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1. Let n, denote the space of the complex trigonometric polynomials

fx) = Z c, e = fzg -+ Z (a,cos vx+b,sin vx)
“~ <

of order n and let C, be defined by

2r

N vorad

0

(1. 1) C, = max
fenn

2n
[ max s,Grsf)dx

0 O=k=n

where s.(x; f) is the partial sum of f(x) of order k.

The theorem of Carleson, namely that every L0, 2r) integrable function
<an be expanded into an almost everywhere convergent Fourier series is equivalent
to the statement that the sequence {C,};2, is bounded [2].

The more difficult question of the behaviour of the quantities

2

n 2n .
(1.2) A, = max | max [sk(x;f)[zdx/f FORd (r=1,2,..)
Q

fe€nn  O=k=n

was settled recently by R. A. HUNT [1]: he proved that the infinite sequence
Ay, A,, ... is bounded.
Another question is the following. Let the complex function ¢(x)€ L3*(—mr, r)

" be of unit norm: |¢| = f [p(x)]2dx=1 and let {»,};2 _.. be a sequence of non-

negative numbers not exceeding m. Let us consider the quantity

2

[
f @(x)e > dxi .

—p

o [dd

(1.3) E(o: {u}) = 2>

=-—co

Do the E(p; {%,})’s have a finite bound if ¢ ranges over all L2(—r, r) integrable
Tunctions of unit norm and {x,}is a fixed sequence? (Of course, if %, == for every r,
then by Parseval’s formula E(g; {%,})=2n). This would certainly be true if the
quantity

{1.4) E(p) = S max Jf?(x)e‘""dx

r=—oco O0=x,=n

2

{2t
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384 E. MAKAI

had a finite bound the q)(x) s ranging over all L2?(—m, n) integrable functions
of unit norm.

The purpose of this paper is to show the equivalence of Hunt’s result and
of the problem mentioned in the last paragraph: from A, <A it follows that

1.5 sup E(p) < oo;

loll=1
conversely (1. 5) implies Hunt’s result.

2. Let xq,%,,..., X, be a strictly increasing sequence of real numbers and
k,, ks, ..., k,, non-negative integers not exceeding n. Let further x and k denote
the m-vectors {xl, ey X} and {kq, '...,km}, respectively. Finally we shall use

the notation
+Z(a cos vx + b, sin vx) {] %l* +Z(Ia 12 +1b, |2)}

AN =

In part I of this paper [3] I have introduced the quantities

@1 A1) = max > s s PO 11712

Cny r=1

and have shown that they are equal to the greatest eigenvalue of the matrix

2.2 [Domin oty Xp = X5, 4= 1

where Dy(x)=1/2+cos x+ ... +cos Ix is Dirichlet’s kernel.
We shall call a function f*=ga}/2+ 2(a} cos vx+b¥ sin vx) an extremal
function of the maximum problem (2. 1) if one has

2.3) AR = 2 |sk,(x,.;f*)|2/ [Tl

The existence of these extremal functions is obvious and we state

Lemma 1. There exists an extremal fzmctzon of (2. 1) with real Fourier coefficients
ar, bt.

Indeed by introducing the notations aO/I/Z =, a,=C,, hy={_,(v=1,2,...,n)
we see that the numerator of the right-hand side of (2. 1) is an Hermitian form of
the quantities {_,, {_n41»..--» (s With real coefficients. A(x, k) is the greatest eigen-
value of the corresponding symmetric. matrix, and the quantities

a¥ (v=12,..,m),
Cv = Cj: = ag/l/is
b*, v =-—1, ., —H)

are the components of the real eigenvector corresponding to the eigenvalue A(x, k)
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- We quote another result of part I1:

et A®=mxt 3 max [senpfIn -

fenn M r=11=0,1,..,n

385

In the special case when x,=x}=2mr/m (r=1,2, ..., m) the quantity A,x)

was denoted by 4 and it was shown in part I that
(2.5) 24 = A,.

A counterpart of this inequality is |

Lemma 2.

2. 6) 24 = [1 +4n %] 4,.

Indeed let k%, k3, ...,k) be an extremal sequence corresponding to the

maximum problem (2. 3), i.e.

AP = A K e, )

and af, b} should denote, as before, the Fourier coefficients of the real extremal

function f* in (2. 4), only that now k,=kj, .. k =k¥. So, if

@) Wl =, ie JUrepa=t,
Wé have

m) __ T S
. 8) 4 = = =21 [ ]

On the other hand, by (1.2), if xf=2nr/m,

f max lsk(x [HPdx = 2 fsk*(x,f*)dx

r=1

xr 1
and if
, min Skf(x;f*) = i, (0 =15/
then a fortiori
@2.9) 2 f SE O — 1,3 /) dx = —2’ S&(E =137,

Let us now introduce the continuous function

g = %’Z S5 (xXF —Enp ).
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By (2.5) and (2.7) g(0)=A4, and by (2.9) g(1)=A4,. Hence, there exists a
9, 0=9=1, such that g(3)=4, and by (2.7)

. |
245 — Ay ==~ 2B 07 )= sh (e — s ) =

x

- i’; 5 fs,,, 9 2003 dx = Z /&1 St (x; f)——skr(x 17 dx.
Taking into regard that (d/dx)sk, s f *)—sk, (x,, S} where
2.10) ¥ = > v(b¥cos vx —a} sin vx)
and using in turn Schwarz’s inequality and - x;_; =x;— 9, we have
24— Ay < i’i { jxsz (x-f*jdx}llz{ fxr ey
R W] I Sig (43 /. )dx} :

Fo1 S

Agam by Cauchy’s mequahty

_ s
24(M— 4, = W{Z f Siee (x5 f*)de f S (%3 f*’)dx} =

roxp ok

H/\

2z 1/2
Wn{f max sf(x; f*)dx f max sk(x f*’)dx} =

o Osk=n
an 2n 27 1/2
= ;{A,, [1rr@rdx-4, [ 1 @p dx}
0 0

by the definition (1. 2) of 4,. Finally by (2. 8) and (2. 10)

211 o 24{m — A, <i~A n

since by (2. 7)
in n
[ eopas = ¢ 2@ =
0 1 }

We remark that from (2. 5) and (2. 6) we have

o (2n) ‘
(2.12) ' Ié%'f# =14+2n

n

ie. A, and A?®" have the same order of magnitude.
Let now in (2.4) x, be equal to nr/m We shall denote the correspondmg

quantity A,(x) by a™ and prove
LEMMA 3. a{™ = 243™ = 2a(™.
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It is trivial that a{™ may be defined in the more general way (cf. § 2 of Part I}

2.13) a™ = max > max sk[%rdi—c;f]
0

1
HIF=1 M r=1 g=o0,
ar ) m nr
81— = max 2 max|s,|—;
‘m
= max 2 max
k

f r=1 k
i1a r
o s 10
for=t k[m,f] k[m,f]

2 2m
+ max > max

and by (2. 13) the two terms on the right-hand side are equal. Dividing by m yields

Lemma 3.

2

where C is any real constant.
So we have, if |||f]]|=1

2

m
max 2, max
f.or=1 &

2

Ff r=m+1 k

3. We now deal with the following maximum problem. Let &, ..., k,, be non-
negative numbers, not necessarily integers, z an m-vector with complex components.
Zq, .5 2 and let the vectors x and k have the same meaning as before. Our problem
is to find the maximum u(z; x, k) of

m ler 2
2z [ o@erdt
r=l g,

if ¢(t) ranges over all L2?(— oo, o) functions of unit norm. We shall evaluate the
quantity u(z, x, k) in a way analogous to the solving of Problem 2a in Part L.
Using the notation
L if [ =k,
a(l) = {0 if 1>k
we have
2

. kr
{Zafwmmm

—kr

2 oo
= 'Zz, [ e o)™ di

12

—Zqo(t)ergkr(t)ei‘xrdzl = f{@(t)fzdf f{ZZ,skr(t)e"‘xr
-

- 2'"1 .3 2 sin min (k,, k) (x,— x,)
pa=1 © ‘ Xp— Xq

and the sign of equality stands if @(t)=¢(r, 2)= ¢ 3 z,¢, (t)é™ where ¢ is the
norming constant '

2dt=

m
> ZpZgey, (1) &, (1) €277 dt =

pa=1

= u(z; x, k)

= —1/2
{f‘ZZrSkr(t)eiterdt} ={M(Z,X,k)}—1/2.
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Summing up we have
2

2 kr
= 'er f(p(t, z) e r dt

—ky

ke
3.1) l >z [ ewear

—kr
= uEx0=ME0 I, i [lewPrd=1

where M(x, k) is the greatest eigenvalue of the matrix of the positive semidefinite
form wu(z; x, k). We now state

LEMMA 4.
ke

!
‘max | fgo(t)e"”‘fdt

le@li=1 r (%,

= M(x, K).

Indeed substituting

e
z, = f o () e dt
—kn
into (3. 1) we get by division with- >|z,|2
ke o
(3.2 2| [owe=a =MxW if le@l=1
—ky .

To show that the sign of equality is valid here for some ¢ let zi, ..., z;, be
the components of a vector z* for which

2
= M(x, k) 2 |z*

ke
(3.3) pE; %, k) = IZ z f @(t, z¥) e dt

—kr

Such a vector exists and is an eigenvector of the matrix of the Hermitian form
p(z; x, k) belonging to its greatest eigenvalue M(x, k). We state that

| .
(. 4) 2=y [ ot di

_k’_

where y is independent of r. Indeed if it were not so we should have by Cauchy’s
inequality and by (3. 3) :

2

¥

2

=

[Z iz =

kr
Sz [ otzmerd

—kr

kr
f o(t, %) "> dt

—kp

in contradiction to (3. 2). Substituting now (3. 4) into (3. 3) and dividing by >/|z}[?
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we get
2

= M(x, k)

f o(t, 2%)e™ dt

—kr

thus completing the proof of Lemma 4.

4. We now introduce the m-vectors § and » with components &, =o¢~1x, and
%, =ok, and state
@1 _ M@E, %) = oM (x, k).

This follows from the fact that the matrix of the form u(z, f %) is ¢ times the matrix
of u(z; x, k).

The quantity
“.2) o,(X) = sup —’;11— M, k)

0=kr=m
r=1,2,...,n

is analogous to the 4,(x) defined by (2. 4). (Cf. Lemma 4.) Hence it follows from (4. 1)
LEMMA 5.  o,,(&) =o0,(x).

5. In this section let x, be w(r —[m/2])/m, k, any non-negative number and
[k] the m-vector of components [k,], ..., [k,], where [f] means the greatest integer
contained in f. By comparing M(x, k) and A(x, [k]) defined in Section 2 we shall
prove

LEMMA 6. |M(x, k) —2A(x, [K])| <2m.
It follows from (2. 2) that if

_ 1 _sin{min ([k,], [k,]) + 4} (x, — x,)
Dop = ket 2’ Apg = 2sin 4 (x,—x,)

then

(5. 1) A(x, [k]) = max 2 dpy2,Z,

. Z|zp[2=1

in perfect analogy with i

(5.2 —M(x k) = max 2 SpaZpZ,
Z‘[zr[z 1p,4q

where J,,=k, and if p=q, s = {sin min (kp, kq)(x —x)}/(x,—x,). Let now

Ay =dp—0y, "We state that [AM]<1 This is obvious for the diagonal elements
A,,. For the non-diagonal elements the inequalities

0~<|x,—x,| <7 and min (Ik,l, [kq])—i—%—min (ky, k) =

(ST
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hold. Now under the assumptions 0< |x|[<= and |k —k;|<1/2 one has

[sinklx__sinkx _ |sink;x  sinkx sinkx  sinkx| _
. X x | .. x X X x |
‘2811’1—2— 2s1n—2— 2s1n—2— 2s1n§
sinkl——]fx '
= cos K1 K | 2 + |sin kx| L _ L.
2 . X . ) si x X
sin = sin =
sin—)E
sinx 2 inE *
2 3

Hence |4,,/<1 and

y Apy2, 2, = Z_: pql—p’”il‘zl[’“ = mZIZ 2.

A well known reasoning yields now Lemma 6: by (5. 1), (5.2) and (5. 3)
A(x, [K]) = max (ZA 2,2+ > 8pg2p%,) =

(5.3)

émaxZ'qu pZg+max 26,2, 2, m-l—%M(x,k)

and similarly % M(x, k) = m+ A(x, k).
By taking into account the definitions of a{™ and «,(x) at the end of Sections 2
and 4, respectively, it follows

Lemma 7. If x;=n(r—c)/m r=12,...,m) then
Jot,(X) — 200 | < 2.

We now choose m=n, ¢=[n/2] and o =n/n in Lemma 5. Combining Lemmas 5
and 7 we get

6.4 -’é 4, —20| <2

* Indeed for |x|<n one has {sin (x/4)}/{sm (x/2)} = {2 cos (x/4)}~1={2 cos (n/4)})~1<0.71 and
if £2<6, the Maclaurin series of sin 7 is of Leibniz’ type, hence for 0=r=n/2 (<6"2) one has
t=sin t=1—13/6, or if 0<x=<2x

X LoXx X x?
—>=sin—=>—1-—
2 2 2 24
1 1 1 1 x 7 1
0 < = e == < <.
2sin (x/2) x x(1—x2/24) x 24—x2  24—-n* 4

from which
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if &, =r—[n2] (r=1,2,...,n). Now from (4.2)

f @ (1) el =tm2De gy

—#r

2 o
| [ iorai =

| [ewpa

and the last supremum evidently remains unaltered if we restrict ourselves to functions
o(t) with o(1)=0, if |t|>n.

(5.5 i o, &) = i sup >, max
n T o r=1 0=xp=n
n—[n/2]

1
= — sup Z max
T ¢ s=1-[n/2] O=xs=n

fx sqa(t)eiS’ dr

b —xs

6. Now we are ready to prove the statement at the end of Section 1. First we
suppose that A,<A for each integer n.
Then using in turn (5. 4), Lemmas 3 and 2 we have

%aﬁ(g) <2042 < 44PN 12 < Q+Am) A, +2 < Q44T A+2

for every n, so by (5. 5)
2

Ks

[ o@es ar

—Xs

or by (1.4) E(¢) is bounded if ||¢] =1.
If, however nn~ta,(§) <« for each integer n, then by (5. 4), Lemma 3 and (2. 5)

6= E(@) = nnto,€) = 2af" —2 = 248" -2 = 4 2,

hence A4, is bounded.

sup > max

@ S=—co 0=ns=n

/ f[(p(t)}zdt < 2n{(1+2n)A+1},

{ Received 10 February 1969)
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