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L P - E S T I M A T E S  F O R  O S C I L L A T O R Y  I N T E G R A L S  

I N  S E V E R A L  V A R I A B L E S  

J. BOURGAIN 

1. I n t r o d u c t i o n  a n d  S u m m a r y  

This paper is concerned with HSrmander's problem on the behaviour of the 
operators 

TNf(x) = / eiN~(~:'Y)a(x, y)f(y)dy (1.1) 

where a E C~(R 2d-1) and ~ E C~(R ad-1) is a real valued function satis- 
fying the conditions for (x, y) E supp a 

rank 02~/Ox Oy = d - 1 (1.2) 

0y ~ = 0 ,  0 r  ~y2 ~ r  (1.3) 

(o_y_~ has only non- The second condition (1.3) means that the map y ~-* ox,t 

degenerated critical points. 
In [HI, H5rmander considers the problem whether under the above 

hypothesis, there is an inequality 

- d / q  r IlTN fllq <_ Cd,q,rN Ilfll (1.4) 

fo r  

2d d +  1 1 
q >  ~ and - -  + - < 1 .  (1.5) 

d -  1 ( d -  1)q r - 

If d = 2, the answer is affirmative. This fact is proved in [HI and is essentially 
due to Carleson and Sj51in [CS]. The interest of the previous conjecture is 
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in particular a positive solution to the Bochner Riesz summability problem, 
i.e. the fact that the multiplier (A > 0) 

rex(@) = ( l - I l l 2 )  x if ] f [ < l  

= 0 if I 1>1 
(1.6) 

defines a bounded Fourier multiplier on LP(R d) if 

2d 2d 
< p < (1.7) 

d +  1 +2)~ d -  1 - 2)1 " 

(See [CS] and [H] for the relation between these conjectures.) For d >_ 3, 
it is shown in [Stl] (see Th. 10) that Hhrmander's conjecture is valid in 
the range q > 2(d+l) Similarly, the Bochner-Riesz summability conjecture 

- -  d - - 1  " 

w a s k n ~ 1 7 6  be true assumingp ~ ]2d-2~'t~ ~ [  ( as a c O n s e q u e n c e a + 3  , - 

of L2-restriction theory) and the author recently narrowed this interval to 

] 2(d+l)-ed+3_e ' 2(d+l)-e/d-1 for some e = e(d) > 0 (see [B1], [B2]; in particular for 
P 

I .  

8 d -- 3, one has E = ~ ) .  Its full validity is at the present still undecided and 
depends on unsettled questions in geometric measure theory (see [B1]). 

Besides an approach to Bochner-Riesz, Hhrmander's conjecture also 
generalizes the so-called restriction conjecture, which is the special case of a 
phase function ~(x, y) which is linear in x. In this case, the validity of (1.4) 
for r = 2, q > ~ is a result due to P. Tomas IT] and the case r -- 2, 

q > ~ appears in [St] (Wh. 3). This last result is the L2-restriction 
theorem (which is a sharp result). Again in [B1], (1.4) was proved for 
~(x,y) linear in x and r = q > ~ - E, where ~ = r > 0 (6(3) = ~5 in 
particular, see [B2]). This statement is obviously not a complete solution 
but goes beyond the L2-methods and involves new ideas of geometric nature. 
The problem reduces to phase functions of the form 

~ ( x , y )  = XlYl "{-"" + Xd-lYd-1 + Xd~/(y) (1.8) 

where 
9 2 
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Coming back to the general case, as observed in [HI, one may take ~a 
of the form 

m(x,y) = xly  + ' " + X d - l Y d - 1  (Ay, y)+O(I IlYI(Ixl 2 +lY12)), (1.10) 

where A is a symmetric matrix. In fact, by an additional coordinate change 
in the variables x, y, one gets 

xlyl +xd(Ay,  y)+O(IxdllYl 3 + IX]21Yl 2) (1.11) 

([x[, [y[ are confined to a small neighborhood of 0). Condition (1.3) amounts 
to det A ~ 0. 

In this paper, we only consider the case d = 3. 
Our first aim is to exhibit some simple examples showing that under 

hypothesis (1.2), (1.3) inequality (1.4) may fail for all q < 4 and f e L ~176 
Hence, even for r = oo, Th. 10 of [Stl] is optimal. It turns out that in fact 
(1.5) does not imply (1.4) for a generic phase function r (This does not 
include however those functions appearing in the context of the Bochner- 
Riesz problem described above.) The argument here is more elaborate and 
involves geometric considerations related to the Kakeya phenomenon. There 
are similarities with the approach in [Fe]. This discussion will show that 
the presence of the o([xt2[yl~)-term in (1.11) is significant and in some 
sense the case of linearity in x is special. Essentially speaking, there is a 
difference between straight tubes and "distorted" tubes with respect to the 
Kakeya compression phenomenon, which is roughly the main point in these 
considerations. Finally, it is shown that (1.4) holds for certain q < 4 and 
r = oo, for "most" real analytic phase functions ~o of the form 

~o(x,y) = x ly l  + x2y2 + x3 (Ay, yl + r , (1.12) 

where r  = O(Ix311y12(Ix31 + lYl)). See the theorem at the end of 
section 6. The argument is closely related to section 5 of [B1]. 

The main difficulty comes from the fact that one has to deal with a 
Kakeya maximal function defined from certain curves rather than straight 
lines. Conditions (1.2) and (1.3) do not exclude that the corresponding 
curves may be pushed by a y-translation in a 2-dimensional surface, also for 
phase functions of the form (1.12) (this is however a non-generic behaviour). 
In proving (1.4) for q < 4, we do not want the previous phenomenon to 
happen. 
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This work aims to get some better understanding of the oscillatory in- 
tegral problems in higher dimension. Many natural questions are only very 
partially solved. It shows, however, the importance of certain geometric 
structures and significant differences between the two and higher dimen- 
sional situations. 

The author wishes to thank T. Wolff for discussions on the subject. 

2. A n  E x a m p l e  

Consider the following phase function (d = 3) 

i _ 2 ~  2 r ~) = r  x2,  ~3, y i ,  y2) = x~y~ + x2y2 + ~3y~y2 + ~ 3 ~ 1  �9 

Thus 

Ox Oy 1 Yl 

has rank 2. Further, assuming ~ , t = O, t r O, i.e. 

tl +t3(2x3yl + y2) = 0 

t2  + t3 = 0 

det -D-~y2 \ Ox t = t3 

(a~suming I~1 su~iciently sma~). 
The operators (1.1) is applied to the function 

eT~y~ f ( y )  = N . 2 

and one finds the expression 

,3 I 0 = - t~  # 0 

t 
T N f ( x )  -- J eiN{XlU~+x2u2+�89 y)dy . 

Consider the surface 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

s =  {xl  = x2x3 [Jxl < 1} (2.6) 
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and denote by S~ the set { Ix1 - x2x31 < ~ I lxl < 1}. 
On s ,  one has 

Putting 

T N f ( x )  y)dy . (2.7) 

z = Y2 + x3yl (2.8) 

the phase function becomes 
1 2 (2.9) x2z -t- ~z 

which has a critical point at z = - x  2. Hence the expected size of T~vf on 
S is thus ,,~ N -1/2. Since also clearly 

[V.TN f] < C N  1/2 , (2.10) 

it follows that  for 6 ,-~ N -1 

ITNf[ ,-,, N - 1 / 2  o n  S 6  . (2.11) 

Thus, there is a lower estimate 

1 1 

IITNfIIq > cN-1/21S l 1/q ~ N . 

The validity of inequality (1.4) for r = oc thus requires 

(2.12) 

hence q > 4. 

Remark 1: In the next section, we will develop a different method of 
disproving the validity of inequality (1.4) with r = ec and q sufficiently 
close to 3. Those considerations, related to [Fe], make the connection with 
"Kakeya type" phenomena and will permit  us to disprove the conjecture for 

most phase functions ~(x, y) of the form (1.11). 

Remark 2: For the behaviour of exponential integrals, we refer the reader 

to [St l] or to [I], Chapter  2. 

Remark 3: The example described above may be adjusted to show that 
2(d+1) condition may  be necessary for (1.4) to hold, for d odd, the g > d-1 

letting r = c~. The situation d even is likely to be different, but  this will 

be investigated elsewhere. 

1 1 
C N  -3/q > N - ~ - ~  , (2.13) 
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3. G e n e r i c  F a i l u r e  

We first explain the  general pa t te rn  of the construct ion.  Given ~(x, y), we 
are concerned with the inequali ty 

for 3 < q, which is the dual form of (1.4) for r = ~ .  Let ~ ,~ N -1/2 and 
consider a b-net {y(a)}  in the (yl,y2)-variable. To each a ,  we associate a 
" tube" To of the form 

l 
~x (0 < A < 1, fixed) 

and let 

where XTo 
=kl signs. We also let 

A=(.JT,~ . 
o ~  

Assuming (3.1) valid and integrat ing on e~ = :i:l, it follows 

/ max l fTa eiNi~x'~)-~x'~')la(x, y)dxldy <_ 
/ ( ~ l ~ e'N[~(x'Y)-~"~)la(x,y)dxl2) l/2dy <_ 

f [Ig~[Iq 'de <_ CN-3/q 
J 

g(x) = g~(x) = ~ ~oe-'~(~,~o)x n (~), (3.2) 

stands for the indicator  function of T~ and the e,~ are random 

(3.3) 
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Prom (3.3) and H51der's inequality, estimate further 

/ (EXTol) qt]2 ~ IAI ' -~ ('])~-' IT,~I) '~''2 

(11 denotes "measure") which yields following bound on (3.4) 

c . N-3/qlAI �89 ( ~_, ITol)l/2. 
Write next for lY - Y~I < 5 

~(~, ~) = ~(~, ~)  + <%~(~, y~), y -  y~> +o(~ ~) 

and assume there is a function ~t = (~I(Y),~2(Y)) satisfy 

IVup(x ,y~) -  ~t(y~)l < 5 for x e T~.  

On gets from (3.7), (3.8) and the choice of 5 

~(x,y) = ~(x,~.) + ( r t ( ~ ) , y -  ~o) + o ( ~ )  , 

if x E T,~. 
The left member of (3.4) is thus at least 

E f 
ly-y.i<~ T. 

assuming a = 1 if x E T~ and IY - Y~I < 5. 

By (3.10), (3.6) we have 

(~--']~ IT.I) ~/2 _< CN-3/qs-21AI�89 
Taking the shape of the T~ into account, this yields 

5AI 2 <_ CN-31qs-2IA]�89 

IAI > Cq N--z'~q 
and letting q ~ 3 

327 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.s) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

IAI > N - ]  ~-~ (3.14) 
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R e m a r k  3.15: 

1 2 ~(~, u) = ~ y l  + ~ y ~  + ~x~(yl + ~ ) .  

Consider the case of ~(x, y) which is linear in x, for instance 

(3.15) 

Condition (3.8) then becomes (writing y for y,)  

for ~ E T~ . (3.16) { 1"1 +*~y~ - ~(y) l  < 

Eqs. (3.16) define a tube in direction (yl, y2, 1) subject to some translation 
~(y). The width of the tube is ~ and the length given by the bound on 
Ix31, thus ~ for Ta. Inequality (3.14) for I = 0 is simply the fact that 
the restriction conjecture implies that Kakeya sets in R 3 have Hansdorff 
dimension 3 (or, more precisely, the equivalent entropy statement). This 
statement appears to be an open problem and the best lower bound the 
author knows of presently is 7/3 (see [B1]). Consider next for S~ a ~i-shell 
of the unit sphere. 

S 

I , ~ z  \ I 

." ~ ( y )  

Every T~-tube may be translated to be contained in S~, if we let ~ = �89 (the 
line ( -Yl , -Y2,  1) should lie in the corresponding tangent plane at ~(y)). 
For such A C {x e $6 l lx31 < ~f~}, one has IAI ,.~ ~1+~ and (3.14) gives 
~1 >_ �89 + ~), i.e. I > 1 (equality). This shows the relevance of (3.14) 
and the fact that  ~ = �89 is optimal in the previous set-up, if one takes (1.4), 
r = co, q > 3, for valid. The main idea is disproving (1.4) for certain phase 
functions ~ is to achieve the above construction for a suitable surface S and 

1 certain A < 7" 

Consider a general phase function ~ and the normal form (1.11) 

r  y) = ~(~  + x , y +  y) = x1~1 + ~2y2 + ~3 (A~, y) + O(l~311Yl ~ + ixl21~l ~) 
(3.17) 
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in a neighborhood of the point (~, y). In fact, we assume 

Ixl < ~ ,  Ix31 < (~1/3 , lyl < ~ ,  (3.18) 

where ~ ,,~ N -1/2 and T is any number < 1/3. 
Condition (3.8) becomes a ~f-estimate on both expressions 

Xl 3- al lx3Yl 3- a12x3y2 3- x3COylK 3- xx (L~l(X)yl 3- L12(x)y2)3- 
x2(qllYl x2(L21(x)yl 3- L212(x)y2) 3- + q12Y2)- ~I(Y) (3.19) 

�9 2 + al~x3yl + a=x3y~ + z~Oy~g + xl(Li2y~ + Lloyd)+ 
x2(L22Y1 + L222Y2) 3- x2(ql2Yl 3- q22Y2) - f~2(Y) 

where 

r y) =xly l  + x2y2 + x3 (Ay, y) + x3K(y)-I- 
r l r l  2 L 1 1 1 2 

xl  [ ~ 1 1 Y l  + 12YlY2 + ~ L 2 2 Y 2 ]  + 
r 1 r 2  2 L 2 1 2 2 x2 [~z~11Yl + 12YlY2 + ~L22Y2]+ 

X32 1 2 1 2 (~qllYl + q12YlY2 + ~q22Y2)+ 

O(Ix=llyl ~ + I=l=lyl = + I=l=lyl =) (3.20) 

a n d A  ( � 8 9  a12)  i = hi2 ~1a22 ' K is a cubic function of y and the Ljk are linear 

functions of x. Notice that  the error terms of (3.20) do not enter in (3.19) 
because of (3.18), assuming 

4r > 1 . (3.21) 

Since IVKI = O(lyl2), a change of coordinates in the y-variable of the 
form I + O(lYl) permits the elimination of x3cgy, K-terms in (3.19). The 
expressions may be rewritten as 

{ x1(1 + L~lyl 3- L~2Y2 ) + x2(L21yl + L~2Y2) + x3(allYl 3- al2Y2)3- 
x2(qllYl 3- q12Y2) -- ~I(Y) 

x2(1 + L212Yl + L222Y2) + Xl(L]2Yl 3- L212Y2) + x3(a12yl + a22Y2)+ 
xi(q12Y1 + q=y~) - a~(Y) 

(3.22) 
Here f~l, f12 remain arbitrary functions of (yl, y2), f~(0) = 0. 
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Consider the following transformation F = Fxs ,y of the (Xl, x2)-variable 

F(xl,x2) = ((1 + L~,yl + L~2Y2)Xl + (L~lyl + L~2Y2)X2, 
1 2 (L12Yl + L12Y2)Xl + (1 -{- L12Y 1 -{- L22Y2)X2) , 

(3.23) 

clearly of the form Id + 0 ([y[ ([x l[ + [x2 [) ([xl [ + Ix2 [ + [xs [)). Hence, up to 
o(5)-error terms 

F - I ( -  x 3 ( a l l Y l  - 1 - a 1 2 Y 2 ) -  x 2 ( q l l Y i  -4-q12Y2)-4- ~I(Y), 

-- Xa(a12Y1 -1 t- a22Y2) 2 ~2) -- x3 (q l2Y l  + q22Y2) + 

has the form 

{ - - x 3 ( a l l Y l  4- a12Y2) 2 ~1 (Y) -- x 3 ( q l l Y l  "Jr" q12Y2) -4- 

+O((1~11 + 1n21)]Y](lYl + Ix31)) 

-x3(al2Yl + a22Y2) - -  x2(qx2Yl A- q22q2) + ~2(Y) 
+O((l~xl + 1~21)IYI(lYl + Ix31)) 

(3.24) 

The error terms in (3.24) have the form O(ly[2([~l] + [~2[)) and 
x 3 0 ( [ y [ ( [ ~ l [  + [122[)). The second type of term may be absorbed in the 
x3(allyl + a12y2), x3(a12yl + a22y2) terms and eliminated by a change of 
variable in the y-variable of the form Id + O([y[[~[). This change of vari- 
able depends on the ~-functions. Thus up to 5-error terms, (3.24) becomes 
(denoting again y the new variable) 

--x3(allY1 Jr" a12Y2) -- x2(qllYl -4- q12Y2) -{- fll (Y + O(lyll~[)) 

-~(~l~y~ + ~ y ~ )  ~](q,~y~ + q~y~) + ~ ( y  + O(lyll@) 
(3.25) 

Since one considers functions in y vanishing at y = 0, an appropriate choice 
of 121, ~2 still permits the realization of arbitrary y-functions ~I(Y), ~2(Y) 
for the last terms in (3.25). This follows from an implicit function argument 
and the assumption [y[ < 5 r. 

The original condition (3.8) becomes 

[Xl + x3(axlYl + a12y2) + x2(qlly1 + q12y2) - 51 (y)[ < 5 (3.26) 

[~2 + ~(a~2yl + ~=y2) + ~(q~y~ + q=y2) fi~(y)] < 
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for x in a tube 6-tube T = Ty, ,y2 as described above. 

We will let ~ be a linear function of y, i.e. 

5(y) = (wily, + wi2Y2,w21yl +w22Y2) , (3.27) 

where the wij will be suitably chosen. More precisely, we want the Jacobian 
determinant of the  map 

Yl I , ~ ( W l l  - -  x 3 3 1 1  - -  X3qll)Y12 + - - ~ q ~ ) y ~  ( 3 . 2 s )  
Y2 ~,(w21 - x3a12 x3q12)Yl + (u~22 x3a22 - x2q22)Y2 

to be 0(Ix313). This will permit us to conclude that  for fixed Ix31 < 
61/3 (cf. 3.18) the map (yl,y2) ~ (xl ,x2) given by (3.28) ranges in a 6- 
neighborhood of a line. Keeping ]Yl < 6~ fixed and varying x3 in the interval 
[0, 61/3] wiU yield a curve F~ that,  by previous considerations, is contained 

in a set of measure  

Irl ~ ( 3 . 2 9 )  

and which is a union of 6-balls. If Ty is the tube obtained as 5-neighborhood 
of Fy, (3.26) clearly holds and Ty is contained in a set A of measure 

IAI ~ 6r . (3.30) 

It remains to examine under  what conditions on A = (aij)l<i,j<_2 and Q = 
(qij) the matr ix  i2 may be chosen such that  

de t (5  - x 3 A -  x2Q) = O ( [ x 3 ]  3 )  �9 (3.31) 

Since det  A # 0, 5 may be replaced by ~ = (~{j) = A - 1 5  and for Q = 

A-1Q = (~ij), (3.31) becomes 

d e t ( ~ -  x3I - xa2Q) = o(1  13) . (3.32) 

We have to satisfy the following conditions for t2 

{- det f~ = 0 

tr ~ = 0 (3.33) 

1 = c011q22 -~ c022qll - w'21q12 - c012q21 
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In order to satisfy the first 2 conditions in (3.33), let 

1 
~ 1 1 = w ,  ~ 2 2 = - w ,  ~ 1 2 = 7 w ,  ~ 2 1 = - - w ,  (3.34) 

7 

where w, 3' are parameters.  The last condition then becomes 

1 = w q 2 2  - a l l  - 7 q 2 1  "~- ~ q 1 2  �9 (3.35) 

This equation may always be satisfied, except if qll  = q22, q12 = 0 = q21, 
i.e. Q is a multiple of A. To avoid this, we thus require 

Oy 2 \0x23] ~=o is not a multiple of ~ ~3x3 ~=o ' 
y.~O y~O 

where r is given by (3.17), (3.20). 
If (3.36) holds, one may thus associate to the points y, lYl < ~ ,  a tube 

Ty as described at the beginning of this section (A = �89 contained in a set 

A of measure at most ~ + ~ .  
Let ~(x,y)  be given by (1.11), i.e. 

~(z ,y)  = xlyl  + x2y2 + x3 <Ay, y) + O(]x3lly] 3 + Ix]2]y 2) . 

Assume 

Oy 2 ~ ~ ]  ,~=o is not a multiple of ~ ~3x3 ~=o 
y~O y~O 

Take in (3.17) �9 = 0 and let y range over a ~ - n e t  in a neighborhoo~l of 0 
(of cardinality ,,, ~-2r).  In order to bring ~ (x ,~  + y) in the form (3.17), 
there is a coordinate change required (xl,  x2, x3) --~ (x~, x~, x3), which is a 
C~176 of the identity, taking lYl small .There will also be a small 
per turbat ion of the matr ix A. Clearly, the matrices appearing in (3.26) are 
perturbations of those in (3.37) and hence (3.37) yields (3.36) for r  
corresponding to (0, y), if we let ]Yl be sufficiently small. 

For each y in the net, a system ~y of tubes {Ty ; lY - Y] < 5~} is 
obtained, contained in a set Ay of measure at most 5~+~ and satisfying 
condition (3.8)~ i.e., 

]O~(x,y)  - gt(y)] < 6 if x s T y ,  (3.38) 
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for a certain function D of y. 
Define 

A =  U A y  , IAI < 5~ -~ . (3.39) 

It follows from (3.13), (3.39) that  validity of (1.4) for r -- oo and a given 
q > 3 implies 

13 3 

2 ~- < 12 q (3.40) 
3 2 -  1 1 

2 q 

1 Inequality (3.40) thus implies Here T is subject  to (3.21), i.e. T > ~. 

118 
q >_ -~- > 3, (3.41) 

If ~(x,y) given by (1.10) satisfies (3.37), i.e. 

a 2 a 2 
Oy 2 \ ~ ]  is not a mult iple  of ~ ~ , (3.42) 

a t x = O , y = O .  

R e m a r k  3 .43.  The  function ~(x, y) appearing in the context  of the 
Bochner-Riesz problem (d = 3) is obtained by considering Ix - Yl with 
y restricted to a plane, say y = (Yl, Y2, 1). After obvious changes in the 
x-variable, one gets 

p ( x , y )  = (1 + lyl 2 - 2 (x ,y ,  + x2y2) + x3) . (3.44) 

One obtains the form (1.10) by a coordinate change in x given by 

and a change of coordinates in the y-variable y r-~ y + O(]y[ 2) tha t  may  be 
ignored in verifying (3.42). 

(3.46) yields 

, -X l  , - x 2  (3.47) 
X l -  (t-Fx3) 112 X2 - -  (1-l-X3) 112  
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and (3.44) becomes 

r  y) = [1 + lyl 2 + x3 + 2(1 + ~3)~n(x~yi + ~ y 2 ) ] / ~ .  (3.48) 

In verifying (3.42), take xl = 0 = x 2 .  Clearly 

oy~ [(1 + lyl ~ + ~3)~/~] (3.49) 
y=0  

is a multiple of identity and hence the criterion fails in this case. 

4. L 2 - e s t i m a t e s  R e v i s i t e d  

The rest of the paper is devoted to proving some positive results (i.e. results 
for q < 4). The main idea is to adapt the argument in [B1], section 5. One 
considers the level sets 

A ~  = {Ixl < N and > ) ` }  (4.1) 

Under suitable conditions on ~ and f e L ~176 one seeks for an estimate 

IA,,,I < )`-q+~ (4.2) 

for some q < 4. That  will allow to get an inequality 

I ITN/IIq < cg-3 /q l I / l loo  , (4.3) 

where T / v / i s  given by (1.4). 
Let us summarize the method.  There are essentially 3 steps 

(i) Consider the L2-case, thus f E L 2 and q -- 4. This case appears in 
[Stl, Th. 10]. We will make a further observation, nl. the fact that 
IA~I ,,~ )`-4 only may happen if IA~ N B~-21 "~ )`-4 for some ball 
B~-2 = B(z ,  )`-2) of radius ) -2 .  

(ii) Assuming now f E L ~176 the study of the level set A~ in a bail of given 
radius, in order to obtain (4.2) for some q < 4, is done combining the 
L2-estimates and some estimates on Kakeya-type maximai operators 
in L v, p > 2. These Kakeya operators are related to 7~. 
Proof of certain LV-inequaiities on these Kakeya maximal operators. If 
p = 2 and the excentricity is $ (i.e. we consider 5- neighbourhoods of 

(iii) 
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the curves), a bound 6 -1/2 is found. Thus, by interpolation, there is a 
bound 6 -lIp for 2 <: p _< co. It turns out one just needs for some p > 2 

1 to get an estimate 6 -~(p), for some 7(P) < ~. 

Redefine Tgf(x)  = f e iN~'< •'Y)a(y)f(y)dy. 
In this section, we carry out the first part of the program. Let 0 < )~ < 1 

and A~ defined as in (4.1), assuming f Ifl 2 < 1. Fix R > 1 and consider a 
collection A~ of subsets of A -- A~ such that 

diam A~ <_ R 

dist(A~,A~) > R for 

I U~ A" [ > vIAl. 

(4.4) 

(4.5) 

(4.6) 

Denote X~ the indicator function of A~. One has (or at least may assume) 

Re E (TN f, X,) > c),lAI (4.7) 

hence 

~ T~x~ > c~2lA[ 2" 
2 

Expand the left member square as 

(4.8) 

(4.9) 

<- [[TNII~m E IA~I + E c(a'g)lA'~llA~l 
a a#0 

where 

II L a ( loc)  

the supremum being taken over functions g satisfying 

(4.1o) 

(4.11) 

][gH2 <- 1 and d iamsuppg  <: R (4.12) 

and c(a, fl) = c(p), p = dist(A,~, AZ), c(p) denoting a uniform bound on the 
kernel g(x ,x ' )  of the operators TNT~ for Ix - x' I > p. Here 

K ( x ,  x ' )  = e'N[ +:( . (4.13) 



336 z. BOURGAIN GAFA 

The square of (4.11) corresponds to the L2-norm of the operator 

L ' = . /  (y ,y  ) eig['P(~'Y)-~(:~'Y')lbn(x z)dx , (4.14) 

where z E R 3, I z[ < N and bn a smooth function such that bR(x) = 1 of if 
[x[ < R, bn(x) = 0 if Ix[ > 2R and fulfils the obvious derivative estimates. 
This L2-norm may be bounded by 

/ [ L ( y , y ' ) l a ( y ' ) d y '  (4.15) s u p  

from interpolation and symmetry. 
Recall (1.11), i.e. 

~(x,  y) = xly~ + x2y~ + x3 (A~, ~) + o(Ix3]i~l ~ + Ixl~Yi ~) . (4.16) 

Taking [x] = o(1) in (4.16), it follows from the oscillatory integral theory 
(cf. [St]) that 

I f  1 
I ] eiN[~::'u)-~'(:~"U)la(y)dy < C Nlx  - x'[ (4.17) 

and hence 

from where 

1 (4.18) IK(x,x')[ < Clx - x' I 

c(p) < p-1 . (4.19) 

Similarly, one gets on (4.14) a bound 

IL(y, r ~ n .  n 2 �9 r  -y '~))  . r  - y~)) (4.20) 

where 
1 

r  = 1 + t2 " 

Consequently (4.15) ~< R, thus 

�9 2 IIT;ilqR ) ~ R .  

Substituting (4.19), (4.22) in (4.10), it follows from (4.8) 

V "  IA~IiA~I 
A2IAI2 ~ RIAI+ ~ dist(Aa'--'---: A"-~) 

and therefore, one gets. 

(4.21) 

(4.22) 

(4.23) 
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PROPOSITION 4.24. There is the following measure estimate on the level 
set A~ given by (4.1) 

R<p<N I zl<N 

where R is a parameter. 

If we let in particular 

it follows that 

(4.25) 

R ~ A -2 , (4.26) 

IAAI < C ) i  - 4  . (4.27) 

Of course, (4.27) corresponds to the inequality 

IITNflIL.(.(o,~)) <_ C[Ifll2, (4.28) 

given by Th. 10 of [St]. 

5. D i s t r i bu t iona l  Es t ima te s  in a Ball  of G iven  Radius  

Consider for Ifl-< 1 

TNf(x )  = f eiN~(~'Y)a(y)f(y)dy , (5.1) 

for x in a ball B(z ,R) ,  1 < R << N, ]z I << g .  
Define a new phase function r y) given by 

r  ~ ~ + ~ x , ~  - ~  ~ , ~  , (5.2) 

which still satisfies conditions (1.2), (1.3). Their verification for r at (x, y) 
amounts to the verification for ~ at ( ~  + Rx, y). 

We are thus concerned with the operator 

URg(x) = f eiRr , (5.3) 

~here ~ e B(O,R),  Igl < 1. 
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where 

Write next 

Ung(x) " R f e in'#(~'y)Gx(y)a(y)dy , 

Gx(y) = f e iR[r (v/Ry')g(y q- y')dy' . 

(5.4) 

Fix 2 _< q _< 4. Write 

fB IURg]qdz"' R-3/2 [ 
JBR 

(5.5) 

In the definition of URg(x + x'), there is no harm in replacing Gx+~,(y') by 
G ~(y ). We use here the fact that on Bn • B j ~  • B1 • B ~  

L~176176176176176 , 
(5.7) 

since 

L ~ ('~)@L ~(~')~L ~(y)~L"'(y') , 
(5.8) 

for I~1, I~'!, lul, Iff'l -< 1 (as is easily seen by differential calculus). Thus by 
(5.4), (5.6) becomes after replacement of Gz+x,(y) by Gx(y) 

R-,+, [ f,c, l f qdx']dx , (5.9) 

where one introduced the phase-function 

which again satisfies conditions (1.2), (1.3). 
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Considering the operator (for fixed x) 

. r 

(Vj-~h)(x')= e'J-Rn~(:v'~'Y)h(y)a(y)dy, (5.11) 

one gets from the L 2 - L 4 result (see [St], Th. 10 and previous section) 

IIVv~hHL,( S ,n) < CHhlI2 . (5.12) 

Inequality (4.22) from the previous section gives the following L2-L 2 esti- 
mate 

HVj-~hlIL2( B,/_~) ~_ CR1/411hH2 . (5.13) 

Writing 
1 6 1 - 8  

- + ~ ,  (5.14) 
q 2 4 

interpolation of (5.12), (5.13) yields 

IIVj'~hlIL,(Br <_ CR ~-�88 Ilhl12 �9 (5.15) 

Application of (5.15) in (5.9) fixing x and letting h(y) e'n~(~'Y)P " " = ,.,~,y) 
yields following bound 

1 q12 

One has for ly'l < 

) (5.17) 

One may therefore substitute in (5.16) Gnx(y) by 

/ e~n(v,V(x,,),") a( v/-R, y')g(y + y')dy' . (5.18) 
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Define for given y 

k~(~) = 

Obviously 
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f e'(~,~').(~u')g(~ + y')a~'. (5.19) 

A A 

s u p p k y C B  1 =~supplkyl 2CB 2 (5.20) 

Thus, if b e S satisfies b = 1 on B~R, then Iky] 2 = [kyl 2 �9 b. Such a b may 

be majorized by the function 

Rl J ei{y"~} a(x/Ry~)dy~12 . (5.21) 

Hence 

Observe that  by (5.19) and Plancherel 

2 

(5.22) 

f ]k~(r162 < C_ (5.23) 
R "  

We used the fact that  Ig[ -< 1. 
Put  ~ = RVyr y) in (5.22). tt  follows from previous considerations 

I f + r 

f ] f ei(Rv,*(x,Y)-~"U')a(v"Ry')dy'12[ky(~')]2d~ ' . (5.24) 

From (5.24), (5.16) gets estimated by 

R'-• JB, [f l f eiv''fi(v'r q/2 dx, (5.25) 

where w(y) is a vector associated to y. This follows from a simple convexity 
argument. The inner integral is of course 

~ (V~, (V, r  y) - w(y)) ) . (5.26) 
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Define the operator  

�9 ]~cf(Y) = supc  -2 [ (5.27) 
J 

IV~,~(z,y)-,zl<s 

(5.25) is bounded  by Lq/2(B1)-  Lr This gives for some 
f E L(q/2)'(B1) of norm 1 the bound 

5 ~ [ /  ] q/2 
R ~ -  . .A~l/.C~f(y)dy j (5.28) 

Assume the following inequality proved for r = (2 ~) '  

HMJIILI(B1) < HflIL~(BI) , (5.29) 

for some 7(r )  > 0. 
(5.28) is then  es t imated  by 

R ~ - ~ + ~ < ( ~  )') . (5.30) 

Consequently 
5 _ 3  L ~.~ 

IITNflILq<Bfz,R)) < C R ~  ~+'~((~)) if Ill < 1 . (5.31) 

implying a distr ibut ional  inequality 

me= [x ~ B(z ,R)[[TN/(x ) I  > ~] < C R ~ - ~ q + , ~ ( ( V ) ~  -a , (5.32) 

on the ball B(z, R). 
Assume we prove for some r > 2 

1 
7(r)  < - .  (5.33) 

r 
One then clearly gets with the notat ions of (4.25) 

]A~ n B(z,p) l ~ p2-]-~'A-q , (5.34) 

for some T > 0. Hence (4.25) is bounded  by 

~-~ [R + R ~- ~ - ~ - ~ 1  (5.35) 

and thus 

IA~I ~ )-(2+~+--~ ) = )t_4+~, ' (5.36) 

for some r '  > 0. 
This  would be the  desired est imate (4.2). 
In the next  section,-we will prove under  suitable conditions on ~ an 

estimate (5.33). 
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6. Related Kakeya Type Maximal Inequalities 

We will only consider phase functions ~(x, y) of the form (1.12), say 

ix  ta .2 ~O(x ,y )  : X l y  1 9C x 2 y  2 "~ ~ 3~, l lYl + a12Y2 2) "[- ~) (x3 ,y)  , (6.1) 

where 
r = o(Ix3llyl2(lxzl + lYl)) (6.2) 

and r is real analytic. 
The difference with the general case (1.10) (d = 3) in the absence of 

the xl, x2 variables in the r y) additional term. This fact simplifies t he  
gradient equations 

x l  + a l l x3Yl  "[- Oyl r y) -- Wl : 0 

x2 + a22x3Y2 -{- Oy2 r  Y) -- w2 : 0 
(6.3) 

appearing in the context of the maximal function A~i~ defined by (5.27), in 
the sense that they are explicit in Xl, x2. Thus the corresponding curves Fu 
parametrized by 

Xl : - - a l l X 3 Y l  -- Oy 1 ~)(x3, y)  (6.4) 

x2 = -a22x3Y2 Ov~r y) 

are translated according to w = ( w l ,w2 )  but w does not affect the shape 
of the y-curve. This will play a role in the considerations below. I believe 
however that it is possible to carry out a similar approach in the general 
case (besides the previous more principal difficulty there are systematic 
complications if the (6.3)-equations are implicit in xl, x2). 

Recall the definition of tc[~ 

2 ~ f ( y )  -" sup f f ( x ) d x  . (6.5) 
~=(wi,~2) J 

Ivyr 

This amounts to averaging f over an e-neighborhood of the w-translate of 
the curve F~ defined in (6.4). The tangent vector at ( x l , x 2 , x 3 )  E Fu is 
given by 

vu(xz)---- ( -  allY1-OxsOm%b(x3, y) , - e22Y2-Ox3Oy2~b(x3 ,y ) ,  1) (6.6) 
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(of course independent from the translate). Since, by (6.2), 

10,3D~r = O(Ix31) = o(1) (6.7) 

one clearly has at given x3, for y = (yl, Y2), y' = (Y~, Y~) 

Ivy(x3) - v~'(x3)l > cl~ - y'l (6.8) 

(a11, a22 # 0). 
Inequality (6.8) easily leads to an L2-estimate on Azl~. For each y in a 

neighborhood of 0, let F~ stand for an e-neighborhood of the w(y)-translate 
of F~, i.e. the points x = (xl, x2, x3) satisfying 

Ix1 +allx3yl +Oylr < e (6.9) 

It clearly follows from (6.8) that 

t e3 
I ~  n r~,[ < c~(y,y )e + l y - y ' l  (6.1o) 

1 
Fy r y l  



344 J. BOURGAIN GAFA 

defining 

/3(y,y')  = 1 if d i s t ( r ~ , r y , )  < 2 a ,  Z(y , y ' )  = o o t h e r w i s e .  (6.11) 

Checking the L 2 - L  2 bound on j~t~ essentially amounts to evaluating for 
E l%[ 2 < 1 

yEY 

I yEY yEY 2 

where 31 denotes an a-net in a neighborhood of 0 and Ilfl12 < 1. write 

Ilzo.  .ll:--z 
y~.Y y,y~ EY 

and estimate the s norm of the matrix (l~ynr~,, I)y,y, ey by Shur's 

lemma (i.e. the gl-tl,g~162162 bound) and (6.10). This gives for fixed y e Y 

I~ n ~,,I < c ~ Z(~, V) 
y 'EY y 'EY 

e 3 / ~(y, y')dy' (6.14) 
+ lY - Y ' I  " a a + lY - Y ' I  

(the integrals are restricted to a given neighborhood of 0). 
Thus the right member of (6.12) is bounded by a -1/2, from what pre- 

cedes, and hence 
II.,~,ll~._,~ < c. : 1 / ~ .  (6.15) 

Thus, in particular 

11~1t2-1 < c .  : 1 / 2 .  (6.16) 

In fact, it also follows from the preceding that 11.~I~[[2_l may be bounded 
by 

e -I-[Y- Y'[ (6.17) 

hence 
1 \ 1/4f ~ 1/4 

(6.1s) 
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For a given configuration of Fu, (6.18) gives more  information than  
(6.16). Indeed, assume 01 > 0 a small number  and 

:vEY 112 

-01 
(6.19) 

From the es t imate  (6.18), it then follows 

~ ( y ,  y')dy dy' > E 4~ . (6.20) 

Taking 01 small, this means  tha t  many  pairs (Fu, Fy,) intersect each other. 
This fact will be exploited to replace the translat ion function w by a C ~~ 
function, by imposing Fu + w(y) to intersect 2 fixed translates Fvl + w(y 1) 
and Fu~ + w(y2). In the case of a smooth  translat ion function, we then use 
differential calculus to get LP-results, under  suitable assumptions  on ~. To 
make this general idea more  precise will require however addit ional  work. 

Remark 6.21: The est imate  (6.15) is the right estimate,  in part icular  for 
straight lines. In this last case, the conjecture is that  (d = 3) 

--(A--1)--r (T > 0) for p < 3 (6 .22)  IIM~IIp~p << ~ " -- �9 

7 In this section, we consider p > 2, with- This is proved in [B1] if p < 3" 
out seeking for a precise est imate but  only an improvement  over e - l / p  for 
IIM~IIp_, 1. Observe tha t  in general (6.22) is not  valid, as a consequence of 

the considerations made  in section 3 of the paper. 
Thus  we have to consider for q < 2 the expression 

]] / x~ dy}]q, (6.23) 

where f~ is some neighborhood of 0. 
The  variable xa ranges in a neighborhood of 0 which we par t i t ion in K 

subintervals I j  of length 

1 (6.24) 
t lsl  ~ - i f .  

The number  K = K(c)  will be specified later. 
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For each j ,  we will decompose ~ as 

~2 = U ~  U~2{, (6.25) 

where the number of ft,-components will be suitably bounded and 

IlL < K  �9 (6.26) 

Hence, from (6.26) 

I ~ f~ X'~.n(~2• < e~+~ (6.27) 

Thus there is the following estimate on (6.23) 

1/q 
1 2 

+ e2-~+~ ~ , (6.28) 

where ~ + ! = 1. The last term in (6.28) appears by interpolation between 
L I ( the e2-estimate) and L 2 (estimated in (6.27)). 

The main point is of course the construction of the 12~ and its proper- 
ties. 

Fix j and denote r y N ( R  2 • I j)  (resp. Fu f3 (R 2 x Ij)) again by r u (resp. 
Fy). The number K will be chosen small w.r.t. ! $ 

S 
If Ij = [aj,aj + ~] ,  we make a change of variable 

X3 --'+ ~ 3  - -  a j  . (6.29) 



Vol.1, 1991 LP-ESTIMATES FOR OSCILLATORY INTEGRALS 347 

Consider the equations (6.3). Introducing the new variable x3 and making 
a coordinate change in (yl, y2), one gets equations of the form 

Xl q- allx3Yl q- ~i(x3,y) - odl -- 0 (6.30) 

X 2  n u a 2 2 x 3 Y 2  "}- r12(x3,  y) - w~ = 0 

where 0 < x3 < -~ and 

Here 

I,,(x3, y)l = O(Ix312lyl) 

w~ = w i  - a i i  . a j  . Y i  - -  O y , r  y )  , 

and the coordinate change in the y-variable given by 

y~ =- yi + a~ 1 [cg,30y,r y)] �9 

It follows from (6.2) that this last change of variable is of the form 

Id + ~r + O(lyl 2) 

(6.31) 

(6.32) 

(6.33) 

(6.36) fl(Y,Y') = flJ(Y,Y')_ { 1 
0 

if Fy and Fy, intersect 

otherwise 

where ~r is affine and II~rl[ ~ ~ where [-~, ~] is the domain of x3. 
Let f~0 C f~ and suppose (6.26) does not hold for f~J = f~0. Thus with 

the new notation 

]] /fto X-ff dYll2 > K-1/2~ +~ (6.34) 

A straightforward exhaustion consideration permits finding a subset Fh of 
fl0, still satisfying (6.34) (up to a factor �89 and such that moreover, for each 
f~2 C fh 

I~  xF dYll2 > �89176 (6.35) 

holds. 

Redefining 
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estimate (6.10) obviously still holds and hence (6.34) implies 

Z(v,v' 
f f  e + ly =~,l dydy' > l(-xc2~ 

fh xfla 

Hence, for some 

one will get 

// 
01 xO 1 

~,<t~-~'l<2.~ 

N 
"y<lv--~ ~1<27 

(6.37) 

K-le2~ < '7 < 1 (6.38) 

( 1 )  1 
~(Y'Y--)- dydy' K- i s  2~ 

r + lY - Yll > log 

j3(y, y')dy dy' > K- l  e2~ (log l ) -l T . 
(6.39) 

The log �89 are irrelevant in what follows and we will drop them for 
simplicity. 

Assume fixed yl, y2 E ~1 and a subset ft2 of fh  of points y such that 

Fy intersects Fyl and Fy2 (6.40) 

C (6.41) angle (y - yl, y _  y2) > K , 

Yl 

From (6.30), one then gets for i = 1, 2, denoting Ai the x3-coordinate of a 
F y  --  Fv l  intersection point 

{ lalx(y~ - y~)Ai + m(A. y) - m(A. y ' ) -  JI(Y) + J~ (Yi)[ < 2~ 
(6.42) 
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and making the subtraction for i = 1, 2 in (6.42) 

{ 
Our aim is to consider 

Jai l(Y1 - y l ) )~ l  - a l l (Y1  - Y2)~2 '~ 71()~1, Y) - 71(~1,  y l )  _ 71(,~2, Y)-~ 
71()~2, y2)  + w~ ( y l )  _ w~ (y2) l  < 4e  

[a22(y2 - y~)A1 - a22(Y2 - y~)A2 -~ 72(A1, y) - 72(.'~1, y l )  __ 72(~2 ,  Y)'~- 
Y2(A2, y2) + w~(yl) -- w~(y2)l < 4E 

(6.43) 

, -- 02t[ 2~ -7i(~1 ~ 1 ) - 7 i ( ~ 2 , ~ ) + 7 i ( ~ 2 , ~ 2 ) + ~ ( y l )  , ~  ~ = 0  

(i = 1,2) (6.44) 

as implicit equations in A1, )~2 which we seek to obtain as smooth functions 
of y, i.e. 

{ )~1 = ) , l ( y )  

~2 = ,X2(y) 

Here y is taken in a neighborhood of a point, of size 5, to be specified. This 
is achieved by the implicit function theorem. The solution (6.45) may not 
be unique but the number of solutions should be suitably bounded. The 
main point is to control the (A1, A2)-Jacobian. Observe that by (6.31) and 
the ~-restr ic t ion on x3, one has 

1 
IO~r/i(A, y ) _ 0~,7i()~, z)} < T~O(ly- z]) . (6.46) 

Hence 

JA1 ,)~2 ----- 
a l ( y  -- y l )  ..~ _ ~ O ( l y -  yll) 

a22(Y 2 __ y l  ) .~_ _~O([y  _ y l l )  

al~(~ - yf) + ~ O ( l Y -  ~:1) 1 

J ,~(~,~ - y~) + ~o( ty  - y~l) 
(6.47) 

and thus 

1 y2 
d e t J ~ , ~ 2  > c l d e t ( y - y l , y - y 2 ) l - - ~ O ( l y - Y l l l Y -  I) . (6.48) 

In view of hypothesis (6.41), taking the constant C appropriately, one finds 

a lower bound 
l ly _ y l l ly  - y21 . (6.49) d e t  J~l ,~2 > 
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If one assumes 

it follows from (6.49) that  

One may thus take 
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lY -- Yil ~> 71 (6.50) 

1 2 (6.51) 

6e,a 71 g ( ,  (6.52) 

and, since [Ai[< -~, the number  of solutions to (6.45) may be est imated by 
7{ -2 . Here 

n = C  ~ and 71 >~~ , (6.53) 

for certain 02,03 depending on 01 where 02,03 -+ 0 for 01 --~ O. Of course, 
once (6.45) obtained, (6.42) also yields 

=  i(u) 

4 = 4 ( u )  
(6.54) 

as smooth functions of y on this &neighborhood. Thus our aim of obtaining 
a smooth translation function for a "large" subset ~3 of ~2 is achieved in 
this case. The main problem is that condition (6.41) may not be realizable, 
which is the reason for the complications in what follows. 

Consider the set of triplets 

T= {(yl,y2,y3) e ~3 [ ] y l  __yi ~ . , 7 , ~ ( y l , y i ) _  1 ( i =  2,3) 

and angle (yl _ y2, yl _ y3) > C } .  
(6.55) 

Choosing 84 > 0, if we assume 

meas(T) > e ~ , (6.56) 

one may find points y2, ya in 121 to which correspond a set of points y - yl 
say 122 of measure [~2[ > ca,, such that  (6.40), (6.41) hold. In (6.50), one 
has 71 -- 7. This brings us to the previous situation. Hence, suppose 

meas(T) < ca, . (6.57) 
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Coming back to (6.39), one gets a subset ~4 of ~1 such that 

[~4[ > K- le2~  

mid to each V E ~4 corresponds a set 

D ( y ) = { y ' E Q ,  [ ] Y - Y ' ] " ~ 7  and 3 ( y , y ' ) = l }  

with 
> 

It is easily seen from (6.57) that if we let 

~o4 < K-%2o~+,y 

one has necessarily 

351 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

7 > e2~ (6.62) 

and moreover, we may assume that for y E ~4, the set ~(y) is contained in 
a -~-neighborhood of a line-segment through y, in a direction a(y) 

In view of (6.60), (6.62), the relative density of f~(y) in this strip is at least 
~501. 

Consider following set of triplets 

T1 = ~(y l ,y2 ,  y3) e a4 • ~~1 x ~~1 ] yi e a(y  1) (i = 2,3) ,  
k (6.63) 

angle(y2 _ yl ,y3 _ yl) > K J " 

It follows from (6.58), (6.60), (6.62) that 

meas(T1) > K-3e  1301 (6.64) 
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Hence, we m a y  find points  y2, y3 E ~ 1  and points  y E ~5 C ~4 ;3 B(p , e  ~ 
where { [~51 > K -3~'1301+205 

y~O(y)  for i = 2 , 3 ,  y~fi5 (6.65) 
a n g l e ( y 2  _ p,  y3 _ p )  > 1~501  . 

Here 05 is choosen to satisfy 

1 _~ol (6.66) E 05 <: ~ - ~  �9 

Fixing some y E Gs, bo th  y2, y3 lie in the  --~- strip centered at y in direction 
a(y). From the construct ion,  it follows tha t  this direction a(y) only deviates 
by ,,~ --~ from the directions ~ ,  yi], i = 2, 3. Thus,  we may  fix a direction a 
for which we have the  following si tuat ion 

y3 

Let q = 0/1, q2) appear ing in (6.30) and consider the real analyt ic  function 

. ) . e ,  [~176 (a...)] 
' ~, a220"2 

We dist inguish 2 cases 

Case I : 

(6.67) 

m a x  r(s)  < e ~ (6.68) 
, _<1 " " - 

C a s e  I I :  max  T(s) > e ~ . (6.69) 
t < 1  " 

Observe t ha t  by the  real analyticity, if (6.69) holds, then  one also gets 

meas [8 e [_1,1] [ [r( ,)l  < ~. ~~ < 5cl , (670) 

for some constant  cl.  F rom the way 7/ is derived from ~ appearing in 
(6.1), a ssumed real analyt ic  in x, y on a ne ighborhood of the domain  under 
considerat ion,  one m a y  assume cl uniform in p and a. This  is clear in the 
polynomial  case and may  be shown for real analytic functions along the 
lines of [B3]. We shall deal separately wi th  these 2 cases. 
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_Case _I. By the hypothesis (6.35) and (6.65), we have that  

I{f~x-(dYl2 > K - � 8 9  ]+150'+205 . (6.71) 

Repeating the considerations (6.37)-(6.39) yields a point y~ �9 i25 and a 
subset i26 of ~5 of points y, such that  

lY - Yll "~ 71 where e 05 > 71 > K-Te3~176176 (6.72) 

~(y, yl) = 1 for y �9 126 (6.73) 

ft6 C B(q,e ~ (6.74) 
I~6l > K - T  c 300'+405+20' . (6.75) 

Here 07 is chosen such that 

1 50, z ~ < f~e 7i �9 (6.76) 

Hence, either for i = 2 or i = 3, one gets 

1 _50, (6.77) angle(yi _ yl, y _ y l )  > 2-g~ 

Assume this holds for i = 2 

Y2 

t26 

Yl 

Since by (6.65), y2 �9 l)(yl)  we have/~(yl ,  y2) = 1 and may assume Fy] + 
w(yl), Fu2 + w(y 2) intersect each other, say for x3 = t. Proceeding as above 

(cf. 6.42), this yields the equations 

{ a11(~ - ~ ) t  + , l ( t ,  ~ 1) - , l ( t ,  y 2 ) - ~ i ( y  1 ) + ~ i ( y  2) = o 

_ _ _ + ~ ( y )  o .  a ~ ( ~  y~)t + , ~ ( t , y  1) ~2(t,y ~) ~ ( y l )  , ~ = 
(6.7s) 
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We use (6.78) to substitute in (6.43), valid since Fy intersects Fy2 by (6.65) 
and Fu~ by (6.73), the expressions w ~ ( y t )  - w~(y2). 

We further denote 

# l = A l - - t ,  / t 2 = A 2 - - t ,  (6.79) 

~ ( ~ ,  z) = ~ ( t  + ~ , ~ ) -  ~ ( t ,  ~) 

and  get from (6.43),  (6.78) 

(6.80) 

[a i i (y i  - y~)]-tl -- a i i ( Y i  - -  Y2)~2 "~ ~i (~1,  Y) -- ~i(]-tl, y l ) _  
- j3i(#2,y)  + ~ i ( # 2 , y 2 ) [  < 4r (i = 1 ,2)  

(6.81) 

Our goat is to consider again 

~,,(~,  _ ~1)~1 _ a . (y~  _ y~) .2  + Z~(,1,  ~) - Z~( .I ,  ~1) - 

- 13i(#2, y) + ~ i (#2 ,  y2) = 0 (i = 1, 2) 
(682) 

locally as implicit equations in #1, #2 which we seek to obtain as smooth 
functions of y, i.e. 

{ #t = #I(Y) (6.83) 

where y is taken in a neighborhood of a point ~ where intersection with 
r~l + ~(~1),r~2 + ~(y=) occurs. 

We may assume that  

( e  5~ ) C 
< angle(y2- yl, y _  yl) < ~ .  (6.84) 

Since otherwise (6.41) holds in which case the aii-terms in (6.82) permit the 
control of det J , l  ,,2. This is the simple case we treated earlier. 

Oberve that  by (6.31) 

{ I~ , ( ,~ ,y ) -  Zi(vl,Yl)[ < ~ J , l l l v -  v~l 

]a,(,2,v) a,(,=,y=)] < ~l,211v v=l. 
(6.85) 

It thus follows from (6.82), (6.85) that 

ly - v211v2t ~ Iv - y111~11 �9 (6.86) 
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Since y2 E ft(y) by (6.65), we have 

E--301 
angle(y - y2, a) < 

and hence, by (6.84), also 

E--301 
angle(y-  yl, a) < 

Consider (6.82), we have 
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(6.88) 

(6.89) 

J#l,~u2 = [aii(Yi - y l )  4- (9x3~i(~ 4-/41, y) - Oz3~i(t  4- ~ 1 ,  y l ) ,  

aii(yi - y~) + O~3rli(t +/42, y) - O~3rli(t + #2, y2)] . (6.90) 

Further, for i , j  = 1, 2,we have by the mean value theorem 

O~jl()~,y)-O~j?()~,yJ)= DuOx~r](~,y j + s ( y - y J ) ) ( y - y J ) d s  . (6.91) 

1 Again by (6.31), since IAI < 

(1) 
D~O~3,7(X,z)(~ - ~ )  = ~D~O~(O,~)(~ - yJ) + 0 I -~  IV - ~ 1 -  (6.92) 

Since dist(z,p 4- Ra) < --~, there is a probability measure pj on [-1, 1] such 
that 

/ (:) (6.91)=A DyO~3~(O,p+sa)(y-yJ)pj (ds)+O ~ t y - y J t .  (6.93) 

Substitution in (6.90) yields for some sl, s2 

a 1 2 det J~,~#,~ = d e t [  ii(Y-Yi) 4- (t 4-/41)DyO~3r]i(O,p+ s l a ) ( y -  y l ) ,  

aii(yi - y2) 4- (t 4- 1~2)Dya2,yi(O,p + s2a)(y - y2)] 

(1) + 0 ~-~ ly-  y~lly- y~l. (6.94) 

The first term of (6.94) equals, because of (6.88), (6.89) 

a~a22 det[y - y~, y - y2]+ 

4-0 ( K ) [ d e t  [DuO~3rl(O, p4-sjcr)(a), (altata22a2 ] ~]j 1 ly - Y l l ] Y -  y21 

+ 0  \ ~ ] I~- y~lly- y~l. (6.95) 
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We take 
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In view of (6.77) and the assumption (6.68), it follows from (6.94), (6.95) 
that  

1 
 l -y ll -y21. (6.96) / J 

so that (6.96) yields by (6.72) 

det Jm,u2 > c e S ~  _ yllly - y2 I 

> c~ s~ K-1 , ) , 1 .  (6.99) 

This is the desired lower estimate, enabling the application of the implicit 
function theorem. 

Case II. Choose any point yl E f~5 for which thus f~(yl) lies in the 1 
(p, a) strip as described above. Also, the density of f~(yl) in this strip is 
> e50,. It follows from (6.70) that there is a subset f~7 of f~(yl) satifying 
for y E f~7 

Idet [Dyoq23r](O~ y)~ , \(allffl)]l > a 2 2 0 . 2  E~ C101 (6.100) 

where C1 = ci -1 and 

1 ff601 
d iama7  < ~-~, laTl > "K-- Y �9 (6.101) 

In order to get (6.100), we assume 

1 eo,+c,o, << , i.e. 02 > C101 + Os �9 (6.102) 

Again using (6.35) 

]l fa X'rvdYll > K-~e]+s~ ' (6.103) 
7 2 

which permits the construction of y2 E f~7 and ~2s C f~7 similarly to the 
way f~s C f~5 has been obtained. 

0s > 601 (6.97) 

K > e  -9~ , i.e. 02>901 , (6.98) 
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Thus for y E s 

lY - Y2I " 3'2 > K -5z160' 

Z(y, y~) = 1 
~s C B(r, e ~ 

l f l8l > K-5e16~176 

where 9s is chosen such that 

(6.104) 
(6.105) 
(6.106) 
(6.107) 

1 
eo~ < 7~ ..,/2 (6.108) 

Y2 

Yl 

For y e ~s, Fy intersects Fy~ and Fy2. Since y2 e a7 C a(y 1), also F~, 
intersects Fy2. We are thus in the same situation as in Case I, having instead 
of (6.68) property (6.100) for y e Fts. It follows from (6.86) that 

and thus by (6.62) 

Write 

where we define 

l ~ l l y -  yll < Cli*~lly- y~l 

I~ I  < e-~o, ly - y~ l l~ l  �9 

(6.109) 

(6.11o) 

y > (6.112) 

Hence the points y E ~'~10 have the property that 

dist(~u,p) < e ~ , (6.113) 

where p denotes the intersection point of Fu, -t-w(y 1), F~2 +w(y2). We treat 
these sets separately. 

s = D9 A s , (6.111) 



358 J. BOURGAIN GAFA 

The set 129. Introduce the new variable 

,i = 

satisfying by (6.110) 

I , l i  < ~ -3e~ lu-  u~l 

By (6.112), (6.81) yields after division by P2 

laii(yi 1 , - u , ) u ~  - a , ( u ~  - U~) 

(6.114) 

(6.115) 

1 
+ - - [ ~ ( , I , 2 ,  Y) -  Z , ( , i , 2 ,  Yl)] 

# 2  

< gl-e~ for i = 1,2 . (6.116) 

Our aim now is to get from the implicit equations 

eli(y,  - yl )~l 1 - ~2 [j3i(~2, y) - j3,(#2, y2)] + 

1 [f~i(#~u2, y) - fli(#~#~,yl)] _ aii(y, - y2) = 0 +~-~ 

(i = 1,2) (6.117) 

(6.118) 

as a smooth solution. From (6.114) this then also yields (6.83). 
Consider again J,i,u2. 
By (6.80) 

# 2  
(6.119) 

thus 

(6.120) 



Vol.1, 1991 LP-ESTIMATES FOR OSCILLATORY INTEGRALS 359 

As in Case I, we may assume (6.88), (6.89) valid. Hence, for some probility 
measure P2 on [-1, 1] 

(/0 (6.120) 2 D u O x 3 ( O , p + s a ) ( a ) p 2 ( d s ) + O  l y - y 2 [ .  (6.121) 

Similarly 
l [ / ~ , ( u l m ,  u ) - ~,(ulu2, ul)] = 
g2 

#i (VuO~3r/ i ( t+Tplgu,  y 1 + s ( y - y l ) ) , y - y l ) d T d s  (6.122) 

and hence 

Ou,~{ } = 0  ly-yl l+O(l~ll lmlly-y I ) = o  ly-yll (6.123) 

or,{  } = o (}~ l l21y-  y~l) = o ( l u l l l u -  u~l) _< ~-3~ y~l 2 (6.124) 
in the last line using (6.86), (6.115). 

From (6.117) and (6.121), (6.123), (6.124) 

det Ju'~,u2 = act aii(yl - yl)  + 0 ~-( lY - I, 

yOx3 p + s~)(~)ly - y21+ O -K + e-3~ l y - y 2 1  �9 

(6.125) 
It follows from (6.100) that the main contribution 

[det [aii(Yi - y~ ), DUO23 (O,p + sa)(a)lY - y21][ > 
~o~+~o~ [y _ yl[[y _ y2[. (6.126) 

The error terms contribute for 

O ( K  + ~ - 3 ~  (6 -3~  ' y - y l " y - y 2 "  (6"127) 

Since, by (6.101), 72 < ;~. 
It follows that under assumption (6.102), (6.126) yields a lower bound 

on det Ju~,u2" Thus, by (6.104) 

]det Ju'~,u2 [ > e~176 �9 (6.128) 

The implicit function theorem allows on a "large" subset of 9ts (or ~1) 
to replace the translation function by a smooth function (controlled by 
[det j ] - l ) ,  but the e-neighborhood of the curves has to be replaced by the 

EI--~ 9 larger ~ - n e i g h b o r h o o d ,  in vmw of (6.116). 
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The set ~10. Using (6.113), we will make a direct est imate on 

f~,o x'~ dy q �9 (6.129) 

Fix e ~176 and consider a B(P,  s ~176 )-neighborhood of P.  By H51der's inequal- 
ity, one has since q < 2 

e-2 Lao X'(.nB( P,~O~o ) dyl q 
2 2 _  1 

< II I1~ II I1r 

(6.130) 

1 = 1), using the es t imate  (6.15). 

Next, consider what  happens  outside B(P,  ~O~o ). 
Assume Fy~, Fv2 t ransla ted such that  P lies in the  intersection of both  

curves. I f P  = (~a,52,~3),  it follows from (6.3) that  for i = 1, 2 the translate 
Fv~ + w(y i) satisfies the equat ion 

{ x~ - Xl + ally~ (x3 - ~3) + Or, r yi) _ Oy, r yi) = 0 

�9 0 - -  i x~ ~2+a22v~(x~ ~ )+o~ ,r  i) ~ , r  

Subtract ion for i = 1,2 gives easily for (x~,xi2, x3) e r u, + w(V i) 

Hence 

(6.131) 

Ix~ - x~l  + Ix~ - x~l  > c l y  ~ - y~ll~ - ~1 + o(' ly  ~ - y~ l l x~  - ~31) 
= e l y  ~ - y211x3 - ~31. ( 6 . 1 3 2 )  

dist ((r~, + w(yl))\B(P,e~ + w(y2))\B(P,E~176 > 

eo,olyl _ yZ[ . 

It follows tha t  if (6.113) holds, then  

dist (Fy , \B(P ,e~176176176  > e~176 1 - y2[_  e0~ 

and therefore 

(['~, n r t , , ) \ B ( P , e  ~176 = 0  

(6.133) 

(6.134) 

if yl ,y2 E 1210 and ]yl _ y2] > 60~-0,o . 
(6.135) 
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Consequently, by (6.10) 
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and 

XFy\B(P'e~176 q 

I[ ~ - 2 / l ~ l o  

Combining (6.130), (6.138) gives 

C--2 ~Io 
Choose 

yielding then 

~3 

- l y l  - y2 I 
~10 X~IO 

ly1_~2 [<~o9-Olo 

dy I dy 2 
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< ~+o,-o~o I~ol (6.136) 

< e-�89176 1~1ol�89 

_ ~ _ + % - % o  ,,.,, ,1 
< C P P ~ 1 0  7 . 

I ml 1 x'~dy < (eO,o(~-~) + e~"~~')e ; 1~o l ;  �9 
q 

(6.137) 

(6.138) 

(6.139) 

01o-- O----L9 (6.140) 
p - 1  

10 q 
(6.141) 

Summary. 
From the preceding, fixing j,  one obtains (6.25), where the sets ~ 

either satisfy (6.141), i.e. 

e -2 x ' ~ d y  < e ~ 0 9  _ ,  1 
a q 

(6.142) 

or for y E f~a, one has 

F~ C e1-~ of Fy + w"(y)  
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where w" is a translation function which is smooth with derivatives con- 
trolled by the lower bound ~012 on the Jacobians appearing in the process. 
The number 011 may then be taken 

0xl =09+012  �9 (6.143) 

All the sets f~  introduced also satisfy 

> (6.144) 

where the Oj = Oj (01) o~ .--,o 0.  

We also summarize the conditions on the 0j along the construction. 
The number 01 appearing in (6.28) comes in the initial hypothesis (6.34) 

K = e  - ~  see (6.53) 

From (6.61), (6.38), the condition 

202+501 < ~04 . (6.145) 

From (6.66) 
0s >0 2+6 01  �9 (6.146) 

From (6.72), (6.76) 
07 > 3501 + 802 + 405 . (6.147) 

From (6.97), (6.98) 
06 > 601 , 02 >901 . (6.148) 

From (6.102) 
02 > C101 + Os �9 (6.149) 

From (6.104), (6.108) 
08 > 602 + 1601 . (6.150) 

This yields 0!, 0~, 02, 04, 05,07, 88 as linear functions of 01. It also follows 
from the construction that 012,013 may be taken to be linear functions of 01. 
The 09 is an independent parameter appearing in (6.142) and (6.143) (with 
different effect). From (6.144), the number of f~a's is bounded by ,-~ ~-0~3. 
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Those for which (6.142) holds have thus in (6.28) a total contribution which 
is crudely est imated by 

K .  e -~ - e 2 - ~ + ~  o* < e2-~ +~ , (6.151) 

(6.153) 

Averaging first f over cubes of size e l - o n ,  it amounts to consider g _> 0, 

blip _< 1, 
1 IVgl < - (6.154) 

and the expression 

1/K / (Jpl ", 

J 0  

- ~'  (y))d.~dy~ d~ 
(6.155) 

where w" is smooth with 

Io('~)J'J ~ e-o,~ . (6.156) 

l~rom the way (6.30) is deduced from (6.3), this yields 

I "  t "  

- w2(y)) dxzdyldy2 �9 
(6.157) 

provided 

p - 21)09 p(p _ > 02 + 013 + 014 �9 (6.152) 

We next analyze the case with smooth translation function. As made clear 
from the example in section 2, we may not expect to gain something here 

2 1 . . over the e - ~-estlmate without an additional assumption on the phase func- 

tion ~. Denote F~-y an r176  of Fu + w"(y) (cf. above). 
We have to estimate for f E L~, IIfllp -< 1 
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" instead of The relation between w and w" is given by (6.32), writing w i w i 
and hence also 

]O(a)w] ~ e -~ . (6.158) 

At this point, it is natural to consider the coordinate transformation T : 
(Ya,y2,x3) ~ (x l ,x2 ,  x3) given by 

xl =ai ixay l  + O u , r  ) ( i =  1,2) (6.159) 

and for which 
det D T  = 

= l a l lX3  + r  y) - 

I 2 X - 

Analyzing this expression yields 

02y,,y2 r  Y) -- 0y2031 (Y) 

2 a22x3 + Ou2,y,r ) - 0y2w2(y ) 
(6.160) 

2 

d e t D T ( y ,  x3) -- [det D2~] + E wiJ(Y)[O2,y~ ~] + det Jw 
i,j-~l 

(6.161) 

where 03ij and det Jw only depend on y. 
Consider the following hypothesis 

The Hessian determinant det (~-~)(x3,0) is not 
a linear combination of the second-order 

02 
y-derivatives ~ ( x 3 , 0 ) ,  as functions of x3 

(6.162) 

Since ~o was assumed real analytic, (6.162) implies a non-vanishing Wron- 
skian determinant at x3 = 0 and hence on a neighborhood of (x3 = 0, y = 0). 
Thus (6.162) remains valid if y is taken in a neighborhood of 0. In fact, there 
is a positive number c2 > 0 such that 

/ [ det DTI-C2dx3dy < c 2  1 . (6.163) 

This constant c2 only depends on ~. 
Write (6.157) as 

e -2011/u(g o T)dxadyldy2 . (6.164) 
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Split U as U = U1 + U2 where 

I d e t D T [ > r 1 7 6  on UI"[ 

]de tDT[<_r176  on U2 f 
Hence, ~om(6 .163)  

measU2 < c21g  e2015 �9 

(6.165) 

(6.166) 

The region U1 may be broken up into domains UI,j where T is invertible. 
The number of such domains depends on the derivative estimate for T and 
the lower bound on I det DT I. In fact, from (6.158), one gets a bound on 
their number by 

e-016 , where 016 ~ 015 + 012 �9 (6.167) 

On each of these UI,j, one has for a bounded function h _> 0 

(hoT)dx3dyzdy2 = i(detT) o T_I] 
1,3 ( V l  ,$ ) 

< ~-015 f h 
J 

Hence, ~om(6.166) , (6 .168) , (6 .167)  

u(h o T)dx c2Zs c2~ Ilhlloo + e -~176 J h 
I "  

<_ 

_< c %r176 +  -c~176 

Here 015 is a parameter.  For an appropriate choice, we find 

v(h o T)dx < cSC~ , 

for some positive number  c2 only depending on ~. 
This yields an exponent p = p(~) < (x~ satisfying 

(6.168) 

dxldx2dx3 

(6.169) 

(6.170) 

(6.171) 

(6.172) u Jh o T idx  <  -c~ . 

In particular, from (6.164), (6.157), (6.155) and (6.153) are bounded by 

e-uo,~-co,2 Itg[lp <- E-2~176 (6.178) 
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if we let p = p(~). 
The (6.143)-contribution is thus < ~-209-c0~2-013 < e-2og-col 

what preceeds. Hence, from (6.151), there is the total estimate 
, f r o m  

~-2- -1+014  ..[_ E2--209-C01 (6.179) 

on the first term of (6.28). 
From condition (6.152), 

-{-~ r r (6.180) 

If we let 81 be sufficiently small, we find for some 017 > 0 the bound on 
(6.28), (6.23) 

1 2 e2--~+o~, +~2 ~+~el (6.181) 

Consequently, there is an inequality 

1 0 
]libel[p--*1 <~ ~ - - ~ +  ls (6.182) 

1 of (5.34) in order for some 018 > 0. This is the required property 7(P) < 
to get (4.2). Thus there is the following theorem. 

THEOREM. Let ~ of the form (1.12) be real analytic (on a neighborhood of 
O) and such that 

det ( ~ ) ( x 3 , 0 )  is not a linear combination of the second deriva- (6.162) 
0 2 

tives ~ ( x 3 , 0 ) .  
Then the operators TN defined by (1.1), i.e. 

TNf(x) -- / eiN~(x'Y)a(x,y)f(y)dy (6.183) 

where a is supported on a suitable neighborhood of O, satisfy for some q < 4, 
the bound 

IlT~fllq < CN-3/ql l f l l~ .  (6.184) 
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Remarks .  
(1) The  relevance of condit ion (6.162) is clear from the example in section 

2. One has indeed in this case 

(6.185) 

92 
and its de te rminan t  is - x  2 = - ~ ( z 3 ,  0). 

(2) It  follows from section 3 that  in general we may  not expect  to have 
(6.184) for all q > 3. For this, it suffices tha t  

O 2 
f 02 ( a ~ )  ~ _ o =  ~ 

c927~'~ is not a mult iple of 
x =0=y 

(6.186) 
(3) We used the hypothesis  of real analytici ty of qa in a few places in the 

previous argument .  It  is possible to avoid this. It is clear how an 
adequate  s t rengthening of (6.162) for C~176 may  be formulated 
with the same effect. If we do not  assume qa real anlaytic, (6.70) is not  
valid anymore.  For Coo-functions, one has to do a further par t i t ioning 

of the  y-domain to get the required information on ~ , which 

leads to addit ional  technicalities. 

7. F u r t h e r  C o m m e n t s  

(i) Factorization.  
Consider  the operator  (1.1) and assume we have shown an inequali ty 

IITNflIq = cN-dlqllf[Ioo (7.1) 

(q > 2). By general factorization theory, one may  then  find a probabil i ty 
measure p(dy) such tha t  for r > q 

IITNfllq <_ C N - d / q l l f l l L ~ ( d ~ , )  . (7.2) 

It is a na tura l  to ask when p may  be replaced by the s tandard  measure dy. 
If for instance TN corresponds to the restriction to a sphere, one may  use 
a s tandard  averaging a rgument  over the orthogonal group to get Lebesgue 
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measure. This ease is special and a procedure to deal with a general phase 
function, even assuming linearity in x, seems unclear. However, if qo(x, y) is 
quadratic in y and has the form (for d = 3) 

~ ( x , u )  = xxux + x~u~ + r + r (7.3) 

there is a way of explointing translation operators. Define for z = ( Z l ,  z2 )  , 

Iz[ small, the operator 

and write 

%f(Y) = f(Yl + Zl, Y2 "[- z2) (7.4) 

IIT~(TzY)llq ~ CN-3/qll~'JIILr(d.)" (7.5) 
Replacing y by y - z, one finds 

IIT,~(~J)llq= II f e'"~(x'~-Z)a(x,Y - z)f(y)dull. (7.6) 

where by (7.3) 

v ( x , y -  z ) =  

function of xT(Xl-ZZlr162162 (x3)y 2+r 2 �9 
(7.7) 

Substituting (7.7) in (7.6), one may of cou~rse ignore the z-terms. Make the 
following change of variable in x 

{ X ~  ---- X 1 - -  2Zl~)l(X3) 
(7.8) 

x~ = x2 - 2z2r 

which is measure preserving. That brings (7.6) in the form 

II fei~(~"~)a(xl + 2zlr + 2z~r z)/(u)dull~ �9 (7.9) 

Replacing the left member of (7.5) by (7.9) and applying a standard aver- 
aging argument in z, one finds finally 

II f ~'N~"~)u(~,~)~(~)d~llq < Cy-3/qllIIl~ (7.10) 

for some other localizing function ~ (which is of course irrelevant). 
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(ii) Kakeya and Nikodym maximal inequalities in R 3. 
Using the notations of [B1] for the Kakeya maximal function f~ and 

Nikodym maximal function f~* (of excentricity 5), the conjectured bounds 
in R 3 are given by 

][ZHp and [[.f~*Hp<< HfHp (7.11) 

where ~ > 0 is arbitrary and p < 3. 
This fact was verified in [B1] if p < }. As it follows from [B1], the 

knowledge of (7.11) for any p > 2 has an application to the Bochner-Riesz 
problem described in the introduction, in the sense that mx is shown to be 
a bounded multiplier on LP(R 3) for 3 < p < ~ and where )~ may take 
certain values < �88 

Our purpose is to use the ideas of section 6 of the paper to get very 
simple proofs of (7.11) for certain p > 2. We do not intend here to try 
to optimize the method. (The argument in [B1] seems more performing 
anyway.) Although the arguments of Kakeya and Nikodym are in many 
respects analogous, it is preferable to give them separately. 

(I) Estimates on f ; .  Standard techniques cf. [St2] reduce the question to 
showing a minoration 

]AI >> 53-p+EaP (7.12) 

assuming A C B(0, 1) having a property that for a subset fl C S 2, ]fll > �89 
each direction ~ E ~ may be translated into a line L4[I~ such that 

IA Cl L~[ > a62 . (7.13) 

Here L ~ stands for a ~-neighborhood of L. 
Let ~ run in a &net C C fl. It follows from (7.13) that 

<XA, E~L~> ~ Or 
~,Es " 

(7.14) 

and thus 

(7.15) 
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Proceeding as in the previous section, one has 

2 

2 ,~,'0EE 

where 

IL~ n L~I < 
~3Z(~, 7) 

I~ - ,71 + 

T ~  

\ 

(7.16) 

(7.17) 

and 
/3(~, q) = 1 .'. '.- L~ n L~ r 0 .  

Substitution of (7.17) in (7.16) yields the bound 

and by (7.15) 

/~(~,~) ,~-1 
~ 3 ~ + 1  ,, i < 

(7.18) 

(7.19) 

it follows from (7.15) that 

IAI > ~----'~ ~g2 �9 (7.22) 

II II Z XL~ < ~112 
~Eg 2 

IAI > &r 2 �9 (7.20) 

This is (7.12) for p -- 2. 
Fix now a parameter  0 < A < 1 which afterwards will be chosen as a 

function of a. If we have 
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Alternatively, let 

[I~XL~12 > A~-I/2 . (7.23) 

A standard exhaustive argument permits then to find a subset E1 C E such 
that 

! 

xL l l  > ,~,~-1/2 ; IE, I > .X2~-2 (7.24) 
{ f ig~ I 2 

and for any E2 C E1 

Y~ XL~ 2 > ~3/21E21 

(we omit constants). 
Taking for E2 = E1 gives as above 

Z(~,u) 

1 1/2 1/2 

< (l~ ~-) 1/2 ~ [~,~ ~(~, ~)] 1/~ 

Thus 
--1 

and therefore one may find E1 E E1 and E2 C E1 satisfying 

~ ( ~ , ~ 1 )  ---- 1 for  ~ E E2 

Using next (7.25), it follows similarly that 

Z r u) > A4 (log ~)-1 ~41c214 

> A2o log ~ 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 
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Hence, there is a point ~2 E C2 mad ~3 C C2 satisfying 

]~1- ~21 > ~10 (log ~ )  -3 (7.32) 

/3(~, ~z) = 1 for ~ E E3 (7.33) 

IE31 > ~20 log 5 -2 (7.34) 

Thus, from (7.28), (7.33) 

L~ AL~I ~ 0 ,  L~ OL~2 ~ O. (7.35) 

It is clear from (7.34) that one may assume for ~ E C3 

c~ = angle(~,plane(L~,,L~2)) > A 2~ log (7.36) 

Denote P the intersection of L~I , L~.  A simple geometrical analysis of 3 
almost concurrent lines shows that for ~ E C3 satisfying the above properties, 
one has for the intersection point Q~ of L~ and [L~,, L~] 

~ 
dist(P, Q~) < a]~l - ~2I " (7.37) 

Thus, by (7.32), (7.36) 

dist(P,Q~) < A -s~  log �9 5 .  (7.38) 

We may therefore find one more set C4 C E3 and some point Q fulfilling the 
conditions 

QEL~ if ~EC4 (7.39) 

I~,l> ms~ �9 (log �89 -~1-6-2 �9 (7.40) 

This geometrical configuration has moreover the property that 

IA n L~I > a6 z (7.41) 
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for ~ E C4, since C4 C ~. Letting Q = 0, integrating in polar coordinates 
yields 

IAI >- I XA(r~)r 2 dr d~ > c a  3 -  ~21~4] . (7.42) 
I>~ 

Thus, from (7.40), the following minoration 

IAI> ,ks~ (log ~ / -21  �9 a 3 (7.43) 

is obtained, complementary to (7.22). Choosing A optimally gives 

(7.44) 

1 which is (7.12) with p = 2 + ~ .  

II.Estimates on f~*. In this case we have to prove (7.12) assuming (7.13) 
holds for all ~ E Q, where L~ is now a line through ~ and Q C B(0, 1) has 
measure > 1. 

Partition the unit sphere S 2 in caps of diameter ~ ,  one may select one 
of them, say C centered at e3 and a set Q1 C Q, IQll > 1-~, so that 

E ~1 =~ the direction of L~ belongs to C . (7.45) 

Consider next an intersection f12 of ~1 and a translate of the el, e2-plane, 
1 The collection of tubes under consideration is obtained such that 1~21 > 1-g~-" 

by taking a 6-net C in Q2, thus Is ~ 6 -2 and (L~)r It is clear from 
construction that for ~, ~/E C, I~ - 7/] > 106 

L~ t3 L~ ~ 0 =~ angle(L~, L,)  ~ [~ - ~/[. (7.56) 

This is the property needed to get (7.17). One then reasons exactly along 
the lines above and has either (7.22) or a configuration with concurrent 
lines, which leads to (7.43). the same conclusion (7.44) follows. 
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