [12]. Since the defining relations A .... 
are valid in any inverse semigroup generated by two mutually inverse elements u 
and v, F is free. F is a monogenic free inverse semigroup generated by u in the variety 
of all inverse semigroups considered as involuted semigroups (i.e. as algebras with 
two operations). 

LEMMA 2. The set of  defining relations o f  F given in Lemma t is not equivalent to 
any finite subset of  these defining relations. 

PRoov. Consider two partial transformations u and v of a finite set 
A = { 0 , 1 , 2  . . . .  ,n}: 

(0 1 2 . . . n - 2  n - l }  (0 0 1 2 . . . n - 1  n ) 
u =  2 3 . . . n - 1  n , v = 0 1 . . . n - 2  n - 1  " 

Here v is defined on the whole set A and u is defined on every element of A except n. 
It is easy to verify that uvu=u and vuv=v (here xy denotes the partial transforma- 
tion obtained when y acts after x). One can compute without difficulty that for 

k (0 1 2 . . . n  k} 
k<=n u = k k +  1 k + 2  ... n and for k > n  u t' is the empty partial transforma- 

k 0 l  k k + l  
tion e .  Analogously we may verify that for k<=n v=[01, 0 iii 0 1 k + 2  ... ,i 2 ... n - k J "  
If i>n  o r j > n  then both sides of the defining relation Ai j contain O as a factor, 
therefore, Az, j holds. Now let i<=n and j<=n. Then 

1{ ~ . . . . . .  
ulvl 1 . . . n - - i  i i + l  n 1 

= i + 1 . . ,  n 0 t n - - i  = 1 . . . n - i  ' 

[ ~ . . . j j + l . . .  n 1{~ 1 . . . n -~ ' )  [0 1 . . . j  j + t . . . : }  
...0 1 . . . n - j  j + l  ,,J vJ l~J ~ 

= ,i j . j  j + l  �9 

A~,j means that partial transformations uiv ~ and vJuJ commute. We may compute 
now that 

H i v t + J H J  ~ . . .  j 

and 

. . . j  j + l  ... ~J -  u%i+JuJ= . . . j  j + l  n - i  if n-=i 

Analogously, vJui+Jvi= yJ if i + j > n ,  and 

vJui+Jv~ = j . . . j  j + l  n -  

Therefore, Ai, j is satisfied whenever i+j<=n and is not satisfied otherwise. 
Let S,, denote the semigroup of partial transformations of A generated by u 

and  v. We have seen that the defining relation Ai, j does not hold in S,, if and only if 
i , j<-n<i+j .  

Suppose now that the defining relations given in Lemma 1 are equivalent to 
a finite subset B of these relations. Let n = max {i + j :  A~, ~. E B} and if {i+j: A~, j 6 B} = G 
let n be any natural number. If  A~,jCB then i+j<=n; it follows that Ai, j holds in 
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FREE INVERSE SEMi[GROUPS 43 

S,,. Therefore, all defining relations from B hold in S,,. Therefore, all the relations 
given in Lemma 1 hold in S,.  However, AI,,~ does not hold in S,,. This contradiction 
completes the proof. 

LEMMA 3. The inverse sernigroup F is not finitely presentable either as a semigroup 
or as an involuted semigroup. 

PROOF. 1. Consider F as a semigroup. Suppose F is finitely presentable over a 
set X of  generators by means of defining relations R. We may replace X by {u, v} 
and every relation f rom R is substituted by a relation resulting from replacement 
of  all occurrences of  elements of X by their expressions as products of  u and v. Thus, 
F is  definable over the alphabet {u, v} by a finite set D of defining relations. Therefore, 
all the relations from D can be deduced from the defining relations given in Lemma 1. 
During such an inference one cannot use but a finite number of  defining relations 
among those given in Lemma 1. Since the relations I and Ai, j ,  in their own turn, may 
be deduced from D, the defining relations from Lemma 1 are equivalent to their 
own finite subset which contradicts Lemma 2. Thus, the semigroup F is not finitely 
presentable. 

2. Now consider F as an involuted semigroup. Let S be a semigroup generated 
by two elements u and v satis~ing the defining relations I and Ai, g for i+j-~n.  
Since A~,,, does not follow from these relations, Al, n does not hold in S. For every 
word a in the alphabet {u, v} define a word c~ -1 inductively: u - l = v ,  v - l = u ,  
if fi -1 and ? - i  are defined then ( f l ? ) - l = ? - l f i - 1 .  E.g. (uvvuv)- l=uvuuv.  Clearly, 
( e - 1 ) - l = ~  and (czfl)- l=fl- l~ -1 for all words ~, /3. Suppose the words ~. and fl 
represent the same element of S. Then c~ -1 and fl-1 also represent equal elements 
of  S. In effect, all defining relations of  S are invariant under the involution -~" 
the relations from I are transformed one into the other, Ai, j is transformed into 
Aj,~ if -1 is applied to both parts of  Ai, j. Since A~,j and Aj,~ are valid or not valid 
in S simultaneonslyl every chain of  elementary transformations which transforms 

into fl turns into a chain of  elementary transformations transforming ~-1 onto fl-1 
if the involution -1 is applied to all terms of the first chain. Thus, c~ -1 and p-1  repre- 
sent the same element of  S. 

I t  follows that S may be considered as an involuted semigroup with one gen- 
erator u satisfying the defining relations J:  uu-  1 u = u and B~, j.: u ~ u -  ~ - j u j = u -  j u i + Ju - 
for i+j<=n. Since S does not satisfy A~,,, the relation B~,, does not follow from J 
and B~,j for i+j<=n in the class of involuted semigroups. Therefore, defining rela- 
tions J and Bi, j for all i and j, which define a monogenic free inverse semigroup are 
not equivalent to a finite subset of  these relations. To prove that F is not finitely 
presentable we proceed now along the same lines as in case 1 where F was considered 
as a semigroup. 

Let ~ J x  be a free inverse semigroup. Suppose it is finitely presentable with a 
finite set Y of generators by means of defining relations R. We may express each 
element of  Y as a product of  elements of  X. Thus without loss of  generality we 
may suppose Y = X .  I f  X is infinite then some elements of  X do not occur in the 
defining relations from R, therefore, ~ r  cannot be an inverse semigroup (if x C X  
does not occur in R then x x - l x = x  does not hold in ~-Jx) .  Therefore, if -Y~Cx is 
finitely presentable, then X should be finite. 

Now add to R a finite set of  all defining relations of  the form x~=xj  for all 
x~, x i E X, i Cj.  Then we obtain an inverse semigroup F0 which is a homomorphic  
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image of J J x .  Clearly, Fo is a monogenic inverse semigroup (since all the generators 
X of -~Jx  are identified in Fo). Clearly, F o is a free inverse semigroup since ~ - Jx  
is free. Thus, F0 is a monogenic free inverse semigroup and F0 is finitely presentable 
which contradicts Lemma 3. Thus, "~Jx  is not finitely presentable. This argument 
is valid both for semigroups and involuted semigroups. 

Theorem 1 is proved. 

REMARK. Defining relations given in Lemma 1 are not independent. E.g., the 
relat ions/ ,  AI,~, A~,2, A2,~ and A3,~ imply A2,2 and A3,2" 

u 2 v 4 u ~ = u 2 v ( v u v )  ( v u v )  v u  ~ = u ~ v ~ ( u v  ~ u )  v ~ u 2 = u "~ v ~ ( v u  "~ v )  v '~ u '  = 

= u ( u v  3 u ~) v ~ u ~ = u ( v  ~ u 3 v )  v ~ u ~ = ( u v  ~ u )  u ~ v ~ u ~ = ( v u  ~ v )  u ~ v ~ u ~ = v u  ( u v u )  u v  ~ u ~ = 

= v u u u v  ~ u ~ = v ( u  ~ v4  u )  u = v ( v u  ~ v ~) u = v ~ u ~ ( u  ~ v ~ u )  = v ~ u ~ ( v u  ~ v ~) = 

= V2/./(IA'VZ/)U202 = V2H~/~2V 2 = V2,~/r 2. 

The relation A30 ~ may be deduced analogously. 
It would be interesting to study interdependence of the defining relations given 

in Lemma 1 and, if possible, to find a set of  independent defining relations for a 
monogenic free inverse semigroup. 

Now we give a construction for ~Jx, .  Let X - a =  {x-~: x6X}  and suppose the 
alphabets X and X -~ are disjoint. Let Y = X U X  -~ and ~-Sey be a free semigroup 
over Y. The elements of ~-Sar are all non-empty words over Y. Clearly, J~,Sey admits 
an involution defined inductively: (x ) -~=x  -1, ( x - 1 ) - l = x ,  (cq~)-~=/?-~ -1 for all 
~, t iC 'Se t .  Together with this involution, ] S e  r is an involuted semigroup: a free 
involuted semigroup ~ J n x  with the set X of  generators. We visualize ~ ' J x  as a 
quotient semigroup of ~ r  Thus, the elements of o ~ J  x are classes of equivalent 
words over IT, we say that equivalent words represent the same element of -~-Jx. 

A word c~ over Yis called reduced if it is empty or if it does not contain occurrences 
xx -~ and x-~x  for x~X. A word w ~ 3 f ~  x is called left canonical if w=(alafl).. .  
...(a,,a21)a where a, a~, ..., a, are reduced words, for every i the word a~ is not a 
beginning of  the word a or of the word aj f o r j r  i. In particular, the words a~, ..., a, 
are nonempty, a may be empty, n is any nonnegative integer (if n=0 ,  then w=a, 
in this case a cannot be empty). Speaking of left canonical words, we will omit 
"left" since no other types of canonical words occur in this paper. 

Note that for words v, wE~JeLx, v=w means that v and w are the same word; 
v - w  means that v and w represent the same element of J~Cx. 

If  w=(ala{ ~) ... (a, aya)a is a canonical word then the prefix of  w is the word 
Pr (w)=(al af  t)... (a, a2~), the words a~ . . . .  , a, are called components of Pr(w), 
the root of  w is the word R (w) = a. 

Let o~fqx be a free group with the set X of  generators. The elements of ~-(#x 
are all reduced words from ~ ' J e x  and the empty word, the operations of  multi- 
plication and involution in ~fqx are usual [3]. Then R: w-~R(w) is a mapping of 
the set o f  all canonical words onto ~ x -  

Now we give an algorithm which transforms every word from Y-%Cnx into a 
canonical word. Let W o ~ J ~ x .  

Algorithm. 1. Read w 0 from left to right. If  wo is reduced, stop. Otherwise, pass 
on to 2. 
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2. Let w = b y y - t c  for some yC Y and this is the first occurrence of y y - t  for 
some yC Y in w0. Find the longest beginning d of  c such that d -~ is an end of b. 
Then b=ed -1 and c = d f  for some words e and f Let al=by, wt=ef. Now pass 
on to 3. 

3. Apply 1 and 2 to wl. 
Applying 1--3 to w 0 we obtain successively the words aa, w~; then the words 

ae, w~; . . . .  after a finite number  of  steps we obtain the words a , ,  w, such that w, 
is a reduced word. This follows from the fact that  [w01>lwl[ where [w I denotes 
the length of  the word w. Notice that the words al ,  . . . ,  a,, are reduced and non- 
empty. 

In the list {al, . . . ,  a,} check every word: if at is a beginning of some of the 
words {a2, ... ,  a , ,  %}, omit al; otherwise, retain it. Pass on to az in the new list 
,(with omitted or retained at). After a finite number of  steps one obtains a list of  
words where no word is a beginning of another word or of  w,. 

Suppose {bl, ..., b~} is such a list. Then the final canonical word is C(wo)= 
= (b lb i  -1) ... (b~bT, 1) %. Clearly, C(wo) is a canonical word. I f  m = 0  then C(w0)= w,. 

EXAMPLE. Let Wo=Xtx f t x~x f l x~x~  ~. Then at=x~x~ t, w~=xlxf~x~x31; 
a z = x l x ~ x ~ ,  we=x~xf  ~. Now w~ is a reduced word. The word a t is a beginning 
of a~ and of wz and should be omitted. Now C(wo)=(xtx~Ix~)(x~txexf l )x~x. fk  

Now we prove that wo-C(wo) for every Wo~~f~tx.  Clearly, 

N o  = b y y - l c  = e d - l y y - l d f  = e e - l e d - l y y - ~ d f  - e d - l y y - l d e - ~ e f  = 

:= b y y - l b - l e f  = a la f lwl .  

Analogously, w2-aza~w2 ,  whence, wo=-(alafl)(a2ar~)w2. After a finite number 
of  steps we obtain Wo-(ax afZ)... (a,,a2 1)w,. Suppose ai is a beginning of a~ for j r  
Then aj=aig for some (possibly, empty) word g. Now 

(al a f  1) ... (a, a2 t) w, ~ (aiai- 1) (aj a)- 1) (ai af  1) .,. (a,,a21) Wn " 

Here we have written (alaF ~) and (ajaj "t) at the very beginning. Now 

aia7laja) -1 = aiai-laigg-laF 1 .--_- aigg-la71 = (aja)-t), 
therefore, 

(at ai- 1) ... (a, a21) w, ---- (al a l  1)... (ai_ 1 aTJt) (ai + t a?+lt) ... (a, a21) %, 

i.e. the factor (aiai -1) may be omitted. Analogously, (aiaF 1) may be omitted in 
case when a~ is a beginning of  w,. Omitting all factors (aiaF 1) where ai is a beginning 
of some other word aj or %,  we obtain C(%). Thus, w o ~_ C(wo). 

LEMMA 4. Every element of  ~ may be represented by a canonical word. 

PROOF. Every element of  YC'x may be represented by a word wC~Jrzx .  Since 
w~C(w),  the element of  ~ r  may be represented by C(w), the latter word having 
the canonical form. 

LEMMA 5. Let w=(alaf l ) . . .  (ama,~l)a and v=(b lb f  1)... (b, byl)b be canonical 
words. Then w=--v i f  and only i f  {al . . . .  , %}= {bl . . . . .  b,} and a=b, i.e. two canonical 
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words represent the same element of ~ J x  if and only if the components of prefixes of 
these words coincide and the roots of these words coincide. 

PROOF. The " i f "  part is trivial. Now suppose w=-v. Let ~ be the element of 
~ J x  represented by w. Then ~=~.  Let Ax be the identical mapping of X onto the 
set X of generators of ~ f f x .  This mapping can be extended to a uniquely defined 
homomorphism f :  ~ r  Clearly, f is surjective. Ax can be extended to a 
homomorphism g: -~r  x. Obviously, g(w) is a reduced form of a word w 
(i.e. g(w) may be obtained from w after all occurences of yy-1 for yE Y are omitted 
from w and from all words obtained from w in this way). I f  h: J J ~ Z x - ~ J x  is the 
natural homomorphism, then foh =g. It follows that g(w) =g(v)~-~f(h (w)) =f(h (v))~ 
~-~f(~)=f(~) for all w, vE~J~x .  Clearly, R(C(w)) is a reduced form of  w. Since 
every word has a uniquely determined reduced form [3], g(w)=R(C(w)), and since 
w and v are canonical words, C(w)=w and C(v)=v. Therefore, g(w)=g(v), i.e., 
R(w)=R(v). 

Let R be the set of all nonempty reduced words. A nonempty finite subset 
A c R  is called closed [9] if for every w~A and every nonempty beginning v of  w 
v~A. Let E be the set of all closed subsets of R. Since the union of two closed Sub- 
sets is closed, E is a semilattice with multiplication U. Let ire denote the inverse 
semigroup of all isomorphisms between principal ideals of E [5]. For  every xEX, 
{x}EE. Let ({x}) denote the principal ideal of  E generated by {x}. Then ({x})= 
= {A C E: x c A}. Define an isomorphism f~ of ({x}) onto ({x-~}) : let A E ({x}), i.e. 
xCA; then f , (A)  consists of the word x -~ and all words of the form g(x-lw) for 
w E A, w r x. It is a matter of straightforward computation to check thatf~ (A) C ({x-~}) 
and f~ is an isomorphism. Thus, f ~  TE. Let f denote the mapping of X into Te 
such that f (x )= f~ .  Then f may be extended in a unique way up to a homomorphism 
f :  J ; J x ~  TE (we denote this homomorphism by the same letter f as the mapping 
X-+ r~). 

Let u=(a~a7 ~) ... (a,,a2 ~) be a canonical word with an empty root. Let/~, denote 
the set of  all A C E such that {a~ . . . . .  a ,}~ A. Then I~ is an ideal of E. Let Ax, denote 
the identical automorphism of  this ideal. Then Ax,~T ~. It can be computed that 
f(~)=At~ (we omit this straightforward but tedious computation). 

Let tC~J~Lx represent an idempotent of ~-~r Then g(t)  is the identity of 
o ~ x ,  i.e. g(t) is an empty word. t f  t is a canonical word, then R(t)=g(t), i.e. t has 
the empty root. Thus, a canonical word represents an idempotent of ~ocx if and 
only it it has the empty root. 

Let u = (q ell)... (cp c; ~) and t =  (dldyl)... (d~ d~ ~) be two canonical words rep- 
resenting idempotents of ~-~u If  u=-t, i.e. g = L  then A~=A~. It follows that 
l,,=I~, {c~ .... , ep}= {da, ..., d~}. In particular, p = q .  

Since w =- v, (a~ af ~)... (% a2~ ~) (aa-1) ~- (b~ bf ~)... (b, b2~) (aa-e) (we have already 
proved that a=b). However, the latter words need not be canonical. If they are can- 
onical, then {a~, ..., % ,  a} = {b~, ..., b,, a}, therefore, {a~, ..., a,,} = {b~ . . . . .  b,}. 

I f a  is a beNnning of one of the words {a~ . . . . .  am}, then (a~ ai-~)... (am a2, ~) (aa -~) - 
-(a~ai-a). . .  (amaT,~). Suppose the word (babf ~) ...(b, b2~)(aa -~) is canonical. Then 
{at . . . .  , %}={b l  . . . .  , b,,  a}. Let a be a beginning of a~ and ai=bj. Then a is a 
beginning of b~, a contradiction. Therefore, a~ is a beginning of a which contradicts 
the supposition that (a~af~)... (a,,ay,~)a is canonical. Thus, a is a beginning of  one 
of the words {b~ . . . . .  b,,} and {b~bf~)... (b, by~)(aa-~)=-(b~bf~)... (b, b2~). It follows. 
that {a~ . . . .  , am}= {b~ . . . .  , b~}. Lemma 4 is proved. 
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Let cg x be the set of all canonical words. Then cg x is a cross-section of ~ - J x ,  
i.e. every element of  -~Jx  is represented by a uniquely determined canonical word. 
Thus, there exists a natural bijection of f f J x  onto cg x. We have proved 

THEOREM 2. Let cg x be the set of all canonical words over the alphabet XLJ X -t .  
For w, vc,_Cgx define w=v  if  and only i f  R(w)=R(v)  and P(w) possesses the same 
components as P(v). Define w.  v=~(wv),  w -1 =Cg(w-1). Then ~fx is a free inverse 
semigroup isomorphic to ~ J x .  

REMARK. Let w=(a~afl)...(amay,1)a and v=(blbf1)...(b~b21)b be canonical 
words. Then 

w - l =  (g(a-aat)g(a;la)) ... (g(a-~am)g(aT~la))a-l~Cgx 

is the inverse for w in cg x. 

w- v ~ ( a l a ;  1)... (am aT~ 1) (g (abl) g (bf 1 a-  ~)) ... (g (ab,,)g (b; 1 a-  1)) (aa- 1) g (ab). 

To obtain a canonical form of w. v one needs to delete those factors (a~ai -1) and 
(g(abi)g(bi-la-1)), (aa -~) whose components are beginnings of  the other com- 
ponents. 

As corollaries to Theorem 2 we obtain some properties of  free inverse semi- 
groups. Now we identify Yor x with cg x and consider the elements of.~-O4x as canonical 
words. 

COROLLARY t. A canonical word w is an idempotent of  Y J x  i f  and only i f  R (w) 
is an empty word, i .e . /J 'P(w)=w. 

The proof  is incorporated in the proof  of  Lemma 4. 

COROLLARY 2. R is ihe maximum group homomorphism of ~ J x ,  it maps .r x 
onto the free group ~(Yx; i f  1 is the identity of .~.ff x then R -1 (1) is the set of  all 
idempotents of  ~ J x .  

Pp, ooF. The same as for Corollary 1. 

COROLLARY 3 ([9]). The semiIattice E ( Y J x )  of  all idempotents of  ~ J x  is iso- 
morphic to the semilattice E of all closed subsets of  nonempty reduced words. 

PROOF. The isomorphism between E ( ~ J x )  and E maps every idempotent 
w ~ (~-Jx)  onto the closed set consisting of all nonempty beginnings of all components 
of  P(w). 

Let <= denote the canonical (natural) order relation on Y S  x. The same symbol 
<_- wilI denote the canonical order of  the inverse semigroup 2or which is the free 
inverse semigroup -YJx with identity adjoined. I f  w<=v, then w is called a minorant 
ofv  and v is called a majorant ofw. For  every w=(aia71) ... (a, a21)a~Cgx let W(w)=n 
denote the weight of w. 

COROLLARY 4. For every w, v E W J x  w <= v i f  and only if  R (w) = R (v) and each 
component of  P(v) is a beginning of a (necessarily uniquely defined) component of  
P(w). In particular, W(v) < _ W(w). 

PROOV. Let w<=v. Then w=uv for an idempotent u ~ . Y J  x. By Corollary 1, 
R(w)=R(uv)=R(v) .  Each component  of  P(v) is a beginning of a component  of 
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P(w) or of a component of P(u), the latter being the case, the component of P(u) 
containing a component of P(v) as a beginning should be a beginning of  a component 
of P(w). Two different components of P(v) are not one a beginning of  the other, 
therefore, they cannot be beginnings of  the same component of  P(w). It follows 
that P(v) cannot possess more components than P(w), i.e. W(v)<= W(w). 

Now let R(w)=R(v) and each component of  P(v) be a beginning of a com- 
ponent of P(w). By a straightforward computation we obtain w=ww-lv,  i.e. w<=v. 

COROLLARY 5. Majorants of idempotents of a free inverse semigroup are idem- 
potents. 

COROLLARY 6. Every element w of ~ J x  possesses no more than ( Ia l [+t) , . .  
.., (!a,I + 1) different majorants i fw~E(~Jx )  andno more than (lax[ + 1)... ([a,l + 1) - 1 
different majorants if w is an idempotent. In particular, as an ordered set, "~Jx satisfies 
the ascending chain condition, 

COROLLARY 7. Free inverse semigroups satisfy the ascending chain condition for 
principal right ideals. 

PROOF. The latter condition is equivalent to the ascending chain condition for 
the semilattice E(~Jx) .  

Corollary 7 has been obtained independently by H. E. SCHEIBLICH. 

COROLLARY 8 ([14]). Every element of ~ J ~  has a uniquely defined maximal 
majorant (namely, i f  wC ~J~:, then R(w) is the maximal majorant of  w). ~ J x  and 
~J~: are generated by their maximal elements. 

Let ] ( r  be prefix ordered (i.e. for w, vE~f~x w<-v means that w is a beginning 
of v). Then ~-~x is a tree semilattice. 

COROLLARY 9. E ( ~  r iS a free semilattice over a partially ordered set dual 
to ~-~x. 

PROOF. By Corollary 3, E ( J J } )  is isomorphic to E 1 which is the set of all 
closed subsets including an empty subset. Corollary 8 follows by Theorem4.2 
from [6]. 

COROLLARY 10. An element w of ~ C x  is maximal if and only if W(w) = O. 

Let a denote the smallest group congruence on ~ r  It is known [13] that 
w =- v (a) if and only if w and v have a common minorant. It follows that w -  v (a) 
-~-~R(w)=R(v). In particular, every a-class contains the largest element" if w belongs 
to a a-class then R(w) is the largest element of this a-class [14]. Thus, ~ J }  is an 
F-inverse semigroup in the sense of [4]. This fact has been proved independently by 
L. O'CARROLL. 

COROLLARY 11. Every a-class of ~de~ is a distributive lattice relative to <=. 
In particular, E (~J~)  is a distributive lattice. Moreover, for every u, v, wC~J~c 
such that u=--v(a) we have (uVv)w=uwVvw and w(uVv)=wuVwv. Here V denotes 
the operation or forming the least upper bound. Elements from different a-classes are 
incomparable relative to ~ .  
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PROOF. If  W, V C ~ J }  and w<=v or v<=w then, by Corollary 4, R(w)=R(/)), i.e. 
w=-v(a). Therefore, two elements from different a-classes cannot be comparable 
relative to -<_. Now let w=-v(a). Then R(w)=R(v) is a common majorant of w, v. 
However, two elements of  an inverse semigroup which possess a common majorant, 
possess also the greatest lower bound [13], i.e. wA/) exists. Let {a~, ..., an} be a 
list of  all components o f  P(w). Let c~ denote the longest beginning of  al which is 
also a beginning of  some component of  P(v). Clearly, such ci always exists (c, may 
be empty). Let u = C((ca ef 1)... (e, e,71) R (w)). By Corollary 4, w <_- u and v <= u. Sup- 
pose now w<=t and v<=t for some t=(dldfl) . . . (dji-1)a.  By Corollary4,  every 
d~ is a beginning of  some aj( o and of  some component of P(v). It follows that d, 
is a beginning of  cj(1). By Corollary 4, u<=t, i.e. u=vVw. Therefore, every a-class 
of  o~J} is a lattice. 

Let A, denote the a-class containing a word a C J ~ x .  Then a is the largest ele- 
ment of  the lattice A,. It is well known that the set A~ of  all minorants of  a is order- 
isomorphic to anyone of the ordered sets A,~-~, A,-~, A~-~, (here A~-~ denotes  
the set of  all minorants of  aa-~CJJ~). Clearly, the lattice A,,-~ is a principal 
ideal of  the lattice A I = E ( ~ - J } ) ,  therefore, the lattice A~ is distributive if A~ is. 
Clearly, the distribntivity of A1 follows from the identities (uVv)w=uwV/)w and 
w(uV/))=wuVw/) for all u,/), w E ~ J } ,  u=-v(a). On the other hand, these identities 
follow from distributivity of  A1 [11]. We give an independent proof  of  this fact here. 

Clearly, u-  1 uVv- i v <_- (uVv)- l(u V v). Since u = uu- 1 u <= (uVv) u -  lu <= (uV/)) (u-  1 uV 
Vv-1/)) and, analogously, v<=(uV/))(u-luV/)-lv), we obtain uV/)<=(uV/))(u-luV 
V /)-lv), whence, 

(uVv)  - 1 (b/V/)) ~ (uV/)) - 1  (RVv)  (/A - 1  u V / ) - I / ) )  ~ b/-1 b/V/) -1 / ) .  

Thus, 
(uVv) -1 (uV/)) = u - ~ u V v - 1  v .  

Since uw<=(uVv)w and vw<-(uVv)w, we obtain uwVvw<=(uVv)w. Using dis- 
tributivity of A~, we obtain 

( ( u V v ) w ) - ~ ( u V v ) w  = w - ~ ( u V v ) - l ( u V v ) w  = w - ~ ( u - l u V v - l v ) w  = 

= W - I ( w w - I ( b I - I ~ I v / ) - I / ) ) W W - 1 ) W  = W - I ( w w - l b t - I I 2 w w - 1 V w w - 1 u - 1 / ) W W - 1 ) W  < =_ 

<= w - l ( w ( w - l u - l u w V w - 1 / ) - l / ) w ) w - 1 ) w  <= 

< w - l u - l u w V w - 1 / ) - ~ v w  = (uwVvw)-~(uwVvw)  

i f  for two dements g and h of an inverse semigroup g<=h and hh-l<=gg -1 hold, then 

h = hh-lh <= gg-*h = g, i.e., g = h. 

Therefore, (uVv) w = uwVvw. Now 

w ( .  V/)) = ((u V v ) - i  w-1 ) -1  = 

= ( (b / -  i \'/ /-) - l )  N - 1 )  --1 = ( ? . , / - 1 w - I V y - I N - I ) - 1  = 'w/~/Vwv. 

COROLLARY 12. An element w of ~ J x  is an idempotent if  and only if ww-l= 
~ W - 1 W .  
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PROOF. The "only i f"  part  is trivial. To prove the " i f "  part  suppose 

ww -1 = w - l w  and w = (ala~ ~) ... (a ,a , -?~)a~x  . 
Then 

ww-~ _ (a~af ~) . . .  (ana~71)(aa -1) 
and 

w - l w  -- a - l ( a l a f l )  ... (a, a21)a =_ 

-~ ( g ( a - l a l ) g ( a F l a ) ) . . .  ( g ( a - l a , ) g ( a Z l a ) ) ( a - l a ) .  

I t  may be verified by straightforward computat ion that the latter word is canonical 
if and only if all the words {al, . . . ,  a, ,  a} begin with the same letter; otherwise, the 
canonical equivalent of  the latter word is ( g ( a - l a O g ( a ~ l a ) ) . . . ( g ( a - l a , ) g ( a 2 1 a ) ) .  

Case 1. Let the words {al, . . . ,  a~, a} begin with the same letter. Then W(ww -~) = 
= W ( w - l w ) = n +  1, therefore, the words {al . . . .  , a , ,  a} are the components of  ww -1 
and the words { g ( a - l a l )  . . . .  , g ( a - l a , ) ,  a -~} are the components of  w - l w .  Thus, 
the two sets of  components coincide. I f  a - l = a  then g(a 2) is an empty word; it fol- 
lows that a is empty and w is an idempotent. 

Now let a- l=a~.  Then g(a -~a~)=g(a -~)=a j  for some j,  g ( a - ~ ) = g ( a - l a i ) = a k  
for some k etc. After a finite number of  steps we obtain g (a -P )=g(a -~aq )=a ,  i.e. 
g(a p+z) is an empty word. Therefore, a is empty and w is an idempotent. 

Case 2. Let the words {a~, ... ,  a , ,  a} do not begin with the same letter. Then 
the components of  w - l w  are {g (a - la l ) ,  . . . ,  g ( a - l a , ) }  and W(ww -1) = W ( w - l w ) = n .  
Therefore, a is a beginning of  some of  the words {a~, ... ,  a,}, say, of  the word a~, 
and the components of  ww -~ are {al, ... ,'a,}. Now a~=ab for a nonempty word b, 
it follows that a b = a i = g ( a - ~ a j ) ,  i.e. g(a2b)=aj .  Therefore g(a2b)=a~=g(a- la~)  
for some k. It  follows that g(a3b )=g(aa -~ak )=g(ak )=ak=g(a - lap )  for some p. 
Proceeding along these lines we obtain after a finite number  of  steps that g(aqb)= 
=g(amb) for different q and m, i.e., in case q > m ,  g (aq -mb)=g(b )=b .  I t  follows 
that  g(a  q - ' )  is an empty word, i.e. a is empty and w is an indempotent. 

COROLLARY 13. ~ J x  does not contain nontrivial subgroups. 

PROOF. Suppose G is a nontrivial subgroup of ~ x  and wCG, w is not an 
idempotent. Then ww -~ and w - l w  are the identity of  G, therefore w w - ~ = w - l w  
and, by Corollary 12, w is an idempotent, a contradiction. 

COROLLARY 14 ([7]). The Green equivalence ~r on ~ o r  x is the identical equivalence. 

PROOF. Suppose w--v(~f) .  Then ww -~ = vv -1 and w - l w  = v-~v. Now 

( w v - ~ ) ( w v - 9 - ~  = w v - l v w - ~  = w w - l w w - ~  = w w - 1  = 

= v v - ~ =  v v - ~ v v . ~ =  v w - ~ w v - ~ =  ( w v - ~ ) - l ( w v - ~ ) .  

By Corollary 12, wv -1 is an idempotent. Therefore, wv -1 = (wv-1) -1 = vw-L We 
obtain 

w = w w - ~ w w - ~ w  = w v - l v w - l w  = ( w v - ~ ) ( w v - ~ ) - l w  = 

: ( W V - 1 ) - l w  = I ) W - 1 W  = ~ ) v - l v  = V. 

Thus, ~ is the identity on o~Jx . 
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We could find the other Green equivalences on f f J x ,  however, we omit their 
description which is a matter of  simple computations. Notice that equivalence 
classes of  all Green equivalences on ~'~'x are finite. In particular, f f J x  does not 
contain a bicyclic subsemigroup (such a subsemigroup is included into a single ~ -  
class, the latter class should be infinite, a contradiction). Every nonidempotent element 
of ~ x  generates an infinite subsemigroup of  ~ - Jx  (since the homomorphie image 
of  such an element in ~ x  is not identity and generates an infinite subsemigroup 
of f f~x) .  Therefore, ~ J x  does not contain nontrivial Brandt subsemigroups. 

Since ~ J x  does not contain bicyclic subsemigroups, the Green equivalences 
and ~ coincide on ~ J x .  In effect, N c  ~ in any semigroup. Let an inverse semi- 

group S do not contain bicyclic subsemigroups. I f  s, t ~ S  and s - t ( ~ ) ,  then t = x s y  
and s - -u tv  for some u , v , x , y ~ S .  Therefore, s=uxsyv .  Let w = s s - a u x s s  -~. It is 
easy to compute that w w - a = s s  -~ and w-~w<=ss -~. If  w - l w < s s  -~ ther~ w -aw <  
< w w -  ~ and the element w generates a bicyclic inverse subsemigroup of S, a contradic- 
tion. Therefore, w - ~ w = s s  -~. Analogously, z z - ~ = z - ~ z = s - ~ s  for z = s - ~ s y v s - ~ s .  
It follows that s =- xs ( ~ )  and x s -  xsy (N), whence s =- xsy (@), i.e. s-- t (@). Therefore, 
~ c ~ ,  i.e. ~ = ~ .  

Note added on January 31, 1973. After tt~e paper had been submitted for publica- 
tion, we received the following re!evant papers [15--17]. In [15] a new construction 
for Y J x  (in terms of "birooted word trees") is given, it  is proved also that f f J x  
is Hopfian if X is finite, it is residually finite and completeIy semisimple. In [16] 
the first part of  our Corollary 11 is proved, there are given new proofs for a number 
of  other results on ~-~r (e.g. those from [7, 14]), it is proved also that ~-or x is Hopfian 
(i.e. endomorphisms onto are automorphisms) if X is finite. In [17] a construction 
for Y J x  is given which is rather alike to ours. Of course, all the constructions for 
S i x  (namely, those of [9], [15], [17] a~_d from tNs paper) could be deduced one 
from another. E.g., a construction quite similar to ours has been actually deduced 
from that of  [15] in [18]. Every construction has merits and drawbacks of its own. 
E.g., the Green relations on F~cx seem to have the simplest expressions when the 
constructions [9] and [15] are used. The fact that the word problem for Y J x  is 
soluble (first proved in [15]) follows immediately from our construction (since an 
a!gorithm transforming every word to a canonical form is given). 
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