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1. I n t r o d u c t i o n  

One of the most fundamental  results in symplectic topology is the non- 
squeezing theorem which asserts that  there is no symplectic embedding 
which takes a s tandard 2n+2-ball  of radius I into a cylinder ( M  x D 2 (a), vJ(~ 
a) whose base D2(a) is a closed 2-disc of a-area a < r .  This was first proved 
by Gromov ([G]) for a range of manifolds including standard Euclidean 
space, and was generalized to all manifolds by Lalonde-McDuff ([LM1]). 
In this paper we consider "local" versions of this theorem. The word local 
can here be interpreted in two ways. Sometimes we localize in space and 
think of embedding not a whole set such a ball or ellipsoid but  just its germ 
along a central 2-disc 0 x D. Sometimes we localize in t ime and look for 
embeddings which are close to a given inclusion. 

Our problem can be formulated as follows. Let (W, 12) = (M • D, w | a) 
be a symplectic cylinder, where D is a closed 2-disc of a-area ~r and (M, w) is 
some symplectic manifold. Suppose that  S is a compact subset of W, whose 
boundary is a smooth hypersurface. When can S be moved symplectically 
to lie strictly inside W? The main Theorem below gives an essentially 
complete answer to this question. As one might expect, the answer lies 
in the geometry of S near the points which meet the boundary OW of 
the cylinder. The interesting case is when S meets OW along some closed 
characteristic x x OD, and we will see that  our problem is closely connected 
to the properties of the linearization of the characteristic flow around this 
closed orbit. As a corollary, we prove the sufficiency of the condition for the 
stability of geodesics in Hofer's metric. 
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its application in Proposition 2.1. We are also grateful to Leonid Polterovich 
for carefully reading the paper and making useful suggestions. 

1.1 L o c a l  s q u e e z i n g  a n d  c h a r a c t e r i s t i c  f lows.  To state our results 
precisely, we will need the following definitions. 

DEFINITION 1.1. We say that S is squeezab l e  by i s o t o p y  in W i f  there 
is a smooth  1-parameter family ~bt~[0,1 ] of symplectic embeddings o r s  in W 
starting at the inclusion such that 

~bl(S) C I n t W ,  

where Int W = M • Int D. S is l o c a l l y  s q u e e z a b l e  by i s o t o p y  in W if  
in addition ~b~(S) C Int W for all t > O. Finally, S is l o c a l l y  s q u e e z a b l e  
in W / f  there is a sequence ~bi, i >_ 1, of symplectic embeddings S ~-~ Int W 
such that ~i converges C 1 to the inclusion as i ~ oo. 

Clearly, a set which is locally squeezable by isotopy is both  locally squeez- 
able and squeezable by isotopy. However, the exact relationship between the 
latter two concepts is somewhat complicated because an isotopy of S in W 
usually will not extend to an isotopy from W to W. This point is discussed 
further below. 

From now on, we assume that  S is a compact  subset of W whose bound- 
ary is a smooth hypersurface. Observe that all characteristics on the bound- 
ary OW of W are flat circles pt x OD. The following observation is a well- 
known fact: 

LEMMA 1.2. I[ S n OW contains no closed characteristics pt x OD then S 
is locally squeezable by isotopy in W.  

Proof: To prove this, one constructs a Hamiltonian H on OW whose flow 
points into W at all points of O S A O W  -~ S N O W .  For this, we need 
OH/Or < 0 at all points of S n OW, which is possible if this set contains no 
closed characteristic (here t E [0, 1] is the angle coordinate of the boundary 
of the 2-disc D, the base of the cylinder). To be complete, here is a more 
detailed proof. 

Because S is compact, the set P = S n OW is compact  too. Thus 
p c  __ ( M  x S 1) - P is an open subset of the manifold N = M x S 1, 
which contains ( M  - K)  x S 1 for some compact  subset K C M. Because 
there is no closed loop {pt} x S 1 in P ,  pc  contains some non-empty open 
interval {p} x I for each p E M. Now choose any smooth function f : N --* 
( - o c , 0 ]  which is strictly negative On K x S 1, and has compact  support.  
Let g : M --* R. be its integral over the s l - factor ,  and h : N -~ [0, oo) be  
a smooth positive function with compact support  inside the open set pc ,  
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whose integral on each Sl-factor {p} • S 1 is equal to -g(p) .  (The existence 
of h is obvious: simply take a finite open covering Ui C M of the projection 
on M of suppf ,  and a partition of unity r associated to it. Choose open 
subsets Oi = Ui x Ii C pc,  refining the open covering {Ui} if needed. Then 
define for each Oi a positive function hi with compact support in Oi whose 
Sl-integral is - r  and set h = ~-,i hi.) 

Hence f + h is a smooth function with compact support in N whose 
integral over each {pt} • S 1 vanishes, and which is negative on P.  Fixing a 

ft0+2~(f point to E $1, the integral Jto , -  + g) is a smooth function on N whose 

derivative with respect to t E S 1 = R / Z  is negative everywhere in P ,  and 
which vanishes outside some compact set in N.  Finally, let H : M • R 2 --* R 
be any extension of f + g ,  with compact support. Then the flow r induced 
by H sends S strictly inside W for sufficiently small times t > 0. n 

Therefore the interesting case is when OS contains a closed characteristic 
Xo • OD. Then, because S is a subset of W,  OS must be tangent to OW 
at all points y of this circle. Since the characteristics of OS point along the 
null direction of f~lTyaS = f~lT~aW, this circle is a characteristic on OS as 
well. What  turns out to be crucial is the linearization of the characteristic 
flow of OS around this circle. If we identify all the tangent spaces T u M  C 
TyOW with R 2n = TxoM in the obvious way, this linearization is a family 
of symplectic linear maps 

A t : R  2n- -+R 2n ,  t E [ 0 , 1 ] .  

We will say that  At has a non-constant closed orbit at t ime T if there is 
some fixed point v E T~0 M of AT which is not fixed by all the At,  t E [0, T]. 
Thus v is in the kernel of At - 11 for t = T but not for all t < T. Here is our 
main result. 

T H E O R E M  1.3. Let  S be a compact subset ofa  symplectic cylinder (W, fl) 
which intersects OW along at least one closed characteristic x x OD. 

(i) I f  S rl OW contains only finitely many  closed characteristics x x OD, and 
i f  the linearized flow around each has a non-constant closed orbit in t ime 
< 1, then S is locally squeezable by isotopy in W.  

(ii) I f  there is a closed characteristic in S f 3 0 W  along which the linearized 
flow has no non-constant closed orbit in time < 1, then S is neither 
locally squeezable nor squeezable by isotopy in W .  

Remark 1.4: (i) Recall that  when det(A1 - 1) # 0, the index of the 
closed characteristic x0 x OD is given by counting (with multiplicities) the 
number of times T < 1 at which det(AT - 11) = 0: see Ekeland [E2] for 
example. Therefore, the hypothesis in part (ii) is equivalent to assuming 
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that  the closed characteristic x0 x OD has the same index on S as it does 
on W. This suggests that  symplectic homology might be directly applicable 
to prove part  (ii). Unfortunately, this does not seem to work, although it 
does work in the special case of ellipsoids: see w 2. 

(ii) We will see that  any small neighborhood S of the disc 0 x D in the 
(2n + 2)-ball of radius 1 in R ~n x D is squeezable by isotopy but  not locally 
squeezable. This is a rather exceptional example which occurs because the 
closed characteristic 0 x a D  is not isolated in the set of all closed character- 
istics on OS. In general one would expect that  if S intersects OW along an 
isolated closed characteristic then S is squeezable by isotopy only if it is also 
locally squeezable. It is not obvious how to prove this in all cases, though 
Theorem 1.3 shows that this does hold generically. See also Lemma 2.6. 

The above theorem is very closely related with the question of the sta- 
bility of geodesics in Hofer's metric on the group of Hamiltonian symplec- 
tomorphisms which we studied in [LM2,3]. In fact, we will show in w 3 that  
part  (i) is essentially just  a restatement of Theorem 1.6 in [LM2] where we 
used the non-constant closed orbit to construct a local squeezing of S near 
each closed characteristic in S N OW. 

In view of this, we now concentrate on explaining the proof of part (ii). 
Observe that  this is again local in S, that is to say it depends only on the 
germ of S near the fiat disc bounded by the closed characteristics in S N O W .  
Given such a closed characteristic x0 x OD, choose a Darboux chart near 
x0 E M which takes x0 to 0 E R 2n and write the c-neighborhood S~ of the 
corresponding disc 0 x D in S as 

S~ = { ( x , c , t ) : c  <_ ~ -  Ht (x )  , IixlI < c} c R 2~ x n 

where Ht(x )  _> 0, Ht(0) = 0 for all t. Here we have used action-angle 
coordinates (c, t) on D where t E R / Z  as before and c = ~r 2. Thus the 
area form is dc A dt. Therefore, the characteristics of S are given by the 
Hamiltonian flow of the function ~r - Ht(x)  - c and the linearized flow At 
is generated by the 2-jet of - H r .  Observe that  the linearized flow has a 
non-constant closed trajectory at time t exactly when At has an eigenvalue 
1, i.e. det(At - 11) = 0. We will call a path Ate[O,to] E Sp(2n, R )  short if 
det(At - 11) # 0 for t > 0, and positive if it is generated by - Q t  where Qt 
is a positive definite non-degenerate quadratic Hamiltonian. 

Because the conditions considered in part (ii) are open and we may 
replace S by a slightly smaller set, it suffices to prove the result in the case 
when Ht is quadratic and non-degenerate for all t. Thus, we will suppose 
that  S~ is a quadratic slice of the form 

S~, , ,  = { ( x , c , t )  : c < ~ -  Qt(x)  , Ilxll < ~ } ,  
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where each Qt is a positive definite quadratic form on R 2n. If K: = Qt is 
independent of t, the slice S~:,~ is contained in the ellipsoid 

Ejc = {(x ,c , t ) :c- t -  Q(x) < re}. 

In this case part (i) of the above theorem may be proved directly, and part 
(ii) follows by using the theory of symplectic homology: see w 

Now suppose that  Qt depends on time, and let 

x ~ A t x ,  tE[O, 1] 

be the corresponding linear flow, where At E G = Sp(2n, R). By slightly 
perturbing the family QteI0,1] we may suppose that  A1 is diagonalizable. 
Let L/ denote the set of diagonalizable matrices with all eigenvalues on 
the unit circle, and observe that  the flow of a time-independent positive 
quadratic form lies in U. The following proposition allows us to reduce to 
the time-independent case provided that  the time 1-map A1 of Qt lies in L/. 

PROPOSITION 1.5. Suppose that Qt, t E R / Z  is a 1-periodic family of posi- 
tive definite quadratic forms on R 2n which generates a path At E Sp(2n, It) 
such that A1 E 11. Then there is a time-independent positive definite 
quadratic form K: and e > 0 such that there is a symplectic isotopy 

�9 , : S j c : - - - * W ,  0 < s < l ,  

which fixes all points of the disc Do = 0 • D, starts at the inclusion and 
ends at a map  (I~ 1 which takes the e11ipsoidal s/ice Sg,~ into SQ,,~. Moreover, 
if AteI0,11 is short, so is the path generated by IC. 

Roughly speaking, this proposition says that  any slice S which satisfies 
the conditions of Theorem 1.3(ii) and whose monodromy is conjugate to a 
unitary matrix, contains an ellipsoidal slice which satisfies the same condi- 
tions. A few extra arguments are needed to deduce non-squeezing results 
for S from those for the ellipsoidal slice: see w 2.2. In the general case we 
prolong the path At to a path with endpoint in U without introducing any 
new closed trajectories: see Theorem 1.6(i) below. 

The proof of Proposition 1.5 is based on the study of positive paths in 
G which is carried out in [LM4]. We will only consider paths in G which 
start at 11. We will write 

81 = {A e G:  d e t ( A -  11) = 0 } ,  

and denote by PAnt the space of short positive paths in G which are gen- 
erated by time-independent Harniltonians E. If lC(x) = - - l xTpx ,  for some 
positive definite symmetric matrix P then it is easy to check that  the cor- 
responding flow is 

At = e JPt , 
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where J is multiplication by i in R 2n ---- C n. In particular, all elements At 
lie in b/, and the corresponding slice S~:,~ is part of an ellipsoid. Let 

e : ~[:)Aut - ' 4 / i f  

be the endpoint map. It is not hard to see that every element of U with no 
multiple eigenvalues is the endpoint of a unique element of PA,t. However, 
elements with multiple eigenvalues have larger inverse image in PA,t and 
hence it is not possible to lift every path in /4  to a path in ~PAut. 

The main result of [LM4] is: 

T HE OREM 1.6. (i) Every element of  G is the endpoint of  a positive path. 
An  element of G - ~ 1  is the endpoint of  a short positive path i f  and only i f  
i t  has an even number  of  real eigenvalues A with A > 1. 

(ii) A n y  short positive path may  be extended to a short positive path 
with endpoint in Lt. 

(iii) HAte[0,1] is a short positive path with endpoint in hi, it is homotopic 
through short positive paths with endpoint in LI to a short autonomous 
path. Moreover, we may  choose this homotopy  so that the path formed by 
its endpoints lifts to PAut. 

In the language of Ekeland [E2], this implies that every stable positive 
linear periodic Hamiltonian system is homotopic through such systems to 
one generated by an autonomous Hamiltonian. Moreover the homotopy 
may be chosen so that  the index of the system does not change. 

1.2 S tab i l i t y  o f  geodes ics  in HamC(M). Let HamC(M) be the group of 
Hamiltonian symplectomorphisms of the symplectic manifold (M, w), gen- 
erated by compactly supported Hamiltonian M • [0, 1] --, R,  with the Hofer 
norm lir defined by: 

I1r = inf s162 , 

where the infimum is taken over all paths in HamC(M) from the identity 
I to r and where the length L: of the path generated by the Hamiltonian 
H~e[0,1 ] is defined to be 

I' 
/:(r = f~(H,) = ( mea~IIt(x ) - ~ i ~  It~(x))dt . 

A path 7 = r is said to be a stable geodesic if it is a local minimum 
for [: on the space of all paths from 11 to r (This path space is given 
the Cl-topology.) It was shown in [BP],[LM2],[U] that a stable geodesic 
7 is quasi-antonomous, that is it has at least one fixed maximum P (a 
point at which Ht assumes its maximum for all t) and one fixed minimum 
p. Moreover, if there are only finitely many such fixed extrema, there must 
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be one such pair P, p at which the linearised flow has no non-trivial closed 
trajectory in t ime < 1. We will show below that  this s tatement  is essentially 
equivalent to part  (i) of Theorem 1.3 above. Similarly, part  (ii) is equivalent 
to the converse: 

T H E O R E M  1.7. Suppose that "/ has a t~xed max imum and m i n i m u m  at 
which the linearised flow At has no non-trivial dosed trajectory in t ime < 1. 
Then 7 is a stable geodesic. 

As shown by Ustilovsky in [U], this result is a fairly easy consequence of 
the second variation formula for s provided that  the Hessian of Ht at the 
fixed ext rema are non-degenerate at all times. We prove the general result 
i n w  

2. Loca l  Squeezing 

2.1 E l l ipso ida l  sl ices.  Let Q be a positive definite quadratic form on 
R 2", and consider the ellipsoidal slice 

S~,,  = {(x ,c , t )  e R 2" x 1% 2 I c < = -  Q(x) and Ilxll < r , 

where e is small enough so that  ~r- Q(x) is positive over the ball Ilxll _< ~. In 
this section we will consider the squeezing properties of SQ,~ in the cylinder 
W --- R 2" x D, where D is the unit disc in R 2. Since Q may  be diagonalized 
with respect to a symplectic basis of R 2n, there is a symplectomorphism of 
the form k~ x 11 of W which takes SQ,~ to the corresponding set defined by 
the diagonalized form 

n 

( x 2 i - 1  + 
2 2 

i = 1  

where al >_ . . .  >_ a ,  > 0. Therefore, we will assume that  Q has this form. 
The analog of Theorem 1.3 for these slices is: 

PROPOSITION 2.1. ( i ) H a l  > 1, then SQ,~ is Iocally squeezable by isotopy 
in W.  

(ii) I f  al = 1, then SQ,~ is squeezable by isotopy but not  1ocally squeez- 
able in W.  

(iii) H a l  < 1, then SQ,~ is neither locally squeezable nor squeezable by 
isotopy in W.  

Proof: Let (u, v) be rectangular coordinates of the R2-plane containing the 
base D of the cylinder W. If al > 1 then one can rotate S = SQ,~ in 
the xl ,  x2, u, v-plane so that  it does not project surjectively onto D for any 
t > 0. For example, one can use the matr ix  
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(c~ ~ sint !) 
cost  0 - n t  

si0t 0 cost 
sin t 0 cos t / 

This proves (i). If al = 1 then the same rotation keeps S in W and will 
take S to a position in which the projection to D is not surjective when 
sin(t) > r However, S is not locally squeezable in this case. To see this, 
suppose by contradiction that it were and let r be a sequence of embeddings 
of S into Int W which converge C 1 to the inclusion. We may  suppose that  
the r are so close to the inclusion that their graphs in - W  x W may 
be considered as sections of the cotangent bundle T* W. The r therefore 
extend to embeddings of the whole ellipsoid 

EQ = {(x , r , t )  E R 2" • R 2 l r  2 < 1 - Q(x)} , 

which also converge to the inclusion. Hence, for large enough i, these embed- 
dings take E~2 into Int W. But EQ contains the unit ball, and this cannot 
be mapped strictly inside W by the Non-Squeezing theorem ([G],[LM1]). 

Now consider case (ii i) .  Since the sets S increase when the ai decrease, 
S cannot be locally squeezable by (ii) .  Suppose, by contradiction, that  it 
were squeezable by isotopy, and choose a symplectic isotopy r : S ---* W 
such that 

r C W2~ = M • D(Tr - 2/5) 

for some i5 > 0. (Here D(a)  denotes the 2-disc in R 2 of area a centered 
at the origin.) It is easy to see that  there is some v > ~ such that  SQ,~ 
contains the product 

P = B 2 n ( v )  • D ( r r - / 5 ) .  

We claim that  P cannot be isotoped in W to a subset of W2~. The basic 
reason for this is that there is an element of the symplectic homology of W 
coming from a closed characteristic of O W  which is non-zero in P but which 
vanishes on any subset of W26. To be precise, we will use the formulation 
of symplectic homology with Z2 coefficients given by Floer, Hofer, Wysocki 
([FH],[FHW]). The result we want can almost be quoted directly from there, 
but  to be complete we will give some details. 

Symplectic homology is calculated using a complex of the form 

d �9 ..  ~ e i ( C i ,  k; 54) d C j ( C j ,  k - 1;bj) 4...d 

where Ci, Cj  are vector spaces over Z2 generated by certain periodic orbits, 
the grading k is given by the index of the orbit and the level bi is determined 
by the action of the orbits. The differential is defined, as in Floer homology, 
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~[~,b) 
by counting connecting orbits satisfying some elliptic PDE.  The  group ~'k 
is then defined as the homology of the t runcated  quotient  complex, obtained 
by ignoring all boundary  operators with domain (Ci, k; bi) where bi >_ b and 
by quotient ing out  by all groups (Ci, k; bi) with bi < a. For example, the 
terms with grading <__ 4 in the complex for the 2-disc D(v)  of capacity v are 

o (Z2, 4; 2v) ~ (Z2,3; v) o (Z2, 2; z,) ~ (Z2, 1; 0) --+ 0 .  

Therefore, if 0 < 6 < v and 0 < 6' < v, the groups 

S[ff-~'v+~') ( n (v ) )  , k = 2 , 3 ,  

are non-zero. The  complex for the 2n-ball B 2n (v) of capacity v is similar 
except tha t  there are 2n contributions at level v with gradings going from 
n + 1 to 3n and then  further contributions at levels j v ,  j > 1 with gradings 
> 3n + 1. Therefore, with  6, 6' as above, the groups 

[ v - - ~ , v + 6  I) 2 n  S[~-~'~+~')(B2"(v)~ and $3.  (U (v)) n + l  ~ k ] 

axe non-zero. 
The  groups for the product  P are calculated by the tensor product  of 

the complexes for the factors where 

( C , k ; b ) |  (C ' ,k ' ;b ' )  = ( C |  + k ' ; b +  b') 

with the differential 11 | d' + d | II. Therefore, if P = B2~(v) x D(a) ,  the 
complex in degrees n + 1, n + 2, n + 3 is 

. . .  ~ (Z2, n +  3 , ~ ) ~ ( Z 2 , n + 3 , ~ +  a)  

--* (Z2,n  + 2, v)@(Z2, n + 2, a ) - +  (Z2, n + 1;v)@(Z2, n + 1;0) -* . . . .  

Here the terms at  level v are products  of entries in the complex for the ball 
with the lowest t e rm (Z2, 1; 0) for the 2-disc, and so the differential has the 
form d | ~ on them.  However the term at level v + a is the product  

(z2,  + 1, v) | (z2, 2; 

and so dn+3 takes its generator I to the element 1@1. Thus  d~+3 is surjective 
if the window [a, b) contains both  a and g + a.  However, if 

0 < a < a < r ,  z r < b < m i n ( u + a ,  2 a ) ,  

~ [ a , b )  z n [  
then  ~ .+2 (~[v,  a))  = Z2. 

Now, let ate[0,1] increase from s0 = a to ffl = 71", let a, b be as above, 
and consider the restriction map  

S[,,b) r 
~+2 (P(v ,a , ) )  .--} ~'~+2 (P(v,c~)) . 
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This is the identity map when t = 0, and as a t  increases none of the levels in 
the complexes we are considering crosses the given window. Hence by [FHW, 
Lemma 18], it is an isomorphism when t = 1. 

Next let ute[0,1 ] increase from v0 = u to some large value Vl = g, and 
consider the restriction map 

s Ia ,b)  [ r ~ ,  L-~Ia,b) [ n ,  
. + 2  4 ) )  . O n +  2 ~.l-'~,V, 

As ut increases, some levels of the part of the complex coming from B2"(ut) 

cross the window. However, the part of the complex used to calculate S[~ b) 
for the given a, b does not change. Therefore, as before, because this is the 
identity map when t = 1 it is the identity map for all t. 

Now suppose that  P(u, 7r - 6) can be isotoped in W into W2~. Choose 
so that  this isotopy takes place in P(tr ~r). and suppose that  

O < Tc - 26 < a < Tr - 6 , 7 r < b < ~ r + u .  

Then, by the above, the restriction map 

r (P(u,  7r - 6)) q["b)(P(a ,  Tr)) "-* ~',+2 ~ n + 2  

is non-zero. But, because it is invariant under isotopy in P(~,  ~r) it equals 
the restriction map 

S["'b)(P(x,r)) S [ ~  (P(v,  ~- - 26)) n + 2  -"} 

But this is the zero map because a > ~r - 26. A contradiction, m 

Remark 2.2: The case Q(x) = Hxll 2 is borderline. Although the slice 
SQ,~ of the ball considered above is squeezable by isotopy inside the whole 
cylinder R 2n • D it is very likely that  it does not squeeze by isotopy inside 
a very short cylinder B2n(6) x D when 6 is only just larger than e. (One 
could also compactify B2n(6) to a complex projective space C P "  of small 
volume if one wants to assume that  M is in some sense complete.) 

2.2 G e n e r a l  s l ices .  We now consider quadratic non-negative Hamiltoni- 
ans Qt which are 1-periodic in t, and let At be the corresponding flow. We 
write SA for the germ along the 2-disc Do = 0 • D of the corresponding 
slice SQ,,~. 

LEMMA 2.3. (i) I f  two positive paths At and Bt have the same endpoint 
A1 = B1 and are homotopic in Sp(2n, R)  rel endpoints, there exists a 
symplectic diffeomorphism 

: S A  -'+ SB �9 

(ii) Suppose that A~e[0,11 where s e [0, 1] is a smooth family of positive 
paths with fixed endpoints. T h e n  there is a symplectic isotopy 

�9 ~ : S A o ~ S A ,  , O < s < l .  
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Proof: (i) If At, B, are generated by -Qt , - ICt  respectively, then 

SA = {(x ,c , t ) :  c < 71- - Qt(x) , Ilxll small} 

s B  = { ( x , c , t )  : c ___ - I c , ( x ) ,  I1 11 s m a l l } ,  

and it is easy to check that  the map 

~ : (x,c,t) ~ (BtA71x, c - E,(BtA71x) + Qt(x),t) 

is a symplectomorphism defined on some neighborhood VA of OSA in SA 
which takes OSA to (gSB. (Note that SA, SB are germs along Do, so that  we 
can make them smaller as necessary.) Moreover, since Qt(O) = ICt(O) = O, 
we may extend ~ to Do by the identity. 

Since the paths At, Bt are homotopic, �9 can be extended further to 
a smooth diffeomorphism of SA onto SB. The pull-back 12 = ~*(w | a) 
coincides with w �9 a on VA and is such that  f/ ]D0 = a. After a slight 
perturbat ion of �9 in the transversal direction along Do, we may  assume 
that  

f ~ : w |  

on the full tangent space T(x,c,t)(R 2~ x D) at all points of VA U Do. But 
then the 1-parameter family of closed 2-forms 

f ~ : ~ = ( 1 - A ) ( w O a ) + A f / ,  A e [ 0 , 1 ]  

is a symplectic isotopy in some small neighbourhood of VA U Do, which 
always equals the split form in VA and on Do. By Moser's argument,  there 
is a diffeotopy r  on a neighbourhood N of VA U Do which is the identity 
on VA U Do and is such that  ~1 pulls f~ back to the split form w @ a. 

This proves (i). Statement  (ii) is obvious since all choices can be made 
to depend smoothly on s. m 

COROLLARY 2.4. Proposition 1.5 holds. 

Proof: Let Ate[0A] be a short positive path with endpoint A1 E L/. Then 
A1 E U is the endpoint of a short positive autonomous path Bt. By Theo- 
rem 1.6 (iii), there exists a 1-parameter family of short positive autonomous 
paths B~ and a 1-parameter family of short positive paths A~ such that  
Alt = At, B 1 = Bt, A~ = B~(e ld) for all s e [0, 1], and At ~ = Bt ~ 

We first wish to define a smooth 1-parameter family of symplectic auto- 
morphisms (with respect to the standard symplectic structure) f s  : R 2 n  ---+ 

R 2n with the following property: if Q* denotes the autonomous Hamilto- 
hian that  generates B~, the pull-back Qs o f~ is diagonal in the standard 
basis for each 0 < s g 1. Here of course "diagonal" means that  Q~ o f~ is 
of the form 
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n 

2 2 Q8 o .f8 = y ~  7rai(x2i_l dr X2i) . 
i = 1  

To do so, note first that  since our argument is purely homotopical, we 
have complete freedom to jiggle or reparametrize the matrices B~ along 

time s. So first jiggle the path B~ e[~ so that  

(/) the endpoints B ~ and B~ are fixed, and 

(//)the autonomous positive quadratic forms Q8 corresponding to B~ are 
such that there exists only a finite number of points s E [0, 1] where Q8 
is not generic (that is to say: having a 2k-dimensional space over which 
Q8 is equal to constllvll 2, for k _ 2). 

This is possible because the set of non-generic quadratic forms is of 
codimension at least one. Of course, one jiggles accordingly the paths A~ 
so that  A~ = B~ for all s. Let 2- C [0, 1] denote the finite subset referred to 
in (ii) above. 

Now we can reparametrize the path B~ so that  the following holds: for 
each sa E Z, there exists an interval Ik C [0, 1] of non-zero measure such 
that  all matrices B~ with s in this interval are equal. In this case, although 
the choice of a symplectic ordered basis B8 of oriented eigen-2-planes of 
each Q8 is not unique, there exists some choice of B8 = (P1,8, . . . ,Pn,8)  
which varies smoothly with s. The reason is that  the unordered basis of 
nonoriented eigen-2-planes is unique when s is not in one of the intervals 
I defined above. And when s belongs to one of them, the above condition 
makes it possible to move the unordered basis smoothly from the one needed 
at the left end of the interval Ik to the one needed at the other end. This 
defines a smooth path of unordered and nonoriented bases: we then choose 
an order and an orientation at time s = 0 and extend this uniquely over all 
s E [0, 1]. Finally, since each Pi,8 is oriented, there exists a continuous lift 
of Bs to fs, obtained by choosing a pair of symplectic vectors in each Pi,s. 
Such a lift obviously exists because we need to define it only over a path. 

Now we conjugate both paths A~r~0 . . . . .  11, B~[0_,.,11 b y f S .  This gives new 
t J , 

paths, that  we still denote in the same way, but  whach are such that the 
endpoints A~ = B~ are all diagonalizable with respect to the standard 
symplectic basis. By the last lemma, there exist symplectic diffeomorphisms 

r  : $ s o  ~ S A ,  , s E [O, 1] 

with (I)~ = id. But  since all B 8 are generated by diagonalized time-indepen- 
dent quadratic Hamiltonians, the sets SB, are ellipsoids with principal axes 
independent of t and s. Hence Nse[O,llSB, contains Sic,~ for 
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n 

]~ --~ ~ 7ra2(x2i-1 -~- x2i) 
i = 1  

where ai = max8 a~. Note that  the path generated by K: is still short. The 
restriction of r to S~,~ gives the desired isotopy, o 

In order to prove part  (ii) of Theorem 1.3 we need the following lemmas. 
Recall tha t  if W = M x 0(7 0 we write W~ for M • D(lr - 5). 

LEMMA 2.5. I f  S is locally squeezable in W,  there is some 6 > 0 such that 
every compact subset X of  S N Int W is squeezable by isotopy into W~. 

Proof: Given r : S ~ W consider the associated map r : OW U X --* W 
which equals r on X and the identity on OW. If r is so close to the inclusion 
that  its graph may be identified with a partial Lagrangian section of T ' W ,  
then r extends over W and is isotopic to the identity by maps which fix all 
points of OW. Note that  this s tatement holds whatever X is provided that  
X N O W  = @. The result now follows by applying this to a local squeezing 
r of S. o 

LEMMA 2.6. Suppose that S is squeezable by isotopy in W and that it 
intersects OW in a dosed characteristic xo x OD which is isolated among 
the closed characteristics on OS. Then the germ of S along xo • D is 
isotopic in W by an isotopy which fixes xo • OD to a slice germ which is 
locally squeezable in W.  

Proof: Suppose that  Ct : S ~ W is an isotopy such that  Ct(S) C M •  D. 
Let 7 be the closed characteristic x0 x OD and consider the set 

2 -=  {t E [0,1] : r C M • O D } .  

I f T  = inf{t E [0, 1] : t r Int 2"}, then T < 1 since S is squeezable by isotopy. 
Further, since r (7) must  always be a flat circle x x OD for t _< T we may 
compose Ct with maps of the form gt • h~ so that  Ct fixes all points of 7 
for t < T. We claim that  CT(S) is locally squeezable. For, by hypothesis 
there is a sequence ci ~ 0 + such that  CT+~ (S) does not intersect M • D 
in a closed characteristic, and so these sets can be pushed inside M • D by 
Lemma 1.2. o 

Let Ate[0,1] be a positive path, and A T = Ate[0,T] any subpath. We 
define SAT as the slice associated to the positive path  ArT, t E [0, 1]. 

LEMMA 2.7. I f  a positive path Ate[0,1] is such that SA is neither locally 
squeezable nor squeezable by isotopy, the same is true of any subpath A T = 

AtEto,T] . 
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Proof: This is obvious. We may extend the subpath by setting At = AT for 
t > T, which corresponds to setting Qt = 0 for t > T. Denote by A~e[0,1] 
that  path. Clearly, SA, is locally squeezable (or squeezable by isotopy) if 
and only if the same is true of SAT. (The non-smoothness of SA, is irrelevant 
here.) But the corresponding set SA, clearly contains SA, and so if it were 
locally squeezable or squeezable by isotopy, the same would be true of SA.V 

Proof of Theorem 1.3(ii): Let S be any slice germ along Do = x0 x D 
whose characteristic flow is given by a short positive path Ate[0,1]. Since 
we are only looking at the germ we may suppose that  M is just a small 
neighborhood of x0 and so identify it with an open neighborhood U of {0} 
in R 2n. Further, by Theorem 1.6(ii) and Lemma 2.7 we may suppose that  
A1 E//0 so that  we can apply Proposition 1.5. We may therefore isotop S 
in U x D by (I)s, fixing Do, so that r  is an ellipsoidal slice SE, say. By 
Proposition 2.1 the latter slice is neither locally squeezable nor squeezable 
by isotopy in U x D. It follows that  S is not locally squeezable by isotopy in 
M x D. However, we want to prove more: namely that  S is neither locally 
squeezable nor squeezable by isotopy. 

To see tha t  S is not locally squeezable, observe that  for all ~ :> 0 there 
are subsets X t of SE N U • D which cannot be squeezed by isotopy into 
U x D(Tr - df): namely the polydiscs P(c,  a)  where c + a > 7r. Therefore, 
a similar s tatement  holds for X = (I)~-I(x~), and the desired conclusion 
follows from Lemma 2.5. 

To see that  S is not squeezable by isotopy in the original cylinder M x D 
we apply Lemma 2.6. Note first that  because S is the set associated to a 
(t ime-dependent) quadratic positive non-degenerate form, the hypothesis 
of Theorem 1.3(ii) on the nonexistence of non-trivial closed trajectories of 
A, implies in particular that  there is no closed characteristic of OS near 
xo x OD. This is because in the quadratic case, the flow At is given by the 
characteristic foliation of OS. Now we can apply Lemma 2.6: it implies that  
if S were squeezable by isotopy, there would be an isotopic set S ~ C M • D 
which was locally squeezable. But the characteristic flow of S ~ near 7 is the 
same as that  of S, and so such a set S ~ cannot exist by which we have just 
proved, v 

3. Relat ions  wi th  Hofer's G e o m e t r y  and Proof  of  Part  (i) of  the  
Main  T h e o r e m  

As we mentioned earlier, the problem of (in)stability in Hofer's metric and 
the problem of local (un)squeezability of subsets of cylinders are essentially 
equivalent: the necessary condition for stability is equivalent to part  (i) of 
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Theorem 1.3 and the sufficient condition for stability is equivalent to part 
(ii) of that  theorem. We established a necessary condition for stability in 
[LM2] and we will use it below to prove part  (i) of the main Theorem on 
the squeezability of sets S C W. Concerning the sufficient condition for 
stability or unsqueezability, we proceed in the reverse direction: we have 
just proved part  (ii) of the main theorem and we will show below that  it 
implies the sufficiency of the condition for the stability of geodesics. 

3.1 P r o o f  o f  p a r t  (i) o f  t h e  M a i n  T h e o r e m .  Here is the rough out- 
line of the proof. Consider the part  of OS inside a thin cylindrical annulus 
W - W6. There, OS is the graph of a partially defined Hamiltonian and we 
can therefore apply the curve-shortening construction in the proof of Theo- 
rem 1.6 of [LM2] to move the graph away from OW. Since this construction 
is localized near the extrema, we can at tach the shortened curves to the set 
S n W6 and obtain a squeezing isotopy of S inside W. 

So choose 6 > 0 small enough so that  OS N (W - W~) is the graph of a 
function G = 7r - H : E ---* R, where E is some compact (not necessarily 
connected) subset of R 2n • S 1. Of course E contains a neighbourhood of 
the set of all maxima of G. We will suppose that  G is normalized so that  
its max imum value is 7r. Let G : E --~ R denote the pull-back of G by the 
map id x h : R 2n x [0, 1] --~ R 2~ x S 1, where h identifies 0 and 1. Thus 

graph(G) C/~  x [0, 7r] C R 2" x [0, 1] x [0, 7r]. 

Now, by the proof of Theorem 1.6 of [LM2], there exists a smooth isotopy 

r  AE[O,e] 

which begins with the identity and satisfies for all A > 0: 

(i) r is a symplectic diffeomorphism onto its image and the restriction of 
r to G-l([Tr - 6, 7r - 6/2]) is the identity, as well as its restriction to 
some t ime intervals containing {t = 0} and {t = 1}; 

(ii)the set r  sits ins ide/~  x [0, 7r] and its restriction to some 
t ime interval I C (0, 1) sits inside E x [0, ~r); here I is independent of A. 

To see this, one first extends G to a compactly supported Hamiltonian 
R ~" x [0, 1] ~ R whose values outside /~ are in [0, ~r - 6/2). One then 
constructs the desired isotopy as in section 4.2 of [LM2]. 

Because Cx is the identity on some time intervals containing {t = 0} and 
{t = 1), it descends to an isotopy 

r  graph(G) = OS A (W - W~) ~ W 

which trivially extends to an isotopy OS ---* W.  By condition (ii) above, this 
isotopy, that  we still denote r has for all A > 0 an image whose projection 
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on the base D of the cylinder is not onto. Extend this isotopy to a symplectic 
isotopy defined on some interior collar neighbourhood of OS in S. Let q~ 
be its lift to S. Then the pull-back of the standard symplectic form r (f~) 
is a symplectic isotopy rel OS for all sufficiently small A. The relative Moser 
argument then yields a symplectic isotopy r : S --* W beginning with the 
identity, which is such that  Im(r does not project onto the base D 2 of 
the cylinder W when A > 0. Then composing with an appropriate area 
preserving map of the base gives a local squeezing of S by isotopy, o 

3.2 Suff ic ient  c o n d i t i o n  for  t h e  s t a b i l i t y  o f  geodes ic s .  We show 
that  Theorem 1.3 (ii) proved in w 2 implies the sufficient condition for the 
stability of geodesics in Hofer's metric. 

As in the characterisation of geodesics established in [LM3], we need 
the gluing-along-monodromy construction. However, we must use a slightly 
different normalization here, and so we begin by repeating the main con- 
structions of [LM3, w in modified form. For now, we will assume that  M 
is closed and that w has been rescaled so that  vol M = 1. 

Let Hte[0,1] be a regular path in HamC(M) which has a fixed minimum 
p and a fixed maximum P at which the linearized flows have no non-trivial 
closed orbits in t ime less than or equal to 1. Proceeding by contradiction, 
we assume that  this is not a stable geodesic, and will show that  this con- 
tradicts Theorem 1.3 (ii). By replacing Ht by Ht - Ht(p), we may assume 
that  min Ht = 0 for all t. Since Ht~[0,1] is regular, its maximum value 
ran(t)  = Ht (P)  is strictly greater than its minimum value Ht(p) for all 
t. We reparametrize all flows which we consider, i.e. both Hte[0,1 ] and the 
nearby flows Kte[0,1], so that  they are generated by Hamiltonians which van- 
ish along with all their derivatives when t = 0, 1. Since the repara.metrized 
flow Ca(t) is generated by the Hamiltonian fl'(t)Ha(t) this does not change 
the length of the isotopy. Moreover, if we use the same reparametrization 
function fl for all flows, it is easy to check this will not affect the stabil- 
ity properties of the path Hte[0,1]. The maximum of Ht will be denoted 
mH(t)  = Ht(P) .  So our conventions imply that  mH(t)  is a smooth function 
of t which is infinitely tangent to 0 at t = 0, 1 and is > 0 on (0, 1). 

Denote by/~H a n d / ~ +  the parts under and over the graph of H: 

/~H = {(x ,s , t )  �9 M x R 2 : 0  < s < H~(x)} 

[~+ = { ( x , s , t )  �9 M x R2 :  g t ( x )  < s < m n ( t ) }  , 

and define 
= { ( s , t )  �9 r t 2 : 0  < s < 

By assumption on m I t  (t) ,  the set UH has area Z:(H) and lies between two 
curves s = 0 and s = r a g ( t )  which are infinitely tangent at their endpoints 
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but are otherwise disjoint. Similarly, both /~H and /~+ are regions lying 
between two hypersurfaces which are infinitely tangent along M x 0 x {t = 
0, 1}. One of these hypersurfaces is the graph of H with monodromy r 
and the other (either s = 0 or s = m R ( t ) )  has trivial monodromy. 1 Note 
that  these hypersurfaces will touch at points where H,(x) is either 0 or 
mH(t). However, this does not mat te r  because we will be interested only 
in the piece of k H near P (or the piece o f / ~ +  near p). The gluing of 
both halves/~H a n d / ~ +  by the identification of their common side, which 
matches the characteristic foliations, gives back simply the product M x UH 
of area s  

Now let Kte[0,1] be another path that  we may assume to be homotopic 
and C~176 to Hte[0,1]. As above, Kt = 0 when t = 0, 1 and is infinitely 
tangent to 0 there, but, because Kte[0,l] need not have a fixed minimum, we 
cannot necessarily normalize K,,  keeping it a smooth function of t, so that  
min Kt = 0 for each t. Therefore we define r o f /~g  as follows: 

RK,~ = {(x ,s , t )  e M x R2:  Al(t) < S < K t ( x ) }  

R+,~ = {(x ,s , t )  �9 M x R 2 :  K,(x) < s < A2(t)} , 

where Al(t) < m i n K ,  and A~(t) > m a x K ,  are smooth functions which 
axe infinitely tangent to 0 at t = 0, 1, and so close to the minimum and 
max imum of K, that  

u = q K )  + 

Since the flow ere[0,1] of Kte[0j] has endpoint r = r we can use the map 

�9 

OK,H(X,s,t) = (r o r  -- Kt(x) + H,(r  o r  t )  . 

to glue/~+g,~ to /~H to get a subset of M x R 2 which we cal l  RH,K,e. The 
set 

is defined similarly. These se t s  RH,K,e, RK,~,H have the same basic shape 
as/~H, i.e. they are manifolds except for the fact that  their front and back 
faces are infinitely tangent along M x {0} x {t = 0, 1}. But now the c- 
thickening prevents the front and back fazes from touching each other. Re- 
call from [LM3] that  the area of a set such as /~+  is the number A defined 
by: 

vol(/~ +)  -- A vol(M) . 

1The monodromy of a hypersurface diffeomorphic to  M x [0,1] is the (part ial ly defined) 
map  M --* M which takes the  point  x E M to V, where y x 1 is the  endpoint  of the  leaf of the  
characteris t ic  foliation which goes through z x O. 
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Since we are assuming that  vol(M) = 1, A is just vol(/~+). 
Before beginning the proof, we must deal with the smoothing/normaliza- 

tion problem. We need a canonical way to thicken sets like UH, and have to 
be careful because there is no extra room to play with. Fix a real number 

> 0 and denote by 

hH(A ) = {(x ,s , t )  :0 < s < A + H , ( x ) }  

R+(A) = {(x ,s , t )  : Hi(x) < s < ran( t )+ A} 

= { ( s , t ) :  0 < s < + m , }  

Hence, for instance, U0_(A) is simply the square [0, A] x [0, 1]. Correspond- 
ingly, we may  thicken RH,K,~ to  

= u 

where/~+g,~ is translated by A in the s direction so that  it fits together with 

RH(~). 
All symplectic embeddings 

[=~ H, K,e ( "~ ) -"+ M x R 2 

which we will later consider will be infinitely tangent to the inclusion along 
the three sides s = 0, t = 0, 1. We will call such maps normalized. 

Now let us begin the proof. If H, is not a stable geodesic, there is a 
sequence K~ of Hamiltonians which converge to H, and are such that  

L(K~) < L ( H , ) =  m 

for all i. Because 

a r e a  (I:~H,K,e()I)) ~- a r e a  ( f~g,e,H()t))  = area (/~H(A)) + a r e a  ( / ~ K , e ( ~ ) )  

= ~.(g) + L(K) + 2(A + ~) ,  

this can happen only if there is a sequence of positive real numbers ~i 
converging to 0 such that  either 

area (RH,K',~,()~)) < z ( g )  + A = area (UH(A)) 

o r  

area (/~K,,~,,H(A)) < E ( H ) +  A = area (UH(A)) . 

We will suppose the former. (The latter case is of course symmetric and 
would be handled in the same way.) Denoting by ai the area of RH,K~,~, 
we then have: ai + A < m + A for all i. 

In order to deduce Theorem 1.7 from Theorem 1.3, the key technical 
lemma needed is the following: 

LEMMA 3.1. Let the regular path Ht~[o,1] satisfy the hypothesis of the Sta- 
bility Theorem 1.7 and suppose that it is not a stable geodesic from 1 to 
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r Assume that Ki  is a sequence of  Hamiltonians with time-1 map r which 
converge C ~ to Ht and are such that 

area (/~H,K,,~,(A)) < C(H) + A.  

Let  S be a closed neighbourhood of P such that Ht(x)  >_ �89 for x E B,  
and define 

= RH( ) n (B • R 2) , 

IV = M x UH(A) . 

Then there exists a sequence of  symplectic embeddings 

f i : S - - - * V V ,  i = 1,2,... 

which satisfies: 
O) each map fi  coincides with the inclusion on the three sides s = O, 

t = O, 1 and has contact o f  infinite order with the inclusion there, 
(ii) the sequence converges in the C~- topo logy  to the inclusion ~S ~ IV, 

and 
(iii) for each i, the composite 

IV 
is not  onto (where the second map is the projection). 

Indeed, with this, it is then an easy mat ter  to complete the proof: 

COROLLARY 3.2. Theorem 1.3 (ii) implies the Stabil i ty  Theorem 1.7. 

Proof: The set S is the region under the graph of a Hamiltonian Gte[0,1] : 
U --, [A, oo) which equals the constant map A at t -- 0, 1 and is infinitely 
tangent to it there. Since this Hamiltonian is obtained from the initial 
Hamiltonian H~ei0,1 ] by reparametrisation and addition of a constant map, 
its linearised flow at P is the same as the one of H, and therefore it has 
no non-trivial closed trajectory in t ime less than or equal to 1. Now let 
r : U~(A) --+ [O, rn + A] x [0,1] be an area preserving map of the form 
(s, t) ~-~ (a(s, t), b(t)) (thus preserving the fibers t = const). Then the maps 

gi = (id x ~ )  o f l  o (id x r  -1 : S -- (id x r  --, M x [0, m + A] x [0, 1] 

are symplectic embeddings, converge to the inclusion, are tangent to infinite 
order to the inclusion on s -- 0, and t = 0, 1, and do not have surjective 
projection onto [0, m q- ),] x [0, 1]. Further, S is the graph of a Hamiltonian 
obtained from G by reparametrisation, and therefore its linearised flow at 
P has no non-trivial closed trajectory in time < 1. But the condition on 
the tangency of all maps gi on the three sides of S shows that  these maps 
descend to symplectic embeddings 

hi: S = (id x r  --* (id x r  x [0, m + A] x [0, 1]) = M x D~(m + A) 



Vol.5, 1995 LOCAL NON-SQUEEZING THEOREMS AND STABILITY 383 

where D2(m+A)  is the s tandard closed disk of area rn+A and where r is the 
map  taking the (s, t) coordinate to the action-angle coordinates (c = s, t) 
(c = 7rr 2, 2~rt = 0). Thus the family hi gives a local squeezing of the set S 
inside the split round cylinder, al though this set does satisfy the hypothesis  
on non-existence of closed trajectories of Theorem 1.3. This  contradicts the 
latter theorem, n 

Proof of Lemma 3.1 : We need first the following definition. 

DEFINITION 3.3: For a > 0, choose a smooth  family of functions /za : 
[0, 1] ~ [0, oo) which 

(i) increase with a, 
(ii) map  (0, 1) into (0, oo) and are infinitely tangent to 0 at t = 0, 1, and 

(iii) are such that  the set 

0<t<l} 
has area A + a. 

Then we will say that  /~H,K,e(A) is a square cylinder of area a if there is a 
smooth  normalized symplectomorphism 

~H,K : (hg,g,~ (A), w | a) ~ (M • Ua, w | or) . 

This is possible only if a = vol/~H + vol R+K,~ (recall tha t  vol M has been 

set equal to 1), and if [IH,K has trivial monodromy (or, equivalently, that  
the t ime 1 maps  of the flows of Ht and Kt are the same). 

The  front face of a square cylinder consists of the points which map  onto 

{ ( x , A + p a ( t ) , t ) l t e [ 0 , 1 ] ,  x � 9  

The  following lemma is an adaptat ion of [LM3, L e m m a  2.6] to the 
present context.  

LEMMA 3.4. Fix r �9 HamC(M) and let Ht,  Kt  be Hamiltonians with Bows 
Ct, Ct from id to r normalized as above. Then, there is a Cl-neighbourhood 
/d of id in HamC(M) such that /~H,K,~(A) is a square cylinder whenever 
Ct o r  -1 � 9  fora11 t. 

Proof: First observe that  because r = r the gluing map  r H defined 
above by 

~ K , H ( X ,  8, t )  : ( r  0 c t - X ( x ) ,  S "~ )~ -- g t ( x  ) -~- H,(r  o ~)tx ( x ) ) ,  t)  

equals the identi ty when t = 1. Therefore, if we extend it by the identity, 
it defines a normalized map  

~PK : O[~H,K,~(A) ---* M x OUa 
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where a = vol/~H + vol k+ , , .  We take U to be a star-shaped neighbour- 
hood of id in Hamr consisting of Hamiltonian diffeomorphisms r whose 
graphs lie close enough to the diagonal diag in (M x M, - w  | w) to corre- 
spond to graphs of 1-forms p(r in ( T ' M , - d A c a n ) .  Then, if Kt is so close 
to Ht that  the corresponding paths {r {6~} satisfy Ct o r E /4  for all 
t, there is a unique choice of retracting homotopy f~,t from fo,t = id to 
fl,~ = Ct o r defined by 

P(fc , , )  = Cp(r  0 r  . 

It will be convenient to parametrize this homotopy a little differently, by 
the points of Ua N {s _> A} instead of the (c, t) square. In fact, because Ht 
and Kt  are both infinitely tangent to 0 at t = 0, 1, there is for each Kt a 
smooth map 

gg  : Ua N {s ~_ A} ---* Sam e(M)  

such that  

g r (0 ,  t) = i d ,  gK(s , t )  = f ( c ( s , t ) , t )  , gK( l~ ( t ) , t )  = Ct o r  . 

(Note that  the reparametrization map c(s, t) itself need not be smooth at 
t = 0, 1.) Moreover, we may assume that  gK(s,t) is infinitely tangent to 
the identity along the line s = 0. Then gg  may be used to extend ~I /g  to a 
smooth normalized map 

~ K  : [{H,K,e ()~) "-4 M x U~ , 

which has the form 

(x,s,t) 
on Rn,K, ,  N {s > 0} for some suitable function s ~. When L/is  sufficiently 
Cl-small  ( that is when Kt is C2-close to Ht), the push-forward 

on M • U~ restricts to an area form on each fiat disc pt • U~. The standard 
Moser method  now shows that  there is an isotopy f t  of M • Ua which is 
the identity on M • OU~ (and is infinitely tangent to the identity on the 
sides s = 0, t = 0, 1) such 
make f t  have the required 

near the front face and 
the reader. 

that  f~(5)  = w O a .  See [LM1, Lemma 2.3]. To 
properties near M x OUa, one should first adjust 
then adjust it inside. Further details are left to 

[] 

LEMMA 3.5. Let  Ht be as in Lemma  3.4, and recall that S = [~H(A) [3 B x 
R 2, where B C M is a neighbourhood of  the fixed maximum P on which 
Ht is >_ mH(t ) /2 .  Then, given the sequences K~ converging C ~ to l i t  and 
Ei converging to O, we may  construct the normalized maps  ~ K' so that their 
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restrictions to S converge to the inclusion 

t :  S ~ / ~ H ( A )  C M •  

where m = s  

Proof: The reader may check that  at each point of the above construction 
the distance of the map from t is dominated by the distance of K~ from 
Hr. We need to assume that H~(x) is bounded away from 0 on B in order 

that  the function s ~ which gives the s-coordinate of ~ K  is well-behaved 
(and independent of E). Note also that  the size of the isotopy provided by 

Moser's method depends only on the distance between the endpoints ~ and 
uJ | a of the isotopy of forms, which in the given situation can be assumed 
to tend to 0. o 

Lemma 3.1 is a direct consequence of the preceeding two lemmas. 

This completes the proof of Theorem 1.7 when M is closed. To get rid of 
this last hypothesis, assume that M is non-compact and without boundary. 
If Hte[0,1] is not stable with respect to the (strong) C~176 this means 
that  there is a compact set X C M containing the support  of H and a 

with support  in X such that K i -+ H on sequence of Hamiltonians Kte[0,1 ] 
X with, say, 

area (R,,~-,,~(~)) < area(U,(A)), 

for all i. Then the proof goes as before. 
Finally, if (M, w) is a manifold with boundary, one may slightly extend 

both  M and w to a small open collar neighbourhood V of OM. Then, if 
all Hamiltonian isotopies were the identity on some neighbourhood of a M ,  
one would first extend them by the identity to V and apply the previous 
argument. 
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