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1. I n t r o d u c t i o n  

Let K, K '  be two centrally symmetric convex bodies in R '~, with 
centre at 0. Let V, denote the r-dimensional volume function. We 
consider the following problem of H. Busemann and C.M. Pe t ty  (see 
[BP], [Bul]): 

Does the property  

Vn-l( I (  N L) < V,_I(K'  N L) (1.1) 

for each (n - 1)-dimensional subspace L of R n imply tha t  

V,(K)  < V,,(K') . 

For n = 2, the question has an affirmative answer, as shown by Buse- 
mann in [Bu2]. Larman and Rogers [LR] constructed counterexamples 
in dimension n > 12, where K '  is the  euclidean ball Bn = {x E R n I 

[ x - ~ n  2~i/2 Ix[ = t~l x~) _< i}. Observe that if/< = B. (or an empsoid, by 
the affine invariance of the problem) the answer is again affirmative. 
Indeed, let ]] II be the norm on R ~ induced by K' ,  i.e. 

Ilxll = min{~ e R Ix e ~ K ' } .  (1.2) 

Then 
V.(K') 

= . - ,  Hxtl-"~.-l(~x) (1.3) 

where a , - i  is the normalized invariant measure on the sphere S , - I  = 

{x e R" [ Ixl = 1 }. Similarly 

V._l(I(' N L) = fs IIz]l-"+la"-2(dx) (1 .4)  
Vn-l(Bn-1) ',-'nL 
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identifying S '~-* Cl L and S "-2. 
Assuming Vn(Is <_ Vn(Bn), it follows from (1.3) that 

L .... , (fs,,-,nLllxll-'*a"-=(dx)) P(dL)= fs,,-, I l x l l - " a " - l ( & ) < l  

( 1 . 5 )  

where R is the normalized invariant measure on the Grassmanian 
G,,n-1.  Thus, for some hyperspace L 

obviously implying 

and thus 

L Ilxl}-'%~-~(dx) _< 1 (1.6) 
,~-IoL 

L I[x[[-'~+la,,_u(dx) < 1 (1.7) 
, ~ - I O L  

Vn_I(K' Cl L) <_ V,~_I(Bn Cl L) (1.8) 

by (1.4). This proves the previous claim. 
In fact, in our entire discussion we will consider only the case 

where K '  = Bn. K. Ball (see [Bal,2]) obtained counterexamples to 
the Busemann-Petty problem in dimension n >_ 10, considering the 
c u b e Q n =  [ -  1 ~, �89 n and using his estimate 

Vn_~(Qn n L) <_ v'2 (1.9) 

for every hyperplane L. 
Lately 0), A. Giannopoulos [O] lowered the dimension to n _> 7, 

constructing counterexamples of the form 

} K = An(a,b) ~lx 6 R" 2 < a 2 -- x~ _ , I x . I  < b ( 1 . 1 0 )  
k 1 

(cylinders) for certain choices of the parameters a, b. 
The aim of this paper is to do a more systematic investigation of 

what happens when K is a small perturbation of Bn, i.e. 

~s(K, B . )  < a0 

(1) Exposed by S. Piehorides, Orsay 1/90. 

(1.11) 
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where 8(A, B) stands for the usual Hausdorff-distance between two 
sets A and B. The main idea is of course to s tudy the variations of 
1 st, 2 nd, etc. order of the volume ratio formula (1.3). This leads us 

to explicit problems in function theory (related to Radon transforms) 
and perhaps a better understanding of the role of the dimension. 

Our main results axe summarized in the following two theorems: 

T H E O R E M  1. L e t  K b e  a c o n v e x  symmetric body in R 3, V3(K) = 

V3(B3) and 6(I(,B3) < 6o for some 6o > 0 small enough. Then, for 
some 2-dimensional subspace L, � 8 9  n L) > V2(B2). 

T H E O R E M  2. Theorem 1 does not hold in dimension n > 7 in the 
sense that there are small perturbations I f  of Bn, V~(K) = V~(Bn) 
and Vn_l(I( n L) < Vn-l (Bn-1) ,  for each hyperplane L. 

Theorem 2 yields another construction of counterexamples in di- 
mension n >_ 7, related in spirit to the original Larman-Rogers method 
[LR] (in particular, probabilistic techniques are used). The variations 
of (1.3) are however easier to deal with than the formula itself. 

Theorem 1 excludes in dimension 3 counterexamples within a 
neighborhood of the euclidean ball. The method of proof is again 
based on analyzing the variations of (1.3) which is done by expanding 
the perturbation in spherical harmonics. 

Adapting the proof for dimension 4 seen~s difficult. The present 
method fails in an essential w~v. This paper leaves unsettled dimen- 
sions 4,5,6 for the local problem (in the sense of (1.11)). The author 
feels the methods discussed below deserve further attention. 

Letters c > 0, d < c~ stand for constants which are at most 
dependent on dimension. 

2. A p p r o x i m a t i o n  o f  t h e  vo lume-rat io  formula  

Let K be a convex symmetric body in R n and II 
norm. Then 

V n ( B n ) -  (fs.-, 'lzll-n) 1/n 
Put  r(x) = HxH -1 and consider a perturbation 

r(x)  = 1 + t~(x)  (0 < t < 1 and I~l < 1 ) .  

[[ its induced 

(2.1) 
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Put 

Thus, taking derivatives 

r ( t )  = i(t) 1--  f ( 1  + t ~ ) - - l v  

r ' ( t )  = 

= (1 - n)I( t ) -nI ' ( t )  f ( 1  + t~)'~-l~ + (n - 1)I 1-n f ( 1  + tcp)n-2~ 2 

(f f = (1 - n)I(t) 1-2" (1 + t~2)n-x~ + (n - 1)I 1-" (1 + t~)n-2~22 

and also 
P 

Iz"'(t) l < c J I~1 ~ . 

Hence, by Taylor's theorem 

I I ( t ) - l - ( f s . _  7~) t n 2 1 [ ~ . _  ~ z - ( ~ . _ 1 ~ ) z J t z  < 

(2.2) 
-< ctZ J(s--, 1~13 O 

This formula will be used in the proofs of both Theorem I and Theorem 
2. We start with Theorem 2. 

3. P roof  of  Theo rem 2 

It clearly suffices to generate a perturbation K of Bn s.t. 

YolK '~ x/. ( Y o l k  N L '~ 'j--' 
Vo--g~,] >supL k Vgo@:-_~ ] (3.1) 

If K is given as in section 2 above, it follows from (2.2) that (3.1) will 
hold if 
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(/. ~_,nL ~ t + -----"~ 
p )  2] t2+Ct  z 

(3.2) 

assuming ]qo I < 1. 
In addition, in order to ensure I (  to be convex symmetric,  we 

impose a second derivative bound 

tlle2 lloo < c (3.3) 

and the condition 

~(x) = ~ ( - x )  for x E S n-1 . (3.4) 

Clearly (3.3) (for a suitable constant c) will imply indeed that  t = l + t p  
generates a convex body. 

Choose 6 > 0 and partition the boundary of the cube [ -  1  ,�89 
cells of size 5 which are projected on S n-1. The function p is defined 
on those cells and transposed on S n-1 by the radial map. Consider on 
each cell a function of shape 

1 - f 

0 6 

Thus HD2r < C5 -2 and ~ takes value 1 except on a set of relative 
measure o(1). Define on the cell Qa 

~[Qo = r162 (Ca reproducing r  
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and where e~ = +1 are signs which will be randomly chosen, with this 
restriction tha t  

~[O. = al0~ (3.5) 

where ~)a is ant ipodal  to Q~. 
The function ~0 on S n-1 obtained this way has clearly the following 

propert ies 
is symmetr ic  / 

I~1 ___ I I (3.6) 
f I~r- = 1 - o(1) 

IID=~II < C,~ -~ 

Moreover, elementary probabilistic considerations yield tha t  for ran- 
dom choice of the signs (subject to condition (3.5), irrelevant for this 
mat ter) ,  one gets 

I /  n - I  n 1 ,~-x _< c ~ - - r - 6  - = c ~  , ( 3 . 7 )  

I f~oL ~ c ~  (l~ 1/2 _< , for each hyperplane L . (3.8) 

To obtain (3.9) consider a net in the Grassmanian Gn,n-1 and use the 
(elementary) measure concentrat ion properties for linear combinat ions 
of Rademacher  functions on {1, - 1}  N. The reader will easily work out 
the details. 

Conditions (3.3) and  (3.6) force 

t , ,~6 2 . (3.9) 

Clearly (3.2) is implied by 

2 ,~-1 2 " - i n L  

(3.10) 
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The left member of (3.10) dominates, by (3.6) 

n - 1  n - 2  1 
2 2 o(1) > 5 

By (3.7),(3.8),(3.9), the right member is bounded by 

C~_2 ~ ~ ~-2 ~-.o + ~--r- log 0 

provided - ~  > 2. 

Remarks .  
1. It will be clear in the next section (when studying the correspond- 

ing Radon transform) that the probabilistic method of achieving 
(3.8) yields an essentially optimal result (up to the logarithmic 
factor). 

2. The method described above yields approximations of B3 in C a- 
topology (~ < �89 which are (not necessarily convex) cotmterex- 
amples. Observe that forcing convexity for the body K requires 
a C2-perturbation, although in general the gauge-function of a 
convex body does not admit C2-bounds. This fact is one of the 
reasons for the dimension gap comparing Theorems 1 and 2. 

4. P r o o f  of T h e o r e m  1 

Let K be given by r = 1 + 4, where 

I1~11~ = ~ < 50 �9 (4 .1 )  

One has to show that 

( f s  (1 )1/,~ ( f s  ) 1__~_~ + ~)n < sup (1 + ~),~-1 (4.2) 
L 2AL 

Writing ~ = ~ - f s  ~ + f s  ~ and rescaling, one may clearly assmne 

f s  p = O. (4.3) 
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Again by (2.2), (4.2) is implied by the following inequality (let t = 1 
in (2.2)) 

n21~s <sup{(~nL~P)-t-{ [~nL~2-- (~nL~P)2]} �9 
(4.4) 

Since the second term on the right of (4.4) is positive, it suffices to 
s h o w  

L J S n L  

Observe that  because  IC is convex and H ~ - l l l ~  = ~, one ha~ Jr -  ~1 > 
on a ,,~ v/6-neighborhood of some point in S. There are in fact two 
cases 

r=l+6 

and 

separation 

r= l - -6  

Hence, clearly 

jfs ~ 2 = f s 2 , 1 - r , 2 > c 6 2 ( v ~ ) 2 = c 5 3  (4.6) 

and (4.5) may be written 

f s ~ 2  < < s u p /  ~ .  (4.5') 
L d SNL 

We need one more geometric fact 

I r( '~) - "(~")1 = I# (~ )  - c2(~')1 _< C v ' ~ l ~  - ~"1 (4.7)  
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or equivalently 

IID~,II < C , W .  (4.8) 

The proof of (4.7) follows from simple geometric considerations. Ob- 
viously the problem is 2-dimensional. Assume r(~) > r(~'). The fact 
that  

K D cony ((1 - 6)B3, r(~)() 

is used to get a lower bound on r(~') 

f 

With O, O' as above, one has 

~(~) = (1 - 6)(1  + t g % )  '/~ 

r(~') > (1 - 6)(1 -I- tg2O') '/2 

> 1 - 6  if 0 ' < 0 .  

if 0 < 0' < 0 

Since r({) < 1 + 6  

o < c f i .  

* C a s e  ( i ):  0' > O. 
Thus 

]r(~) - r ( ( )  I = r ( ~ ) -  ,'(~') 
< (1 -61[(1 + tg20) 1/2 - ( 1  + tg20') 1/2] 

1 1 < 
- cos 0 cos O' 

<_ CIOIIO - O'l < ~ l ~  - ( I  . 
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�9 Case  (ii): 0' < O. 
Then 

I r (~ ) -  r(~')[ _ (1 --5)[(1 + t g 2 0 )  1/2 --  1] 

<_ ClOl ~ 

<_ c v r g l ~  - ( I  . 

This proves (4.8). 
Let 

k > 0  
h e v e n  

be the expansion of ~ is spherical harmonics (since ~ is even, only even 
degree harmonics appear). 

Define the Radon-transform 

~(~) = f Js  NLr 

for ~ E S 2, where Lr has the obvious meaning. 
Since this operation commutes with the orthogonal transforma- 

tions 
~ =  E AkY, (4.9) 

K e v e n  

where, from the Funk-Hecke formula 

l 2 ~ - s  ,~ ,-- Pk(t)(1 - t ) - - - ~ - 5 o ( d t )  
1 

= P~(0) 

where 5o = Dirac measure at 0 and P ~ ( t )  is a Legendre polynomial 
(see [M] for these matters). 

For n = 3 

P k ( t )  ,~ r ( k +  1) d-t 

(Rodrigues' formula) and it follows that 

P k ( 0 ) = 0  i f k o d d  

(I - ?)~ 

1 k 
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tA~I ~ 2_~ ( k )  1 ~ ~ "  

Since f ~ = O, also f ~ = O. Therefore 

s n p [  = >_ f 171 
L J S n L  Js  

(4.5 ~) amounts thus to get 

We need two further observations. 

(A)  - One has 

I1~11~ _< I1~11~11~11o~ �9 

11 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

One has 
o,~ = ~_, kYk 

( B )  - The function ~ has a harmonic extension to B3 again given 
by ~] Yk, where Ya are considered as functions on B3. From the general 

potential theory 

(4.15) 

and from (4.13),(4.14) 

1/4 - - 1/2 I1~t1~ --_ ~ I1~11~11~11~ 
I1~t1~ --- ~5-1/~11~11~/~ �9 

Obviously, from (4.7) 

I~(~) - ~(~')l < c ~ l ~  - ~'1. 

Thus if [ff(~0)l = ; = II~ll~, then I~1 > ~ on the neighborhood of ~o 
of radius ,-, 6-1/2"r. Hence 

II~ll~ -> CT2" 5 -1 .  ~_2 = 5 - I l l , i lL  (4.14) 
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and it follows from (4.8) that 

Reduce by (4.15) inequality (4.12) to 

IIVII~/2 >> (~1/4 E IIV,,ll~ �9 

By (4.9), (4.10) 
1 

Choose ko and estimate by (4.16) 

IIY~ll~ _< ~ flY~ll~ + ~ko ~ 
k <~ ko 

and replace (4.17) by 

Choose ko the smallest integer such that 

ffY~fl~ > ~ko 2 
k <  ko 

which is possible since 

It clearly follows from (4.16) that for this choice of ko 

IIt~,ll~ ~ ~ko ~ 
k<ho 

and 

IIY~,II~ > ~ ~ IIY,,ll~ 
h<ko k>>_ho 

GAFA 

(4.16) 

(4.17) 

(4.1s) 

(4.19) 

(4.20) 
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hence, by  (4.6) 

IIYhll~ > cll~ll~ > ~ .  (4.21) 
k<ko 

Thus  (4.18) becomes  for this  choice of k0 

o r  

IIr~ll~ >> 6~+I (4.22) 

By (4.21), this clearly holds for 6 --* 0, concluding the  proof. 
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