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L»-ESTIMATES FOR OSCILLATORY INTEGRALS
IN SEVERAL VARIABLES

J. BOURGAIN

1. Introduction and Summary

This paper is concerned with Hérmander’s problem on the behaviour of the
operators

T f(z) = / NP oz, y) f(y)dy (11)

where a € Cg°(R?4-1) and ¢ € C*(R??~1) is a real valued function satis-
fying the conditions for (z,y) € suppa

rank 8%p/0z 0y =d - 1 (1.2)

9 [ ¢ \ _ d g2 _8£_>)

The second condition (1.3) means that the map y — <a%%> has only non-

degenerated critical points.
In [H], Hormander considers the problem whether under the above
hypothesis, there is an inequality

ITn fllg < caqrN 4| fll (1.4)
for
2d d+1 1
= —_— <1, 1.5
4> 53 and (d—-l)q+r" (1.5)

Ifd = 2, the answer is affirmative. This fact is proved in [H] and is essentially
due to Carleson and Sjélin [CS]. The interest of the previous conjecture is
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in particular a positive solution to the Bochner Riesz summability problem,
i.e. the fact that the multiplier (A > 0)

A
m(§) = (1-§P)" if K<
(1.6)
= 0 if [gl>1 ,
defines a bounded Fourier multiplier on L?(RY) if
2d 2d
dri+a P Itiom (L7

(See [CS] and [H] for the relation between these conjectures.) For d > 3,
it is shown in [St1] (see Th. 10) that Hormander’s conjecture is valid in
the range g > gg}_—_'*—'lﬂ. Similarly, the Bochner-Riesz summability conjecture

was known to be true assuming p ¢ ]Z%'—i_—%), Z(dfll [ (as a consequence
of L2-restriction theory) and the author recently narrowed this interval to

] Adi1)—e 2(d+_13_5 [for some € = g(d) > 0 (see [B1], [B2]; in particular for

d+3—= ? d

d=3,o0ne hase = %) Its full validity is at the present still undecided and
depends on unsettled questions in geometric measure theory (see [B1]).
Besides an approach to Bochner-Riesz, Hormander’s conjecture also
generalizes the so-called restriction conjecture, which is the special case of a
phase function ((z,y) which is linear in z. In this case, the validity of (1.4)
forr =249 > 2(:—_"'112 is a result due to P. Tomas [T] and the case r = 2,

q> 1(3‘1_—*'1-1-2 appears in [St] (Th. 3). This last result is the L2-restriction
theorem (which is a sharp result). Again in [B1], (1.4) was proved for
o(z,y) linear in z and r = ¢ > 2%'!;"—112 —¢,wheree =¢(d) >0(e(3) = & in
particular, see [B2]). This statement is obviously not a complete solution
but goes beyond the L%-methods and involves new ideas of geometric nature.
The problem reduces to phase functions of the form

o(z,y) =1y + - + Ta-1Ya-1 + Ta¥P(y) (1.8)
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Coming back to the general case, as observed in [H], one may take ¢
of the form

o(z,y) = z1y1 +- -+ Ta-1¥a-1 + 24 {(Ay, ) + O (|z|ly)(|z]* +y]?)) , (1.10)

where A is a symmetric matrix. In fact, by an additional coordinate change
in the variables z, y, one gets

90(37,?/) =z1Y1 + -+ T3-1Yd-1 + Td (Ay, y) +O(|’5d||y|3 + |$"|2|y|2) (1-11)

(|2, ly| are confined to a small neighborhood of 0). Condition (1.3) amounts
to det A # 0.

In this paper, we only consider the case d = 3.

Our first aim is to exhibit some simple examples showing that under
hypothesis (1.2), (1.3) inequality (1.4) may fail for all ¢ < 4 and f € L.
Hence, even for r = oo, Th. 10 of [St1] is optimal. It turns out that in fact
(1.5) does not imply (1.4) for a generic phase function ¢. (This does not
include however those functions appearing in the context of the Bochner-
Riesz problem described above.) The argument here is more elaborate and
involves geometric considerations related to the Kakeya phenomenon. There
are similarities with the approach in [Fe]. This discussion will show that
the presence of the o|z|?|y|?)-term in (1.11) is significant and in some
sense the case of linearity in z is special. Essentially speaking, there is a
difference between straight tubes and “distorted” tubes with respect to the
Kakeya compression phenomenon, which is roughly the main point in these
considerations. Finally, it is shown that (1.4) holds for certain ¢ < 4 and
r = 00, for “most” real analytic phase functions ¢ of the form

o(z,y) = T1y1 + T2¥2 + 23 (Ay, y) + ¥(x3,79) , (1.12)

where (z3,y) = O(|zs]ly|*(Jzs| + [yl])). See the theorem at the end of
section 6. The argument is closely related to section 5 of [B1].

The main difficulty comes from the fact that one has to deal with a
Kakeya maximal function defined from certain curves rather than straight
lines. Conditions (1.2) and (1.3) do not exclude that the corresponding
curves may be pushed by a y-translation in a 2-dimensional surface, also for
phase functions of the form (1.12) (this is however a non-generic behaviour).
In proving (1.4) for ¢ < 4, we do not want the previous phenomenon to
happen.
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This work aims to get some better understanding of the oscillatory in-
tegral problems in higher dimension. Many natural questions are only very
partially solved. It shows, however, the importance of certain geometric
structures and significant differences between the two and higher dimen-
sional situations.

The author wishes to thank T. Wolff for discussions on the subject.

2. An Example
Consider the following phase function (d = 3)

¢(z,y) = ¢(z1, 2, T3, ¥1,Y2) = T1y1 + Taya + Tay1y2 + S23y5 . (2.1)

Thus
2 1 0 y2+2z3y
.____63 a‘P = (2.2)
Ty 01 $h
has rank 2. Further, assuming 5‘% <g-‘§,t> =0,t#0,i.e.
t1 +t3(2z3y1 +y2) =0
(2.3)
to+13=0
62 899 2£L'3t3 i3 . 2
(o (54)) =" 6=-8#0
(assuming |z| sufficiently small).
The operators (1.1) is applied to the function
fly) = ¥ (2.4)
and one finds the expression
Tnf(z) = /eiN{wly1+wzyz+%[yz+zay1]’a(x, y)dy . (2,5)

Consider the surface

S = {:cl = T9Z3 | lz] < 1} (2.6)
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and denote by S5 the set {|z; — zo23] < § | |2| < 1}.

On S, one has
Ty f(z) = f N atemtiutesu o, y)dy . (2.7)
Putting
z=y2 + 23y (2.8)
the phase function becomes
Toz + 527 (2.9)
which has a critical point at 2 = —z?. Hence the expected size of T f on

S is thus ~ N~1/2, Since also clearly
|V.Tnf| < CN'/? | (2.10)
it follows that for § ~ N1
ITnfl~N"Y%2 on S;s. (2.11)
Thus, there is a lower estimate
ITwfllg > eN=12|85[M0 ~ N7375 (2.12)
The validity of inequality (1.4) for r = co thus requires
CN™39> N3 7%, (2.13)

hence ¢ > 4.

Remark 1: In the next section, we will develop a different method of
disproving the validity of inequality (1.4) with r = oo and ¢ sufficiently
close to 3. Those considerations, related to [Fe], make the connection with
“Kakeya type” phenomena and will permit us to disprove the conjecture for
most phase functions ¢(z,y) of the form (1.11).

Remark 2: For the behaviour of exponential integrals, we refer the reader
to [St1] or to [I], Chapter 2.

Remark 8: The example described above may be adjusted to show that
for d odd, the g > -2%1_%1) condition may be necessary for (1.4) to hold,
letting » = co. The situation d even is likely to be different, but this will
be investigated elsewhere.



326 J. BOURGAIN GAFA

3. Generic Failure

We first explain the general pattern of the construction. Given ¢(z,y), we
are concerned with the inequality

/‘/g(m)em“’(x’y)a(m,y)d:p dy < CN'3/q||g||q/ , (3.1)

for 3 < g, which is the dual form of (1.4) for r = co. Let § ~ N~!/2 and
consider a §-net {y(c)} in the (y1,y2)-variable. To each o, we associate a
“tube” T, of the form

& (0 < A < 1, fixed)

and let -
9(z) = ge(z) = Zsae—’N‘P(z’ya)XTa (z), (3:2)

«

where x,, stands for the indicator function of T, and the €, are random
+1 signs. We also let
A= U T, . (3.3)

Assuining (3.1) valid and integrating on &, = +1, it follows
/ max
[23

[+

NI [ lgclgde <

dy <

2\ 1/2
) dy <

/ eiN[‘P(z,U)"W(ﬁqu)]a(x, y)dx
T

/ eiN[?,(z,y)—tp(zyya)]a(x, y)d.’r
Ty
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, 1/¢
CN'3/Q</(ZXTQ)Q/2dx) .

From (3.3) and Hoélder’s inequality, estimate further

[ () a5 (T iz
(] | denotes “measure”) which yields following bound on (3.4)
C-N-9AlF (YT
Write next for |y — y,| < 6
#(,9) = ¢(%,¥a) + (Vy(, Ya), ¥ — Ya) + O(8%)
and assume there is a function @ = (Q;(y), Q2(y)) satisfy
|Vyo(z, ya) = Qya)| <6 for z€T,.
On gets from (3.7), (3.8) and the choice of §

o(2,y) = o(%,Ya) + (Ya), Y — Ya) + 0 (%,—) ,

ifz €T,.
The left member of (3.4) is thus at least

2. / ‘/ e Nl ) =e(evlg(z, y)da

@ |y_ya |<6 To

~ 8> |Tal
assuming a = 1 if z € T, and |y — ya| < 6.
By (3.10), (3.6) we have
(3 IT) " < oN—a572)a)H=4
Taking the shape of the T}, into account, this yields
§M2 < CN-3/15=2| 4|7 %

1+%—1
|[A] > CyN -7

and letting ¢’ 3
|A| > N—22 ¢,

327

(3.4)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Remark 3.15: Consider the case of ¢(z,y) which is linear in z, for instance

o(z,y) = T1y1 + Tay2 + 323(47 + 93) . (3.15)

Condition (3.8) then becomes (writing y for y,)
{ |21 + zsy1 — ()| < 6

|22 + z3y2 — Q2(y)| < 6

for €T, . (3.16)

Egs. (3.16) define a tube in direction (y;,y2, 1) subject to some translation
Q(y). The width of the tube is § and the length given by the bound on
|z3], thus 6* for T,. Inequality (3.14) for A = 0 is simply the fact that
the restriction conjecture implies that Kakeya sets in R® have Hausdorff
dimension 3 (or, more precisely, the equivalent entropy statement). This
statement appears to be an open problem and the best lower bound the
author knows of presently is 7/3 (see [B1]). Consider next for S5 a 6-shell
of the unit sphere.

S

(x1,x2) - y)

Every T,-tube may be translated to be contained in S, if we let A = % (the
line (—y;,~y2,1) should lie in the corresponding tangent plane at Q(y))-
For such A C {z € S5 | |zs| < 6*}, one has |A] ~ §'** and (3.14) gives
23X 2> 3(1+)), ie. X > 3 (equality). This shows the relevance of (3.14)
and the fact that A = % is optimal in the previous set-up, if one takes (1.4),
r = 00, ¢ > 3, for valid. The main idea is disproving (1.4) for certain phase
functions ¢ is to achieve the above construction for a suitable surface S and
certain A < %

Consider a general phase function ¢ and the normal form (1.11)

W(z,y) = (T + 2, T+ y) = 2191 + T2y + 73 (Ay, y) + O(lzs|ly> + Imlzlylz))
(3.17
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in a neighborhood of the point (Z,%). In fact, we assume
lz| <67, |z3| <83, |yl <6, (3.18)

where § ~ N~1/2 and 7 is any number < 1/3.
Condition (3.8) becomes a é-estimate on both expressions

Z1 + a1123Y1 + 1273y + 30y, K + 21 (Lh(f‘?)yl + L%z(x)yz)‘*'

zo(L2,(x)yr + Lis(x)y2) + 23 (q11y1 + q12y2) — Qu(y) (3.19)

Ty + 01223y + A2223Y2 + 230y, K + 21(L1yy1 + Liyy2)+
z2(Liy1 + L2,y2) + 23(qrays + go2y2) — Q2(y)

where

Y(z,y) = 2191 + T292 + 3 (Ay, y) + 23K (y)+
1 [%Lily% + L%zylyz + %Lézyg]'*'
22 (303,93 + Liayys + 3L3,95]+
x%(%quy% + qi2y1y2 + %QZzyg)+
O(lesllyl* + [«Plyl + |2’ [y[?) (3.20)

L ; .
and A= 2711 M2 ) K isa cubic function of y and the L%, are linear
a2 3022

functions of z. Notice that the error terms of (3.20) do not enter in (3.19)
because of (3.18), assuming

4r>1. (3.21)

Since |VK| = O(|y|?), a change of coordinates in the y-variable of the
form I + O(|y|) permits the elimination of z30,, K-terms in (3.19). The
expressions may be rewritten as

z1(1+ Ly + Lisys) + z2(L3y1 + Lizye) + 23(anys + arzyz)+
r2(qu1y1 + qu2y2) — Q1 (y)

z9(1+ L3,y1 + Lioye) + z1(Liyyr + Lizyz) + z3(a12y1 + azey2)+

5”%(‘112% + gaay2) — Qa2(y) (3.22)

Here 1, ), remain arbitrary functions of (y1,y2), 2(0) = 0.
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Consider the following transformation F' = Fy, , of the (z1, z2)-variable

F(z1,22) = ((1+ L1y + Liay2)z1 + (Lo + Liays)zo, (3.23)

(Ligy1 + Liaye)z1 + (1 + Lizy: + Liays)2s) .
clearly of the form Id + O ([y|(|z1] + |z2]) (Jz1] + |z2| + |23])). Hence, up to
o(é)-error terms

F_l( — z3(e11y1 + a12y2) — x%(fhlw + q12y2) + Q1 (y),
— z3(a1291 + a22y2) — T3 (G12y1 + G2292) + O2)

has the form

—z3(an1y + a12y2) — 25(q11y1 + q12y2) + Q1 (y)
+O ((1| + 192D)1yl(ly] + |=3]))
(3.24)

—x3(a12y1 + 1122?/2) - $§(¢112y1 + Q22Q2) + 92(?/)
+O((1u] + [Q2Dlyl(lyl + |z3)

The error terms in (3.24) have the form O(|y|*(|Q:] + |Q2])) and
z3  O(|y|(|Q1] + |Q2])). The second type of term may be absorbed in the
z3(a11y1 + a12y2), z3(a12y1 + az2y2) terms and eliminated by a change of
variable in the y-variable of the form Id 4+ O(|y|[2]). This change of vari-
able depends on the Q-functions. Thus up to é-error terms, (3.24) becomes
(denoting again y the new variable)

{ ~z3(a11y1 + a1292) — z3(quy1 + qr2y2) + U (v + O(lyl[92)))
(3.25)

—z3(a12y1 + a20y2) — T3(q12y1 + g22y2) + Q2 (y + O(ly]|€2]))

Since one considers functions in y vanishing at y = 0, an appropriate choice
of 0y, still permits the realization of arbitrary y-functions 4 (y), Q2(y)
for the last terms in (3.25). This follows from an implicit function argument
and the assumption |y| < 67.

The original condition (3.8) becomes

{ ll‘1 + z3(a11y1 + 61292) + 23(q1191 + qr292) — ﬁl(ﬂ)' <é (3.26)
3.2

|z2 + z3(@1291 + a22y2) + T(qr291 + q22y2) — ﬁz(y)l <é
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for z in a tube é-tube T =T, ,,, as described above.
We will let Q be a linear function of y, i.e.

Q(y) = (winys + wizyz, wary1 +wa2ye) , (3.27)

where the w;; will be suitably chosen. More precisely, we want the Jacobian
determinant of the map

Y ) — ((wu — I3ai1 — w%‘]ll)yl + (w12 — Z3ai12 — $§‘112)92 (3.28)
Y2 (wa1 — z3a12 — 25q12)Y1 + (w22 — ZT3az2 — 23¢22)Y2

to be o(|z3|®). This will permit us to conclude that for fixed |xs| <
613 (cf. 3.18) the map (y1,y2) — (21,Z2) given by (3.28) ranges in a &-
neighborhood of a line. Keeping |y| < 67 fixed and varying z3 in the interval
[0,6'/3] will yield a curve T, that, by previous considerations, is contained
in a set of measure

IT| ~ 6745 (3.29)

and which is a union of é-balls. If T is the tube obtained as §-neighborhood
of T'y, (3.26) clearly holds and T, is contained in a set A of measure

|A] ~ 675 (3.30)

It remains to examine under what conditions on A = (a;;)1<i,j<2 and @ =
(gi;) the matrix  may be chosen such that

det(Q — z3A — 22Q) = O(Jz3)°) - (3.31)

Since det A # 0, Q2 may be replaced by Q = (@;;) = A~1Q and for Q =
A™1Q = (g;;), (3.31) becomes

det(ﬁ - .1:3.[ - IE%G) = 0(]1133'3) . (332)
We have to satisfy the following conditions for

et =0
tr =0 (3.33)

o
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In order to satisfy the first 2 conditions in (3.33), let

_ _ _ _ 1
Wil =w, wWp=—w, wiie=YWw, w2l =-——Ww, (3-34)

where w,y are parameters. The last condition then becomes
_ — _ 1_
1 =w|To — T3 =721 + S ) (3.35)

This equation may always be satisfied, except if §;; = Ga9, G12 = 0 = Goy,
i.e. @ is a multiple of A. To avoid this, we thus require

8% (6% . . 9% (0
-355 ( -a—x—g> is not a multiple of ( )

=0 —6_y—2- (9_.7:;
y=0
where 9 is given by (3.17), (3.20).
If (3.36) holds, one may thus associate to the points y, |y| < 67, a tube
Ty, as described at the beginning of this section (A = %), contained in a set

. (3.36)

r=0
y=0

A of measure at most §7+%,
Let ¢(z,y) be given by (1.11), i.e.

@(z,y) = 2191 + T2y2 + 73 (Ay, y) + O(|zs|lyl® + |=|y?) .

Assume
0% (8%

a7 (55
Take in (3.17) T = 0 and let 7 range over a 67-net in a neighborhood of 0
(of cardinality ~ §7%7). In order to bring ¢(z,% + y) in the form (3.17),
there is a coordinate change required (1,22, 23) — (2, %, z3), which is a
C*>-perturbation of the identity, taking |f| small. There will also be a small
perturbation of the matrix A. Clearly, the matrices appearing in (3.26) are
perturbations of those in (3.37) and hence (3.37) yields (3.36) for ¥(z’,')
corresponding to (0, %), if we let |7| be sufficiently small.

For each ¥ in the net, a system (y of tubes {T, ; |y — 7| < 67} is

obtained, contained in a set Ay of measure at most 67+% and satisfying
condition (3.8); i.e.,

) 2
is not a multiple of Ll ( Op ) (3.37)

z=0 33/2 55;3—
y=0

z=0
y=0

|0yp(z,y) — Q)| <6 if z€T,, (3.38)
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for a certain function Q of y.

Define
A=J4y, A<t . (3.39)

Y

It follows from (3.13), (3.39) that validity of (1.4) for r = oo and a given
q > 3 implies

2 7 E_é
12
3~ Egl_f. (3.40)
2 q

Here 7 is subject to (3.21), i.e. 7 > 1. Inequality (3.40) thus implies

1
q2> 3—1;— >3, (3.41)

If o(z,y) given by (1.10) satisfies (3.37), i.e.

9 (9% . ) 8% [ Oy
57 (8_x§) is not a multiple of 5 (6—:49;) ) (3.42)
atz=0,y=0.

Remark 3.43. The function ¢(z,y) appearing in the context of the
Bochner-Riesz problem (d = 3) is obtained by considering |z — y| with
y restricted to a plane, say y = (y1,y2,1). After obvious changes in the
z-variable, one gets

o(z,y) = (1+ |yl — 2(z191 + 2292) + 23) (3.44)

One obtains the form (1.10) by a coordinate change in x given by
z] = Oy, ‘PI Oy,

{ zh = 3y2<p|
and a change of coordinates in the y-variable y — y + O(|y|?) that may be

ignored in verifying (3.42).
(3.46) yields

z=0

y_ T o TT2 3.47
‘Tl - (1+:1:3)1/2 $2 ( )
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and (3.44) becomes

P(z,9) = [1+ |y® + 23 + 2(1 + z3) (2191 + T292)) 2. (3.48)

In verifying (3.42), take z; = 0 = 2. Clearly

62
g+l 20| (3.49)
y=

is a multiple of identity and hence the criterion fails in this case.

4. L2%-estimates Revisited

The rest of the paper is devoted to proving some positive results (i.e. results
for ¢ < 4). The main idea is to adapt the argument in [B1], section 5. One
considers the level sets

Ax={lz]< N and | / e NAF Va(y) f(y)dy| > A} . (4.1)

Under suitable conditions on ¢ and f € L™, one seeks for an estimate
|Ax| < A=T+e (4.2)
for some ¢ < 4. That will allow to get an inequality

ITw fllg € CN /| flloo (43)

where Ty f is given by (1.4).

Let us summarize the method. There are essentially 3 steps

(i) Consider the L2-case, thus f € L? and ¢ = 4. This case appears in
[St1, Th. 10]. We will make a further observation, nl. the fact that
|Ax] ~ A~* only may happen if |4y N By-2| ~ A™* for some ball
By-3 = B(z,27%) of radius A72.

(ii) Assuming now f € L, the study of the level set Aj in a ball of given
radius, in order to obtain (4.2) for some g < 4, is done combining the
L2-estimates and some estimates on Kakeya-type maximal operators
in LP, p > 2. These Kakeya operators are related to ¢.

(iii) Proof of certain LP-inequalities on these Kakeya maximal operators. If
p = 2 and the excentricity is 6 (i.e. we consider é- neighbourhoods of
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the curves), a bound §1/2 is found. Thus, by interpolation, there is a
bound 6=1/? for 2 < p < co. It turns out one just needs for some p > 2
to get an estimate 6~7(P), for some v(p) < %.

Redefine Ty f(z) = [ e'Ne(FVa(y)f(y)dy.

In this section, we carry out the first part of the program. Let 0 < A < 1
and A, defined as in (4.1), assuming [ |f|*> < 1. Fix R > 1 and consider a
collection A!, of subsets of A = Aj such that

diam A, < R (4.4)
dist(A},, Ap) > R for a#p (4.5)
| Ua 4c > el4l - (46)

Denote X, the indicator function of A/,. One has (or at least may assume)

Re Z (TN f,xa) > cAlA] (4.7)
hence

2
> cAZ|AP7 . (4.8)
2

Y TiXa
Lo

Expand the left member square as

Y ITkxell3 + D (TNT i X X8) (4.9)
o a#p
<ITE, Y 1Aal+ 3 o )lal 4l (4.10)
o a#p
where
T3z, = sup | [ € g(a)aa (4.11)
7 L2(loc)
the supremum being taken over functions g satisfying
lgll2 <1 and diamsuppg <R (4.12)

and ¢(a, B) = c(p), p = dist(A,, Ag), c(p) denoting a uniform bound on the
kernel K'(x,2’) of the operators TyTj for |z — 2’| > p. Here

K(l‘, x’) - /eiN[‘P(ﬁfy)"‘P(‘zﬂ"iy)]a(y)dy . (4.13)
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The square of (4.11) corresponds to the L2-norm of the operator
Liy,y) = / N F W= F9 Npp(z — 2)dz | (4.14)

where z € R®, |2] < N and bg a smooth function such that bg(z) = 1 of if
|z| < R, br(z) = 0 if |z| > 2R and fulfils the obvious derivative estimates.
This L2-norm may be bounded by

sup [16.)latway (4.15)

from interpolation and symmetry.

Recall (1.11), i.e.

@(z,y) = 2191 + T2y + 23 (Ay, ¥) + o(|zs|ly[® + |z ?y]?) . (4.16)

Taking |z| = o(1) in (4.16), it follows from the oscillatory integral theory
(cf. [St]) that

) ; 1
iN[Lp(:c,y)—;p(:c 1y)] — -
‘/e a(y)dy| < CNI:L' =] (4.17)
and hence .
!
e 1
lK(a:,x)|<c|x_x,| (4.18)
from where
c(p) <pt. (4.19)
Similarly, one gets on (4.14) a bound
|L(y,9")| < R R* - $(R(y1 — 1)) - ¥(R(y2 — 42)) (4.20)
where )
=— 4.21
Consequently (4.15) < R, thus
* M2 29
”TN"LgR) SR. (4.22)
Substituting (4.19), (4.22) in (4.10), it follows from (4.8)
2} 412 IAa||Aﬁ| 4.93
2%)4] SR'A|+§ﬂ—___—dist(Aa,Aﬂ) (4.23)

and therefore, one gets.
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PROPOSITION 4.24. There is the following measure estimate on the level
set Ay given by (4.1)

|Ax]| S A2 [R+ Z sup p'llA,\ﬂB(z,p)l} (4.25)
R<p<N|z|<N

where R is a parameter.

If we let in particular
R~ A2, (4.26)

it follows that
|Ax] < CA7%. (4.27)

Of course, (4.27) corresponds to the inequality

T~ fllzs(Beo.ny) < Clifllz (4.28)

given by Th. 10 of [St].

5. Distributional Estimates in a Ball of Given Radius

Consider for |f| <1
T f() = [N FDa) )iy (5.1)

for  in a ball B(2,R), 1< R<K N, |z| < N.
Define a new phase function ¥(z,y) given by

N z R z
= e — _— - '2
Y(y) = 3 [w(N+Nw,y) @(—N,y)] : (5.2)
which still satisfies conditions (1.2), (1.3). Their verification for ¢ at (z,y)

amounts to the verification for ¢ at (& + #2,9).
We are thus concerned with the operator

Ugrg(z) = f e RY(EVa(y)g(y)dy , (5.3)

where z € B(0, R), |g| < 1.
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Write next
Ug(@) ~ R [ mE9G. (s)a(u)dy , (5.4)
where
Galy) = [ RHRIHNUEINa(VRY gy + 1) . (55)

Fix 2 < g < 4. Write

/ |Urg|%dz ~ R_3/2/ / \Urg(z + 2')|%da’ | dz .

R

—_~

5.6)

In the definition of Urg(z + '), there is no harm in replacing G4 (y’) by
Gz(y'). We use here the fact that on Bg X B ;g X By X BV;_
R

R[t/) (x;xl,y+y'> —tb(%x—’,y) ¢(R,y+y) +¢(R,y)]

L=(z)RL>™(z)®L®()®L®(Y') ,

(5.7)

since
~
rlp (24 Tt ) v (34 Zow) - (For I 40| €
L=@)BL®(E)BL Y)BL™(T) ,

(5.8)
for |Z|, |Z'], ly], |#'] < 1 (as is easily seen by differential calculus). Thus by
(5.4), (5.6) becomes after replacement of G.42/(y) by G=(y)

R‘%+q/ [ ‘/e“/}_z’"(tﬁ;‘a’y)em‘/’(ﬁ’”)Gz(y)a(y)dy
Br

q
dx'] dz , (5.9)

where one introduced the phase-function

n(a’',y) = VR [!/)(% + —\/li-;w’,y) - ¢(%y)] , (5.10)

which again satisfies conditions (1.2), (1.3).
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Considering the operator (for fixed z)
(V. mh)(a) = / VEI(FE D h(y)a(y)dy (5.11)

one gets from the L? — L* result (see [St], Th. 10 and previous section)

WVyzhllzaB_m < Clibfl2 - (5.12)

Inequality (4.22) from the previous section gives the following L2-L? esti-
mate

IVrhliza ez < CRVA|A: - (5.13)

Writing
1-46
4 ?

+ (5.14)

Q|-
N

interpolation of (5.12), (5.13) yields
IV, mhllzecs, ) < CREH Al (5.15)

Application of (5.15) in (5.9) fixing z and letting h(y) = eiRw(%’y)Gz(y)
yields following bound

q/2
oyt [ ] 16 pa] o=
Br

a/2
R3T¥ / [ / |GR,,(y)|2dy] dz . (5.16)
B;
One has for |y] < 715
1
Hay+v) ~¥e) = (V@) +0(F) - 61D
One may therefore substitute in (5.16) Gr.(y) by

/ e R{F¥=08) o (VR, ') g(y + ¥')dY - (5.18)
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Define for given y

ky(€) = / eV )a(VRY ) gy +¥/)dy’ (5.19)
Obviously _ L
supp k, C B71ﬁ = supp |k, |2 C szﬁ . (5.20)

Thus, if b € S satisfies 5 =1 on B—j—,;’ then |ky|? = |ky|? *b. Such a b may

be majorized by the function

2

R‘ /ei(y"€>a(\/ﬁy')dy' (5.21)

Hence
2
|ky(€)]* < CR / ' / ei(f—fl’y')a(\/ﬁy’)dy'l |k, (69| de" . (5.22)
Observe that by (5.19) and Plancherel
N2ger « ©
/]ky(£)|2d§ <% (5.23)

We used the fact that |g| < 1.
Put £ = RV ¢(x,y) in (5.22). 1t follows from previous considerations

| / R ) o (VRY ) gy + ¢ )y [P <

/l/ei<RV”w(”y)‘£”y'>a(\/ﬁy')dy']2lky({’)|2d§’. (5.24)
From (5.24), (5.16) gets estimated by
. , a/2
Ri-1 [ / | / I VE(Vy(zp)—w(y)y )a(y’)dy'lzdy] dz,  (5.25)
B,

where w(y) is a vector associated to y. This follows from a simple convexity
argument. The inner integral is of course

a(VR(Vy¥(z,y) - w(v))) - (5.26)
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Define the operator

Mef(y) = supe™? / |£()|dz . (5.27)
IV, ¥(zy)—wl<e

(5.25) is bounded by LY%(B;) — L(¢/2)'(B;) duality. This gives for some
7 € L(4/2(By) of norm 1 the bound

RE-% [ / My, vr f(y)dy] " (5.28)

. . . [
Assume the following inequality proved for r = (1)

v(r)
IMAleran < (3) Wfllcos (5.29)
for some y(r) > 0.
(5.28) is then estimated by
RE-THIN) (5.30)
Consequently
T~ fll LacB(2,R)) < CR#=-#+17((3)) 4f jf1<1. (5.31)
implying a distributional inequality
meas [z € B(z, R) | |[Tnf(z)| > A] < CREZ3+1()0)\=2 - (5.32)
on the ball B(z, R).
Assume we prove for some r > 2

1
¥(r) < - (5.33)
One then clearly gets with the notations of (4.25)
|AxNB(z,p)| $ P #7727, (5.34)
for some 7 > 0. Hence (4.25) is bounded by
A“2[R+ R (5.35)

and thus

—(2 2 ,
|[4xl S A TS (5.36)

for some 1’ > 0.

This would be the desired estimate (4.2).

In the next section, we will prove under suitable conditions on ¢ an
estimate (5.33).
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6. Related Kakeya Type Maximal Inequalities
We will only consider phase functions ¢(z,y) of the form (1.12), say

o(z,y) = x1y1 + 2292 + %xs(auy% + a1293) + ¥(x3,9) (6.1)

where

P(@3,y) = O(|zallyl*(lzs| + lyl)) (6.2)

and v is real analytic.

The difference with the general case (1.10) (d = 3) in the absence of
the 1, z9 variables in the 9(z,y) additional term. This fact simplifies the
gradient equations

Ty + a1323Yy1 + Oy, Y(x3,y) —w1 =0
(6.3)

2 + a22T3Y2 + ayz ¢(173, 3/) —wy =0

appearing in the context of the maximal function M, defined by (5.27), in
the sense that they are explicit in z1, 9. Thus the corresponding curves I'y
parametrized by

(6.4)

Z1 = —a;1r3ys — ay1 ‘/)(373,11)
Tg = —ag2%3Y2 — Oy, ¥(3,Y)

are translated according to w = (w;,ws) but w does not affect the shape
of the y-curve. This will play a role in the considerations below. I believe
however that it is possible to carry out a similar approach in the general
case (besides the previous more principal difficulty there are systematic
complications if the (6.3)-equations are implicit in x;, z2).

Recall the definition of M.

M. f(y)= sup / f(z)dz . (6.5)
UG, e —wlce

This amounts to averaging f over an e-neighborhood of the w-translate of
the curve I'y defined in (6.4). The tangent vector at (z1,%2,z3) € I'y is
given by

vy(23) = (= a11y1 — B2y By, ¥(T3,Y), —G22y2 — 82,0y, ¥ (23,9),1)  (6.6)
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(of course independent from the translate). Since, by (6.2),
|02, D24| = O(|z3]) = o(1) (6.7)
one clearly has at given z3, for y = (y1,¥2), ¥ = (¥}, ¥53)
|oy(23) = vyr(s)| > cly - ¥'] (6.8)

(a11,022 # 0).

Inequality (6.8) easily leads to an L?-estimate on M,. For each y in a
neighborhood of 0, let fy stand for an e-neighborhood of the w(y)-translate
of Ty, i.e. the points x = (z1, 22, z3) satisfying

|$1 + a3y + 0y, ¥(x3,y) - wl(y)l <e
(6.9)
I-’Bz + a223y2 + 0y, ¥(23,9) — wz(y)l <e.
It clearly follows from (6.8) that
L. AT n__€ 6.10
leﬂFy'|<cﬁ(y,y)m (6.10)
fg fy’
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defining
By, y')=1 if dist(Ty,['y) <2, PB(y,y’) =0 otherwise . (6.11)

Checking the L2-L? bound on M, essentially amounts to evaluating for

2 layl? <1

yey

(6.12)

Z GyXT,

v€Yy

e Yoo (7x, f) <€

y€Y

where ) denotes an ¢-net in a neighborhood of 0 and || f|]2 < 1. Write

> ayxg || = Y ay@y[TyNTyl, (6.13)
vey Y,y €Y
and estimate the ¢2())-£2()) norm of the matrix (|T,NTy|) yyrcy by Shur’s

lemma (i.e. the £!-¢!,£°°-£* bound) and (6.10). This gives for fixed y € Y

S E T <) B,y ~e [POY) gy

ey <y 8+Iy e+ly-vl et+ly~vl

(the integrals are restricted to a given neighborhood of 0).
Thus the right member of (6.12) is bounded by e~1/2, from what pre-
cedes, and hence

”Meuz_.z <c- g~1/2 (6.15)
Thus, in particular

|IMellz—1 < c- g~l? (6.16)
In fact, it also follows from the preceding that || M.|l2—; may be bounded
by

1/2
6—1/2 {/ ﬂ(y7y’)dydy,} / (617)
e+ly—v

hence

5"1/2(10,; )1/4{ / By, y")dy dy’ }1/4. (6.18)
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For a given configuration of fy, (6.18) gives more information than
(6.16). Indeed, assume 6; > 0 a small number and

> (%)_9 . (6.19)

From the estimate (6.18), it then follows

X,

yey

// Bly,y )y dy’ > e*%* . (6.20)

Taking ¢; small, this means that many pairs (fy, f‘y:) intersect each other.
This fact will be exploited to replace the translation function w by a C'*°-
function, by imposing 'y + w(y) to intersect 2 fixed translates I'y: + w(yh)
and I'y2 + w(y?). In the case of a smooth translation function, we then use
differential calculus to get LP-results, under suitable assumptions on ¢. To
make this general idea more precise will require however additional work.

Remark 6.21: The estimate (6.15) is the right estimate, in particular for
straight lines. In this last case, the conjecture is that (d = 3)

[Mellp—p € e~ (r>0) for p<3. (6.22)

This is proved in [B1] if p < %. In this section, we consider p > 2, with-
out seeking for a precise estimate but only an improvement over e~1/? for
Mc]lp—1. Observe that in general (6.22) is not valid, as a consequence of
the considerations made in section 3 of the paper.

Thus we have to consider for ¢ < 2 the expression

|

where (2 is some neighborhood of 0.
The variable z3 ranges in a neighborhood of 0 which we partition in K
subintervals I; of length

(6.23)

’
q

1

i~ % - (6.24)

The number K = K () will be specified later.



346 J. BOURGAIN GAFA

For each j, we will decompose 2 as
Q=Joual, (6.25)

where the number of ¥/ -components will be suitably bounded and

- —-1/2_2+0
/Q,; 1"yn(|i12><1,-)dy”2 <K e (6.26)
Hence, from (6.26)
- 3+6
zj:/ﬂ’; ern(m”j)dy'L <githr (6.27)

Thus there is the following estimate on (6.23)

{Z (Z )q}l/q +e2 530 (6.28)

i a

/nf; XF,n(mxzj)dy\

where —:) + % = 1. The last term in (6.28) appears by interpolation between
L' (the e?-estimate) and L? (estimated in (6.27)).

The main point is of course the construction of the 4, and its proper-
ties. T

_ Fix j and denote I'y N (R? x I;) (resp. I', N (R? x I;)) again by I', (resp.
T',). The number K will be chosen small w.r.t. 1

/7
/ /
L { I Zi

I

s

Ly

If I; = [aj,a; + %], we make a change of variable

T3 =23 —aj; . (629)
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Consider the equations (6.3). Introducing the new variable z3 and making
a coordinate change in (y1,y2), one gets equations of the form

z1 +a11z3y; + m(zs,y) —w; =0
(6.30)
T + axx3ye + n2(r3,y) —wh =0
where 0 < z3 < -}7 and
[ni(z3,y)| = O(l2s)*|]) - (6.31)
Here
wi = w; — ai;i - a; - ¥i — Oy, P(aj,y) (6.32)
and the coordinate change in the y-variable given by
y; =Y; + a;‘—il [a:c:; 8yi¢(aja y)] . (633)

It follows from (6.2) that this last change of variable is of the form

Id + 7 + O(yl?)

where 7 is affine and ||7}| < x where [—&, ] is the domain of z3.
Let Qo C  and suppose (6.26) does not hold for 27 = Q. Thus with

the new notation
Xz dy
/90 F,

A straightforward exhaustion consideration permits finding a subset {2 of
(o, still satisfying (6.34) (up to a factor 3) and such that moreover, for each
Q? - Q]_

> K~12e3+0 (6.34)
2

/ XF dyll >§K‘1/25%+"1192| (6.35)
Q Y 2

holds.
Redefining

1 if fy and f‘y: intersect
B(y,y') = Bi(y,y) = (6.36)

0 otherwise
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estimate (6.10) obviously still holds and hence (6.34) implies

ﬂ(y‘) ) -1 20
—=dydy > K L 6.37
I s (6:81)
1 X,
Hence, for some
K1 <y <1 (6.38)

one will get

5(?/,?1) ’ -1_26 ( 1>_1
— 2 dydy > K~ e [ log - :
// cerly-v] 'Y Be

Q1 x0y
y<ly—v'|<2y

-1
/ Bly,y')dydy > K~'e™* (10g %) 7.

0y x0y
y<ly—-v' <27

(6.39)

The log 1-factors are irrelevant in what follows and we will drop them for
simplicity.
Assume fixed y!, y? € Q; and a subset 2, of 2; of points y such that

T, intersects fyl and T (6.40)
1 2y, C
angle (y ~ 4",y ~¥°) > 3= (6.41)
n
Y2

From ~(6.30), one then gets for i = 1,2, denoting \; the z3-coordinate of a
I’y — T'y: intersection point
{ lai(yr = ¥)Xi + m(Ai,y) = m(Xi, ¥%) — wiy) + i (¥')| < 26 6.42)
6.
|aza(ya — y5) i + m2(Xi ¥) — m2(Mir ) — wh(y) + wh(y')| < 2¢
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and making the subtraction for i = 1,2 in (6.42)

la1s(yr — 1) — ann(yn — 9 A2 +m(Ar,9) — m(OAs, 91) —m(a, y)+
m(Az,9%) +wi(y') — wi(y?)]| < 4de

|a22(y2 — ¥3) M1 — a22(y2 — ¥3)22 + 2(A1,9) — (A1, ¥) — m2(A2, )+
n2(A2, ¥2) + wh(y?) — wh(y?)| < 4e
(6.43)
Qur aim is to consider

au(yi — yHM — aii(yi — ¥3) A2 + mi( A, y)
— (A1, 9Y) = 12, y) + (D2, ¥?) + Wi(y') — wi(y®) =0

(i=1,2) (6.44)

as implicit equations in A;, A2 which we seek to obtain as smooth functions
of y, i.e.
{ A= A1(y)
Az = Ao (y)

Here y is taken in a neighborhood of a point, of size §, to be specified. This
is achieved by the implicit function theorem. The solution (6.45) may not
be unique but the number of solutions should be suitably bounded. The
main point is to control the (A;, A2)-Jacobian. Observe that by (6.31) and
the %-restriction on z3, one has

[oani(X, y) — dami(A, 2)] < —0 (ly—2l) - (6.46)
Hence
I = ar(yi —y}) + 20(y - v1l)  an(y —91) + £O0(lv - v°|) |
an(yz — y3) + 2O0(ly — v*l) aze(y2 —43) + %Oy - yzl()6 -
and thus .

1
det Jy, 5, > c|det(y —y*,y —v*)| = O(ly = yly—v*l) . (6.48)

In view of hypothesis (6.41), taking the constant C appropriately, one finds
a lower bound

1
det Iy, », > Tly = v'llv - y?| - (6.49)
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If one assumes

ly -yl >m (6.50)
it follows from (6.49) that
det J > L, (6.51
Al 7)‘2 K 71 * . )
One may thus take
gé!
5~ = .
n, (6.52)

and, since |A;] < 4, the number of solutions to (6.45) may be estimated by
-2
71 ~. Here

—8,

K=¢ and v > %, , (6.53)

for certain 02,63 depending on 6; where 65,05 — 0 for §; — 0. Of course,
once (6.45) obtained, (6.42) also yields

{wi = wy(y)

wy = wy(y)

(6.54)

as smooth functions of y on this §-neighborhood. Thus our aim of obtaining
a smooth translation function for a “large” subset {23 of (s is achieved in
this case. The main problem is that condition (6.41) may not be realizable,
which is the reason for the complications in what follows.

Consider the set of triplets -

T = {(yl,yz,zﬁ) e | Iy -~ 80" y)=1(i=23)

c (6.55)
and angle (y' - y%,y' ~ ¢°) > E} :
Choosing 84 > 0, if we assume
meas(T) > &% |, (6.56)

one may find points y?,y> in ©; to which correspond a set of points y = y!
say Qp of measure Q3] > €%, such that (6.40), (6.41) hold. In (6.50), one
has y; = . This brings us to the previous situation. Hence, suppose

meas(T) < % . (6.57)



Vol.1, 1991 LP-ESTIMATES FOR OSCILLATORY INTEGRALS 351
Coming back to (6.39), one gets a subset 4 of 2; such that
Q4] > K120+, (6.58)
and to each y € €14 corresponds a set
Ay ={yeh|ly-vI~7 and Byy)=1} (6.59)

with
|Q@y)| > K~1e?ty . (6.60)

It is easily seen from (6.57) that if we let
£30 < 1201ty (6.61)

one has necessarily
v > et (6.62)

and moreover, we may assume that for y € , the set Q(y) is contained in
a %-neighborhood of a line-segment through y, in a direction o(y)

a(y)
In view of (6.60), (6.62), the relative density of (y) in this strip is at least
5591 .

Consider following set of triplets

= {(yl,yz,ya) EQx M x|y ey) (=23,
(6.63)

1
9 _ 1 3 - 1 — 501 .
angle(y” ~y', 4" —y') > e }
It follows from (6.58), (6.60), (6.62) that

meas(Ty) > K330 (6.64)
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Hence, we may find points y»,y3 € €3 and points y € Q5 C Q4 N B(p,e%)
where

|Q5| > I(-3€1301+205

y¥eQy) for i=23, yes (6.65)

angle(y? —p,y® ~ p) > £€*% .
Here 05 is choosen to satisfy

e < %660‘ . (6.66)

Fixing some y € s, both y?2, 33 lie in the %- strip centered at y in direction
o(y). From the construction, it follows that this direction o(y) only deviates
by ~ % from the directions [p, yi], ¢ = 2,3. Thus, we may fix a direction ¢
for which we have the following situation

Let 5 = (m1,72) appearing in (6.30) and consider the real analytic function

= det | D, 82 7(0, 4nai )] : 6.67
r(s) = det [D,E, 00, + s , (21 (67
We distinguish 2 cases
CaseI: max |7(s)| < g% (6.68)
1<t
. 8 )
Case II: ﬁg}lc |7(s)] > &% . (6.69)

Observe that by the real analyticity, if (6.69) holds, then one also gets
meas [s € [-1,1] | lr(s)l <§-e%] <6, (6.70)
for some constant c;. From the way 7 is derived from ¢ appearing i
(6.1), assumed real analytic in z,y on a neighborhood of the domain under
consideration, one may assume ¢, uniform in p and . This is clear in the

polynomial case and may be shown for real analytic functions along the
lines of [B3]. We shall deal separately with these 2 cases.
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Case I. By the hypothesis (6.35) and (6.65), we have that

X7 dy
L,

Repeating the considerations (6.37)-(6.39) yields a point y' € Q5 and a
subset g of {25 of points y, such that

> K~ 1g1+150:4205 (6.71)
2

ly—y'| ~71 where €% > > K~ 7300440 (6.72)
B(y,y') =1 for y € (6.73)

Q6 C B(g, %) (6.74)

Q6| > K 7300144054201 (6.75)

Here 87 is chosen such that

1
G - 504 .7
e < I{E 7 - (6 6)
Hence, either for i = 2 or ¢ = 3, one gets
. 1
angle(y’ —y',y — y!) > —2?650‘ . (6.77)

Assume this holds for i = 2

Y2

a1

Since by (6.65), y2 € Q(y') we have 5(y',y?) = 1 and may assume I'y: +
w(y'), T2 + w(y?) intersect each other, say for x3 = t. Proceeding as above
(cf. 6.42), this yields the equations
{ ann(y} — ¥t + m(tyt) - mt,y?) - Wil +wi(v?) =0
(6.78)
az(yh — ¥3)t + ma(t, y1) — ma(t,y%) — wh(y') +wi(y?) = 0.
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We use (6.78) to substitute in (6.43), valid since fy intersects fyz by (6.65)
and T': by (6.73), the expressions w}(y') — wi(y?).
We further denote
[l,1=/\1—-t, /_t2=/\2—t, (679)

:Bi(/l') z) = Wi(t + u, z) - ni(t’ Z) (680)
and get from (6.43), (6.78)

|aii(yi — v} — @iy — v7)pe + Bilpa, y) — Bilp, y')~

, (6.81)
— Bi(p2,y) + Bi(p2, v%)| < 4e (i=1,2)
Our goal is to consider again
aii(yi — yi)m — aii(yi — y )z + Bi(p, y) = Bilpr, y')— (6.82)

— Bi(pz, y) + Bi(p2,y*) =0 (i=1,2)

locally as implicit equations in g, s which we seek to obtain as smooth
functions of y, i.e.

p2 = pa(y)
where y is taken in a neighborhood of a point § where intersection with

Ty +w(y!),Ty2 + w(y?) occurs.
We may assume that

g% 2 _ 1 . C
(55 <) gt = vv-v) < £ (6.3)

Since otherwise (6.41) holds in which case the a;;-terms in (6.82) permit the
control of det J,,, ,,. This is the simple case we treated earlier.
Oberve that by (6.31)

{ 1Bi(p1,9) — Bilp1, ¥Y)| < sleally — o'

|Bi(u2,y) — Bilpz, y%)| < Slually — v?| -

(6.85)

It thus follows from (6.82), (6.85) that

ly — ¥2|lp2] ~ ly = v*llpal - (6.86)
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Since y? € Q(y) by (6.65), we have

£—361
angle(y — y%,0) < e (6.88)
and hence, by (6.84), also
. £—36:
angle(y —y',0) < I (6.89)
Consider (6.82), we have
Jusa = [@ii(¥i = 43) + Ooymi(t + p1,y) — Ozymilt + i, 9), (6.90)

aii(yi — ¥7) + Oz, Milt + pi2, y) — Oz, mi(t + p2,97)] -

Further, for i, j = 1, 2,we have by the mean value theorem

1
Bz, (N y) — Bayp( N y) = / Dydz,n(A\ g +s(y—9))(y —y')ds . (6.91)
0

Again by (6.31), since |A| < %

Dy3esn\, )y ~ ) = AD, .00, 2w =) +0 717 ) Iy = '] 692)

Since dist(z,p+ Ro) < 4, there is a probability measure p; on [-1, 1] such
that

(6.91) /D 2 n(0,p+ so)(y -y Npi(ds) + O <1{2> ly -] . (6.93)

Substitution in (6.90) yields for some $1, s2

det J,, ., = det [a;:(y-y}) + (t + 1) Dy A2 mi(0,p+ s10)(y — ¢) ,
aii(yi — y?) + (t + p2) Dy 02, ni(0,p + 520)(y — ¥°)]

6.94
+0(K2)Iy vy — v*| - (6.94)

The first term of (6.94) equals, because of (6.88), (6.89)
ar1azz detly — y',y — y°+
+0 (%) det [D 82 1(0,p+ s;0)(0), (“;‘”1)] 'Iy y'lly — ¥

g 1 2 6.95
+0(K2)Iy—ylly—y|- (6.95)
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In view of (6.77) and the assumption (6.68), it follows from (6.94), (6.95)
that

561 1 9 g—301 1 9
det Juyy, > {em =0 (3 ) € = O 5~ ) v —v'lly—v°| . (6.96)

We take

fs > 60, (697)
K>e% | ie 6,>9,, (6.98)
so that (6.96) yields by (6.72)

det J,, u, > e Kty — yt|ly — o7
> B K1y, . (6.99)

This is the desired lower estimate, enabling the application of the implicit
function theorem.

Case II. Choose any point y' € Q5 for which thus Q(y!) lies in the % -
(p, o) strip as described above. Also, the density of Q(y') in this strip is
> €501, 1t follows from (6.70) that there is a subset Q2 of Q(y!) satifying
for y € Q2

det [Dyazan(o,y)a , (a1101 ):H > glecCrtn (6.100)

2202
where C = cl’1 and

60

diam Q; < 71{- > (6.101)
In order to get (6.100), we assume
_112 € OO e 0y > Ciby + 0 . (6.102)
Again using (6.35)
/ xz dy|| > —geit80n (6.103)
2 v 2

which permits the construction of y2 € Q7 and Qg C Q7 similarly to the
way (g C 5 has been obtained.
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Thus for y € Qg

ly = y?| ~ 12 > K560 (6.104)
Bly,y*) =1 (6.105)
Qg C B(r,eb%) (6.106)
Q] > K —5£160:+20 (6.107)
where 05 is chosen such that
1
¥ < 70 (6.108)
Y2
(s

Y1

For y € Qg, fy intersects fyl and fgz. Since y2 € Q7 C Qy'), also fyl
intersects I'y>. We are thus in the same situation as in Case I, having instead
of (6.68) property (6.100) for y € Qg. It follows from (6.86) that

lully — v*| < Clually - | (6.109)
and thus by (6.62)
il < ey = yllp2! - (6.110)
Write
Qg = Q9 N o , (6.111)
where we define
Y€ Qg4=>|u2(y)| > ¥ . (6.112)
Hence the points y € Q3¢ have the property that
dist(T,, P) < %, (6.113)

where P denotes the intersection point of Ly +w(y!), Ty +w(y2). We treat
these sets separately.
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The set 9. Introduce the new variable

/ H1
= — 6.114
H1 12 ( )
satisfying by (6.110)
i) < €730y — o7 (6.115)

By (6.112), (6.81) yields after division by us
1
aii(ys — yi)uh — ailyi — v7) + - [Bi(u 2, y) — Bi( 2, y))

1

— —[Bi(p2,y) — Bi(p2, ¥*))]
H2

<el™® for i=1,2. (6.116)

Our aim now is to get from the implicit equations
1
aii(yi — vy — = [Bi(p2,y) = Bip2, y*)]+

1
+ [Bi(ip2,y) — Bi(ppz,y")] — ais(yi —y¥) =0

(=12 (6.117)
{l"ll = p1(v) (6.118)
p2 = pia(y)

as a smooth solution. From (6.114) this then also yields (6.83).
Consider again Jy,1 ,, -
By (6.80)

-l—[ﬁ(u ¥)—Bpz,v?)] = / 1 / 1D3 n(t+7pa, v’ +s(y—y?)) (y—y?)dr ds
P 29 H2, o Jo yYza 2

(6.119)
thus

By { ;1; [8(12,9) — Bluz, ¥7)] } ~

! 2 2 2 2 1 2
~/0 Dy3Z,n(0,4° + s(y —v*))(y — v )ds+0(f) ly —9*| .
(6.120)
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As in Case I, we may assume (6.88), (6.89) valid. Hence, for some probility
measure pp on [—1,1]

(6.120) ~ { /0 "D, (0,p+ 50)(0)pa(ds) + O (.}(_)} ly—v?|. (6.121)

Similarly
1
& [B:(pipa2, y) — Bi(pipe, y")] =

1 1
N'I/o /0 (VyOoami(t + THy 2,y + s(y = 9")),y —y')drds  (6.122)

and hence

Ol }=0(% )lu=vt1+ Ol llnally—') = 0 )lo=2'1 (6129

0u{ }=0(lmlly - v') = O(luilly — ¥*]) < ey - o**  (6.129)
in the last line using (6.86), (6.115).
From (6.117) and (6.121), (6.123), (6.124)

det J,1 ,, = det [an-(yz yz)+0( )Iy y'l,

D22, 0.0+ s0)@y =1+ 0 (1 +7m ) =7l
(6.125)
It follows from (6.100) that the main contribution
| det [aii(yi = v), Dy2%, (0,0 + s0)(@)ly — w*[]] >
letalily —ylly - v°| . (6.126)

The error terms contribute for
1 _ -
0%+ ) ly=s'lly=s71= 0 (= &) ly=1lly=47| . (6:121)

Since, by (6.101), 72 < -
It follows that under assumption (6.102), (6.126) yields a lower bound

on det Jyr ,,. Thus, by (6.104)

| det Jur | > eP%F0y, | (6.128)
The implicit function theorem allows on a “large” subset of g (or ;)
to replace the translation function by a smooth function (controlled by
|det J |“1), but the e-neighborhood of the curves has to be replaced by the
larger n——ﬂ-nelghborhood in view of (6.116).
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The set 19. Using (6.113), we will make a direct estimate on

Xz dy
k.

Fix €% and consider a B(P,£%)-neighborhood of P. By Holder’s inequal-
ity, one has since ¢ < 2

(6.129)

q

- 2 2_q
[ ey aranns] <1 WL 1
n10 q

<e 3 G-I (6.130)

(% + ;11. = 1), using the estimate (6.15).

Next, consider what happens outside B(P,¢e%¢).

Assume I';1, T'y» translated such that P lies in the intersection of both
curves. If P = (T, T, T3), it follows from (6.3) that for ¢ = 1,2 the translate
Ty, + w(y’) satisfies the equation

i — T1 + anyi(zs — T3) + 0y, ¥ (x3,y") — 0,,%(T3,y*) =0
(6.131)

zh — Ty + agey}(23 — T3) + By, (w3, ') — 8y, %(T3,y") = 0.
Subtraction for i = 1,2 gives easily for (z},x},z3) € T'yi + w(y*)

|z} — 23|+ |a} — 23| > cly' — y?|lzs — T3] + o(ly! — v*||zs — Z3))
= cly' — y*||lzs - T3] . (6.132)

Hence
dist (L5 +w(yD\B(P, ), (s + wlg?D\B(P, ) >

byl — 42| . (6.133)
It follows that if (6.113) holds, then

dist (T} \B(P, %), T \B(P,e%0)) > efo |y — y?| — % (6.134)
and therefore

Ty NT)\B(Pe®) =0 if ¥,y € Qo and |y' —y?| >0,
(6.135)
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Consequently, by (6.10)

2 3
€
- all = // L. P
/mo F\B(Ren) V], T
239 X019
ly! —y2[<efo— 010
< g3F0=010|05) (6.136)
and
_ _ g —6 1
© 2/@ XF\B(Pet1n)dY|| <€ LA Mk (6.137)
10 2
1 9y —8 1
6—2/ T \B(Pe"m)dyH <eTF T v (6.138)
Qo Y ’ q
Combining (6.130), (6.138) gives
5‘2/ = dy||l < (00— %) +59L_7m)€_17|9101% . (6.139)
Q10 y q
Choose
bro = -2 (6.140)
yielding then
5—2/ xg dy|| < e ™5 |yl (6.141)
Qo Y q

Summary.
From the preceding, fixing j, one obtains (6.25), where the sets (2,
either satisfy (6.141), i.e.

€ /anry Y

or for y € (4, one has

< et e Q|0 (6.142)
q

T, C e =% neighborhood of Ty + w”(y)
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where w'” is a translation function which is smooth with derivatives con-
trolled by the lower bound €12 on the Jacobians appearing in the process.
The number 6;; may then be taken

011 = 09 -+ 912 . (6143)
All the sets ), introduced also satisfy
Q4] > €22 (6.144)

where the 6; = 0;(6,) 2P0,

We also summarize the conditions on the #; along the construction.
The number 6, appearing in (6.28) comes in the initial hypothesis (6.34)
K =¢%, see (6.53) .

From (6.61), (6.38), the condition

From (6.66) ,
05 > 02+ 66, . (6146)
From (6.72), (6.76)
67 > 356, 4 80, + 465 . (6.147)
From (6.97), (6.98)
0s > 66, , 0, > 90, . (6148)
From (6.102)
6 > C16, + 05 . (6149)
From (6.104), (6.108)
0 > 665 + 166, . (6.150)

This yields 6,,0g,02,04,05,07,0s as linear functions of §,. It also follows
from the construction that 8,4, 6;3 may be taken to be linear functions of 6;.
The 6y is an independent parameter appearing in (6.142) and (6.143) (with
different effect). From (6.144), the number of ,’s is bounded by ~ g~%:.
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Those for which (6.142) holds have thus in (6.28) a total contribution which
is crudely estimated by

K. e703 . 2 3tatent ¢ 2m3H0u (6.151)
provided
P2 0y> 60,4613+ 614 . (6.152)

p(p - 1)
We next analyze the case with smooth translation function. As made clear

from the example in section 2, we may not expect to gain something here
1 . . e .
over the £2~ 5 -estimate without an additional assumption on the phase func-

tion ¢. Denote T’y an !~ -neighborhood of ', + w”(y) (cf. above).
We have to estimate for f € L%, ||f|[, < 1

e=? / <f, va>dy. (6.153)

Averaging first f over cubes of size =911, it amounts to consider g > 0,
llglly <1,

Vgl < é (6.154)

and the expression

1/K
e—2011 / /g(anwsyl +ni(z3,y) — wi’(y), a22%3y2 + M2(*3,y)—
0

— wy (y))dzsdy, dy,
(6.155)
where w" is smooth with

|0 S e . (6.156)

From the way (6.30) is deduced from (6.3), this yields

g~ 20n // glanzsy + 8y, ¥(x3,y) — w1(y), a2ex3y2 + 9y, ¥(3,y)
I;

— wa(y))dzadydys -
(6.157)
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The relation between w and w” is given by (6.32), writing w! instead of w!
and hence also
|0(w] S 702 . (6.158)

At this point, it is natural to consider the coordinate transformation T :
(yl,yz,il?a) > (:l:1,:c2,z3) given by

z; = a;iT3y; + Oy Y(x3,y) — wi(y) (t=1,2) (6.159)
and for which
det DT =
a11%3 + 351 W Y(zs3, y)— Oy, w1 (v) 831 V2 P(z3,y) - Oy, w1 (v)
02, 1, ¥(23,9) — 8y, wa(y) azxs + 02, | U(x3,y) — Oywa(y)
(6.160)

Analyzing this expression yields

2
det DT(y, ©3) = [det D2p] + Y wij(y)[02,,, 0] + det Jw (6.161)

Yiy;
,j=1
where w;; and det Jw only depend on y.
Counsider the following hypothesis

The Hessian determinant det (%%#) (23,0) is not
a linear combination of the second-order (6.162)

. . 2 .
y-derivatives ;9, 0 (z3,0), as functions of z3
i0Y;

Since ¢ was assumed real analytic, (6.162) implies a non-vanishing Wron-
skian determinant at z3 = 0 and hence on a neighborhood of (z3 = 0,y = 0).
Thus (6.162) remains valid if y is taken in a neighborhood of 0. In fact, there
is a positive number ¢ > 0 such that

/ldet DT|~dzady < c;* . (6.163)

This constant ¢, only depends on ¢.
Write (6.157) as

g~ 2%0n /(goT)dx;;dyldyz . (6.164)
U
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Split U as U = Uy + U, where

det DT| > &% U
| > on Th (6.165)
|det DT| < %** on U,
Hence, from (6.163)
meas Uy < c; 125 | (6.166)

The region U; may be broken up into domains U, ; where T is invertible.
The number of such domains depends on the derivative estimate for 7' and
the lower bound on |det DT|. In fact, from (6.158), one gets a bound on
their number by

—016
s

€ where 015 ~ 015 + 012 . (6167)

On each of these U ;, one has for a bounded function ~ > 0

h
= —d d
Vi (h (o] T)dl‘gdyldyz /T(Ullj) |(det T) 5 T__ll .Tldillz T3
< g7 / h . (6.168)
Hence, from (6.166), (6.168), (6.167)
/ (hoT)dz < c5 e |[Rl|o + £~ 015=016 / h (6.169)
U

S 02—1662015“’7’”00 + E—Coné.—ca]s”h”l ] (6170)

Here 6,5 is a parameter. For an appropriate choice, we find
/ (hoT)dz < cpe=0m [l ||R1Se (6.171)
U

for some positive number ¢, only depending on ¢.
This yields an exponent p = p(p) < oo satisfying

/ Iho Tldz < e~ |, . (6.172)
U

In particular, from (6.164), (6.157), (6.155) and (6.153) are bounded by

6—29“_0912“9“;: < £—2011-Cb13 (6.178)
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if we let p = p(yp).
The (6.143)-contribution is thus < g720s=C012-61s < =200=CO1 from
what preceeds. Hence, from (6.151), there is the total estimate

62_%+914 + 62—299“‘001 (6.179)

on the first term of (6.28).
From condition (6.152),

2L+ 3BTy 0-CO1 | 2-1+(3-20,-C6y) (6.180)

If we let 6, be sufficiently small, we find for some 6;7 > 0 the bound on
(6.28), (6.23)

g2 b0 o 2-fti0n (6.181)

Consequently, there is an inequality
[Mellpr < 77+ (6.182)

for some 615 > 0. This is the required property v(p) < % of (5.34) in order
to get (4.2). Thus there is the following theorem.

THEOREM. Let ¢ of the form (1.12) be real analytic (on a neighborhood of
0) and such that

(6.162) det (%:—?) (z3,0) is not a linear combination of the second deriva-

tives 5:;:3“;—’_(3:3,0).
Then the operators Ty defined by (1.1), i.e.

Tuf(z) = [ Mo Da(a, 1) 1wy (6.183)

where a is supported on a suitable neighborhood of 0, satisfy for some q < 4,
the bound

ITx fllg < CN=3/9) f| o . (6.184)
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Remarks.
(1) The relevance of condition (6.162) is clear from the example in section
2. One has indeed in this case

2

o2 T3 I3
72 (23,0) = (6.185)
0y?
I3 0
and its determinant is —2% = —3—2‘?(3:3, 0).
1

2) It follows from section 3 that in general we may not expect to have
Y
(6.184) for all q> 3. For this, it suffices that
r3=0=y

o (0%
92 \ a3
(6.186)

(3) We used the hypothesis of real analyticity of ¢ in a few places in the
previous argument. It is possible to avoid this. It is clear how an
adequate strengthening of (6.162) for C*°-functions may be formulated
with the same effect. If we do not assume ¢ real anlaytic, (6.70) is not
valid anymore. For C*°-functions, one has to do a further partitioning

of the y-domain to get the required information on a—a;; (%‘?), which
3

leads to additional technicalities.

2
is not a multiple of (_98y_2 (g;—f;)

z3=0=y

7. Further Comments

(i) Factorization.
Counsider the operator (1.1) and assume we have shown an inequality

ITx fllg = CN~44| flloo (7.1)

(g > 2). By general factorization theory, one may then find a probability
measure u(dy) such that for r > ¢

ITn flle < CN= £l Lr(an) - (7.2)

It is a natural to ask when u may be replaced by the standard measure dy.
If for instance Ty corresponds to the restriction to a sphere, one may use
a standard averaging argument over the orthogonal group to get Lebesgue
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measure. This case is special and a procedure to deal with a general phase
function, even assuming linearity in z, seems unclear. However, if ¢(z,y) is
quadratic in y and has the form (for d = 3)

o(z,y) = 1y1 + T2y2 + Y1(23)y? + Yo (z3)93 (7.3)

there is a way of explointing translation operators. Define for z = (z1, 22),
|z| small, the operator

T f(y) = f(y1 + 21,92 + 22) (7.4)
and write
7w (7 Hl, < ON /Y7 fll £rcay - (7.5)
Replacing y by y — 2, one finds
T (=N, = |l f NV =a(z,y - 2)f(y)dyl|, (7.6)
where by (7.3)
<P($, Y- Z) =
function of z+ (71 —22191(23) ) y1+ (72— 222%2(x3)) Yo+ 91 (T3)yE +a(3)y3 -

o (7.7)
Substituting (7.7) in (7.6), one may of course ignore the z-terms. Make the
following change of variable in z

{ zi =z1 — 22191 (z3)

7.8
xh = T3 — 2221P2(x3) (78)

which is measure preserving. That brings (7.6) in the form

” feiN¢(z’,y)a(x/1 + 22191 (23), 25 + 22292(x3), 23,y — z)f(y)dy“q - (7.9)

Replacing the left member of (7.5) by (7.9) and applying a standard aver-
aging argument in z, one finds finally

| [ereevaa s, <oNElan,  (@10)

for some other localizing function @ (which is of course irrelevant).
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(it) Kakeya and Nikodym maximal inequalities in R3.

Using the notations of [B1] for the Kakeya maximal function f; and
Nikodym maximal function f* (of excentricity é), the conjectured bounds
in R? are given by

* *k 1 ‘,;"1+5
Il and 15tlo<(3)7 WAl (1)

where € > 0 is arbitrary and p < 3.

This fact was verified in [B1] if p < Z. As it follows from [B1], the
knowledge of (7.11) for any p > 2 has an application to the Bochner-Riesz
problem described in the introduction in the sense that m) is shown to be
a bounded multiplier on L?(R3) for 52 + 5 < p < 25 and where A may take
certain values < ‘11.

Our purpose is to use the ideas of section 6 of the paper to get very
simple proofs of (7.11) for certain p > 2. We do not intend here to try
to optimize the method. (The argument in [Bl} seems more performing
anyway.) Although the arguments of Kakeya and Nikodym are in many
respects analogous, it is preferable to give them separately.

(I) Estimates on ff. Standard techniques cf. [St2] reduce the question to
showing a minoration

|A| > §3-Peq? (7.12)
assuming A C B(0,1) having a property that for a subset Q C S2, |2 > 1
each direction £ € §) may be translated into a line L¢||¢ such that

|[ANLY > 08 (7.13)

Here L? stands for a é-neighborhood of L.
Let € run in a é-net £ C Q. It follows from (7.13) that

<XAvZXLg> RO (7.14)

434

and thus

|A|/2 >0. (7.15)

me

§€E
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Proceeding as in the previous section, one has

2
> Xegl| = > ILEn L (7.16)
€€ 2 gmee
where \
6°B(&,m)
LinLl| < 22 717
Len bl < e =ies (7.17)
T¢
AN
n \
and
B&m) =1 LiNL #0. (7.18)
Substitution of (7.17) in (7.16) yields the bound
gy Lemn o 7.19
LTl (7.19)
and by (7.15)
|A] > 60 . (7.20)

This is (7.12) for p = 2.
Fix now a parameter 0 < A < 1 which afterwards will be chosen as a
function of ¢. If we have

(7.21)

2 x|

{34

<z /z
it follows from (7.15) that

1
|A] > -)-\3602 . (7.22)
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Alternatively, let
> 6712 (7.23)

Z XLs

tee

A standard exhaustive argument permits then to find a subset £ C £ such

that
Z X Lt

£€é,

> A2, gy > N2 (7.24)

and for any & C &;
> 2832\ &, (7.25)

2 Xuy

£€E,

(we omit constants).
Taking for £ = £, gives as above

_ _BEm)
N6l < s
(e 6+ IE—ml

<53[Z _1_”2]1’2[ > ﬂ(&n)]l/z

& ((5 + Ig - 7’ £n€EE
1 1/2 1/2
< (log 3) 6[ ) ﬁ(s,n)] . (7.26)
EneEy
Thus .
> B> (log %) 54 (7.27)

5,17651
and therefore one may find &, € &, and & C & satisfying

B,&)=1 for €& (7.28)
1\ !
[E2] > A (log 3) 5§72 (7.29)
Using next (7.25), it follows similarly that
1\ 1
Y BEm) > A (log 3) §%&,* (7.30)
§n€E;

-5
> A2 (log ;15-) 54 (7.31)
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Hence, there is a point &, € & and &5 C &, satisfying

-3

&1 = &| > A° (log %) (7.32)

BE,&)=1 for €£€& (7.33)
-5

€3] > A2 (log %) 52 (7.34)

Thus, from (7.28), (7.33)
LINLL #0, LINLL, #0. (7.35)

It is clear from (7.34) that one may assume for £ € &3

-5
o = angle(&, plane(Ly,, L¢,)) > A% (log %) . (7.36)

Denote P the intersection of L¢,, L¢,. A simple geometrical analysis of 3
almost concurrent lines shows that for £ € &5 satisfying the above properties,
one has for the intersection point Q; of L and [L¢,, L¢,]

dist(P, Q) < EI?%Z?I . (7.37)

Thus, by (7.32), (7.36)

8
dist(P, Q) < X730 . (log %) -6 (7.38)

We may therefore find one more set £, C €3 and some point @ fulfilling the
conditions

QeLf if (€& (7.39)

1\ -2
|Es] > A0 (log 5) 872, (7.40)
This geometrical configuration has moreover the property that

|ANLE| > o6 (7.41)
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for £ € &, since & C Q. Letting Q = 0, integrating in polar coordinates
yields

4] > / Xa(rE)r2 drde > co® - 82|€y] . (7.42)
Irl>5

2

Thus, from (7.40), the following minoration

—21
|4] > A80 (log %) .o? (7.43)

is obtained, complementary to (7.22). Choosing A optimally gives

|A] < 8 - A~ g 2t (7.44)
which is (7.12) with p = 2+ %.
II.Estimates on f;*. In this case we have to prove (7.12) assuming (7.13)

holds for all £ € 2, where L¢ is now a line through £ and Q C B(0,1) has
measure > %

Partition the unit sphere $2 in caps of diameter 11—0, one may select one
of them, say C centered at e3 and a set Q; C £, || > #, so that

£ € Q; = the direction of L, belongs to C . (7.45)

Consider next an intersection 2 of ; and a translate of the e;, ez-plane,
such that |[Q2] > si5. The collection of tubes under consideration is obtained
by taking a é-net £ in Qg, thus |£] ~ 672 and (L{)¢ee- It is clear from
construction that for £, € £, |€ — n| > 106

LN LS # 0 = angle(L¢, Ly) R |6 —nl - (7.56)

This is the property needed to get (7.17). One then reasons exactly along
the lines above and has either (7.22) or a configuration with concurrent
lines, which leads to (7.43). the same conclusion (7.44) follows.
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(B1]
(B2]
(B3]

[C-8]
[Fe]
(H]
1
[St1]
[St2]
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