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1. Let zc, denote the space of the complex trigonometric polynomials 

n /1 

�9 a 0 1 ~  7 f (x )  = , ~  c~ e '~': = ~ + (a~ cos vx + b,, sin vx) 
--n 

o f  order n and let C, be defined by 

O. 1) C, = max _f max sg (x ; f )dx  ]f(x)[Zdx 
fcn~ ~ 0<--k~n 

where sk (x ; f )  is the partial sum of f (x )  of order k. 
The theorem of Carleson, namely that every Lz(o, 2z) integr~ible function 

.can be expanded into an almost everywhere convergent Fourier series is equivalent 
to the statement that the sequence {C,}~~ is bounded [2]. 

The more difficult question of the behaviour of the quantities 

2z~ 2 ~  

,(1.2) A, :max~.E,~, ~[maXo~=k~=. I s~(x ; f ) [Zdx l [  [f(x)lZdx (n : 1, 2 . . . .  ) 

was settled recently by R. A. HUNT [1]: he proved that the infinite sequence 
A~, A2 . . . .  is bounded. 

Another question is the following. Let the complex function q)(x)6 L2(-re,  re) 

be of unit norm: ll~o[I = f l (x)12 = i and let {zr}2~ be a sequence of non- 

negative numbers not exceeding ~r. Let us consider the quantity 

2 [  I: ,(1.3) E(~; {~r}) = ~o(x)e  -irx d x  . 

Do the E(q); {xr})'s have a finite bound if q~ ranges over all L2(-re,  ~z) integrable 
functions of unit norm and {zr} is a fixed sequence? (Of course, if zr = ~ for every r, 
then by Parseval's formula E(p;  {zr})=2~z ). This would certainly be true if the 
quantity 

~~ dx 2 ,(l. 4) E(q0 = ~__ max fa ~~ 
r = - ~  O<=zr<=n _ ~  
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384 ~. MAKAI 

had a finite bound the q,(x)'s ranging over all L2(--TC, 7Z) integrable functions 
of unit norm. 

The purpose of this paper is to show the equivalence of Hunt's result and 
of the problem mentioned in the last paragraph: from A, < A it follows that 

(1.5) sup E(q0 < ~ ; 
Iloll=l 

conversely (1.5) implies Hunt's result. 

2. Let x l , x 2 ,  ..., x,, be a strictly increasing sequence of real numbers and 
k i ,  kz,  ..., k,, non-negative integers not exceeding n. Let further x and k denote 
the m-vectors {xl, ..., xm} and {kl, :.., kin}, respectively. Finally we shall use 
the notation 

l l lf l l l--  (a~cosvx+bvsin / la@r+ Z(la~l~+lb~l~)} . 
v = l  [ z.., v = l  J 

In part I of this paper [3] I have introduced the quantities 

(2. 1) A(x, k ) =  max 2 Iski(x,;f)[z/[I[fl[I 2 
fcr~n r = l  

and have shown that they are equal to the greatest eigenvalue of the matrix 

(2. 2) [Dml n (kv,kq) (X v 2- X~)]v tn, q = 1 

where Dl(x ) = 1/2 + cos x + . . .  + cos lx is Dirichlet's kernel. 
We shall call a function f * =  a;/2 + X(a*~ cos vx + b* sin vx) 

function of the maximum problem (2. 1) if one has 

'~ /111 (2.3) A(x, k) = Z Is=&,.;f*)l ~ f*llU. 
r = l  

an extremal 

The existence of these extremal functions is obvious and we state 

LEM~A 1. There exists an extremaI fune)ion of  (2. 1) with real Fourier coefficients 
a*~, b*. 

Indeed by introducing the notations ao/I/2-= (o, a,,= (v, by = ~_ v (v = 1, 2 . . . .  , n) 
we see that the numerator of the right-hand side of (2. 1) is an Hermitian form o f  
the quantities ( _ , ,  (_,+ ~, ,.., ( ,  with real coefficients. A(x, k) is the greatest eigen- 
value of the corresponding symmetric.matrix, and the quantities 

[a* (v = 1, 2, . . . .  n), 

b_ ~ (v = - 1, - 2 . . . . .  - 11) 

are the components of the real eigenvector corresponding to the eigenvalue A(x, 10 
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ON THE SUMMABILITY OF FOURIER SERIES 385 

We quote another result of part I: 

(2. 4) A,(x) m a x - -  ~ ,  max ls ,(x,; f) l  2 []lft[12 1 = = - -  max A(x;k) .  
fERn /'iv/ r = l  l=O, 1,...,n m kr=O, 1,.. . ,n 

r = l , 2 , . . . , m  

In the special case when x~ = x* = 2~r/m (r = 1, 2 , . . . ,  m) the quantity A,(x) 
was denoted by A, (') and it was shown in part I that 

(2. 5) 2A(, m) >= A, .  

A counterpart of this inequality is 

LEMMA 2. 

(2.6) 

Indeed let 

( �84 

2A, (') -<_ 1 + 4re A,. 

k~, k~ . . . .  , k* be an extremal sequence corresponding to the 
maximum problem (2. 3), i.e. 

A.~ ~) = ! A . ( ~ ,  ~ . . . . .  ~.*,) 
m 

and a~, b~ should denote, as before, the Fourier coefficients of the real extremal 
function f *  in (2.4), only that now k, = k~, ..., k,,-k,,.- * So, if 

7g 

1 i.e. f { f*  (x)} 2 dx (2. 7) I[]/*lll ~ ,  

we have 
rc m 2 ( 2 ~  ) 

(2. 8) A(n m) : - ~  r~=l S k i t 7  r , f *  . 

and if 

On the other hand, by (1.2), if x*=2~r /m,  

= 1 ,  

then a fortiori 

A > max [sk(x;f*)[ 2 dx >= sff•(x;f *) dx 
_~ O<=k<=n r = l  Xr*-t 

min 2 " * S 2 X *  " * sk•(x,f  ) = k,( , - - t b , f  ) 
x*,_ t_<_x~=x~ 

(2. 9) 

x,*. 

A.>2 f 2 ,  sk.(x, -- tb ; f*  ) dx 27r = = - -  % ( x ,  - , / , ; f*) .  
r = l  x.r_ 1 . m 

Let us now introduce the continuous function 

g ( O  = ~ ~r *~:tX, --  ~ r , f * ) .  

Acta Mathemattca Academiae Scientiarum Hungaricae 20, x969 



386 E. MAKAI 

(2. l l )  
since by (2. 7) 

By (2. 5) and (2. 7) g(O)>=A, and by (2.9) g(1)<=A,. Hence, there exists a 
0, 0 ~ 0 ~ 1, such that g(O) = A,  and by (2.7) 

2A, ~ - A ,  2re sk~(x, -Ot l ,  ;f*} 

x~ x~ 
-m-2 ~ ~ f d z m4 ~ ~ I" + , d , , = x, o,, -~x sk~ (x ; f* )dx  = a s k , ( x ; f  ) ) - ~ s k , ( x ; f  ) d x .  

Taking into regard that (d/dx)Sk*, (x,; f * )  = S k*, (X,  f * ' )  where 

* sin vx) (2. 10) f* '  = z~ v(b* cos v x - a ~  

and using in turn Schwarz's inequality and, * < * x,_ ~ = X, - Oq, we have 

f x~.:,  : / 1 /2  [ x~  / l /2 '  

2A~m)__A, < 4~z s 2 �9 * dx 2 . ,, ~ / j  ,,(x,.r) / | f <~(x,/jux / . 
�9 : . " 7 i i  , t X r -  1 . . . . .  J t '~r~-1 3 

Again, by Cauchy's inequality . 
, ~ s ,. 

4re 2 . ,  ~ ' f  < s ~ ( x , f  ) d x  s~r  ~= 2A,(, " ) .  A. = ~ ~ -  r ~ -  ~ 

2~  ' 2~z 

<= - -  max s ~ ( x ; f * ) d x ,  m a x  s2tx'r*'~dxk t , s  s <= 
m O<=k<=n O~k<=n 

<= 4--~ A,  [ f * ( x ) ] 2 d x . A ,  [f*'(x)] 2dx[  
m o 

by the definition (1.2) of A,. Finally by  (2. 8) and (2. 10) 

4~ 
2A(,m)T A . ~ - ~  A , . n  

2~: n 

f [s*'(x)]~ a~ = .... 1~ Z~(,:~+b:~,)  ~=~. 
0 

We remark that from (2. 5) and (2. 6) we have 

9 A  (2n) 
(2. 12) 1<= ---" --<_ 1 +2~  

A, 

i.e. A, and A~, 2") have the same order of magnitude. 
Let now in (2.4) x, be equal to nr/m. We shall denote the corresponding 

quantity A,(x) by a(, m) and Prove 

LEMMA 3. a, (") <= 2An (2m) <= 2a, (m). 
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12 (2.13) a,~ = m a x -  max 
Illflll=l m r=l k=o,I ..... n 

where C is any real constant. 
So we have, if lllfl]I=l 

It is trivial that an(m) may be defined in the more general way (cf. w 2 of  Part I) 

S [ ~ r  2 ktm+C;f } 

2 2 22 ,/ iI 2 
max mkax sk ; <= max max ; =< 

; e  ~=~ r r=l k t in  )[ 

<- max ~ '  max Sg + max ~ mkax sk 
f r = I  k . f r=m+l  

and by (2. 13) the two terms on the right-hand side are equal. Dividing by rn yields. 
Lemma 3. 

3. We now deal with the following maximum problem. Let k l ,  ..., k,, be non- 
negative numbers, not necessarily integers, z an m-vector with complex components 
z , ,  ..., z,, and let the vectors x and k have the same meaning as before. Our problem 
is to find the maximum p(z; x, k) of 

m k r 2 

~=1 z~ J q~(t)d t~"dt 
--kr 

if ~o(t) ranges over all 2 c ~  L ( -  , co) functions of unit norm. We shall evaluate the 
quantity p(z, x, k) in a way analogous to the solving of Problem 2a in Part I. 

Using the notation 

ok(t) = if t > k  
we have 

~ r  kr 2 ~ 2 
z, f 9(t)dt~. dt = -k, ~rZr-~fe~(t)q~(t)ei'xrdt = 

= (t) Zrekr(t)dtXrdt <= [(o(t)IZdt IXZ,  ek~(t)d'xrl2dt= 

_ ~  p , q = l  

= ,..,~. zp ~q 2 sin rain (ke, kq) (Xp- xq) (z; k) P X~ 
p , g = l  X p - -  Yq 

and the sign of equality stands if ~0(t)=9(t, z ) =  c ~ Z, ekr(t)e itxr 
norming constant 

where c is the. 
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Summing up we have 

kr 2 k~ 2 

I Z ((p(t)e i ' x 'd t  ~ Z Z r  a (3. 1) z, a ( ~o(t, z)eU~rdt = 
r --kr  r - -kr  

= # ( z , x , k )  <= M(x ,k)  Z z,I 2, if flw(t)12dt = 1 

where M(x, k) is the greatest eigenvalue of the matrix of the positive semidefinite 
form #(z; x, k). We now state 

LEMMA 4. 

max Z 
II q,(t) I] = ! 

Indeed substituting 

k~ 2 

f ~p(t)d'~'dt = M(x,k) .  
r --kr 

kr 

z, = 3 f ~o(t)dt'~ dt 

into (3. 1) we get by division With Z [ Z r [  2 

(3.2) 

kr 2 

_ f  go(t)dt~.dt <= M ( x , k )  if .  tko(OII = 1. 

* be To show that the sign of equality is valid here for some ~p let z~, ..., z,, 
the components of a vector z* for which 

(3.3) Z ) ,  dt 2 p (z* ; x, k) = z* ~o (t, z *) eik'~ = M (x, k) ~ '  l z~*[ 2. 
--kr  

Such a vector exists and is an eigenvector of the matrix of the Hermitian form 
#(z; x,: k) belonging to its greatest eigenvalue M(x, k). We state that 

(3.4) 
kr 

, f z, = ~ ~p (t, z*) e itx~ dt 
- -kr  

where 7 is independent of r. Indeed if it were not so we should have by Cauchy's 
inequality and by (3. 3) 

f q~(t,z*)eitX, dt > z*~ ~o(t,z*)eft~'dt [z*[2= M(x ,k )  
--kr  ' - -kr  

in contradiction to (3.2), Substituting now (3.4) into (3.3) and dividing by ~ ]z*p  
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we get 
kr 2 

Z f Z*) euxr dt = M(x, k) 
r 

thus completing the proof of Lemma 4, 

4. We now introduce the m-vectors ~ and u with components ~,=a-lx~ and 
~ = ak~ and state 
(4. 1) i ( ~ ,  u) = aM(x, k). 

This follows from the fact that the matrix of the form p(z, ~, x) is a times the matrix 
o f / t  (z; x, k). 

The quantity 

(4. 2) a . ( x ) =  sup 1 M ( x , k )  
O~kr~_m m 

r = l , 2 , . . . , n  

is analogous to the A,(x) defined by (2. 4). (Cf. Lemma 4.) Hence it follows from (4. 1) 

LEMMA 5. %n(~) = O'%(X). 

5. In this section let x, be n(r-[m/2])/m, kr any non-negative number and 
[k] the m-vector of components [kl], ..., [kin], where [fl] means the greatest integer 
contained in ft. By comparing M(x, k) and A(x, [k]) defined in Section 2 we shall 
prove 

LEMMA 6. IM(x, k ) -2A(x ,  [k]) l <2m. 

It follows from (2.2) that if 

then 

1 sin {min ([kv], [ks] ) + �89 (x , -xq)  
2 sin �89 (xp - xq) 

(5. 1) A(x, [k]) = max ~ '  dpozpz~ 
Zlzr[2=l p,q=l 

in perfect analogy with 

1 2 (5.2) ~ M(x, k) = max 6pqZpZ ~ 
-l' [ z r [ 2 =  1 p,q=l 

where bpv-=kp and if p #q,  CSvq = {sin min (kv, kq)(xp-Xq)}/(xp-xq). L e t  now 
Apq=dvq--bvq. We state that [Apql<l. This is obvious for the diagonal elements 
Avv. For the non-diagonal elements the inequalities 

min kq) 1 �9 1 _ rain (kv, <= 2 0 ~ [Xp--Xq[ < 7c and ([kv],[kq])+ ~ 
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390 E. MAKAI 

hold. Now under the assumptions 0 <  Ix[ <re and [k-k1]  < 1/2 one has 

sinklx2 sinkx < ]sinklx2 sinkx2_ + s inkx  sinkx 

2 sin x x x x 2 sin 2 x sin = 2 sin 

Hence 

(s. 3) 

[AvaI< 1 and 

kl +k x <= c o s  

sin ~ - ~ x  

x 
sin ~- 

+ls inkxl  

xl 
sm ~- 1 

<= ~ - ~ x  + . x 
sin ~- 2 sin ~- 

1 1 

x x 
2 sin -5 

1 

x 

~=lm APqzPzq 2 [Avq[ 2 
" 5 '  < rz.I 2 + lzqr 2 = < m Izp[ 2. 

p~ p, q= 1 2 , 

A well known reasoning yields now Lemma 6: by (5. 1), (5.2) and (5. 3) 

A(x, [k]) = max ( Z  Apqzp~q+ Y~ apqz,~) <= 

1 
-<_ max ~ Apqzp~q+max .~ 6pqzp~q = m+ -~ M(x, k) 

and similarly �89 M(x, k) <= m + A(x, k). 
By taking into account the definitions of a~, m) and ~,(x) at the end of Sections 2 

and 4, respectively, it follows 

LEMMA 7. If X, = re(r--e)/m (r = 1, 2, ..., m) then 

[~,(x) -- 2cP")I < 2. 

We now choose 
and 7 we get 

(5.4) 

m = n, c = [n/2] and a = 7r/n in Lemma 5. Combining Lemmas 5 

(n) -- ~A~)--2~n < 2  

* Indeed for  [x l<n  one has {sin (x/4)}/{sin (x/2)} = {2 cos (x/4)}-1_~{2 cos (n/4)}-1<0.71 and 
if  t2<6, the Maclaurin series o f  sin t is o f  Leibniz'  type, hence for O<=t<=n/2 (-<61~2) one has 
t > s i n  t>t- ta/6,  or  if  0 < x < 2 n  

___x > s i n X > X ( l _ X =  / 
2 2 2 ~, 2 4 )  

f rom which 
1 1 1 1 x zt I 

2 sin (x/2) x x(1 -- X2/24) X 24--X 2 24--  7r z 4 
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i f  4, = r -  [n/2] ( r - -  1, 2 . . . .  , n). Now f rom (4. 2) 

ls (5 .5)  n ~ ( ~ )  1 ~,,__~ --~z = zr-- sup = 0~,~=~max -~.. cp(t)e i('-E'121)t dt _ (p ( t ) i  2 dt = 

;r 2 o o  

l sup ,,~,121 max f qJ(t)e i*tdt I f [W(,)] 2" dt 
7l; ~o s = l - [ n / 2 ]  O<=zs<=r~ --zs  

and the last supremum evidently remains unaltered if we restrict ourselves to functions 
9 ( 0  with cp(t) _-__ 0, if [t[>rc. 

6. N o w  we are ready to prove the statement at the end of  Section 1. First we 
suppose that  A , < A  for  each integer n. 

Then  using in turn (5.4),  Lemmas  3 and 2 we have 

n c% (~) < 2a(~ ") + 2 < 4A(~ z ") + 2 < (2 + 4~z) A, + 2 < (2 + 4z 0 A + 2 
7~ 

for  every n, so by (5. 5) 

~s 2 

f {( } sup 2 max f g ( t ) d S ' d t  / [cp(t)]Zdt<27r 1 + 2 ~ ) A + 1 ,  

or by (l .  4) E(cp) is bounded  if ll~oil--1. 
If, however n7~-1~(~)< ~ for  each integer n, then by (5.4),  Lemma 3 and (2. 5) 

= > E ( 9  ) = > nrc-1 c~ (~) > 2a (0) - 2  > 2A (2n)-  2 > A , -  2, 

hence A, is bounded.  

(Received 10 February 1969) 
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