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ABSTRACT

At present, the finite element method 1s an efficient method for an-
alyzing structural dynamic problems. When the physical quantities
such as displacements and stresses are resolved in the spectra and
the dynamic matrices are obtained in spectral resolving form,vle re-
lative equations cannot be solved by the vibration mode resolving
method as usual. For solving such problems, a general method is put
forward in this paper. The excitations considered with respect to
nonstationary processes are as follows:

Py={P (O}, P (H=a(HFPi(),
a, (1) is a time function already known. ¢ make Fourier trunsrorma-
tion for the discretized equations obtained by finite element method,
and py utilizing the behaviour of orthcgonal Increment of spectral
gquantities in random processfl], some formulas of relations about the
spectra of excitation and response are derived.The Cross power Spec-=
tral denisty matrices of responses can be found by these formulas,
tken the structrual safety analysis can be made. “hen g (ty=1i (i=1.2,
w,r) ,the method statcd in this paper will be reduced to that which
is used in the special case of stationary process.

I. Single-Freedom-Degree Case

The basic eguation 1is

MUACU+KU=" (1.1
In the above equation, [ is displacement of the particle,)nland C are mass of
particle and coefficient of damping respectively, K is the rigidity coefficient,
the dot symbol represents differentiating with respect to time, and P is an exZi-
tation of nonstationary process, expressed as follows:

P(t)=a(1) P(t) (1.2)

Making spectral resolving for E(f), we have

P()= P(w)ewdo (1.3)

Y

Assume that Fourier transformations of a(frand Pr(t) are §(w) and Po(g) respectivelyy
from the character of Fourier Transformation, we have

P(o)=ilw) * P°lw) (1.9

* communicated by Zhong Wan-xie.
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P(w) is the convolution of d(w) and P°(®). Then, we have:
P =“p"(m.)5(mg-w,)e‘wﬂ dw,do,
The complex conjugate variable of P(f) is
P'“)=Hp"'(&)3)5’(w‘—w,)e"®4’dw3dw4 (1.5b)

For the sake of simplicity, in the above two equations and equations below the

-

integral limits —oo and °@ are omitted. Product of egs. (1.5 a) and (1.5 h) is:

P(f)P'(t)=§mP'°(m, VB (004) 8oy )0 (00, — o)

°e"""""’dw,dw2da>sdg>, (1.
Note that expectation of the product of Po(y,) and Po*(w,) may be written as:
E[p"(a)l)po.(ws)]=SP(OJx)5(0)1"‘(03) (1.7)

d expresses Dirac function and Ss(w,) is power spectral density function with
respect to P°(t) . The expectation of eq.(1.6) may be written as follows:
ELP(P)1=EP() 1=\ ||| E1Pe(0) Pr*(ay))
8wy ~,)8* (0, —w,) e " V'dw,dw,dwdw,
=“Hs,,(a,l)a(a,l—m,)&(mz—w,)&*(wé—a)u)
ce' 1" 1d e dw,dwydo,

=“SS”(“’I)&(("Z—Qx)&*(ah—wl)el(m:_amd‘ﬂld(ﬂzdwa

=S Se (a),)[S&(w,—m.)e'wz‘da)z]ud*((,)‘—a)l)e"m'dm‘]dm, (1.8)

Mean square value E|P(#)|* may usually be formulated as follows:

E\P(®)*={Ss(t,0)do (1.5a)
Se(t,0)=ja(t,0)|*Se{w) (1.9h)

If we define that
a(t,o)= Sﬁ(m’—m)e’”"dco’ (1.10)

by comparing eq.(1.8) with (1.9 a,b), we see that eg.(1.3) is equivalent to(1.9

a,b). 1In practice, we have
a(l.m)=S5(w’—w)e""’"”-e‘w‘d(co"-—cu) =alt)e (1r.11)

Substituting the above equation into eq. (1.9 b), we obtain:

Se(t,w)=a(t)Se(®) (i.12)
Similar to derivation of eq.(1.8), we may find the correlation function of P(t)

and pP*(t,) as follows: Re(t, 1) =E[P(t,)P*(t,)]
=XSP(QJI)a(tl)a(tl)e’fl-’x“l":’da)l
=a(t,)a(t,) iSp(a))e’Cﬂ“:“:’da) (1.13)
This result can also be derived from eq.(1.2) directly,

ELP(t) P*(t) J=a(t,)at:) ELP°(1,) P** (1) ]
=a(t,)a (1) Ssp(m)e'v"--wdw (1.14)
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Now, we may consider the solution of eg.(1.1). The frequency response function

of eq.(1.1) is

S
Hlr=—yericssr (.18
T (w)=H () P(w) (1.16)

Then we have
U (1) =S U(m)e'fv’r{m=SH(o))p(m)e'a"dw

==8SH(mz)ﬁ(co;—m,)ﬁ"(m,)c‘ﬂ’z‘dm,dmz (1.170)
U= =g8H*(ro.)6*(0)‘—w,)f"‘*(ma)e"wﬂdm,dm, (1.17b)

The expectation of the product of the above two equations is
ewmuro={{{|EP @) P @) H ) H (@)

-8(w. —ay)ad*(w, —wy)e ‘“’n“do),dw,dw,dw‘
=§ Se (co,)[§H<m=)a(mz—m,)ewdw.]

-[SH“(co‘)5'(w,—m,)e""4’dw.]dm, (1.18)

The above equation may be rewritten as

E[U(f)U*(f)]=gSU(f,co)dco

=§|b(t,w)|=sp<m)dm (1.19)

where
Su(f,(d)=[b(f,a))l25p(a)) (1.200)
b(f,iO)=gH(aJ’)ﬁ(a)'—-ca)e‘ﬂ"'dm' (1.20b)

Usually a(t) and d(w) are all known in practical problems. If only a(t) is known,
3(w’ —w) may be obtained by the following equation:

&(az’—co)=-—2!ﬂ—§a(ﬂe"'w"w"dr (1.21)

From eqgs.{(1.21),(1.20 b) and (1.20 a), b(t,») and response spectral density Sy(t,o)
may be obtained. Starting from egs. (1.17 a,b), similar to the above derivation,
correlation function E[U(t,)U*(t,)]1is found as
Ry(t,, ) =EU@)U*(t)]
.—_.—\[b(t,,a))b*(t,,a.))]Sp(ca)dm (1.22)

according to the formulas commonly used in random process:

d*U(t,) dnU(t,)
RU"’”"“(tlytz):E[——Jf(Ti —J—I';‘_z—
,_avt%ﬁ@’,,(}t;zb_) (1'23)
194,
d*b(t,, 1™b*(t,,©)
RU(.,UU.,(t”tz)=S___§_E£’)—._‘__H(EL—SF(Q))JG) (1.24

the correlation function of any degree derivatives can be obtained.
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If time function a(r)=1, then egs.(1.21) and (1.20 b) reduce to the fol-
lowing two eguations respectively:
' —o) =o' —w) (1.25a)

b(t,w)=1l({w)ew (1.25b)

and egs.(1.1%) and (1.22) reduce to

ELUMU (1)1 =\ H(o) H*(w)Sr(0)de (1.25a)
RU(,l9t2)=E[[—’,(tl YU#(t,)]
=SH(co)H*(w)Sp(w)e‘w”l":’dco (1.26b)
respectively. These are the well-known equations in textbooks on stationary

randon process.

II. Multi-Freedom-Degree Case

In this article, the results obtained above will be generalized to multi-

freedom-dcoree case. According to dynamic finite-element-method in spectral

rescolvine forn, the basic equation may be written as

K(0)U(w)=P (o) (2.1)
U(w) iz nedad displacemcnt matrix, P(e) is reduced nodal excitation matrix, in
zach of both matrices there arc n independent components. K{(®) is an nxn dyna-

mic rigidity matrix obtained by discretization with finite-element-method. When

a special value is assignea to @ , «a (2.1) may be solved with a method similar

to that in static case. Solving cg.(2.1), we obtain
G(a))=K"'(co)$((o) (2.2)
where {W-~)15 exvitation in spectral form with respect to nonstationary process
P(t). <Since P(t) may be expressed as
P(t)=a(1)P°(1) (2.3)

where @{t) is a function known and P°(#) is a stationary random vector process,

the response U(i) will also be a nonstationary random process. According to fi-

nite-clemernt-method, there exist internal force-displacement relations: ’

T{w)=E( (e (2.1

by which we may obtain T(w) ana also G(@), f(m). In structural vibration pro-

blems, it is usually supposed that the mean values of excitations are zero,i.e.,
E[P()]=0, E[P*(1)]1=0 1{ (2.5)
E [F(0)]=0, E(P“(a)]=0

ﬁ(an and ﬁ”(w)are the spectral sclutions of P(#) and P°(t) respectively.
The important statistical quantities in random process are correlation matrix

R:(t,,t,) and spectral matrix $S.(f ») . The fcrmer may be written as
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Rl’(ll)(tnt?.) Rr‘u:)(.tl,’z) Rr"qnx(f”t;)

Ret,,t,) = RPm)(‘:’f?) R,.l“,(t.,,f.:) - RFQT_U‘,Q)

Rei (tisty) Rean(tisty) o Ream(l, 1)
where
Re(i),1,) =E{Pu)P(1,)] (2.7
In the above equation the index t on the right upper corner means taking its

transposed matrix, and we have

. :;Plnr”’m) S!‘qp“.m) SF(-I,,\(f. )
§ t v(’.u) 5 pilsw Ter S o )
SF(/.UI): Pezy ) ) Pi2z (.’ ") ! _.“,(1, ) (2.9)
i ' . ) '
1 Sk (t,0) Seapn(tew) o Spqmlly, w)
Between the above two matrices there exists the following relation:
Re(t, Y=15s(t, w)dw (2.9
Similar to eq. (1.7) in single-degree case, we have
E[F(0)P**(0)]=Sp(0)d(0—0") (2.10)

Sp(w) is the cross power spectral density matrix with respect to Pe°(t) and

we also have

F(m) = d(a))*ﬁ"(m) (2.11)
P (1) = “‘P'"(co,)d(coz-—co‘)e‘“z‘da),dco, (2.12a)
Pr (1) = | [For(@)i(o e edado, (2.12b)

Re(t,t) =E[P(1)P () I=E[P@)P™*(¢)]
=H“E[F“(w,)§°'*(ws)]5(wz" ©1)8% (2, — )
cg'@ro0td g dwydwsd o,

““ Sp( 0, )@ —01)8(w,— @)% (@, —®3)

ce' @10 d g do.dwdw,

R “sp(ml Vi (e, — )% (@, —wy )erwre” widododo,

=\Su(u))a(l,c))u*(t, w)dw (2.1
a(!,ufrZxﬁ(a)'—-cu)e'ﬂ"‘d@':a(i)e'“” (2.19)
Rpu,z):\sp(t,w)dm (2.17)
Se(t,w)=a"(1)Sel@) (2.16)

RF({| sty ) =F[PU )P'*({z)]= gSp(a))ﬁ(f‘,m)&*(tz,m)dm

=a<f.)a(n.>§sp<w)e'w<n'-zdw (2.17)
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Now, we find the spectral density matrix Su(tf, @) with respect to response U(t)

Resolving U(t) into spectra and considering eq. (2.2}, we obtain

U(r)=§ G(w)e«wdmmSK-!(Q)F(w)en‘w do>
.-_‘“K '(wz)d(m‘—@,)f""(m, Yewr deo, da. (2 .18a)

Ui) = || 3712(0.)3% (0 —a) K @) eadondo, (2.18)

By finding expectation of the product of the above two equations and consider-

ing eq.(2.10), we have
Ry(t.1) = ETU(HU*(H)]

= “HK W @3) 80— 1) ETF(00,)B 7% (0,) 17 00, = c03)
C K () erwre od e dw,dada,

=“SsK"(mz)ﬁ(mz—an)Sp(m.)5(011 —@2)* (0~ ws)
K% (p,)emre ondo,dw,dwdw,

={{{k @@ —ensmwninu—an
K ¥ (g,)ewreoudo, do,do,

={[[ k- @at—o)eer dagJss (@)

. [X K-1*%(p,) i*(0,~w,) e ‘o dw.]dco, (2.19)

Eg. (2.29) may be rewritten as follows:
Ru(t, ”‘_‘gb(f,GJ)SP(a))b‘*(l,a))d@

(2.20)
where
b(t, w)=XK“(m’)&(m’-—m)e'w"da)’ (2.21)
Since Ry(t,t) also may be resolved into spectral form:
Ru(t,f)=gsu(t, w)de (2.223
by comparing eq.(2.23) with (2.20),(2.21), we obtain
Su(t,)=b(t,0)$:(w)b™*(t,w) (2.23)
Similar to derivation in the first article, we obtain
Ryt 1) =E[U()U (1,)]
=§b(t,,co)5p(a>)b‘*(t1,a))da) (2.24)

In structural vibration analysis, the cross correlation matrix with respect to
internal force T is more important. From eqgs.(2.4), (2.18 a), we obtain
T ={T(0)ewds
=HE("’Z’K H@2)8 (0, ~0,)5(0,) e0rde,de, (2.25)
Replace eq. (2.24) by the following equation:

Rr(t.,fz)'—“SC(f,, @)Se(w)e'™*(t,, w)dw (2.25a)

where
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ot ©) =SE(w’)K"(w’)ﬁ(m'—m)e‘W"da)’ (2.26b)
In the same manner, with respect to T , we have

= “"’ZE‘»“’”K N0)8(w,—0))P(0,) e wrdw,dw, (2.27)

Ri(h,0,)=\d(1,, ©)S$s(@)8¥ (11, 0)de (2.280)

404, 0))=35®'E(m')'<"(m’)5(w’—w)e'v"dw’ (2.28b)

Reilty, fz)=SC(?.,m)Sp(m)d‘*(h,m)dm (2.29)
Since

R (1, z)=§s,<t,w)dw (2.308)
we get:

Sr(t,w)=c(t,0)Se(w)c*(t,0) (2.30b)
and we have

R:(1, )=\ i1, 0)do> (2.31a)

Si(t,w)=d(t,0)Sp(w)d"*(f,@) (2.31b)

Ryt (f t)=& St 0)do (2.32a)

ST'i‘(taw)=c(tsw)sP(m)d‘*(fl(0) (2.32b)

when the variation of function 6(!) is slower than that of g9 with respect to t,

we have the following approximate relations:

$: (1,0) =w*Sr(1,») (2.33)
Sri{t,w)=—iwSr(t,0) (2.340)
In the case of stationary process, i.e., suppose g(t)=1 , we have
b(t,0)=Kw)e® (2.35a)
c(t,w) =E(w)K (w)e? (2.35b)
d(t,0)=ivE(a)X (o)e (2.36¢)
Su(t,0)=Su(0)=K(0)Spo)K"""*(o) (2.38)
$:(t,w)=5r(w)=E(@)K ' (@)Ss(w)K **(w)E*() (2.37)
Si(t,0)=S$H{w)=0*Sr(®) (2.38)
$74(1,0) =Sri(w) = —ieSr(®) (2.39)

In structural analysis, perhaps the diagonal element of S,U,m) and $i(t,0) Bare

more important, which are written as follows:

ST(“)(fy @)= }_“—‘_. Z Cm»(h(d)si’un(m)clgn (t!a’) (2"‘0)

y=1 1

Sl"ah)(f! )= Z nZ dlhl(f’m)SP(‘J) (w)d':& U,(t))

~@'Stan () ©) (2.41)

and we have
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P'T 33 (Iv f)':g ’Sl(th(fq‘ ')“’u) (2 !2)
R D=\ Siqm (t.c0)in (2.13)
T11.  Cemputing M rhoed and Safety Analysis
In practocal protions, snppose that Py “nd Sple) are obtained by statis-
tical metbod, Gocisa o got the fore of Ti(@) a0 simple as poesible, by limi-
ting the valus of o Tooeritaln Intervel and the relative intecrals will also
beeodntearator voane c oty in s cortain interval . The masiinam absolute value of
¢ois denoted ., cose whon Jei o, we boave
< N
el =0 (@) Fiby, () (3.1)
Othcrvwise, S0 (wm)=>y Thove are twoe typical Jorms of spectral functions shown
in Figs.l an respesotively
ReSre vy Tas s, (w)
L |
[ » | |
r ot
!
. e L_;'.’_ — L2
| e S B
i i = i
(n) P2l erectrim (b) Imaginary spectrum
Fiz. 1.
BoS o t0) LnS. )
/N
p \ A /\
7 .
7 \)‘/ \ o / \ m
| . o [ o |
r i T )
(h) Feal spectrun () Imaginary spectrum
Fig. 2.
From rg. (1.21) we see that, when a(f)=1, d(w)=Hw) when a()=0(t) , &(w)
= .. The truo fcoa of function @(w) =henld be one lLetween the above two cases.
Tf the time the vibratiosn takes is betwern —T and T, 6(w) may be approximately

expreossed in A4

Foar

Feo forp shown in Fig. 3.

st

-
3

we must find the forms ofE(w)and K(w)first

ruoral dyaaaic problems,
EREEE: thed . When o 1= o3 certain agiven value, these matrrices possess
1 v - o, Ty et o valaes of Fotbh f and @, C([,(u)
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may be found by numerical integration, and

a(o)
from eqgs.(2.30 a,b) $;(f,w) can be obtained.
(0
In the same manner, we obtain S#(f,») and O
Ri(t,@) . If the form of &(w)may be ex-
pressed as Fig.3, by substituting o' —o=g” ’
N L]
into eqg.(2.26 b) and some calculation, we (‘%}-0) o (E%ﬂ )
have ,
Fig.3.
2% /7
c(t, w)=eo S p E(ow”+0)K (o +w)a(w")e'e’ do” (3.2)
o
when t=¢ , it reduces to
2= /1 -
c(0, w):} E(w” +w)K Yo" +0)i(o”)do” (3.3)
-2x/ 7
When correlation functions Ry, (f,!;) and Rigm{t,l) are obtained, we can find
[2]

the degree of safety of structures according to the following method
Suppose that A 1s the strength of the n-th member and the number,which

the internal force surpasses j},, per unit time, is denoted by »¥ . (f) , we have

I [ Rigm(ty1) { A om } (3.4)
+ _— PR e —— e e .
Viam (1) = 27 Rrum (t51) xp 2Rr(mu(_t’t)
Then the dynamic reliability of the n-th member will be
’ 5)
P(m(/{;—/l)=exp[—28 TV‘:(,,,,) (t)df] (3.3

Appendix A

A simple Example of Calculation
From eq.(1.20 a) we see that |H (@)’ in the stationary case will be replaced
by |b(t.©)1? in the nonstationary case. In the following, we consider the rela-

tion [6(f,@)}" and |H(@)I* in the single-freedom-degree case. We have

1 A-1
H (a))ﬁ-—,————?- T iy 2i P ( )
Assume the shape of d(w) 1s shown as Fig.3 and
= — i
a= 2 (‘,\ ")

then we have
1734 "
b(t,m)=c'“”81 TH(cu”+m)E(m")e'“' 'dw?
-2/

= |\DIS’J/7 H [ cu T o (A-3
=ae T (w m)(] e © -3

~5mrr)

where @ —w?—2i Bow A-D
H o)==y tipoie ¢

[3]

For practical computation, Filton's integrating method will be used ,which
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may be illustrated by the following Numerical example.

2
T =0.2, wo=4, £=0.025,
(15 —w?)—0,2 1@

H(@) =5 ZaD 150,04 o

The integral interval (-0.2, 0.2) is divided into 4 parts, i.c., y=» , according
to Filton's integrating method, we obtain:

e+ bt w)=ahl H (0)- B+ 1 H (0=, 1) 4!

p
+ H (a)+-u.1)e-*'J A5
where 2 Ao

B=26-3[0(1 +cos26) —2 sin 0 cos 0)
Y=48-3(sin 6 —6 cos ) l
O=ht=0.11

Detailed calculation is omitted and the results are listed in the following

[ (A -8)

Table:

TABLE A-1 Values of ‘H(w)i‘and 'b(t, @) }?

w 1H(w)? l [6(0.0) I? [bi 15 ) ) T30 w) [

35 0.0888 | 0.0718 | 0.0156 §.HU0NDST
3.6 0.1020 I 0.1095 i 0.0250 0.0000294
3.7 01100 | 0.1877 , 0.0491 0.1001359
3.8 0.3321 \ 0.3811 j 0.1570 0.001147

3.9 0.8114 0.6559 0.4502 0.011263

4.0 1.5625 ! 0.6946 0.7379 0.027428

4.1 0.7521 ‘ 0.6295 0.4346 0.010762

1.2 0.2046 | 0.3421 0.1200 0.001079

4.3 0.1441 0.1614 0.0442 0.000131

4.4 0.0829 0.0893 ‘ 0.0207 0.0000261
4.5

0.0530 0.0558 0.0122 0.0000073

By comparing the values of [H(e)|? with 'b(), ®)|* , we may form the following pre-
liminary conclusions. When =y, values of |b(),0)|: have the same order of mag-
nitude with respect to [H(w)|? , the curve of |b6(0,®@)|’ is flatter than |H(@)l?,and
at the point o for from ®,, the values of {6(),0)|? and |H ()| are approximately
equal to each other. When t increases, ‘b(i,®)|* has a quickly descending ten-

dency. Because the behaviour of oscillaticn exists in the nonstationary case,

the values of |6(f,w)]* increase in a snort interval, such as 16C15, ) 17>16C0,4)]2 »

but when t still increases, 'b(1,@)}* approaches zero.
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