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~STRACT 

At present, the finite element method is an efficient method for an- 
alyzing structural dynamic problems, when the phusical quantities 
such as displacements and stresses are resolved in the spectra and 
the dynamic matrices are obtained in spectral resolving form,'~he re- 
lative equations cannot be solved by the vibration mode resolving 
method as usual. For solving such problems, a general method is put 
forward in this paper. The excitations considered with respect to 

nonstationary processes are as follows: 
P (  t ) =  t P.(  t ) } , P. (  t ) = a , (  t) P]'( t) , 

a,(O is a time function already known. Wo make Fou• tr,J~.~forma- 
tion for the discretized equations obtained by finite element method, 
and by utilizing the behaviour of orthcgonal increment of spectral 
quantities in random process[l], some formulas of relations about the 
spectra of excitation and response are derived. The cross power spec- 

tral denisty matrices of responses can be found bs these formuTas, 
then the structrual safety analysis can be made. When  a , ( t ) = i  (i=1.2, 
�9 ..,,) ,the methoG stated in this paper ~ill be reduc~-d to chat which 

is used in the special case of stationary process. 

I. Single-Freedom-Degree Case 

The basic equation is 

M U + C U +  K U =  P (1 �9 l ) 

In the above equation, U is displacement of the particle, i~1 and C are mass of 

particle and coefficient of damping respectively, ]{ is the rigidlty coefficient, 

the dot symbol represents differentiating with respect to time, and P is an exci- 

tation of nonstationary process, expressed as follows: 

p ( t ) = ~ ( t ) p o [ t )  (1.2) 

Making spectral resolving for p(1) , we have 

P ( t ) -  " 

Assume that Fourier transformations of u(tland P ' ( t )  are 

from the character of Fourier Transformation, we have 

P(~)=a(co) ~, P~ (I..:) 

(l .3) 

6(~j) and P~ respectively; 

* Communicated by Zhong Wan-xie. 
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P(~) is the convolution of a(c0) and P~ Then, w(: have: 

----11/3 ~ (c~L)5(~..--o~, )e 'w,' dco,dcet " <." P ( t )  

The complex conjugate variable of P(f)is 

For the sake of simplicity, in the above two equations and equations below the 

integral limits --oo and oo are omitted. Product of eqs. (1.5 a) and (1.5 b) is: 

�9 e'(~ ( 1 . i~) 
Note that expectation of the product of po(o~l ) and P~ may be written as: 

E[P~176 ] =Sp(~)~(~,-~3) ( 1 . 7 )  

expresses Dirac function and Sp(c0t) is power spectral d,,~n.~it} , function with 

respect to P~ . The expectation of eq. (1.6) may be written as follows: 

.fi(~t--cot)f'(c~4--c~3)e'~'t-~ 

�9 e' c.,-.,,,dco~do~,do~,&o, 

= f I fS , (~ , )5(oh--co , )5"(w, - -co , )e '<~;  . . . . .  dwLdo~2dco, 

=I S,(~,)[15(co.--o~.)e'w,'dco,][la*(co,--o&)e-'r~ (1.8)  

Mean square value EIP(t)]' may usually be formulated as follows: 

IXp( t ,  co)dco ( ~ . 9a) El P( t )  I'= 

Sp(t,co) = la(t ,co) liSa(co) (1. ~,~b ) 
If we define that 

t 

I a(co ' - -w)e '~"dco ' ( 1.10 ) 

by comparing eq. (1.8) with (1.9 a,b), we see that eq. (i,~) is equivalent to(l.9 

a,b). In practice, we have 

= I f i (a / - -w)e"~ ' -~" '  . e '~d(w"--co)  = a ( t ) e  '~' ( 1 . I 1 ) a(tj6o) 

Substituting the above equation into eq. (1.9 b), we obtain: 

Sp( t ,~)  = a ' ( t ) S p ( c o )  ( i .  ~ e ) 

Similar to derivation of eq. (1.8), we may find the correlation function of p(tt) 
and p'(t.) as follows: 

R~( t,,tz) = E[ P( t, ) P*(tz) ] 

= fSp(o~, )a(tt  )a(t~)e'~, " , - ' , '  de.or 

] S ~( o )e',o", -',' do~ (1.13) )a(G) 

This result can also be derived from eq. (1.2) directly, 

E[ P(tt)P'(tt) ] =a(t,)a(q)E[ po(t,)P~ ] 

=a( tOa ( t : )  IS~(co)e'~'t-'~dco (1 
J 
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Now, we may consider the solution of eq.(l.l). 

of eq. (I.i) is 

The frequency response function 

I 
H(0n= _M~2+-Ci--j~- K- (1.15) 

0(co) =/4 (~)P (co) ( I. re) 

Then we have 
U (t) =l  [J(~Oe'co'dc,)=f H(o,)~(o,)e'~ 

_~ l l H ( co,)fi( co2_cot )poL co, )e,a,,,dco,dco , (l .17a) 

u'( ,) = l ] /4"(~,)~'(co.-co.)P~ . .,7b ) 

The expectation of the product of the above two equations is 

�9 a (coz -- co,) ~* (co, -- o~) e' c,,-,,,,dco,dcosd~sdco, 

=I S P ( c~ )[I H ( c~ ) a( co'--co' )e'c~c dco'] 

.[I H .  ( co,)~.( co __cot)e-,, ,,dw, ]dc~t ( l . l ' )  

The above equation may be rewritten as 

E [U Ct)U*Ct) ] = I Sv(t,co)dco 

where ---- 1 I b(t,co) I *Sp(co) dco (1.19) 

So(  t,co ) =  [ b( t,co ) l 'Sp( a, ) (l.20a) 

b (t, ~) = I H(co')~(co' --co)e'o,"dco t (1.2Oh) 

Usually a(t) and fi(Co) are all known in practical problems. If only a(t) is known, 

~(60'--co) may be obtained by the following equation: 

~(co,_co)=. 2_~_Ia(r)e . . . .  ,-a,,rdr (1.21) 

From eqs. (1.21),(1.20 b) and (1.20 a), b(t,co) and response spectral density S0(t,co) 

may be obtained. Starting from eqs. (1.17 a,b), similar to the above derivation, 

correlation function E[U(tl)U*(t,)] is found as 

Ru(tt,t2) = E[U (h)U*(t,) ] 

= 1 [b(t~,co)b*(t,,co) ] Sp(co)dco (1.22) 

According to the formulas commonly used in random process: 

, - r  d"U(t,) d 'U(t , )  
Ru,-,o," (h,tz)=lz L -dC dt~; ] 

O"'~Ru(tl,ta) (1.23) 
argot7 

I d'b(t~,co) d%*(t~,co) c, t .~.s... 
R,J"v'~"(*,, t ') = dt; d r ,  . o p ~ , j - . .  

the correlation function of any degree derivatives can be obtained. 

(I .24 
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If tim~ function 

]owi~.c two e,_~uations respectively: 

a(cj-oO : , i ( , . , - ~ )  
b(/,~O = 1 !  (co) e,,o, 

and  e q s .  ( l . l ' :  .) and  ( 1 . 2 2 )  r e d u c e  t o  

EIU t)LI ~< t) ]= l t - ] loOH*(co)Sp(co)dco 

Ru(t,,t~)=E[U(t~)O*it=) ] 

=IH(co)l=l~<(co)S'o(co)e .... ,-'Pdco 

respectively. 

VaF1dom process . 

a(r):l, then eqs. (1.21) and (1.20 b) reduce to the fol- 

(1 .25b)  

( l ,2Oa)  

(1.2Gb) 

These are the well-known equations in textbooks on stationary 

If. }iulti-Freedom-Degree Case 

In this article, the results obtained above will be generalized to multi- 

free@om-dcoree case. According to dynamic finite-element-method in spectral 

r~scivln<: form, the basic equation may be written as 

K (co]U (co) = ' e  (co) ( 2. [ ) 

U(~o) z~ n,:d,'~i dis~,lacem~: t matrix, P(c0) is reduced nodal excitation matrix, in 

, ach of both matrices there ar,: n independent components. K(o~) is an nXn dyna- 

mic rigidity matrlx obta=ned by discretization with finite-element-method. When 

a special value is assigned to oj , ~q (2.]) may be solved with a method similar 

to that in static case. Solving eq. <2.1), we obtain 

U(co) = K"'(c~)P(co) (2.2) 

wheLe P(,..) is excitation in spectral form with respect to nonstationary process 

P(f) . Since P(t) may be expressed as 

P(t)=a(t)P~ (2.3)  

where a(t) is a function known and P~ is a stationary random vector process, 

the response U(~) will also be a nonstationary random process. According to fi- 

nite-element-method, there exist internal force-displacement relations: 

I(o~) = E (o~)5(oJ~ (2. ',) 

by which we may ubtain T(co) and also 0(co), ]-'(0)). In structural vibration pro- 

blems, it is usually supposed that the mean values of excitations are zero,i.e., 

E [ P ( t ) ] = 0 ,  E[P~ =0 [ (2.5) 
E [I~(~o)]=0, E [P~(~o)]=o [ 

-~(co) and P~ are the spectral solutions of P(t) and P~ respectively. 

The important statistical quantities in random process are correlation matrix 

R;,(t,,t~] and spectral matrix S.(t,c,)) The former may be written as 
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where 

[ R,,r Rn .... (t , , tz) . .  Rr .... ( t , , t , )  

Rp(t~,ta) = Rp(~n( t~ , t~ )  Rt . ,~ , ( t~ , t . , )  ." R~z , . l ( t~ , t~ )  

R~(.p(t~,t=) Rp,.z,(t~,h) "" R p , . . , ( t ,  ta) 

(2,,;/  

Rp(/, ,f=) = E [  P U, )P'(t~) ] (2.7) 

I n  the above equation the index t on the right upper corner means taking its 

t~:onsposed matrix, and we have 

5p,,~,(t,~o) 

.S',~, ~,. ( t .~.)  
S~(t.~,,) = 

~'p.,,. (t,(o) 

Sr,~z,(t.co) .-. S . , ~ . , ( t ,  ,,~) 

.S 'p .z: , ( t , .o)  . . . .  S~ :,,,(t, .,:,) 
! 

�9 q~,,,z,(t. ~) ".. Sp,~ w) 

Between the above two matrices there exists the following relation: 

Ro(t, t)=ISp(/'  ~)d~ 
Similar to eq. (1.7) in sinqle-degree case, we have 

E[~  ~  ~  ' )  ] = S ~ ( ~ ) ~ ( ~ - - ~ ' )  

SP(~) is the cross power spectral density matrix with respect to 

we also hawe 

P~ 

P (t) = flP~ 

P'* ( t)  = ! ! 'P~ dco, 

R p ( t , t ) = E i P ( t ) P ' ( t ) ] = E [ P ( t ) P ' * ( t ) ]  

= f l ! lE[~ , (w , )~o ,* (co , ) ] , ( . , . -  . , ) , * ( ~ , - c o , )  

�9 e'(":-',~'dosldca~do)~d(o~ 

= f f f l  S~(.,o,)~(~,--~),) , (r  

�9 e' ~2 -" ,'dco,do)~daJqdah 

= I I f Sp( o>, ) ' (  O>c~--ODI )CI~+ ( (L'%--(DI )e'Oa"C" ~'l'd(')ltlO)z d('), 

= tS,,I ca)a(1 ,~,))W+(t, ~o)dco 

a ( ! ,  o,; = tfi(co ' - - o  ~ / e'~" ' ~ d j = a ( t  )e 'r~ 

RpIt, t)=!Sp(t.(o)dco 

S~(t,co) =aft  t)S~(,co) 

Rr( t , , t . )=E[PU:)P '* ( t2 )  ]=ISP(co)~(h,co)fi~(t~,c~176 

=a( t , )a( h ) I Sp( ~o )e'~", -'~ dco 

(2.~1 

(2.g]  

(? . !0 )  

and 

(2.11) 

(2.12a) 

( 2 . ] 2 b )  

(2 . !3  

(2. t41 

( 2 . 1 U )  

(~.17) 
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Now, we find the spectral density matrix Su(t, co) with respect to responseU(t) 

Resolving U(/) into spectre, ~nd considering eq. ( 2 . 2 ) ,  we obtain 

. . . .  ( 2  

By f i n d i n g  e x p e c t a t i o n  o f  the p r o d u c t  o f  the above two equa t ions  and c o n s i d e r -  

ing  eq. ( 2 . 1 0 ) ,  we have 

R u ( t , t }  = t:'[ U( t )U ' ." ( t )  ] 

�9 K-"*(co,)e.w2,e-.co,,dc~tdcoja~.,do,, 

�9 K -"*(co,)e'w,'e-'w,,dco,dohda,3dco ~ 

�9 K -"*(co,)e'~=,e-'oJ~,dahdco:do:~ 

Eq. (2.29) may be rewritten as follows: 

Ru( t, t ) =  I b( t ,~  )Sp( ~ )b,.(  t ,~ )d ~ (2.20) 

where 

1 K -t(co')a(c~t--~)e'~ "'do/ (2.21) bU, ~) 

Since Ru(t, t)  also may be resolved into spectral form: 

Rv(t, t) = ISu(t, ~o)d~ ( 2 . 2 2  } 

by comparing eq. (2.23) with (2.20) , (2.21), we obtain 

Su(t,co) =b(t,w)S~(co)b'*(t,co) ( 2  23 / 

Similar to derivation in the first article, we obtain 

Ru( t,,G )=E[U( t,)U'( t2) ] 

=lb(t,,co)Sp(w)b'*(t~, co)dc~ (2.24)  

In structural vibration analysis, the cross correlation matrix with respect to 

internal force T is more iLlpertant. From eqs. (2.4) , (2.18 a) , we obtain 

T ( t )= I'( (~ )e'~da~ 

= I f E ( ~ )K -'( co2 )~( co'~ -c~ ) ~~ c~ )e'~'''dco'dco, (2.25) 
Replace eq. (2.24) by the following equation: 

I t ( t , ,  c~)Sp(co)c'*(t~, co)dco (2.26a) R r ( t ,  
J 

where 
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: (  t , ~o) = IE(~ ' )K  " (o ' )~(o ' - -~)e '~  "d~'  
In the same manDer, with respect to ~ , we have 

i~,.~ ( t l , t 2 ) = ! d ( t l ,  co)Sp[o~)d'*(t=, ~ ) d ~  

d( t ,  aD = l i~o'E ( cJ)K-'( co')~( co' -o, )e.o,', d w, 

RH-(t~, tJ=Ic(t,,co)S~(ro)d'*(h,og)do~ 

(2.26b) 

( 2 . 2 7 )  

(2.28a) 

(2.28b) 

( 2 .29 )  

Since 

we get : 

Ry(t, t) = IS,(t,co)dco 

Sr(  t ,co ) = c(  t ,co ) So( co )c '*  ( t ,co ) 

(2.30a) 

(2 .30b)  

and we have 

R.,~(:, t ) = !  S~(t, co)d,~ 

S+ (t,~o) = d (t,co)Sp(co) d'*(t,c~) 

Rr't (t.~ l ) =  f Sr.?(t,co)dco 

Sr? (t,co) = e (t ,co ) S~,(co) d'* (t,c~) 

(2.31a) 

(2.31b) 

(2,32a) 

(2.32b) 

When the variation of function a(t) is slower than that of e,~ with respect to #, 

we have the following approximate relations: 

S# (t,~)----~ZSr(t,~) (2 .33 )  

Sr#(t ,c0) -~ -- i~$r (t ,co) (2.34) 

In the case of stationary process, i.e., suppose a(t)==1 , we have 

b(t ,co) = K-*(co)e"~ (2 .35a)  

c(t,c~) = E(co)K-t(co)e '~  (2.35b)  

d(t,co) =icoE(co)K- ' (w)  e'a* (2.35c) 

Su(t,o~) = Su(c~) = K- '  (co) Se(ca) K ' " * ( c a )  ( 2 . 3 6 )  

Sr( t,co)=Sr( co)=E ( ~)K- ' (  c~ )Se( ca)K-"'( co)E'*( c~) (2 .37 )  

S.?( t, co) = $i.(c~) = co=$ r (co) (~.. 38) 

Sr~(l ,co) = Sr~(~) = -- i~$r (~) (2.39) 

In structural analysis, perhaps the diagonal element of $r(�93 and $§ are 

more important, which are written as follows: 

s,,,,,(t,~).= ~ ~ c,~,(,,,o)s,,,,,(~,)c',;~ (t,o,) (~...,o) 
,-i i - I  

o,)= E E 
i - ,  i - ,  (2.41) 

~ co=St ~ ,  ( t ,  o,) 

and we have 
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F:. ,(t. / ) : /  "~",<~,(t.co),,'.,~ 

(2 .  |2) 

] l l .  C e m ? u t - n ~ _ "  ~: I ! ~ , , , j  ,'-~nd S ; ~ [ e t y  / ' , n ~ ' ] ] y s i s  

If! ~ra( I , ,~] I '. '~ } <~ , s~Fpos,~ that 8(/) -~nd Sp(c,)) are obtained by statis- 

ti~'q the vl~:~< ~ o~ ~ :~ , <kai:~ int~,rv,:!! and tl~,, <,-]ative inte(zrals will also 

b< J!:to:~rat<. i :,~!~;, ' i !]]~. s n c,~rta~ ~,~t~'r-,<~! . ![~,' ~; n. {i:~m absolute value of 

~ 2[ ,< d,:TlOt~ ,i ] ,.. <o.~ " .; " <.<s \4~io~ ]~,i} %:~,}~ v,'{! ],-t'dt! 

,,.,,{,.']=u.A~:,) + i&,(~. ) )  !:{ .  I ) 

oth~ ~'..;J~r c ,,,({.,)~_~ . '!'i~,:re are t..'< t~i i,L-~i ;,~Yms ~f: s mectra] functions show~ 

] ! ,  }:-i,z~s ] a;l ' ~ T,:!s~,, l - i ' , , o l , .  

lmS~, ~(~) 

. . . . . . . .  IT, 
~___2 

(I0) Imaqinary spectrum 

F i : , .  i .  

(b) P,.-sl s~ectrum 

Fig. 2. 

(b) Imaginary spectrum 

From r!q. (] .2~. we s~,e thgt, when a(t)-=] , ~(o~)=~(~)) when a(f) =~(I) , ~(c0) 

2~. " The tru<, f(-~,i~ of f'ancti<,n ~(co) ~I!o~i].d be on, ],<tween the above two cases. 

If t!'.e tim,-, t}~e "~JbratSLm takes is toetwer, n --T and 7" , o(~o)may be approximately 

~.:<prosse<] in i}.~ s <hown in ~:ig.3. 

r ~r ~{tr'~ ru~.,] .~,ulmi ~- probl~ms, we must fiild t)~, ~ forms ofE(o~)and K(u})fJrst 

}~,J ~i: i~,, ~-] ,,,, lit :..,~,<. ,]. Wh,~ ~ y,~ i- ] <:~<t.-~i{, r v~].ue, thes(~ matrices possess 

. : . ~ , f  . ] '  i " ~ ; ! . ~ ( "  ~ ; ; .  ~ . , - :, . ,: : ~ r  ' . : ]  ~ , " = ,  o f  ] c ,  r h  I n n d  o J  , c(l,c~,) 
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may be found by numerical integration, and 

from eqs. (2.30 a,b) ST(t,~) can be obtained. 

In the same manner, we obtain S}(f,~) and 

R§ If the form of ~(w)may be ex- 

pressed as Fig.3, by substituting ~'--~=~,, 

into eq. (2.26 b) and some calculation, we 

have 

f 
2 ~  /7 

c(t,  og)=e'~' -~/?  

/ 
(---~.-. o.) 

(0, ~) 

A, 
(-~k. o) 

Fig. 3. 

E(~" +co)K -' (r +co)6(co") e '~ dco" (3.2) 

when t=0 , it reduces to 

c(0 ,  ~o)=I=_~j7 r E(~o" +~o)K-'(co ~' +~))5(o/) dcou (3.3)  

When correlation functions RT,..,(t,I) and ]~9,..,(t,t) are obtained, we can find 

the degree of safety of structures according to the following method [2]. 

Suppose that A{= is the strength of the n -th member and the number,which 

the internal force surpasses A,., per unit time, is denoted by p~ .... (t) , we have 

1 ./R{(..,(t,t) { Az,,,, } 

Then the dynamic reliability of the n-th member will be 

(3.,0 

[I T ] I (..) P , ~ . , ( . t , - - A ) = e x p  --2 -T * (t)dt (3 .5)  

Appendix A 

A simple Example of Calculation 

From eq.(1.20 a) we see that LH(~)l~in the stationary case will be replaced 

by Ib(t.o)l 2 in the nonstationary case. In the following, we consider the rela- 

tion Ib(t,~)P and IH(~)P in the single-freedom-degree case. 

! 

Assume the shape of ~(~) is shown as Fig.3 and 
T 

u=2~- 

then we have 

We have 

b(t,o)=e'~'f.,.~;rH(o"+co)a(o")e' 'do 

2a/7 

(A-l)  

(A-3) 

o~ -o:- 2ifl~0~ (A -,I) where H (o)= (o~-mz):+4fl2o~o2 

For practical computation, Filton's integrating method will be used/3{which 
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may be illustrated by the following numerical example. 

~ ,  =0.2,  ~,o=4, # = 0 . 0 2 5 ,  

H ( c o ) =  (16- -eo : ) - -0 .2 ico  
(I~--~:)'+0.04 0)' 

The integral interval (-0.2, 0.2) is divided into 4 parts, 

to Filton's integrating method, we obtain: 
], 

e .... bO,rg)=ah[H(  eo)l~+ 5 H ( e ~  

where 

i.c , :;=2 , according 

}' (':~ e'h'] (A-5) +2H 
#=28"~[0(  1 +cos28)--2 sin 0 cos O] 
V=4O-3(sin 8--8 cos 0) [ 

8=hl=o.1  t I ( A - 6 )  

Detailed calculation is omitted and the results are listed in the following 

Table: 

TABLE A-~ Values of H(~)l'and ,b(~,~)l 2 

,,) 

3 5  
3.6 
3.7 
3.8 

3.9 

4.0 
4.1 

4.2 

4.3  

4 .4  

4.5 

By comparing the values of 

/H(eo)ja /b(0.c,)) la Ib~ 15.,,,)J z :?,'3h . ' ) l ;  

0.0689 

0.1020 
0.1700 

0.3321 
0.8114 
1.5625 

0.T527 
0.2946 

0.1441 
0.0829 
0.0530 

O.OT18 

0.1095 

0.1877 
0.3811 
0.6559 

0.6946 
0.6295 
0.3427 

0.1614 
0.0893 
0.0558 

[H(co ) l '  with :b(L], a~)l = 

O.O[5g 
0.0250 

0 01Y 1 

O. 15ia 
O. 4802 
0.7379 

0.4346 
0.i200 
0.0442 

0.0207 
0.0122 

0 [11)00057 

0.0O(30294 
0.,1001359 

0.001147 
0.011263 
0.027428 

0.010752 
0.0010?9 
0.000131 

0.0000261 
0.000~T3 

, we may form the following pre 7 

liminary conclusions. When t=0 , values of Ib(o,a;)]. ~ have the same order of mag- 

nitude with respect to I/-](o)I 2 , the curve o~ Ib(0,o)l ~ is flatter than IH(~)] 2,and 

at the point w for from ~0, the values of Ib(0,~)l ~ and IH(~)I 2 are approximately 

equal to each other. When t increases, 'b(~,m)] 2 has a quickly descending ten- 

dency. Because the behaviour of oscillation exists in the nonstationary case, 

the values of ]b(t,~)I: increase in a snort interval, such as rb(15,4)12>fb(0,4)la , 

but when ! still increases, !b(t,ro)l 2 approaches zero. 
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