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To Professor G. ALEXITS on his 70th birthday

Introduction

The properties of mixing sequences of random variables were investigated
by a number of authors. Their aim was to generalize theorems (first of all limit
theorems) valid for independent random variables to a class of weakly dependent
random variables. In order to obtain such theorems slightly different concepts of
mixing were introduced. However the essential idea of these definitions is a condition
saying that “the future is independent from the long -past”. More precisely let
&, &,, ... be a sequence of random variables and let %%, (m =n) denote the smallest
o-algebra with respect to which the random variables ¢,,, &,, .4, ..., &, are measurable.
Then a mixing condition says that the elements of #% are nearly independent from
the elements of %7, if [ is large enough, i.e. we assume

(M [P(AB)—P(HP(B) = /)

where AC %%, B< %, and f(I) is a function converging to 0 with a certain rate.
A quite different way to define a concept of weak dependence is due to
G. Avexits (see {1] and [2]).
He introduced the following:

DErFINITION. A sequence &, &;, ... of random variables is called an equinor-
med strongly multiplicative system (ESMS) if

E¢)=0, EH=1 (i=12..)

2
@ E(rén... 86 = E(EHEE:) ... E(¢n (i<iy<..<ip,n=1,2,..)
where r; (j=1,2,...,n) can be equal to 1 or 2. (The existence of the mentioned
expectations is assumed.)

Alexits himself and others obtained resuits showing that in some sense this
condition is able to substitute the condition of independence.

In the present paper we try to give a common genaralization of the ESMS and
the systems with mixing property.

Namely we introduce the following

DerNITION, A sequence &4, ¢&,, ... of random variables is called M-mixing
if there is a function f(/) (/=1, 2, ...) convering to 0 such that

[EQH R S - Gn)—E@n & . GEEIER . &l = [ — 1)

where ij<i,<..<i,<ji<j,<..<j,; n=1,2,...; m=1,2,... and r, and
S (I=1,2,..,n;k=1,2,...,m) can be equal to 1 or 2,
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432 P. REVESZ

The fact that an ESMS is an M-mixing sequence is obvious.
The following theorem of IBRAGIMOV ([3], Theorem 17. 2. 2) shows the connection
between the mixing sequences and the M-mixing systems.

THEOREM OF IBRAGIMOV. Let &,,&,, ... be a sequence of random variables
obeying condition (1). Further let & and n be random variables measurable with respect
to B% and By, respectively, for which there exist positive numbers 8, ¢, , ¢, such that

E(lf|2+5) <c; and E(l”llzw) = ‘*;2-

Then we have
1 1+6 1+d 1

[E(n)—EQE®)] = &+s(1+a;+m+é+al+q]uu»“ﬁ

In § 1 we give some known theorems for mixing sequences, in § 2 the known
results of ESMS are repeated. The aim of these two paragraphs is just to give a
comparison to the new results.

In § 3 a convergence theorem (and a strong law of large numbers) are formulated
for M-mixing sequences. § 4 contains the proofs.

The paper ”’ M-mixing systems. II’” will contain a central limit theorem and a law
of iterated logarithm for M-mixing sequences.

§ 1. Mixing systems

The investigation of mixing systems started by the paper of ROSENBLATT ([4]).
He proved a central limit theorem for such sequences. A detailed treatment can be
found in [3]. (See also [5].) In [3] it is assumed that the sequence of random variables
is not only mixing but it is a stationary sequence too. This second restriction gener-
ally can be dropped (or replaced by a weaker one) without any difficulty.

A typical result of this type is the following

TueorREM MI—1 ([3], Theorem 18. 5. 3). Let &, &,, ... be a stationary sequence
obeying condition (1). Assume that there exists a 6 >0 such that

E(€;+(5) = oo

and
o s
> (Ff = =
Then
o* = EED+2 2 EEE) <=
-
and
26 x g2
IimP|= - < x =-1_: fe—idt
B0 O'l/— 27Z —co

provided that ¢ =0.
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M-MIXING SYSTEMS. 1 433

A strong law of large numbers for mixing systems is given in [6]. (See also [7]
Theorem 8, 2. 1.) In this paper the concept of mixing is defined in a different way,
namely the condition says that (only) the present is independent from the long
past. More precisely it is assumed that

[P(AB) - P(H)P(B)| = f(I)

where A€ BY, B¢ #5211 and f(I) is a function converging to 0 (%% is defined in the
Introduction). A sequence of this type is called % -mixing.
For this type of mixing systems the following theorem is proved.

THEOREM MI—2 ({6]). Let &, &,, ... be a ¥ -mixing sequence such thai
E(¢,)=0, E(H <o (n=1,2,...). Suppose that E(}(,N=K (n=1,2,...; K=0
is constant) and

il 2
3 > E—(E—L < oo,
n=1 N
Then

p Gttt 44
]

-0l=1

§ 2. Multiplicative systems

The fundamental theorem of ESMS was obtained by ALexiTs and TANDORL

TueoreM MU—1 ([1], [2]). Let &,,&,, ... be a uniformly bounded BESMS,
Sfurther let ¢y, ¢,, ... be a sequence of real numbers for which

_
St <
k=1

Then
Z e
k=1

is comvergent almost everywhere.

A central limit theorem and a law of iterated logarithm for ESMS were obtained
by the author [8] (see also [9] and [10]).

THEOREM MU-—-2 (I8]). If &, &5, ... is a uniformly bounded ESMS, ihen |

. . x g2
limP[ Sitéato A _ x] - [ezan
Vn V2r

o0
R — oo

Toeorem MU—3 ([8] and [7] Theorem 3.3.3). If &,,¢&,, ... is a uniformly
bounded ESMS, then

n-  Vnloglogn

< 57]:1‘
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A generalization of the concept of ESMS was studied by the author, namely
the systems were investigated in which condition (2) holds if n=4. For this type of
systems we obtained .

THEOREM MU—4 ([7], Theorem 3. 3. 4). Let &, &,, ... be a sequence of random
variables for which :
E¢) =K i=1,2,..)

E(& &8 = B(&¢) = E(G&68) = E(G¢60 = E(GE) = EE) =0

where the indices i, j, k, | are different and K is a positive constant. Further let ¢, ¢,, ...
be a sequence of real numbers and suppose that there exists an integer r (depending
on {c,}) such that

Zc k) <

where 1
logx if x=2
I(X):ll(X)={ | i 0=x=<2

and 1(x) is the r-th iterated of I(x) i.e. I(x)=I(I,_ (x)). Then the series

Z ¢Sy
F=1

is convergent almost everywhere.

§ 3. A convergence theorem

Now we formulate our main

THEOREM MM~—1.2 Let &, &,, ... be a sequence of random variables obeying
the following conditions

(1) E() =0, E(¢H =K i=12,..)

(i) E@GE =/G-D (<))

(iid) B 868 = min(f-K. f(—)  (G=<j<k=<D)
(iv) B8 = fk—) <=k

) EE226)] = min(f(k—7), fG—1) (G=i=<h
(vi) EEEED =/G—1)  (<i<h

(vil) E@EE) = 14/G=) (<)

where K is a positive constant greater than 1, and f(k) is a decreasing function defined
on the integers for which there exisis a positive constant d such that

(4) Sl =e ™

t Here and in what follows log x means the logarithm with base 2.
2 This Theorem clearly contains Theorem MU—4.
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M-MIXING SYSTEMS. I 435

Further let ¢y, ¢y, ... be a sequence of real numbers and suppose that there exists
an integer r (depending on {c,}) such that
©) D IR (k) < =
k=1
where

logx if x=2
l(x):ll(x):{ 1 U{0<x<2

and 1(x) is the r-th iterated of I(x) i.e. [(x)=I(l,_(x)). Then the series

Z Ck ék
k=1
is convergent almost everywhere .

Making use of the Kronecker lemma (see e.g. [7] Theorem 1. 2. 2) Theorem
MM—1 implies the following strong law of large numbers.

THEOREM MM—2. Let &,,¢&,, ... be a sequence of random variables obeying
the conditions of Theorem MM—1, further let ¢, c,, ... be a sequence of real numbers
and suppose that there exists an integer r such that

(©) Z“ﬂ®<w

(where (k) is defined in Theorem: MM—I1).
Then

ciéitealot 6, _

P 0] =1
n .

It can be seen that in some sense this theorem is stronger than Theorem MI—2
but in some sense this is the weaker one. Namely in this theorem there is a more
strict restriction about the meaning of the ,long past” (condition (4)) but there is
no restriction about the whole long past only about two or three members of it and
now we do not take into consideration all events of the long past, just the moments
(see Theorem of lbragimov). Since in condition (6) the integer » can be as large
as we wish, this condition is not much stronger than condition (3).

The proof of Theorem MM-—1 is based on an inequality analogous to the
Rademacher—Mensov inequality (see e.g. [7] Theorem 3. 1. 1),

THEOREM MM—3. Let &,,¢&,, ..., & be a sequence of random wvariables,
obeying the conditions (1)—(vii) of T} heorem MM—~1 where (now) f(k)is a decreasing
Jfunction for which

Zwmég
Then

[max [Zc g] ] = 24K(1og4n)4{2n1’ c,%]z

=k=n\Jj =

where {c;Yi.. is an arbitrary sequence of real numbers.
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§ 4. Proofs

First of all we give four lemas.
LemMa 1. Under the conditions of Theorem MM—3 we have

ZEZ@ D=2k (=12 .0
J#!
Proor. Let E(£3¢) = d; and consider the inequality

0=E [{52 2 ]]—E(§?)+J_Zd2E[(fzé)] 22

J#L

+2 D dydy B(GGE) = K““Zi (S —-D) =2 2@%4—

l=k<l=n
ki 1= J#i
+ 2 @i+ REEGE) = K+ Z’ —2 2y dj+
ks 12 =
+ 2 dimax(fle—D, fk=D)+ 2 dimax(flk—D), f(k—1)=
Py ey ot

n 3 n
§K+%Z 22 g 2 K- 2, d2
j=1 j=1

which implies our lemma.
LeMMA 2. Under the conditions of Theorem MM—3 we have

(S0 ]= (3.

Proor. We have

E[[Zcf] Z’c“E(é4)+6 2 dSE@GG T4 2 deEEE)H

1=i<j=n 1=i<j=n

+4 D2 ARG+ 2 e BE )+

1=i<j=n i1=si<j<k=n

+12 Z cichkE(fif%fk)ﬁ—lZ Z CiCjCI%E(éigjél%)+

1=i<j<k=n 1=Zi<j<k=n

+24 > cicienc E(GE 8 E) =

1=i< j<k<l=n

=K 2 ¢t +6K > czcz—I—SZ Zc 2E2(53f)+

=1 1=i<j=n

J#l
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M-MIXING SYSTEMS. I 437

+6 2 A+ - +6 D A+ DIEEE )|+

l=i<j<k=n i1=si<j<k=sn

+6 2 (DD +6 D (DR +DEEEEE) =

1=i<j<k=n 1=i<j<k<l=n
n 2 n 2
2 2.2
=sk| Sa) vk Zaf 3 aar 3 aas
j=1 i=1 lsi<j=n 1=i<k=n

+6 2 cdflk-p+6 D G-+ D clet+

1=i<j<k=n 1=i<j<k=n 1=i<k=n

+ 2 dad+6 D (e +DEEEEE] =

1=j<k=n l=iwj<k=l=n

n 2
ézoK[gcf] +6 2 AAEGEGI+6 X B8] +

1=si<j=<k<I=n =i<j<k<l[=n

+6 2 GREELEDF6 2 G EEGEL).

I1=i<j<k<l=n 1=i<j<k<l=n

The last four members of the last sum can be estimated in the same way. As an
example the estimation of

L= 2 cREEEEE)

l=i<j<k<l=n
will be given. We take into consideration two possible cases.
Case 1. j—i=[—k,
Case 2. j—i=I1—k.
The members of I, for which the restriction of Case 1 holds can be estimated by

oo i+Il—-k

2 dd 2 2 fl-k= 2 dd 2 (-~fi-k=

1=i<k=n l=k+1 j=i+1 1=i<k=n

-.

1
=- 2> e
8 1=

i<k=n

The sum of the members of I; obeying the restriction of Case 2 can be estimated
in the same way, so we have

Hence we obtained
" 4 n 2
E[[ c,fj”§24l<[2c;)
ji= f

which is the statement of our Lemma.,
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438 P. REVESZ

LemMmaA 3. If &y, &,, ... is a sequence of random variables obeying the conditions
(D)—(vii) of Theorem MM—1 with a function fi(k) and if m;, <m, < ... is a sequence
of integers then the sequence -

1 My +1 .
Vo= i 0 T %m0
JE=my
0 ) lf‘ ak:()

My + 1

1/2
where o =[ Z cf] is obeying the condition (iy—(vil) with a function f,(k)

J=mg+1
Jfor which

folk) =8 2 I, ().

Proor. Condition (i) is proved by Lemma 1, The others can be proved in the
same way. So as an example we prove that

Bl =8 2 1)
provided that i <j <k <.

We have
i+ 1 c, mist M4 1 M+ 1 v \
Wby = E[ D re, X %y 3 rg, é]
w=mi+1 % A=my+1 Kj w1 O v=m+1 %

=22 ZZ[ ][ +~——] B, 88,8 =

ZZ"’“ C"[Zfl(v—u)(v—u)wL; > SiG=mG—n] +

OC OCk v A—w=v—p}

2 2
+ 2 I 5[ Zh0-p0-p+ 2 [G-9G-]+

x/ K=V [,t

[Zf1<v—u)<v—u>+ 2 fl(z ) (A— )] +

A—w=v—u}

+ZZ

<& N‘»N
wmlt ™

+22a P [qul(v—uxv—u)Jr P S10=m0=n] =

Z —‘%>V"‘

oo

P AOELY gkjfl(j).

J=mit+l—me .

lIA

LeMMA 4. If ¢y, ¢y, ... is a sequence of real numbers for which

oo

2 2k <

k=

—-
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then there exists a Sequence n,<n,<... of integers for which

Z[ > c%] 12, (k) <

k=1 \j=ne+1
and
oo Ak +1 2
22 s ronim <=
=1 \j=m+1

See the proof in [7] Lemma 3. 3. 3.

Proor oF THEOREM MM-—3. First of all we assume that #n=2" (v=1,2,..)
and introduce the following notations

O'j = 0151+C252+ +CJ€J’
‘ﬁan = Cup18as 1T Caralarat oo ‘}‘Cpéﬁ

a=u2%; B=p@) = @u+1)2, u=01,2,...,22%_1; k=0,1,2, ..., v
Consider the random variable ¢; as the sum of some ;. Let

0j = 2 lpaiﬁi
i

where f, —o;=p,—a,>.... Clearly the number of the members of the sum
2. Yy, 18 less than v. Therefore by the Cauchy inequality we have

i P = (S Van)t = V(S0P =V 2 W,

which implies

(e+1)2% 4
f max of dP<v*2fl,bde<v Z [ 2> C,in} ap
=0 aso
I+ &

1=j=2v i=pu2k4+1

where o and f = f(a) run through all their possible values.
Making use of Lemma 1 we have

2v 2
E[ max a;?] =+ 1)424[{[20?} .
l=j=2v j=1
This inequality proves our statement in the case n=2", If 2?=n<2"*! then

n 2 n
E[ max aj?] = 24K(v+2)* [Z cf.] = 24K (log 4n)* [ > cf]
j=1 . Jj=1

1=j=n

2

which completes our proof.

Proor oF TueoreM MM-——1. First of all choose an integer S=2 such that

;'ke‘d" = Tz—
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Now we prove that
kZ;cks+t€ks+t (t=0,1,2,...,5—1)

is convergent almost everywhere, which implies our Theorem.
Put

Cis+t = Vi» éks+t = k.

As a first step we prove the almost everywhere convergence of the series

>y under the condition
k=1 _

Z 2 (k) < <.
Set

9, =kawk
Then

38 3 4 3
2y = = 2 = 2 — 272
E@ =35 20=3 fgy |vhere 4 2P

and

SEG =2 S <
n=1 2 =1 H
By Beppo Levi theorem this fact implies

'92" - 0.
By Theorem MM—3 we have

E{ max [2’ y,m} ]< 24KI* 2*=+2)[

an=k<2n il

ZH+1

2 2n+1 2
y] =24K(n+2>4{ > v?]
j=27%1 . j=2"+1

which is less than

an+t 2
24K[ vH logzj]
J=2041
if n is large enough. Hence
ZE( max Zme ]<oo
n=1 2=t | j=2n
and
I. k 4
max | >, yiny >0
2”’§k<2“+1 (j=’2" |

which proves the convergence of the series
Z YTl
k=1
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in. the case when

oo

>yt logik <

ol
-

Now we prove our Theorem by induction. Suppose (as the condition of our
induction) that if {a,} is a sequence of real numbers for which

oo

DAl (k) < o
k=1

and ¥, is a sequence of random variables obeying the conditions of Theorem MM—1.
Then

2 a4
k=1
is convergent.
Now let {b;} be a sequence of real numbers for which

ZbZV(k)< oo

and denote by {m} a sequence of integers for which

Z[Ebﬂﬁﬂwm

k=1 \j=ng+1
Nl Rica 1
S L.
k J=np+1
By Lemma 2 the sequence
1 A+ 1
— by, if o,=0
Y =1 % j=§+1 il £
0 if o,=0

R +1 172

[Where o = { > bf] ] is obeying the conditions of Theorem MM—I1. This
Jj=m+1 -

fact implies — by the condition of our induction — that

Zakwk
E=1

is convergent almost everywhere,
In order to prove cur theorem it is enough to show that

oo t 4
Zolms, 2]

I=t<ng:+i \j=ne+1
However this fact follows immediately frem Theorem MM—3.
( Received 4 March 1969)
MT A MATEMATIK AT KUTATO INTEZETE,

BUDAPEST, V., REALTANODA U. 13—135
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