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§ 1. Introduction

In this paper we are going to prove the following theorem:

Let n, k(=1) be integers such that n=3k and suppose that the valency of
every vertex of a graph § of » vertices is not less than 2k. Then § contains £ inde-
pendent circuits.!

The special case k=1 of this theorem is a well-known and almost trivial as-
sertion of graph theory. This generalization of it has been conjectured by P. ERD6s.
A few years ago G. DIrRAC stated the following slightly weaker conjecture (writ-
ten commiunication). :

If a graph C‘; of n=3k vertices is 2k-fold connected then it contains k indepen-
dent circuits. The special case k =2 of our result was already known to them too.
In their paper [1] G. DirRac and P. ErDGs prove the following theorem.

To every k=1 and to ¢=0 there is a smallest integer n(k, ¢) such that if
n=>n(k, ¢) then every graph @ of n vertices every vertex of which has valency =2k
except possible ¢ vertices contains k4 independent circuits. Though this theorem
for large n is stronger than ours, it is of quite different character and the proof
needs different arguments.

Using our theorem already mentioned in paper [1] G. DiraC and P. ErRDds
prove a generalisation of this theorem tco. As to the further possible generaliza-
tions and problems arising here we also refer to [1].

We would like to mention that in the first version of this paper dated November
9, 1961 the proof of our results was more complicated. L. PGsa called our atten-
tion to the fact that the proof of the case n=3k can be considerably simplified.
We will point out in the text where his idea is used.

§ 2. Definitions. Notations

A graph @ is considered to be an ordered pair (G, §*) where G is the set of
vertices denoted by P, 0, ... etc. and §* is a set of non ordered pairs (P, Q), P# 0,
P, Q€G called the edges of §.

A graph ¥ is said to be a subgraph of G if HEG and H* SG*. If % is a sub-
graph of @ we briefly say that § contains ¥ and we write HESG.

If @ 18 a graph, and H& G then the subgraph of C}’ spanned by the vertices
belonging to H will be denoted by §(H)=(H, G* (H))-

' We only consider finite graphs without loops and multiple edges. For the detailed explana-
tion of the terminology used in this paper see § 2.

13*
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|4} denotes the number of elements of 4 for an arbitrary set A.

If §=(G,G*) is a graph |G| will be denoted by v(§).

If PeG then the number of edges of § incident to P will be called the valency
of P in § and will be denoted by v(2, §).

If PeG and HEG, then the number of edges (P, 0), Q€ H of § is said to be
the valency of P in § with respect to H. This will be denoted by v(P, §, H).

Let Py, ..., P; be different elements. The graph C[P,, ..., P,] the vertices of
which are Py, ..., P; and the edges of which are (Py, P,), (P, P3), ..., (Pj_y, P}),
(P;, P,) will be said a circuit of length j, for j=3. The graph #[P,, ..., P;] the ver-
tices of which are Py, ..., P; (j=1) and the edges of which are (Py, P,), (P,, P3), --.,
(P;-,, P;) is said to be a path of length j.

If [Py, ..., P}l is a circuit or [P, ..., P;] is a path the set of vertices {P, ...
..., P;} will be briefly denoted by & or 2 respectively.

Two vertices are said to be independent (in a graph §) it they are not connected
by an edge.

Two edges or two circuits are said to be independent if they have no common
vertex. A collection of vertices (edges, circuits) is said to be independent if any two
of them is independent respectively.

Let k be an integer k= 1. We say that a graph is an O graph if it is the sum of
k independent circuits more precisely if Cy, ..., G is a collection of independent
circuits, and the set of vertices and the set of edges of C‘} are the union of the set
of vertices and the set of edges of the circuits &, ..., @, respectively. We will use
the notation OF= @, +... +C,. '

§ 3. Proof of the theorems

THeOREM 1. Let §=(G, §*) be a graph such that v(§) =n. Suppose nz=3k,
k=1 and v(P, §) =2k for every vertex PEG.
Then G contains an O graph.

REMARK. Theorem 1 is best possible of its kind as is shown by the following
example:

Let §@=(G, §*) be the graph defined by the following stipulations.

Let G, G, be two disjoint sets, |G| = 2k—1, |Gyl= n—2k+1=k+1.
Put G = G, UG,. The edge (P, Q), P, <G belongs to §* if and only if either
P,Q¢cG, or PcGy and Q€G,. '

It is obvious that v(§) =n=3k and the valency v(P, §) of every vertex of §
is not less than 2k — 1. On the other hand, § does not contain a graph Ok= @+
+...+©, since for every circuit @S@, € contains at least two elements of G,.?

Instead of Theorem 1 we prove the following stronger

THEOREM 2. Let §=(G, §*) be a graph such that v(§) =n. Suppose n=3k,
k=1 and suppose that v(P, §)=2k for every vertex PeG. Put n = I+t where
O0=t<k (I=3). Then C‘j contains a graph OF satisfying the following conditions;

Ok = @1+ +@ko

2 This graph C?y was constructed by P. Erods and T. GarLrar See [2].
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The length of C,; is not greater than I for 1 =i = k—1t. The length of ©; is not
greater than 1+1 for k—t < i = k.

REMARK. In case n =3k Theorems 1 and 2 give the same. For n > 3k Theorem 2
;8 stronger than Theorem 1. Thus it is sufficient to prove Theorem 2.

_The estimation given by Theorem 2 for the length of @, is certainly not best
possible for large n. Although one can prove that it is best possible if n=4k. Per-
haps one can carry out simpler proofs for the case n >3k of Theorem 2 which gives
1o estimation for the length of @; but we do not succeeded in obtaining this. Before
proving Theorem 2 we formulate a well-known general argument of graph theory
which will be used in the sequel.

Let @(H), P (H) denote properties of graphs. The property @(H) is said to
be monotonic if ®(H,) implies &(¥,) provided X, =SH,, H,=H,.

The graph ¥, is said to be saturated with respect to the property @(%), if
every proper extension ¥, of #, with ¥, SK,, Htf=H3 H, = H, fails to possess
property &.

The property @ (%) is said to be a finite graph property if for every graph K,
which has property @ there exists a maximal graph ¥, with H, = H, which contains
%, and which has property & i.e. ¥, S%,, H, =H,, ®(H,) and ¥, is saturated
with respect to the property &.

An almost trivial ,,reductio ad absurdum™ proof shows that the following
statement is true

LEMMA 1. Suppose that ®(H) is monotonic, and the negation of V(X)) is a finite
graph property. Suppose further that every graph H which possesses property &,
and which is saturated with respect to the negation of property ¥, possesses property ¥.

Then every graph wich has property ®, possesses property ¥ too.

The application of this argument was proposed by L. PésaA.

Now we turn to the proof of Theorem 2. We need here several lemmas, the
proof of the lemmas is to be found in §4.

We distinguish the cases A) n=3k, B) n=>3k.

Proof of Theorem 2 in case A).

Let q be a graph satisfying the conditions of Theorem 2.

Let ¢(¥) denote the property of a graph ¥ that v(P, %) =2k for every PcH.

Let ¥ (H) denote the property of a graph X that ¥ contains an OF graph.

It is obvious that (%) is monotonic and that the negation of ¥ (¥) is a finite
graph property. Thus by Lemma 1 we may suppose that

1)) § is saturated with respect to the negation of ¥ ().
Now we assume that

2) § does not contain an O* graph and we finish the proof by obtaining a con-
tradiction. _
By (2) there exist P, 0€G, P Q such that

(3) P, 0)¢ G,
Hence ?1 =(G, §1) with §i = §*U{(P, Q)} is a proper extension of @ and
considering (1) §, contains an O graph. That means there exists a graph OF =



426 K. CORRADI AND A. HAJNAL

= @; +... + &, satisfying the condition:
@ OFc@r  (OF=Ci+...+CY.

Considering that the length of a circuit is at least 3 a_pd,that n=3k we have
(5) the length of the circuits ©; is 3 for 1 =i=k; the sets ©; are disjoint and
G= | GC.
1=i=k

It is obvious that at most one of the circuits ©; contains the edge (P, Q), and
by (2) one of them, let us say @, , contains (P, Q). Thus we can choose the notations
so that the following conditions hold.

(6) 912'@1[1)%7}’51’.,1)%]5 @1=@1[Pi3P£9P%]
P=P}, 0=P;; CE§ for 2=i=k,
2,2G and (P} PHEG

The idea of our proof is to show that in the subgraph spanned by the path

5’—1 and some, say four triangles C; one can find five independent triangles. However
the technical excecution of the proof is not so simple

() Put H =CU..UG&.
3
Put further r= 2 v(P}, G, Hy).
; =
By the assumption and by (6) we have r= 6k—4. Considering that 6k —4 >
3 _—
> 6(k—1) it follows that there exists an iy, 2=ip =k such that Jv(P},§, C;)=7.
i=1
We may assume that i, =2. Hence we have
3 —
®) 21 v(P}, G, C2)=T.
J=
Now we need the following

LeMMA 2. Let K be a graph such that v(H)=6. H={P,, P,, P3, Q,, 0., 03},
g[Pla P2a P3]g%’ @:@[Qla Q29 Q3]g% and

3 —
> v(P;, H,C)=T.
=1
Then either H contains two independent triangles orv(Py, ¥ , @) =3,0(P;, %, ©) =
=0(P3, ¥, ©) =2 and there is a j, 1 =j=3 for which (P, Q)4 ¥* and (P;Q;) ¢ X*.
If C‘;(ﬁl U@,) contains two independent triangles then by (6) § contains an
O* which contradicts (2). Thus by (8) and by Lemma 2 we have

)] (P}, PHEG* for j=1,2,3.
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We may assume that

(P1, PG>, (P35, PDEGH
and
(P}, PHeG*, (P3,PHe@x for j=2,3.

(10) Put H, =C3U...UGy.
Considering that by (6) and (9)
v (P, @, 2, U@ = v{P}, @, 211U Cy) =3

we have
v(Pi, @, H,)+v(P}, Cj}, H,))=4k—6=>4(k—2).

1t results from (10) that there exists an i,, 3=i,=k such that
v(P}, G, i)+ v (P, G, Cp) =5.
We may assume i, =3. Thus we have
| an - (P}, G, C3)+ (P}, G, C3)=S5.
By symmetry we may assume that
(12) v(P{, 3. C3) =3 and (P}, §,Cy)=2

and that
(P}, PeG*, (P3, PHEG*.

C3 =C3[Pi, P}, P3}.

Put

Then we have by (12)

(13) C;SG and v(P3, G, CY=3.
Put .
(14) DIZ{P%3P%aP%=Pg}= DZZ{P§JP§}7

H; =C;UGC,U...UG.

We need a lower estimation for 3 v(Q, Cj}, H>).
QeDy

(15) Qg 0(Q, G, Hy)=8(k—2).

To see this, we recall first that by (9) (P}, P{)¢ §*. Taking into consideration (6)
and (9) an easy discussion shows that (P}, P3)¢ §* and that v(P3, §, D, UD,)=3
for if not then G(D;UD,) would contain two independent triangles, and these
would form with G5, C,, ..., €, k independent circuits in § in contradiction with

Q.
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Thus we obtain (15) as follows

Qé; ”(Qa@ H3) = v(P}, Q H3)+v(P3, § G, H3)+U(P17  H3)+

+0(P3, G, Hy) =2k — 4+ 2k — 4+ (2k — 4 + 2k — 3) = 8k — 15.
It follows from (15) that either (16) or (17) holds
(16) QZ v(Q, G, C3)=9.

an » 2> v(Q, G, &)=9 for an iy, 4=i,=k.
QeD;

We may suppose. that i, =4.
Now we need the following

LemMaA 3. Let K be agraph suchthat v(®) =7, H={P,, P., P;, P4, Q;, 0,.0:}.
Suppose that (P, , P,)cH*; (P;, Py cH*; C=C[0,, 0,, 0;]1EH

Zv(Pl,?f ©)=9.

i=1

Then there exist two independent triangles &, Q" 9. If v(P P o5 4y L,) 3 for an
arbitrary j,, 1 =j,=4 then &, @” can be choosen so that P, €@’ U@, ece @,

Now we show that any of the statements (16), (17) leads to a contradiction.
Suppose that (16) holds. Considering that by (9) and (12) (P3, Pf)€G* and

(P3, P3)e@*, and that by (13) C3&§ and v(P§, G, ©%)=3 we may apply Lemma 3
to the graph X =@§ (D, UE4) with
1::P2: P2:P%5 P3:P%> —P4:Pg=
@:@39 QIZP%D QZZ:be Q3:‘—P29
where v(P,, ¥, ©) =3.

It follows that (%’(DIU(%) contains two independent ClI‘CUItS @’ @” and

D,U@; = {PYU@UE” where P is one of the vertices P., P}, It follows

from (6) and (9) that the circuit @” =C”[P, P, P3] belongs to @ By (6), ®, (13)

and (14) &, €7, C",C,, ...,C are k 1ndependent circuits in §. This contradicts (2).
Suppose that (17) holds then again by (9) and (12)

(Pi, PHEG* and (P, PHEGr.
Hence we may apply Lemma 3 to the graph % =G (D, Ue,) with
P,=P}, P,=P{, Py=P;, P,=PF},
C=C, 0,=P}, 0,=P}, Q;=P}

It follows that G(D, U@,) contains two independent circuits &, @ and D, UC, =
= {PYUQ U@ where PED,.
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We distinguish two cases (i) P P3, (il) P=P3. If (i) holds then by (9) the
circuit €7 =@”[P, P%, P3] belongs to G, and by (6), (13) and (14) @,C", @~,
©3,Cs, ..., &, are k independent circuits in §. This contradicts (2).

If (ii) holds then by (9) the circuit @” =C”[P}, P3, P2] belongs to § and con-
sidering that P= P belongs to ©;, using again (6) and (14) we obtain that @,
e, Q" C4,C,, ..., & are k independent circuits in G. -

This again contradicts (2). Thus the proof of the case A) is complete.

ReMARK. It seems that using our method the proof of the case n =3k can not
be simplified essentially. Namely, in case k=4 it is easy to construct a graph
satisfying the requirements of our theorem such that it contains the triangles
&, €3, €, and the path £, of length three, further G=2,UC,UL, UE,, but
C,EO* (i=2,3,4) for every O* contained in §. Though this difficulty does not
enter in the proof of the case n >3k this proof is also complicated.

Proof of Theorem 2 in case B).
The theorem is trivial for £ =1. We assume k= 1. First we state a Lemma.

LemMA 4. Let ¥ be a graph, v(¥) = r+ 1. Suppose that @=C[Q;, ..., Q]S X,
H={0Q,, ..., Q,, P}. Then ¥ contains a circuit & of length <r provided one of the
Jollowing conditions holds:

a) r=4- and v(P, W, C)=2,

b) r=3 and o(P,%,C)=3.
We prove

(18) § contains a circuit of length =1

It is obvious that § contains a circuit. Let € =¢[Q,, ..., @,] be a circuit con-
tained in § of minimal length, i e. @gg and v(€) =r for every & S@. We have
to prove r=/. Suppose that this is false, i. e. 7>/ Put H; = G—C. Then |H,| =

= lk+1—~r. Considering the minimality of r we have v(Q;, q., C)=2forI=j=r.
It follows from the assumption that

V= 2vQ;, G, H)=2kr—2r = 2(k—1)r.
fosy!

Considering that H, V€ =0 we have V= 3 u(P, G. ©). It results that there exists
PcH, ¢

a Py€H, for which v(P,, §, ©) =3 for if not, then
k- =V =20k+t—r),
kr = lk+1t < (+1)k hence r < [+1
in contradiction with the assumption r=1/.

But then we can apply Lemma 4 to the graph Cj(@ U {Po}) Considering that
r=>1=3, we obtain that § contains a circuit © of length <r. This contradicts the
minimality of r. Thus (18) is proved.
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It follows from (18) that
19 there exists an integer s(=1), for which there exists an O* graph satisfying
the following conditions:

2 OF = @ +.. 48,6,
b) v@)=l for l=i=k—t, iss,
©) - v(@)=I+1 for k—t<i=k, i=s.

{If i>s then conditions b) and c¢) hold vacuously).

(20)  Let s, be the greatest integer =1 satisfying the conditions of (19).
We have to prove s, =k. We assume

21 5o <k,

and we finish the proof of case B) by obtaining a contradiction.

(22) Let v, be the least integer for which there exists a graph O% satisfying
the conditions of (19) with s=s,, such that v(O%)=v,. Put briefly
H=@,U...UE,, for such an O%= €, +...4+C .

23) Let u be the maximal number 1 =wu=/41 for which there exists a graph
O satisfying the conditions of (19) such that v(O%)=v, and such that
there exists a path Z=2[P,, ..., P,] with 2SG—H.

We are going to prove that u = [+ 1. To prove this let

24) &= Cf+... +CY be a graph satisfying the conditions of (19), such that
v(OF)=v,, He=CU...UCY and let Z=2[P,, ..., P,] be a path 256
such that & G—H,.

Put
(25) D=G—H, D =D-2

and assume that
(26) u < [-+1.

(The assertions (27)—(35) will all depend on the indirect assumption (26).)
It follows from (26) that :

27 G(D) does not contain a circuit.

In fact if @ S§(D) then if v(€)=1 then by (24) O+l = @ +... +C +&
would be an O%*! graph satisfying the conditions of (19) with s = s,+1 in con-
tradiction with (20). Hence & S§(D) implies v(€) = I+ 1. But then by (24) and
(25) G(D) would contain a path of length =>u in contradiction with (23).

Considering (23), (24) and (25) we have v(P;, §, D;) =0 and v(P,, G, D=0
and it follows from (27) that v(Py, G, ) =v(P,, G, #)=1. Hence we have

28) o(P,, 8, D)=1, v(P,, G D)=1.
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Now we show
(29) D, is non empty.
Considering (19) and (24) we have
|Hol=1ls, if s < k—1t,
|Ho| = I(k—)+(so—(k—0) (I +1) if 5o =k—t.
It results from (19), (24) and (25) that
[Dy] = |G| —u—|H,|.
Thus by the assumption and by (26) we have
Dyl = lk+t—1-1Is, if s, <k—1t,
Dy = lk+t—1—-I(k—0)—(so—(k—D)I+1) if so = k-1
Considering that lk+1¢ = I(k—1)+(+ 1)z we get
D = ltk—1—-s)+t if s < k—t
1Dyl = @+ D(k—s9)—1 if 59 = k—1t.
Considering (21) we obtain that |D;|=>0 except if s < k—1t, k—1 = s,,
t=0, u=1l, |Hy| = I(k—1) and as a consequence of these and of (19), (24)
v(@)=I! for 1=i=k-1.

But in this case | D] =0 leads to a contradiction as follows. Considering that =0
and that #» = lk+¢ > 3k (by B)) we have /=4. It follows from (28) that
v(Py,§, D)=1 hence by the assumption v(Py, §, Hy)=2k— 1. Considering again
(19), (24) and (25) we obtain that there is an i, 1=iy=j, = k—1 such that
v(Py,@,C)=3. Using v(C))=I=4 we can apply Lemma 4 for the graph
gepu {P:}). It results that it contains a circuit @ with v(€) <v(C?). But then

@4 +C 1 +C @ 1+ ...4+CY is an O% graph satisfying the conditions
of (19) with v(O%) <v(O%)=v, in contradiction with (22). Thus (29) is proved.

If v(P, §, Dy)=2 for every PED, then by (29) G(D,) contains a circuit in
contradiction with (27). Thus there exists a P, such that

(30) PoeDy and v(Py,§, D=1,
It follows again from (27) that v(P,, Cj, #)=1 thus by (25) and (30) we have
(31) PoeD and v(Po, G, D)=2.

Considering the assumption, (28) and (31) we obtain thet
(2 o(Py, G Ho)+0(Py, G, Ho)+v(P,, G, Hy) = 6k —2—-1—1 > 6(k—1)

if Pp#P,i e if u=1,
and

v(Py, Cj}, Hy) +v(Py, C}’, Hy)y=4k—-2—-1=4(k—-1)
if u=1.
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Put
(33) D, ={Py, P, P,}. Then D, D and |D,|=3 if u=1, |D,|=2if u=1.

Considering (21), (24) and (25) it results from (32) and (33) that there exists
an iy, 1=i,=s5,=k—1 such that

34) | peey=1 T ¥l
( 2, B GCI =15 o,

It follows from (34) that v(P, §, ©3)=3 for a P'¢ D, and it follows that
(35) V(@) =3.

Since if v(C7)>3 then by Lemma 4 G(Cf,U{P’}) contains a circuit €& with
v(@)=<v(C}) and then O% = C+...CY_ 1+ @ +CF,1+...+C:, would be an
O graph satisfying (19) with v(O%) <v, in contradiction with (22).

Now we need the following

. Lemma 5. Let X be a graph with v(¥) =v+4, v=l. H={Q4, 02, 0s,
PO:PI’---s Pv}' Suppose that e=<Q[Qla Q2> QS]g%a g:g[Pla-‘-apv]g?L
Put B={P,, P\, P,} and suppose further that

(P T 7 if v=1
=
p%yv( * o ) {5 if v=1.

Then there exists a triangle C’ and a path % of length v+1 such that Q' S,
PH and &’ NP =0.

Now we may apply Lemma 5 for the graph X =§(Cf, U2 U {Po}) with C=Cf,
B=D,, by (33), (34) and (35). Thus there exists a triangle &€ and a pat_l}ﬁ’" of length
u-+1 satisfying the conditions @ SGELULU{Py}), € SG(CLUPU{Po}) and
&Ny =0.

It follows that the graph O% = &9+ ... +Cf_1 +C€ +Cf 1 +... +C8 satis-
fies the conditions of (19) and v(O%) =v(O%)=v, (by (35)). Hence the number
1+ 1 satisfies the conditions of (23) with this graph O% and with the path 2. This
contradicts (23) and it follows that the assumption (26) # < /41 leads to a con-
tradiction. Thus we have

(36) u=1+1.

We may assume that O and £ satisfy the conditions of (24) with u = /+1.
Considering that in (24) 2 can be.choosen for an arbitrary path of length /-+1
contained in §(D) and that (19), (20) and (24) imply that G(D) does not contain a
cirenit of length =/ we may. assume that
{37 one of the following statements (i), (ii) holds

@) @(D) does not contain a circuit of length =/+1,

(i) €= C[Py, ..., P141]EG,

where #= P[P, ..., P;.;] denotes the path satisfying the conditions of (24).
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We need some further definitions and notations.
(38) Put ¢,=v(@?) for 1=i=y,.

Then
Vo = éci'
i=1
Put further
1+1 I+1 . 1+1
(39) V= jg; U(Pj9 @5 HO): Vl = j;; D(Pjs Cj)a ,@), VZ = j;; v Pj’ q’ Dl)'
Considering the assumption and (25) we have
i+1
(40) VAVi+Vy = 2 v(P;, §=2k(+1)
j=1

We need a lower estimation for V. First we prove some preliminaries.
41) v(Q, G, P)=2 for every Q€D

For if not then (P;,, Q), (Py,, Q), (Pj,, Q)€G* forsome 1 =j; <j, <j; =
= [+1 and the circuits &' =C€’[Q, P;,, ..., P;], &' =C"[Q, P;,, ..., P;] belong
to @ and at least one of them is of length =/

Thus by (24) either O+ or Of+C€” is an On+! graph satisfying the
conditions of (19) in contradiction with (20).

(42) Let D, be the set of those Q¢ D, for which v(Q, G, P)=2.
We prove:
43 Suppose /=4 or [=3, k—t = s,. Then
|D,] =1 if (37) (1) holds;
|D,} =0 if (37) (ii) holds.

If (i) holds and v(Q;, C})a P)=y(Q,, @, P)=2 for @, # 0, €D, then (Qy, Py);
{015 Pra1)s (@2, Py); (O, Py €G* for if not then §(D) contains a circuit of
length =/+1. But then & = ©[Qy, Py, Q,, P;44] Is a circuit of length 4 = /41
contained in § and this is a contradiction.

Suppose now that (i) holds. Then s, < k—1¢ for if not then by (24) Op+
+@[Py, -..s Pyyq] is an O+l graph satisfying (19) in contradiction with (20).
Hence we may assume /=4. That means v(C[P, ..., P,;4]) > 4, and then |D,|>0

“leads to a contradiction for if Q¢D, then v(Q, §, €)=2 and then by Lemma 4
§(@U{Q}) would contain a circuit € of length =/ < I/+1. But then by (24)
O +€ would be an O%+*! graph satisfying (19) in contradiction with (20). Thus
(43) is proved.

Considering again that, by the maximality (20) of 54, G(D) does not contain
a circuit € with v(@)=1]if 5, <k —¢ and with v(€) =741 if s, =k —1¢ we have

vV, = 2(+1)—2 if (37) (i) holds

(44) .
Vy =2(+1) if (37) (ii) holds.
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Considering that by (25) and (39) V, = X v(Q, G, #) it follows from (41)
that Qehy

(45) Vi = |Dy|+1|Ds.
Now we are going to prove

6 V>(1+2)s,+vo if so<k—t and
V=({+Dsg+ve if so=k-1

By (40) we have
Vz=2I+)—V,—V,.
Hence we have

V=2k-D(+1D)-V, if (37) (i) holds,
Vz=2k-DU+D)—-V, if (37)(ii) holds.
On the other band by the assumption and by (25) we have
1Dyl = lk+t—({U+D)—ve =+ DK —-—D~k—1—v,.
Using (45) we obtain
V=>(U+1)(k—D+k—t+vy—|D,] if (37) (i) holds,
V=(0+D)(k-1D)+k—1t+vo—|D,| if (37) (ii) holds.
Now we distinguish the cases

()] I=4 or I=3 and sy=k-—1,

(O)

(o) I=3 and s,<k—1.
Ad (o): It follows from (O) (37) and (43) that V=(+1) (k — 1) +k — £ + v, holds.

Suppose first s, =k —¢. Considering that by (21) s, =k —1 and that k—7>0
by the assumption we get

(I+Dk—=1—-5)+k—1t=0
hence
V=(+1)sq +v,.

Suppose now sy, <k —t. Then considering that 0=r=k—1
V=(0+D)k—-D+k—t4+vo =0+ k—t—D+(I+Dt+14+v,>
>(+2) (k—t—=1)+vy = (+2)s0+v,.
Hence (46) is proved if (&) holds.
Ad (a): 1=3, so<k—1t.
Considering that by (42) we have |D,|=|D,| we obtain from (O) that
V=2(k—1)+2v,.
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Considering that (x) holds it follows from (19) and (24) that v, =3s,, hence
V = 2(k*t)+3S0+vO >5S0+V0 = (l+2)s0+v0
holds in this case too and (46) is proved.

We prove:
47 There exists an iy, 1 =iy, =s, such that

1+1 __
ZU(PJ,@,@?G)EI+3+% if so<k-—1,
j=1

1+1

2UPJ-,C‘J?,@32))§l+2+¢;»iu if sy=k—t.
Jj=1

Suppose that (47) is false. Then by (25) and (38)

se i+1 . Sg So
V= ZO’ > v(PJ-,L?, @)= 2 (+24¢) (or Z’(l+1+c;)>§
i=1 /=1 i=1 i=1

=({4+2se+ve  (or (4 1)so+vp)

respectively, which contradicts (46). _ B
If follows from (47) that there exists a P; €2 such that v(P;,, §. ©y=2 for

I+ 1

if not then 3u(P;, G, Cy=r+1.
=1
If follows that
(48) v(C)=4.

For if not then by Lemma 4 @(@Z U {P,,}) contains a circuit € with
v(@)<v(C}) and thus by Q4) O% = @i+ ... +Cp 1+ C +Cp 1+ ... + @ would
be an O% graph satisfying (19) with v(O%)<v, in contradiction with (20).

Now we need the following lemmas
_ Lemma 6. Let U be a graph, C a circuit and P a path, CCH, PEH,
CNZ =0, CUZP = H. Suppose that [=3, v(@=min(,4) and v(#) = 1+1.
Suppose further that S

2 v(P A, O)=l+3+v(O).
Pey
Then Y contains two independent circuits @', @ such that v(@)=1v(C") =1

_ Lewma 7. Let % be a graph, @ a circuit and P a path, CS K, # SH, CNP =0,
CUZ=H. Suppose that I=3 v(©)=min (I4+1,4) =4 and v(#) = I+1. Suppose
Sfurther that
2 0P, W, Q) =l+2+v(C).
Pcop
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Then YU contains two independent circuits ©,&" such that v(CQ) = [+1,
v(@ = I+1. As a corollary of this if in addition v(C) =l holds then
min (v(€), v(€")=1 holds too.

Consider now the graph ¥ =§(CjJ#) and distinguish the cases (8) so <k —1,
BB) so=k—1.

Considering that if () holds then v(€%)=/ the graph ¥, the circuit €=,
and the path 2 satisfy all the conditions of Lemma 6 and Lemma 7 if (8) or (85)
holds respectively. Suppose now that (8) holds. Then by (24) (25) and Lemma 6,
there exist circuits ©,@” such that C0+...+@%_; +@ +CP i1 +... +C3 +&”
is an O%+! graph satisfying the requirements of (19) in contradiction with (20).

Suppose that (Bf) holds. Then by Lemma 7 there exist circuits &', &” satisfying
the requirements of Lemma 7. By (24) and (25) @3+ ... +C)_1 +C +C 1+ ...
e+ @8 +@” isan O%+! graph satisfying the requirements of (19) since if iy =k —¢
then v(@?)=/, hence then we may assume v(C) =/ This contradicts (20).

We obtained a contradiction in both cases hence the indirect assumption (21)
is false and Theorem 2 is proved in case B) too.

§ 4. Proof of the Lemmas

ProOF -OF LEMMA 2. Assume that that ¥ does not contain two independent
triangles.

First we show that
(49) v(P, 9, C)=2; ov(P;, %, C)=2.

By symmetry it is sufficient to prove the first statement.. Suppose that
v(Py, H, ©=3. Considering that by the assumptions we have

3

> 0P, W, Q) = > v(Q;, X, PY=7

w

i=1
we obtain

3
ZZ; U(Qi-’ X, {P,, P3})§4

and as a consequence of this v(Q;,, X, {P,, Ps}) =2 forani,, 1 =i, =3. By symmetry
we may assume that io=1. But then & =C'[P, Q,, @3], &"=C"[Qy, P,, P;]
are two independent triangles contained in ¥. This contradicts our assuption,
hence (49) is proved.
3 _
As a corollary of the assumption 2 v(P;, ¥, ©)=7 using (49), we obtain
j=1

J=
(50) v(Py, K, @) = v(P5, %, C) =2, v(P,,%,C)=3.

By symmetry we may assume (P;, Q,)¢ H* and we have to prove that then
(P3, Q)¢ %*. Suppose that (P;, Q;)€¥*. Then by (50) the triangles € =
=@'[P,, 0,, 03], ©”=C"[Q,, P,, P,] belong to X and we obtain a contradiction.
This proves Lemma 2.
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4 _
ProoF OF LEMMA 3. Put V= > v(P;, ¥, ©). The assumption V=9 implies that
j=1
v(P;

— J=
s I, ©) =3 for a j,, 1 =j,=4, for if not then V=4.2=8, and by symmetry
we may assume that

5D VP, %, C)=3.

We have to prove that there exist independent triangles €, @” satisfying the
conditions

(52) QCH, @CH, H=CUC U{P;} where 2=j=4.

Assume that (52) is false. Then v(Q;, X, {P3, P,})=1 for 1=i=3. For if
not then by symmetry we may assume v(Q;, %, {P5, P,})=2 and considering that
by the assumption (P;, P,)c¥* the triangles @ =€[P,, Q,, O], "=
=C"[0,, P;, P,] belong to ¥ and satisfy (52) with P;=P,. If follows that

(53) | 3 0(Q0 %, (P, P =3,
Taking into consideration that
V = v(Py, % Q) +o(P,, K, (72)+§1’ 0(Q,, K, {Py, Ps})
it follows from (51) and (53) that
(54) v(P,, %, C)=3.

On the other hand v(P;, ¥, ©@)=2 either for j=3 or for j=4, for if not then
v=3+3+1+1 = 8 By symmetry we may assume

(55) v(P;, %, @)52 and (P;, Q,)€%*; (Ps, @3) €%+
Considering that by the assumption (P, P,)€¥* then the triangles
@'::@’[Pg,, Q,, Osl, @”2@”[})1: P, Q4]

satisfy by (51), (54) and (55) the conditions of (52) with P;=P,. Thus we obtained
a contradiction and Lemma 3 is proved.

PROOF OF LEMMA 4. Suppose first that a) holds. Then r >4, and (Q;,, P) € %*,
(C;,, P)eH* for some 1=j; <j,=r. Then the circuits

@ =@|P, Qi Ol @ =@"[P, Qirs oo Orr Q1..-05]

belong to ¥ bv the assumption @S H. We have to prove that one of them is of
length =r.

In fact v(@)+v(C") = r+4<2r if r=4 hence either v(@)<r or v(€") <r.

Suppose that b) holds. If 7 >4 then the satement is true by the case a) of Lemma 4
already proved. Thus we may assume that v(€)=4. But then by the assumption
(Q;, P)¢ H* holds for at most one j, by symmetry we may assume that if any then
(Q;, P)¢%(*. But then e. g. & =C'[P, 0,, Q;1SH and 3=v(C)<=v(C)=4.

14 Acta Mathematica XIV/3—4



438 K. CORRADI AND A, HAJNAL

PROOF OF LEMMA 5. Put V= v(P %, ©). 1t follows from the assumptions
V=7 (or V=5 respectively) that there exists a P¢ B such that
(56) v(P, ¥, @) =3.

Suppose first that P, satisfies (56). Then by the assumption V=7 or V=S5,
respectively, there is a Q; for which (Q;,, P,) €¢¥*. We may assume that iy=1.
Then the triangle @ =[Py, Q,, Qs] and the path & =#[Q,,P,, ..., P}
obviously satlsfy the requirements of Lemma 5. Thus we may assume that (56)
holds either for P=P; or for P=P,. By symmetry we may assume

(57) o(P;, K, @) ==3.

Suppose now that v=1. Then by the assumption V>5 (Qi,» Po) € ¥* for an i,
and we may assume #o=1. Then the triangle & =C'[P,, Q,, Q] and the path
=2'[Q4, Py] of length v+1 = 2 satisfy the requirements of Lemma 5. Hence
we may assume v > 1.
Considering that by the assumption

7=V =0v(P, %, C) + Ss’ " 0(Qis %, {Po, P.})

it follows that ZU(Q,,% {Py, P,})=4. As a consequence of this

v(Q,, X, {Py, P})= 2 for an i, and by symmetry we may assume i,=1. Hence
we have

(59)} V(Q1, %, {Po, P.})=2.

Put @ =[P, Q,, 03}, #=2[P,, ...,P,, 01, P;]. We have @NF = 0.
By the assumption CESH and by (57) we have € C¥. By the assumption
P X and by (58) we obtain that Z’CH and v(#) = v—1+2 = v+ 1. Hence
@ and 2 satisfy the requirements of Lemma 5.

PROOF OF THE LEMMAS 6 AND 7. Put v(@) =r, V= 3> V(P, ¥, ©). Put further
rcP
C=C[0,, ..., O], ?=2P[Py, ..., P,+,1]. We use induction on /. One can verify
by a discussion that Lemma 6 is true if /=r, ! = r+1 for =3, 4 and that Lemma 7
istrue if ] = r—1, I=r for r=4 and if /=r=3. For example the special case
r=3,/=3 of Lemma 6 is a corollary of Lemma 3. We omit the proof of the other
special cases which can be carried out using the same ideas.

Thus we assume that /=>r+1 and />r in case of Lemma 6 and Lemma 7,
respectively, and that both lemmasare truefor / — 1. Wemay supposethat ¥V = [+ 3 +r
or V = I+ 2+r respectively. First we prove that there exists an i,, 1=i,=I+1
such that v(P,, ¥, C)=1.

For if not than V=2l+2 and 21+2=1+3+r if I=r+1; 2[4+2=]+4+2+r if
I>r. Let %, be the graph defined by the following stipulations. Put H, = H—{P;}.

Ry =(Hy, B H) U {(Prg—1, Piyr 1)}y i 1<ipg<I+1
and
%1=%(H1) if i0=1 or i0=Z+1-



ON THE MAXIMAL NUMBER OF INDEPENDENT CIRCUITS IN A GRAPH 439

%1 contains the path 91 = gl[‘Pla PR Pio—15 'Pio+1! “ees Pl+1] Of Iength l, and
the circuit €. Then

Vi= 2 v(P, ¥, C)=l—-143+r (or I-1+2+7),
Pc2,
respectively. Considering that /—-1=3, /—1=r, A, satisfies the assumptions of
Lemma 6 and Lemma 7 for /—1, respectively. Thus ¥, contains two independent
circuits €1, @1 of length =/-—~1 or of length =/, respectively. Considering that
@i, €7 are independent, at most one ot them contains the edge (P; 1, Piy+1)-
Replacing this if necessary by the path &' =[P, _4, P, P;y+,] we get two inde-
pendent circuits of @, @” of length =/or of length = /- 1 contained in ¥, respectively.
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