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M-MIXING SYSTEMS. ! 

By 
P. RISVIESZ (Budapest) 

To Professor G. ALEXITS on his 70th bh'thday 

Introduction 

The properties of mixing sequences of random variables were investigated 
by a number of authors. Their aim was to generalize theorems (first of all limit 
theorems) valid for independent random variables to a class of weakly dependent 
random variables. In order to obtain such theorems slightly different concepts of  
mixing were introduced. However the essential idea of these definitions is a condition 
saying that "the future is independent from the long past".  More  precisely let 
41, 42, ..- be a sequence of random variables and let N~, (m =<n) denote the smallest 
a-algebra with respect to which the random variables 4m, 4,',+ 1 . . . . .  ~, are measurable. 
Then a mixing condition says that the elements of N~ are nearly independent from 
the elements of r162 if I is large enough, i.e. we assume 

(1) [P(AB) - P(A)P(B)[ <= f ( l )  

where A < ~kl, B< ~ + t  and f ( l )  is a function converging to 0 with a certain rate. 
A quite different way to define a concept of weak dependence is due to 

G. ALEXITS (see [1] and [2]). 
He introduced the following: 

DEHNmON. A sequence ~,, 4 2  . . . .  of random variables is called an equinor- 
reed strongly multiplicative system (ESMS) if 

E ( 4 , ) = 0 ,  E(42) = 1 ( i =  1,2 . . . .  ) 
(2) 

r i  r2 r l  r2 �9 E(~,, 4,2 ... {~) = E({h)E(412) . . .E(~ : )  ( i t < t 2 <  ... <i,,; n = 1, 2 . . . .  ) 

where rj ( j  = 1, 2, ..., n) can be equal to 1 or 2. (The existence of the mentioned 
expectations is assumed.) 

Alexits himself and others obtained results showing that in some sense this 
condition is able to substitute the condition of independence. 

In the present paper we try to give a common genaralization of the ESMS and 
the systems with mixing property. 

Namely we introduce the following 

DEFINITION. A sequence 41, gz . . . .  of  random variables is called M-mixing 
if there is a function f ( l )  (1= 1, 2 . . . .  ) convering to 0 such that 

sm r l  r2 rn SI $2 [E({~:~4,~ 4~."4~1~_~ 4j,,~)--E(4q 4i2 4 1 n ) E ( 4 j ,  4j2 .. ~"~[ <=f(j ,--in) . . . . . . . . . .  - a rn / t  

where i l < i 2 < . . . < i , < j l < j 2 < . . . < j , , ;  n = l , 2  . . . .  ; r e = l , 2  . . . .  and r~ and 
sk ( /=1 ,  2, ..., n; k =  1, 2 . . . . .  m) can be equal to 1 or 2. 
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432 P. R~V~SZ 

The fact that an ESMS is an M-mixing sequence is obvious. 
The following theorem of IBRAGIMOV ([3], Theorem 17.2. 2) shows the connection 

between the mixing sequences and the M-mixing systems. 

THEOREM OF IBRAG1MOV. Let ~1, ~2, ... be a sequence of random variables 
obeying condition (1). Further let ~ and ~ be random variables measurable with respect 
to ~ and ~k+Z respectively, for which there exist positive numbers 6, c~, c2 such that 

E(I I < Cl and E(ir/I z+a) < c2. 
Then we have 

[E(~t/)-E(~)E(q)I <= 4 + 3  I.e] -4~ c~ +~ + c  a e 1u (f(l))  

In w 1 we give some known theorems for mixing sequences, in w 2 the known 
results of ESMS are repeated. The aim of these two paragraphs is just t o  give a 
comparison to the new results. 

In w 3 a convergence theorem (and a strong law of large numbers) are formulated 
for M-mixing sequences. w 4 contains the proofs. 

The paper "M-mixing systems. II"  will contain a central limit theorem and a law 
of iterated logarithm for M-mixing sequences. 

w 1. Mixing systems 

The investigation of mixing systems started by the paper of ROSENBLATT ([4]). 
He proved a central limit theorem for such sequences. A detailed treatment can be 
found in [3]. (See also [5].) In [3] it is assumed that the sequence of random variables 
is not only mixing but it is a stationary sequence too. This second restriction gener- 
ally can be dropped (or replaced by a weaker one) without any difficulty. 

A typical result of this type is the following 

THEOREM MI--1 ([3], Theorem 18.5. 3). Let ~1, ~2, ..' be a stationary sequence 
obeying condition (1). Assume that there exists a 6 > 0  such that 

and 

Then 

and 

provided that a >0.  

"- d 

(S(n)) 2 + ~  . <  o o .  

o o  

a 2 = E(~21)+2 ~.TE(~,~s) < ~o 
j = 2  

lim P 
n ~ o  

~ i 1 f e - T  dt tT . <x  
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( 3 )  

Then 

A strong law of large numbers for mixing systems is given in [6]. (See also [7] 
Theorem 8.2. 1.) In this paper the concept of mixing is defined in a different way, 
namely the condition says that (only) the present is independent from the long 
past. More precisely it is assumed that 

IP(AB) -P(A)P(B)I ~= f ( l )  

~k+t and f ( l )  is a function converging to 0 (~3~ is defined in the where A CB~, BE ~'~k+I 
Introduction). A sequence of this type is called ~-mixing. 

For this type of mixing systems the following theorem is proved. 

THEOREM MI--2 ([6]). Let  ~.~, ~z, ... be a ~ -m ix ing  sequence such that 
E(~,)=0, E ( ~ ) < ~  (n= l ,  2,...). Suppose that E(!~,f)~K (n= l ,  2 .. . .  ; K > 0  
is constant) and 

2 E (~,~) 
n = l  / /2 - ~  c o  

p[ ~l+~z+...n +~" ~0}=1. 

w 2. Multiplicative systems 
The fundamental theorem of ESMS was obtained by ALEXITS and TANDORI. 

THEOREM MU--1 ([1], [2]). Let  ~1, ~2, ... be a uniformly bounded ESMS, 
further let cl ,  c 2 . . . .  be a sequence o f  real numbers for  which 

Then 

ckZ 
k = t  

Ck ~k 
k = l  

is convergent almost everywhere. 

A central limit theorem and a law of iterated logarithm for ESMS were obtained 
by the author [8] (see also [9] and [10]). 

THEOREM MU---2 ([8]). I f  ~-1, 42, ... is a uniformly bounded ESMS, then 

2 imp  ~ + ~ 2 + . . .  +~,  _ e - Y d t .  
_ _ 

THEOREM MU--3 ([8] and [7] Theorem 3.3.3). I f  ~1, ~.2,-.. is a uniformly 
bounded ESMS, then 

- ~  ] / ~ o g l ~ g n  <= 7 = t. 
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A generaiization of the concept of ESMS was studied by the author, namely 
the systems were investigated in which condition (2) holds if n <= 4. For this type of 
systems we obtained 

THEOREM M U - - 4  ([7], Theorem 3.3.4).  Let  ~ ,  ~2, ... be a sequence o f  random 
variables for  which 

E(~ 6) N K  ( i =  1,2 . . . .  ) 

E(~/2 ~j~k) = E(~2~j) = E(~i~j~k~/) = E(~i~j~,k) = E(~i~j) = E(~i) = 0 

where the indices i, j, k, l are different and K is a positive constant. Further let e~ , c a , ... 
be a sequence o f  real numbers and suppose that there exists an integer r (depending 
on {c~}) s , c h  that  

c~ # qc) < oo 
k = l  

where ~ 

log /f x ~ 2  
l(x) = l~(x) = i f  O < x < 2 

and l~(x) is the r-th iterated o f  l(x) i.e. l,.(x)= l(l~_ l(x)). Tken tke series 

k = l  

is convergent almost everywhere. 

w 3. A convergence theorem 

Now we formulate our main 

TttI~OREM M M - - 1 )  Let  ~l,  ~.2 . . . .  be a sequence o f  random variables obeying 
the following conditions 

(i) E ( ~ 3  = 0, E(~,~) <= K (i = 1, 2,  . . . )  

(ii) [ E ( ~ ) I  <= f ( j -  i) (i < j )  

(iii) IE(~i~j~k~t)I --<_ m i n ( f ( l - k ) , f ( j - i ) )  (i < j < k < l) 

~E(~?~j~k) I f ( k - j )  (i < j < k) ( iv)  t ' " <= 

(v) [E(~i~2 ~k)I <= min ( f ( k - - j  ), f ( j - -  i)) (i < j < k) 

(vi) ]E(r ~ f ( j - - i )  (i < j < k) 

(vii) E(~2~)  N 1 + f ( j -  i) (i < j)  

where K is a positive constant greater than 1, and f ( k )  is a debreasing function defined 
or,~ the integers for  which there exists a positive constant d such that 

(4) f ( k )  <= e-dk. 

1 Here and in what follows log x means the logarithm with base 2. 
This Theorem clearly contains Theorem MU--4 .  
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Further let c~, c2, ... be a sequence of  real numbers and suppose that there exists 
an integer r (depending on {ek}) such that 

(5) Z 4 t,.2 (k) < 
k= l  

where 
logx /f  x = > 2  

l(x) = I l(x) = 1 i f  O < x < 2 

and lr(x) is the r-th iterated of  l(x) i.e. lr(x)=l(l~_l(x)). Then the series 

k= l  
is convergent almost everywhere. 

Making use of the Kronecker lemma (see e.g. [7] Theorem 1.2.2) Theorem 
MM-- I  implies the following strong law of large numbers. 

THEOREM MM--2.  Let ~-1,42 . . . .  be a sequence of  random variables obeying 
the conditions of  Theorem MM--1 ,  further let cl , c2, ... be a sequence of  real numbers 
and suppose that there exists an integer r such that 

(6) k) < 
k= l  

(where l~(k) is defined in Theorem MM--1) .  
Then 

P [  c 1 4 1 + e 2 4 2  + ' ' ' + c n ~ ' n  0 /  = 1" 

It can be seen that in some sense this theorem is stronger than Theorem MI--2  
but in some sense this is the weaker one. Namely in this theorem there is a more 
strict restriction about the meaning of the ,,long past" (condition (4)) but there is 
no restriction about the whole long past only about two or three members of it and 
now we do not take into consideration all events of the long past, just the moments 
(see Theorem of Ibragimov). Since in condition (6) the integer r can be as large 
as we wish, this condition is not much stronger than condition (3). 

The proof of Theorem MM---1 is based on an inequality analogous to the 
Rademacher--Mensov inequality (see e.g. [7] Theorem 3.1.1).  

THEOREM MM--3.  Let 41, ~2,.  .... ~, be a sequence of  random variables, 
obeying the conditions (i)--(vii) of Theorem MM--1,  where (now) f (k )  is a decreasing 
function for which 

1 
.,~ kf(k) ~= g .  

k= l  
Then 

where 

E max cj4i ~ 24K(log4n) 4 e] 
\ l Nk<--n I j= 1 

{cs}~= 1 is an arbitrary sequence of  real numbers. 
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436 r. R~V~SZ 

w 4. Proofs 

Z 
l~k<l<=n l<=k<l<=n 
k # i ;  l # i  k # i ;  l~:i 

First o f  all we give four lemas.  

LEMMA i. Under the conditions of Theorem M M - - 3  we have 

n 

Z r2 (~ ~j) <= =3K8 (i = 1, 2, . . . ,  , , ) .  
j = *  

PROOF. Let E(~a~j) = d~j and consider the inequality 

0 <  E ~ -  d,~,~ -- r (~D+z~4 j r [ (~ . ,~ ) ]  ~ ~ : - 2  ~ d 3 +  
j=~ j=~ 

j # i  j # i  

lel 

+2 Z ditdikE(r ~ K+ 2dE(  1 +f(j--i))=2 ~d~ 2.+ 
l ~ k < l ~ n  j = l  j = l  
k ~ i ;  l # i  j # i  

2 2 lq'. 2 9 " " + ..(..d 
l<=k<I<=n  j = l  j =  1 
k # i ;  l ~ i  

+ d 2 m a x  ( f ( k -  l), f ( k -  i)) + ~ d, 2 max ( f ( k .  l), f (k  - i)) <= 

. . . 3 n 

j = t  j = l  j = l  8 -  "= 

which implies our l emma.  

LEMMA 2. Under the conditions of Theorem M M - - 3  we have 

/ '] < 24K c . E cj~j = 
j = l  

PROOF. W e  have 

E e~j  = ~ c j E ( ~ j ) + 6  ~ 2 2 2 2 C i c j E ( ~ i  ~ j ) + 4  Z r  ~j) -~ 
j = l  l<=i<j<=n l<=i<j~n 

+ 4  ~ 3 a c, cjE(~d~)+12 Z c?cjckE(~ ~j~k)+ 
l ~ i < j ~ n  1 <=i<j<k<=n 

6-12 ~ 2 2 cic j ceE(~i~ j ~g) + 12 ,~  2 2 e~cjck E(r + 
1 ~=i<j<k~_n 1 ~_i<j<k<=n 

+24 ~ c i e j e k e l E ( ~ i ~ j C k ~ t )  
l<=,<j<k<l<=n 

<= K cl+6X Z 2 ci cj + 8 . ~  c ? c 2 E 2 (~/3 ~1) + 
j = l  l<=i-<j<=n i=1 j = l  
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+ 6  ~ '  2 2 ci (c i + c2) f (k- j )  + 6 ~ 2 : cj (c, + 4)  1E(4, ~ ~)l ~- 
1 ~ < j < k < = n  1 < = i < j < k ~ n  

+6 ~ 2 2 2 �9 2 2 2 ~ ~" (c, +Cj)Ckf(s--i)+6 ~ (c 2 <= + cs) (c~ + c~ ) I E (~ ~: ~ ~31 
1 <:i<j<k<=n 1 < = i < j < k < l  ~n  

< 3K c + 14K c? + ~ z 2 = t C i Cj  -~- Z 2 2 ci Ck + 
1 <=i<j~n  l<=i<k<=n 

+ 6 ~ c{ c~f(k - j )  + 6 ~ c~ c~ f ( j -  i) + ~ c~ c z + 
1 <=i<j<k<=n 1 <=i<j<k<=n 1 <=i<k<=n 

-~- Z 2 2 <: CjCk + 6  Z (C 2 2 2 2 I + CS) (Ck + C~ ) I E (~ ~: ~ ~)~ = 
1 ~ j < k < = n  l < = i < j < k < l ~ n  

�9 = l < = i < j . < k < i ~ n  l<=i<j<k<l<=n 

+6 ~ 2 2 I 
l<=i<j<k<l<=n 1 <=i<j<k<l<=n 

The last four members of the last sum can be estimated in the same way. As an 
example the estimation of 

I 1 = ~ cZic~lE(~,~S~k~t)l 
1 ~ i < j < k < l < = n  

will be given. We take into consideration two possible cases. 
Case 1. j - i < = l - k ,  
Case 2. j - i > l - k .  

The members of I~ for which the restriction of Case 1 holds can be estimated by 

i + l - - k  oo 

c,2 Ck2 ~ f(1 -- k) = X c,2 Ck2 ~ (l-- k ) f ( l -  k) <= 
l <=i<k<=n l = k +  1 j = i +  l l ~i<k<=n l = k +  l 

< 1  ~ 2 2  
~_ C i C k �9 

8 l~ i<k~=n  

The sum of the members of 11 obeying the restriction of Case 2 can be estimated 
in the same way, so we have 

1 ~ 2 2  
<= Ci r  

I 1  - -  4 l < = i < k ~ n  

Hence we obtained 

[[j=~ ~i)*] < 24KI 2 2]2 E c j  = r 
I , j = t  ] 

which is the statement of our Lemma. 
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438 P. REVESZ 

I.,EMMA 3. If  ~ ,  ~2, "'" is a sequence of random variables obeying the conditions 
( i )--(vi i)  of Theorem M M - - 1  with a funetion .fix(k) and if mx < m2 < . . .  is a sequence 
of integers then the sequence 

1 ~ c~{~ if  c ~ > 0  
~lll; : j = m k +  X 

if ~ = 0  

where ek = C ] is obeying the condition ( i)--(vii)  with a function fz(k)  
tj=m~: + l 

for which 

A(1,) <= 8 ~ ~fx (l). 
l = .~: 

PROOF. Condit ion (i) is proved by Lemma 1. The others can be proved in the 
same way. So as an example we prove that 

lE(4'~'fl'k~'3l <-- 8 2 fix(J) 
j = t - - k  

provided that i < j < k < l. 
We have 

kx=rni+X ;~=mjq-X j #=mk+l  Nk v=mz+X (Zl 

= 2 2 + ~ - ~ - I E ( ~ . ~ ) I  = 

~k {.t:.~-~>v-u} 

e~ 

+ ~  ~J 

+ ~  ~ 

LEMMA 4. 

~-~ [ A 0,- ~)(v-.) + 2; A (.~-,0 (,~- ~)] § 
{~: ; . -z>v-t t}  

2 

c~[~A(~_~)(v_. )+ ~Y A(~-~)(~-~)]+ ~k 2 {;t: ;~ -x>v-g}  

2 c~[~ 
-~ f~ (v -/~) (v -/x) + ~ f~ (2 - x) (2 - ~)] =< 

{z:~-x>v-~} 

j = m t +  l - -mk  + * j = l - - k  

I f  q ,  C2,  . . .  is a sequence of real numbers for which 

k = l  
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then there exists a sequence nl <n2 < ... of integers for which 

k = l  \ j = n k +  1 

and 

_ _  , C 2 14(nk+l--n/~)< ~.  
k = l  \ j = n k +  1 

See the proof in [7] Lemma 3.3. 3. 

P]~ooF oF THEO]~EM MM--3 .  First of all we assume that n = 2  ~ (v = l, 2, ...) 
and introduce the following notations 

(Tj = C l ~ l J l - e  2 ~2-~-  "'" A F C j ~ j ,  

$,.p --- e,+l~,~+~ +e~+2~+z + ... +er 
where 

r  f l = f l ( ~ ) = ( # + l ) 2 k ;  # = 0 , 1 , 2 , . . . , 2 ~ - k - - 1 ;  k = 0 , 1 , 2 , . . . , v .  

Consider the random variable aj as the sum of some 6~a. Let 

i 

where f l l - - ~ l > f 1 2 - - ~ 2  > . . . .  Clearly the number of the members of the sum 
,~ ~,~, is less than v. Therefore by the Cauchy inequality we have 

i 

( Y  )~ ~ ~ ( Z  ~ )~ ~ v~ ~ifli 
i i i 

which implies 

max ~ d P  ~ ~ dP ~ ~ Z Z [.( (~+t,2~ ~ 
1_<--j~2 v ct, fl k = 0  ~*=0 ~; 

where ~ and/3=/~(~) run through all their possible values. 
Making use of Lemma 1 we have 

E max ~r ~ ( v + l ) ~ 2 4 K  c . 
~1<__j<_2 v .= 

This inequality proves our statement in the case n = 2 L  If 2V-<n<2 ~+~ then 

E max ar <=24K(v+2)4[j~_lc~J <_=24K(log4n) 4 ~ c ~  
kl<=j<=n ,I j = l  

which completes our proof. 

PROOV or TI~EOR~lvi MM--1 .  First of all choose an integer S ~ 2  such that 

2 ke_dk <_ 1 
k = s  - -  2 " 
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Now we prove that 

2Cks+t~ks+ t ( t  = 0,1 ,2  . . . .  , s - - l )  
k=l 

is convergent almost everywhere, which implies our Theorem. 
Put 

As a first step we prove the almost everywhere convergence of the series 

7ktlk under the condition 
k=l 

Z c~l 2 (k) < ~ .  

Set 

Then 

and 

On = Z Yk~k" 
k=t~ 

3 = 3 A [ 
E(0]) N -2 k_-~, 72 <---- 5 12 (-~)0 where 

n ~ co 

By Beppo Levi theorem this fact implies 

By Theorem MM--3  we have 

which is less than 

02. -~ 0. 

= (2" + 2 2 24K(n + 2) 4 
j 1 j= 

/ 2 
24K 7] log 2 J 

if n is large enough. Hence 

[ "j=2" 4) 2 E  max 2 " ~ j t l j  
n=l ~2n~=k'<2 n+ ~ 

and 
k 4- 

max _~,2 yj~ J -+ 0 

which proves the convergence of the series 

k=l 
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in the case when 

2 ]~k 2 logZk -< co. 
k = l  

N o w  we prove our  Theorem by induction. Suppose (as the condition o f  our 
induct ion)  that  if {ak} is a sequence of  real numbers for which 

k = I  

and ~k is a sequence o f  r andom variables obeying the conditions of  Theorem M M - - 1 .  
Then 

k = l  

is convergent.  
N o w  let {bk} be a sequence of  real numbers  for which 

b 2 l)  (k) < 
k : l  

and denote by {nk} a sequence of  integers for which 

k ~  1 \ j = n ~ +  1 

b 14(llk+,--nk) < ~,. 
k = l  \ j = n k + l  

By Lemma 2 the sequence 

fact implies - -  by the condit ion of  our  induction - -  that  

k = l  

is convergent  almost  everywhere. 
In order  to prove our  theorem it is enough to show that  

E max bfflj < oo. 
k = l  I-nk-kl--<--t nk+l  j = n k + l  

However  this fact follows immediately f rcm Theorem M M - - 3 .  

bfflj if ~k > 0 

if ~1, = 0 

is obeying the conditions of  Theorem M M m l .  This 

(Received 4 March 1969) 

MTA MATEMATIKAI KUTATI5 INTEZETE~ 
BUDAPEST, V., REALTANODA U. 13--15 

Ave: Matbenaaticd Academlae ScTent~arlt*ea Hu~agar,:cae zo, x969 



442 P. RI~VESZ: M-MIXING SYSTEMS. I 

References 

[1] G. ALEXITS, Convergence problems oforthogonal series (Pergamon Press and Akad6miai Kiad6, 
1960). 

[2] G. ALEXITS--K. TANDORI, ~ber das Konvergenzhalten einer Klasse yon Orthogonalreihen, 
Annales Univ. Sei. Budapest, Sectio Math., 3 (1961), pp. 15--19. 

[3] I. A. IBRAGIMOV--Ju. V. LINNm, Independent and stationarily connected variables (Russian) 
("Nauka", Moscow, 1965). 

[4] M. ROSE~m~ATT, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sei., 
42 (1956), pp. 43~47. 

[5] R. I. SERFLING, Contributions to central limit theory for dependent random variables, Annals 
of  Math. Stat., 39 (1968), pp. 1158~1175. 

[6] J. R. BLUM D.L.  HANSON--L. KOOPMAN, On the strong law of large numbers for a class of 
stochastic processes, Zeitsehr. f. Wahrscheinliehkeitstheorie, 2 (1963), pp. 1--11. 

[7] P. R~v~sz, The laws of  large numbers (Akad6miai Kiad6, 1967, Academic Press, 1968). 
[8] P. R~v~sz, Some remarks on strongly multiplicative systems, Acta Math. Acad. Sci. Hung., 16 

(1956), pp. 441--446. 
[9] F. M6RICZ, Inequalities and theorems concerning strongly multiplacitive systems, Acta Sci. 

Math. Szeged, 29 (1968), pp. 115--136. 
[10] M. CS6RG6, On a law of iterated logarithm for strongly multiplicative system. In print. 

A:t.z Matbematlca Academlae Sclentlarum Hungaricae lo, 1969 


