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B. M. SCHEIN (Saratov)

In the memory of Professor A. Kertész

Free inverse semigroups became a subject of intense studies in the last few
years. Their existence was proved long ago: as algebras with two operations (binary
multiplication and unary involution) inverse semigroups may be characterized by a
finite system of identities, i.e. they form a variety of algebras [10]. Therefore, free
inverse semigroups do exist.

A construction of a free algebra in a variety of algebras (as a quotient algebra
of an absolutely free word algebra) is well known. Free inverse semigroups in such
a form were considered by V. V. VAGRER [14] who found certain properties of such
semigroups. A monogenic free inverse semigroup (i.e. a free inverse semigroup
with one generator) was described by L. M. GrLuskiN [2]. Later this semigroup
was described by H. E. SCHEIBLICH in a slightly different form {8]. The most essential
progress in this direction was made in a paper [9] by H. E. SCHEIBLICH who described
arbitrary free inverse semigroups. A relevant paper [1] by C. EBERHART and J. SELDEN
should be mentioned. There are papers on some special properties of free inverse
semigroups. N. R. REILLY described free inverse subsemigroups of free inverse
semigroups [7], results in this direction were obtained also by W. D. MunN and
L. O’CARROLL.

Let # 4y denote the free inverse semigroup with the set X of free generators.
A monogenic free inverse semigroup will be denoted #.#;. Time and then we will
write # .7 instead of & .#;. We do not consider #.4,, a one-clement inverse semi-
group.

This paper contains two main results. The first one coincides with the title,
the second consists in a description of free inverse semigroups (if a free inverse
semigroup is presented as a quotient algebra of a free involuted semigroup, then
gach element of #.# is a class of equivalent words, we give a canonical form of
the words). Certain corollaries with properties of free inverse semigroups follow.

All results of the paper were reported by the author at a meeting of the semin-
nar “Semigroups’ in the Saratov State University on October 21, 1971.

THEOREM [. Free inverse semigroups are not finitely presentable either as semi-
groups or as involuted semigroups.

The proof of the theorem is subdivided in a series of lemmas.

LeMMA 1. A4 semigroup F generated by two elements u and v satisfying the infinite

liSt 0, de Inin relations: 1 UDU—U, DUD=D, A um Tttt ="yt o™ for all natural-
s “im,n
m and n, LS aﬁ €e lnverse semigroup.
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42 B. M. SCHEIN

PROOF. F'is inverse by a lemma from [12]. Since the defining relations 4,
are valid in any inverse semigroup generated by two mutually inverse clements u
and v, F'is free. Fis a monogenic free inverse semigroup generated by u in the variety
of all inverse semigroups considered as involuted semigroups (i.e. as algebras with
two operations).

LemMma 2. The set of defining relations of F given in Lemma 1 is not eguivalent to
any finite subset of these defining relations.

Proor. Consider - two partial transformations » and v of a finite set
A={0,1,2, ..., n}:

{01 2..n-2 n-1 (o1 2..n—1 m
=1 2 3.n—=1 n ) VT 0 1..0-2 n-1}"

Here v is defined on the whole set 4 and u is defined on every element of 4 except .

It is easy to verify that uvu=u and vuv=v (here xy denotes the partial transforma-

tion obtained when y acts after x). One can compute without difficulty that for
0 1 2 ...n—k 4 . .

k=n “k:(k kt1lk+2 . nn ) and for k=n u* is the empty partial transforma-

. +2 ..
tion . Analogously we may verify that for k=n vk:[g{l) ng;i—l k2 nik] .
If'i>n or j>n then both sides of the defining relation 4; ; contain & as a factor,
therefore, A4; ; holds. Now let i=» and j=n. Then

i 0 1 ...n—y{0...7i i+1... n {0 1..n—i
WU =1 i+1... n ) 0.0 t ..n—i)=\0 1..0—i)

i [0 j i+l m Y0 1 ...n—j}_{() 1...j j+1i..n
PE=10..0 1 o= j+1... n )TV j...j j+1..n)

A; ; means that partial transformations u'v' and v/#/ commute. We may compute
now that
o 0...n—0}y .
wottiy = [ . ] if n—i<j,
I J
and
o (0. j+1...n—z’} :
Pl + i 0 — 7 ]
u'v ”_(j...j Gl ..n—i if n—iz=j.

Analogously, v/u'tivi= @ if i+j>n, and

0 1..j j+1..n—i

joJeJ j-!—l...n—i) if n—-i=j

vttt = (
Therefore, A; ; is satisfied whenever i+j=n and is not satisfied otherwise.

Let S, denote the semigroup of partial transformations of 4 generated by u
and v. We have seen that the defining relation 4; ; does not hold in S, if and only if
I, j=n<i-j.

Suppose now that the defining relations given in Lemma 1 are equivalent to
a finite subset B of these relations. Let n=max {i+/: 4; ;€B}andif {i+/: 4, ;¢ B}=
let n be any natural number. If 4; ;€ B then i+j=n; it follows that 4, ; holds in "
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FREE INVERSE SEMIGROUPS 43

S,. Therefore, all defining relations from B hold in S,. Therefore, all the relations
given in Lemma 1 hold in S,. However, 4, , does not hold in S,. This contradiction
completes the proof.

LamMa 3. The inverse semigroup F is not finitely presentable either as a semigroup
or as an involuted semigroup.

Proor. 1. Consider F as a semigroup. Suppose ¥ is finitely presentable over a
set X of generators by means of defining relations R. We may replace X by {u, v}
and every relation from R is substituted by a relation resulting from replacement
of all occurrences of elements of X by their expressions as products of » and v. Thus,
Fis definable over the alphabet {u, v} by a finite set D of defining relations. Therefore,
all the relations from D can be deduced from the defining relations given in Lemma 1.
During such an inference one cannot use but a finite number of defining relations
among those given in Lemma 1. Since the relations / and 4; ;, in their own turn, may
be deduced from D, the defining relations from Lemma | are equivalent to their
own finite subset which contradicts Lemma 2. Thus, the semigroup F is not finitely
presentable.

2. Now consider F as an involuted semigroup. Let S be a semigroup generated
by two elements u and v satisfying the defining relations 7 and 4; ; for i+j=n.
Since 4, , does not follow from these relations, 4, , does not hold in S. For every
word o in the alphabet {u, v} define a word «~' inductively: u='=v, v-i=y,
if B~ and y~! are defined then (By) " *=y"*f~1. E.g. (uvouv) ‘=uvuuv. Clearly,
(@) *=g and (@f)"1=F"ta"* for all words o, 5. Suppose the words a and j
represent the same element of S. Then «~* and S~ also represent equal elements
of S. In effect, all defining relations of S are invariant under the involution —:
the relations from 7 are transformed one into the other, 4; ; is transformed into
A; ;if 71 is applied to both parts of 4; ;. Since 4; ; and 4; ; are valid or not valid
in S simultaneously, every chain of elementary transformations which transforms
a into f§ turns into a chain of elementary transformations transforming ¢! onto =1
if the involution ~* is applied to all terms of the first chain. Thus, ¢~ ' and ! repre-
sent the same element of S.

It follows that S may be considered as an involuted semigroup with one gen-
erator u satisfying the defining relations J: uu=u=uand B; ;: v'u~""Ju/=u~T iy~
for i+j=n. Since S does not satisfy 4, ,, the relation B, , does not follow from J
and B, ; for i+j=n in the class of involuted semigroups. Therefore, defining rela-
tions J and B; ; for all i and j, which define a monogenic free inverse semigroup are

. not equivalent to a finite subset of these relations. To prove that F is not finitely
presentable we proceed now along the same lines as in case 1 where F was considered
as a semigroup.

Let # 7 be a free inverse semigroup. Suppose it is finitely presentable with a
finite set Y of generators by means of defining relations R. We may express each
element of Y as a product of elements of X. Thus without loss of generality we
may suppose Y=X. If X is infinite then some elements of X do not occur in the
defining relations from R, therefore, #.#; cannot be an inverse semigroup (if x¢X
does not occur in R then xx !x=x does not hold in %.4;). Therefore, if F.7y is
finitely presentable, then X should be finite.

Now add to R a finite set of all defining relations of the form x;=x; for all
X;, X;€X, i#j. Then we obtain an inverse semigroup F, which is a homomorphic

Acta Mathematica Academiae Scientiarum Hungaricae 26, 1975



44 B. M. SCHEIN

image of #.#y. Clearly, F, is a monogenic inverse semigroup (since all the generators
X of # 5 are identified in F;). Clearly, F, is a free inverse semigroup since .9y
is free. Thus, F, is a monogenic free inverse semigroup and F, is finitely presentable
which contradicts Lemma 3. Thus, #.#y is not finitely presentable. This argument
is valid both for semigroups and involuted semigroups.

Theorem 1 is_proved.

ReMaRK. Defining relations given in Lemma 1 are not independent. E.g., the
relations I, 4, y, Ay 2, Ay y and A, , imply 4, , and A4, ,:

wPote? = wlv(ouv) (vuv) v = WP (uu)v?u? = v (vto) vl =
= u(utu?)v*u® = u(V®1Po)*u? = (Wlu)utviu® = (o)t vt = vu(uon)urte® =
= vuuuv*? = v(Pv*u)u = vt ¥)u = V(WP u) = i (vt r?) =
= vPu(uvn)uv® = VuuPv® = v¥uto?

The relation 43, may be deduced analogously.

It would be interesting to study interdependence of the defining relations given
in Lemma 1 and, if possible, to find a set of independent defining relations for a
monogenic free inverse semigroup.

Now we give a construction for #.4;. Let X'={x"1: x€ X} and suppose the
alpbabets X and X! are disjoint. Let Y=X{J X! and £F be a free semigroup
over Y. The elements of #% are all non-empty words over Y. Clearly, #% admits
an invelution defined inductively: (x)"*=x"1, (x Y '=x, («f) " *=p*a* for all
o, fEFFy . Together with this involution, #% is an involuted semigroup: a free
involuted semigroup # fay with the set X of generators. We visualize #.; as a
quotient semigroup of #.#uy. Thus, the elements of F.#; are classes of equivalent
words over ¥, we say that equivalent words represent the same element of #.4,.

A word o over Yis called reduced if it is empty or if it does not contain occurrences
xx Y and x7x for x€X. A word we€ FSFuy is called left canonical if w={(a;a;")...
...(a,a;")a where a, a,, ..., a, are reduced words, for every i the word «; is not a
beginning of the word a or of the word a; for j=i. In particular, the words a;, ..., g,
are nonempty, a may be empty, » is any nonnegative integer (if n=0, then w=a,
in this case a cannot be empty). Speaking of left canonical words, we will omit
“left” since no other types of canonical words occur in this paper.

Note that for words v, w€ F Fuy, v=w means that v and w are the same word;
v=w means that v and w represent the same element of #.4y.

If w=(a,07Y)...(a,a; V) a is a canonical word then the prefix of w is the word
Pr(w)=(a,aiV)...(a,a;%), the words ay, ..., a, are called componenis of Pr(w),
the root of w is the word R(w)=a.

Let %y be a free group with the set X of generators. The elements of %,
are all reduced words from #.fuy and the empty word, the operations of multi-
plication and involution in #%y are usual [3]. Then R: w—R(w) is a mapping of
the set of all canonical words onto F%.

Now we give an algorithm which transforms every word from % #uy into a
canonical word. Let w,€ F Fuy.

Algorithm. 1. Read w, from left to right. If w, is reduced, stop. Otherwise, pass
on to 2.
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EREE INVERSE SEMIGROUPS 45

2. Let w=byy~tc for some y<Y and this is the first occurrence of yy~—* for
some p€Y in w,. Find the longest beginning d of ¢ such that d ' is an end of b.
Then b=ed ! and c=df for some words ¢ and f. Let a,=by, w;=ef. Now pass
on to 3.

3. Apply 1 and 2 to w;,.

Applying 1—3 to w, we obtain successively the words a,, w;; then the words
ay, Wy; ... , after a finite number of steps we obtain the words a,, w, such that w,
is a reduced word. This follows from the fact that |wg|=>|w;| where |w| denotes
the length of the word w. Notice that the words a,, ..., a, are reduced and non-
empty.

In the list {ay, ..., a,} check every word: if @, is a beginning of some of the
words {a,, ..., a,, w,}, omit a;; otherwise, retain it. Pass on to a, in the new list
{with omitted or retained a,). After a finite number of steps one obtains a list of
words where no word is a beginning of another word or of w,.

Suppose {by, ..., b,,} is such a list. Then the final canonical word is C(wy)=
=(byb7Y) ... (b b Y w,. Cleatly, C(w,) is a canonical word. If m=0 then C(wy)=w,.

EXAMPLE. Let wo=x;x5  x,x5 x5x5 . Then ay=x3x57% wyi=x, x5 1x,x57%;
Ay =X, X3 1 x5, Wy=Xx,%5 1. Now w, is a reduced word. The word g, is a beginning
of a, and of w, and should be omitted. Now C(wg)=(x;x5 x) (x5 3 %7 x, x5
Now we prove that wo=C(w,) for every wy€ # Fuy . Clearly,

wo = byy e = ed 'yy ldf = ee ted lyyTldf = edlyy lde lef =
= byy b tef = ajaitw,.
Analogously, wo=a,a51w,, whence, wy={a;a7 ) (a5 ) w,. After a finite number
of steps we obtain wy=(a,a:")...(a,a, Hw,. Suppose g; is a beginning of g; for j=i.
Then a;=a;g for some {possibly, empty) word g. Now
(aar?) - (@ua; ) w, = (a7 H{a;07 Y (@:ar?) - (@8, Hw,.
Here we have written (a;0;!) and (g;a;") at the very beginning. Now

—1, ;-1 -1 -1,-1 — -1,-1 -
a;a; "a;0;t = qartagg T et = aggTrart = (a59;7 Y,
therefore,

(@ar?) ... (@a; Hw, = (@ar") - (@107 @287 - (@8, )W,
i.e. the factor (g;47%) may be omitted. Analogously, (@;e;Y) may be omitted in

case when ¢; is a beginning of w,. Omitting all factors (g;a;) where ¢; is a beginning
of some other word a; or w,, we obtain C(w,). Thus, w,=C (w,).

LemMA 4. Every element of & Fx may be represented by a canonical word.

PrOOF. Every element of .7, may be represented by a word wc % fuy . Since
w=C(w), the element of #9; may be represented by C(w), the latter word having
the canonical form.

LeMMA 5. Let w=(agya7%)...(a,a5")a and v=(b,b7Y)...(b,b;Y)b be canonical
words. Then w=v if and only if {a,, ..., a,}={b1, ..., b,} and a=b, i.e. two canonical
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words represent the same element of & if and only if the components of prefixes of
these words coincide and the roots of these words coincide.

Proor. The “if” part is trivial. Now suppose w=v. Let W be the element of
F Iy represented by w. Then Ww=19. Let 4y be the identical mapping of X onto the
set X of generators of #%,. This mapping can be extended to a uniquely defined
homomorphism f: FIy—~F%Gy. Clearly, f is surjective. 45 can be extended to a
homomorphism g: F Fux—~F Gx. Obviously, g(w) is a reduced form of a word w
(i.e. g(w) may be obtained from w after all occurences of yy~* for y€ Y are omitted
from w and from all words obtained from w in this way). If : F Suy—~F Iy is the
natural homomorphism, then foh=g. It follows that g(w)=g (v)-—f(h(w))=f(h(v))«
~f(®)=f(®) for all w, veFIny. Clearly, R(C(w)) is a reduced form of w. Since
every word has a uniquely determined reduced form [3], g(w)=R(C(w)), and since
w and v are canonical words, C(w)=w and C(v)=v. Therefore, g(w)=g(v), i.e.,
R(w)=R(v).

Let R be the set of all nonempty reduced words. A nonempty finite subset
ACR is called closed [9] if for every wE 4 and every nonempty beginning v of w
v€A. Let E be the set of all closed subsets of R. Since the union of two closed $ub-
sets is closed, E is a semilattice with multiplication U. Let Ty denote the inverse
semigroup of all isomorphisms between principal ideals of E [5]. For every x€X,
{x}€E. Let ({x}) denote the principal ideal of E generated by {x}. Then ({x}))=
={A€E: xc A}. Define an isomorphism f, of ({x}) onto ({x='}): let 4€({x}), i.e.
x€A; then f,.(4) consists of the word x™* and all words of the form g(x~tw) for
wE A, wx. It is a matter of straightforward computation to check that £, (4)€({x™*})
and £, is an isomorphism. Thus, f,€7%. Let f denote the mapping of X into Tg
such that f(x)=f,. Then f may be extended in a unique way up to a homomorphism
f: F 5y~ Ty (we denote this homomorphism by the same letter f as the mapping
X‘* TE)

Let u=(a;a7"Y) ... (a,a;*) be a canonical word with an empty root. Let 7, denote
the set of all A€ E such that {q, ..., a,}C 4. Then I, is an ideal of E. Let 4; denote
the identical automorphism of this ideal. Then 4; €Tp. It can be computed that
f(@)y=4;, (we omit this straightforward but tedious computation).

Let t€.F Iuy represent an idempotent of #.%;. Then g(f) is the identity of
F Gy, ie. g(t) is an empty word. If 7 is a canonical word, then R(f)=g(¢), i.e. ¢ has
the empty root. Thus, a canonical word represents an idempotent of #.7x if and
only it it has the empty root.

Let u=(cer) ... (c,cp ") and t=(d,di ") ... (d,d; ") be two canonical words rep-
resenting idempotents of F.7y. If u=t, i.e. i=1, then 4; =4;. It follows that
L=, {c;, ..., c,}=1{dy, ..., dj}. In particular, p=gq.

Since w=v, (@ a7 ... (@, en Y aa Y= (b, b ") ...(b,b; ) (aa™t) (we have already
proved that ¢=>5b). However, the latter words need not be canonical. If they are can-
onical, then {ay, ..., a,, a}=1{by, ..., b,, a}, therefore, {a,, ..., a,}=1{b;, ..., b,}.

If ais a beginning of one of the words {a,, ..., a,}, then (g a7 V). (@, a5 ) (aa™ )=
=(aa7Y) ... (a,a;Y). Suppose the word (b b7 ...(b,b; ) (aa™?) is canonical. Then
{6y, .., @p}=1by, ..., b,, a}. Let a be a beginning of g; and a;=b;. Then a is a
beginning of b;, a contradiction. Therefore, ¢; is a beginning of a which contradicts
the supposition that (a;a7Y)... (a,a,%)a is canonical. Thus, a is a beginning of one
of the words {b;, ..., b,} and {67 V) ... (b,b; Y (aa V= (byb7")... (b, b ). It follows.
that {a, ..., @uy=1{by1, ..., b,}. Lemma 4 is proved.
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FREE INVERSE SEMIGROUPS 47

Let 4 be the set of all canonical words. Then %y is a cross-section of F.4,,
i.e. every element of F .7y is represented by a uniquely determined canonical word.
Thus, there exists a natural bijection of #.#y onto 5. We have proved

THEOREM 2. Let Gy be the set of all canonical words over the alphabet XU X 1.
For w,vE€y define w=v if and only if R(w)=R(v) and P(w) possesses the same
components as P(v). Define w-v=%(wv), w =% (w™). Then €y is a free inverse
semigroup isomorphic to F Sy .

REMARK. Let w=(a;a7%)... (¢ anY)a and v=(b,b7?)...(b,b;1}b be canonical
words. Then

wl = (g(a a)g(ar'a)) ... (ga " a)g(a, @)a~ € By
18 the inverse for w in %y.

wev = (@art) ... (@,a, ) (glab)g(bira™) ... (g(ab,)g (b a ) (aa g (ab).

To obtain a canonical form of w-v one needs to delete those factors (g;a;7Y) and
(glab)g(bi 'a=1)), (aa™') whose components are beginnings of the other com-
ponents.

As corollaries to Theorem 2 we obtain some properties of free inverse semi-
groups. Now we identify & £y with €y and consider the elements of # #5 as canonical
words.

COROLLARY . A canonical word w is an idempotent of F Iy if and only if R(w)
is an empty word, i.e. if P(wy=w.

The proof is incorporated in the proof of Lemma 4.

COROLLARY 2. R is the maximum group homomorphism of F ¥y, it maps F 5
onto the free group FGy; if 1 is the identity of F%Gy then R (1) is the set of all
idempotents of F 95 .

Proor. The same as for Corollary 1.

COROLLARY 3 ([9]). The semilattice E{FIy) of all idempotenis of F.Fy is iso-
morphic to the semilattice E of all closed subsets of nonempty reduced words.

Proor. The isomorphism between E(F.%y) and E maps every idempotent
wE(F Fy) onto the closed set consisting of all nonempty beginnings of all components
of P{w).

Let = denote the canonical (natural) order relation on % .#5. The same symbol
= will denote the canonical order of the inverse semigroup & .94 which is the free
inverse semigroup .7y with identity adjoined. If w=v, then w is called a minorans
of v and v is called a majorant of w. For every w=(a;a;%) ... (a,a; 3ac %y let W(w)=n
denote the weight of w.

COROLLARY 4. For every w, veF Sy w=v if and only if R(wy=R(v) and each
component of P(v) is a beginning of a (necessarily uniquely defined) component of
P(w). In particular, W)= W(w).

Proor. Let w=v. Then w=uv for an idempotent ucF.#,. By Corollary I,
R(w)=R(uv)=R(v). Each component of P(v) is a beginning of a component of
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P(w) or of a component of P(u), the latter being the case, the component of P(u)
containing a component of P(v) as a beginning should be a beginning of a component
of P(w). Two different components of P(v) are not one a beginning of the other,
therefore, they cannot be beginnings of the same component of P(w). It follows
that P(v) cannot possess more components than P(w), i.e. W(v)=W(w).

Now let R(w)=R(v) and each component of P(v) be a beginning of a com-
ponent of P(w). By a straightforward computation we obtain w=ww" 17, i.e. w=v.

COROLLARY 5. Majorants of idempotents of a free inverse semigroup are idem-
potents.

COROLLARY 6. Every element w of .9y possesses no more than (la)|+1)...
... (la,| + 1) different majorants if w¢ E(F Fx) and no more than (|ay|+1) ... (|la,]+1)—1
different majorants if w is an idempotent. In particular, as an ordered set, F %y satisfies
the ascending chain condition.

COROLLARY 7. Free inverse semigroups satisfy the ascending chain condition for
principal right ideals.

Proor. The latter condition is equivalent to the ascending chain condition for
the semilattice E(F.%y).

Corollary 7 has been obtained independently by H. E. SCHEIBLICH.

- COROLLARY 8 ({14]). Every element of F 9% has a uniquely defined maximal
majorant (namely, if we F L, then R(w) is the maximal majorant of w). % %y and
F I% are generated by their maximal elements.

Let #%, be prefix ordered (i.e. for w, v€EF %y w=v means that w is a beginning
of v). Then F %y is a tree semilattice.

COROLLARY 9. E(F ) is a free semilattice over a partiolly ordered set dual
to F%9y.

Proor. By Corollary 3, E(F#3) is isomorphic to E* which is the set of all
closed subsets including an empty subset. Corollary 8 follows by Theorem 4.2
from [6].

COROLLARY 10. An element w of F Iy is maximal if and ounly if W(w)=0.

Let o denote the smallest group congruence on & .#4. It is known [13] that
w=uv(o) if and only if w and v have a common minorant. It follows that w=v(o)«
< R(w)y=R(v). In particular, every o-class contains the largest element: if w belongs
to a o-class then R(w) is the largest element of this g-class [14]. Thus, # .3 is an
F-inverse semigroup in the sense of [4]. This fact has been proved independently by
L. O’CARROLL.

COROLLARY 11. Every o-class of F 4% is a distributive lattice relative to =.
In particular, E(F53$) is a distributive lattice. Moreover, for every u, v, we F.F¢
such that u=v(c) we have (Wv)w=uwVow and w(uVv)=wuVwv. Here \ denotes
the operation of forming the least upper bound. Elements from different a-classes are
incomparable relative to =.
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Proor. If w, v€F 7} and w=v or v=w then, by Corollary 4, R(w)=R(v), i.c.
w=v(c). Therefore, two elements from different o-classes cannot be comparable
relative to =. Now let w=v(¢). Then R(w) R(v) is a common majorant of w, v.
However, two elements of an inverse sem1gr0up which possess a common majorant,
possess also the greatest lower bound [13], i.e. wAv exists. Let {a;,...,q,} be a
list of all components of. P{w). Let ¢; denote the longest beginning of ¢; which is
also a beginning of some component of P(v). Clearly, such ¢; always exists (¢; may
be empty). Let u=C((c;¢7Y... (c,ci HR(W)). By Corollary4 w=u and v=u. Sup-
pose now w=f and v=¢ for some t=(d,d;")...(d.d7Y)a. By Corollary 4, every
d; is a beginning of some a;(; and of some component of P(v). It follows that 4|
is a beginning of ¢;;. By Corollary 4, u=¢, i.e. u=v\w. Therefore, every o‘-class
of # .44 is a lattice.

Let A, denote the o-class containing a word a€ # %, Then a is the largest ele-
ment of the lattice 4,. It is well known that the set A, of all minorants of 4 is order-
isomorphic to anyone of the ordered sets A,,-1, A,-1, A,-1, (here A,-1 denotes
the set of all minorants of aa=1¢%#.#}). Clearly, the lattice A4,,-1 is a principal
ideal of the lattice A,=FE(FF3), therefore, the lattice A, is distributive if A4, is.
Clearly, the distributivity of A, follows from the identities (uVo)w=uwVow and
w(uVv)y=wu\Nwo for all u, v, we F I, u=v(c). On the other hand, these identities
follow from distributivity of A, [11]. We give an independent proof of this fact here.

Clearly, v~ uVo~to=(u\Vo)"HuVv). Since u=uu " u=u\Vo)u u=u\Vv)@u tuy
Vo~lv) and, analogously, v=@Vv)(u tuVv~lv), we obtain wVo={uVo)(w tuy
Vo~1v), whence,

Vo) @Vo)=(uVo) Vo) @ tuVe  o)=u" uVo o,
Thus,
Vo) wVoy=u"TuVv .

Since uw=uVo)w and vw=(u\Vv)w, we obtain uwVow=(Vr)w. Using dis-
tributivity of 4,, we obtain

(@Vyw)twVo)w = w Vo) tuVo)w = w @ uVo to)w =

=w  ww  u uVo ) ww Y w = wl(ww e uww W ww o loww T hw =
=www u tuwVw o tow)w Y w =

= wu " tuwVw o tow = (uwVow) " HuwVow).

If for two elements g and /1 of an inverse semigroup g=/4 and A~ '=gg =" hold, then
h=hh"'h=ggh=g, ic, g=h
Therefore, (uVo)w = uwVow. Now
wVo) = (Vo) tw )t =
= (@ Vo hw ) t= @ lwT Vo lw ) = wuVwe.
CORCLLARY 12. An element w of F Iy is an idempotent if and only if ww™t=

::‘4}‘1

4 Acta bMathematica Academiae Scientiorum Hungaricae 26, 1975



50 B. M. SCHEIN

Proof. The “only if” part is trivial. To prove the “if” part suppose

ww™l=w=ly and w = (g;a7Y) ... (a,a7VacC5.
Then
ww = (aparY) ... (@07 ) (ea™)
and
wlw = a Yaa7Y ... (a,a7)a =

= (gla ' a)g(ar'a) .. (g(@™a)g(a; a))(a a).

It may be verified by straightforward computation that the latter word is canonical
if and only if all the words {q,, ..., @,, a} begin with the same letter; otherwise, the
canonical equivalent of the latter word is (g(e a)g(aa)...(g(a  a,) g (6" a)).

Case 1. Let the words {ay, ..., @,, a} begin with the same letter. Then W (ww—1)=
=W (w~tw)=n+1, therefore, the words {ay, ..., a,, a} are the components of ww—1
and the words {g(a™a), ..., g(a 'a,), a~'} are the components of w~'w. Thus,
the two sets of components coincide. If a~1=a then g(a?) is an empty word; it fol-
lows that a is empty and w is an idempotent.

Now let a~*=g;. Then g(a™'a)=g(a % =a; for some j, gla *)=g(a*a;)=aq,
for some k etc. After a flnite number of steps we obtain g(a ?)=g(a"1q,)=a, ie.
g(a?*) is an empty word. Therefore, ¢ is empty and w is an idempotent.

Case 2. Let the words {ay, ..., a,, a} do not begin with the same letter. Then
the components of w™iw are {g(a " ), ..., gla *a,)} and W(ww D)=W(w ' w)=n.
Therefore, a is a beginning of some of the words {4y, ..., a,}, say, of the word a;,
and the components of ww™! are {ay, ...,'a,}. Now a;=ab for a nonempty word 5,
it follows that ab=a;,=g(a"*a;), i.e. g(a®*b)=a;. Therefore g(a?b)=a;=g(a *a;)
for some k. It follows that g(a®*b)=g(aa'a)=g{a)=a,=g(a *a,) for some p.
Proceeding along these lines we obtain after a finite number of steps that g{a?b)=
=g(a™b) for different ¢ and m, ie., in case g=>m, g{a? "b)=g(b)=>. It follows
that g(e?™™) is an empty word, i.e. g is empty and w is an indempotent.

COROLLARY 13. F .9, does not contain nontrivial subgroups.

Proor. Supbose G is a nontrivial subgroup of F £, and weG, w is not an
idempotent. Then ww™* and w™'w are the identity of G, therefore ww™'=w"tw
and, by Corollary 12, w is an idempotent, a contradiction.

COoROLLARY 14 ([7]). The Green equivalence 3 on F Iy is the identical equivalence.
Proor. Suppose w=p{#). Then ww™* = vo~* and w~lw = v~ 1. Now
wo Y wo Bt = wolow = wwlww Tt = ww =
= o0l = g~ lop" = ow T two ™l = (womH) " (wo D).

By Corollary 12, wo™' is an idempotent. Therefore, wo=* = (wo™) "% = vw™1. We
obtain
w=ww tww w = wo towtw = W HwrHtw =
= wr Y lw=owlw=v0"tv =0
Thus, # is the identity on ..
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We could find the other Green equivalences on %.%,, however, we omit their
description which is a matter of simple computations. Notice that equivalence
classes of all Green equivalences on % .#y are finite. In particular, #.#5 does not
contain a bicyclic subsemigroup (such a subsemigroup is included into a single &-
class, the latter class should be infinite, a contradiction). Every nonidempotent element
of F.Fy generates an infinite subsemigroup of & ¥y (since the homomorphic image
of such an element in F %y is not identity and generates an infinite subsemigroup
of #%y). Therefore, F.#5 does not contain nontrivial Brandt subsemigroups.

Since #.#; does not contain bicyclic subsemigroups, the Green equivalences
2 and ¢ ceoincide on F 4. In effect, D ¢ in any semigroup. Let an inverse semi-
group S do not contain bicyclic subsemigroups. If 5, 7€ S and s=£(¢), then t=xsy
and s=utv for some u, v, x, y£S. Therefore, s=uxsyv. Let w=ss "luxss ™t It is
easy to compute that ww l=gs~! and wlw=ss L If wiw<ss ! then wiw<
<ww™!and the element w generates a bicyclic inverse subsemigroup of S, a contradic-
tion. Therefore, w™lw=ss"1. Analogously, zz7'=z"tz=s5"1s for z=s5"lsyus "Ls.
It foliows that s=x5(¥) and xs=xsy(%), whence s=xs5y(9D), i.e. s=t{D). Therefore,
FCG,ie. G=4.

Note added on January 31, 1973. After the paper had been submitted for publica-
tion, we received the following relevant papers [15—17]. In [15] a new construction
for # % (in terms of “birooied word trees”) is given. It is proved also that F.%y
is Hopfian if X is finite, it is residually finite and completely semisimple. In [16]
the first part of our Corollary 11 is proved, there are given new proofs for a number
of other results on & #y (e.g. those from [7, 14]), it is proved also that & #; is Hopfian
(i.e. endomorphisms onto are automorphisms) if X is finite. In [17] a construction
for & #y is given which is rather alike to ours. Of course, all the constructions for
F Iy (namely, those of [9], [15], [17] and from this paper) could be deduced one
from another. E.g., a construction quite similar to ours has been actually deduced
from that of [15] in [18]. Every construction has merits and drawbacks of its own.
E.g., the Green relations on %%, seem to have the simplest expressions when the
constructions {9] and {15} are used. The fact that the word problem for #.7; is
soluble (first proved in [15]) follows immediately from our construction (since an
algorithm transforming every word to a canonical form is given).
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