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1. Let D be a simply connected plane domain, A its area, 0 and o- the raditls 
and the area, respectively, of its greatest inscribed circle, P the torsional rigidity 
of D defined by 

(1) P = s u p  4[fffdxdy] /ff(f +f, )d dy 
f /) O 

( f = 0  on the boundary, f continuous, fx and fy piecewise continuous inside D). 
More than a hundred years ago B. DE SalNT-VENANT [5] conjectured that 

of all domains D of  equal area A the circular one has the greatest torsional rigidity, i.e. 

A 2 

(2) P ~ P~ircl~ -- 2re " 

DE SAINX-V~NANT supported (2) by ample physicaI evidence, yet the first 
rigorous proof of this inequality was given only comparatively late, in 1948, by 
G. PdLYA [3]. Another proof of (2) by H. DAVENVORT is incorporated in [4], p. 
121--122. 

We shall give here a proof of (1) in the case of simply connected domains, 
which partly runs parallel with FABER'S and KgA~ 'S  proof of RAYLEtGH'S 
conjecture as expounded in a previous paper [2], partly uses an idea of PdLYA 
and SZE~6 to be found in [4], p. 100--102. 

As a side result we get an upper estimation of  P in terms of  A and o~, namely 

(3) P < 4~o~A. 

If  rcOz=a<A/8,  this estimation is sharper than (2). It cannot be discussed here 
whether the constant 4 in (3) can be replaced by a less number or not. For convex 
domains, anyhow, one has the sharper estimation 

4 
P <= - f o 2 A ,  

where the constant 4/3 is the best possible one [1]. 

2. I f  the boundary of D is sufficiently smooth, e,g. D is a polygonal domain, 
then in the definition (1) of P the symbol sup can be exchanged into max, i.e. there 
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exists a maximalizing function v=v(x,y) vanishing on the boundary for which 
one has 

2 "~ 2 
(4) p=4[ff, d dy] /ff @;+<,,)ax+. 

D D 

In this section we shall assume that D is a domain of this kind. Then, without 
restricting the generality, one can assume that v satisfies the differential equation 
vx~ + vyy + 2 = 0 ([4], p. 88). Hence v cannot have local minima inside D and is always 
positive there. 

The level lines of v(x, y) will be labelled by a parameter z just as in [2]. The 
meaning of the parameter z is as follows. If the function v(x, y) assumes on one 
of its level lines the value z and D(~) is a domain consisting of those points of D 
where v(x, y) >z, then the area of D(z) should be equal to "c. The boundary of D(~) 
will be termed the level line C~. 

We introduce now in D instead of the coordinates x and y the new coordinates 
z and s where s is an arc length counted from appropriate points of the possibly 
disconnected level line C~ and ranging from 0 to L (z), the total length of C~. Further 
we introduce the notation 

(5) A = 

ax 0yl 
& ,7 ,  
Ox Oy 
Os as 

and the function X(z) defined by 

(6) g('O=v(x,y) on C~. 

Obviously )~(z) decreases monotonically in O<='c<=A and )~(A)=0. 
Then we have just in the same way as in [2] 

A L ( O  

ff ax+=fz(,)f 1AI a,<t, 
D 0 0 

(7) 

and 
A L( '0  , 

(,, 
D 

Since A may vanish on the boundary of D and likewise I/A may vanish in 
points where Ov/Ox=Ov/Oy=O (these points are either of finite number or they 
are countable) the integrals on the right sides are possibly improper ones. 

We recall further the following formulae of [2]: 

f ]A]ds = 1, k f IA] ds ~ d, z = {L(*)} z 
o g lalo o 

and 
/ ~-zm if 0<=z<=z, 

(9) L(z) _--> M(z) = 1 0  +TcQ if a ~ z N A .  
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The last inequalities are consequences of the classical isoperimetric inequality 
and its refined form due to BONYZSEN, a short proof of which may be found in [6]. 
Using these inequalities in (7) and (8) we have 

A A 

(7,) f f  (dxay= f f o 
since z(A) = 0, and 

(83 

Now we have 

P 
00)  ~- = 

A LO) 

D 

A L(r) . L(z) 

A A 

=>fz':()L:(), f z':( )i:( 
0 0 

using (7') and (8') 

A 

D 0 

A 

f f  +v~,)dxdy - f z,:(~)i:(Od ~ 
0 

A 

0 

by Schwarz's 
easily 

(11) 

where 

inequality. Using the explicit expression (9) of M ( O  one obtains 

A a A 

o o J 4m d[~/  d'c=Tg[~j' 
3 1 4+1  

g(~) = ~ - 2 1 o g - ~ -  
8 ~+1 Z 

We remark here that if h(~)=~2-8g(~) then h (1 ) -0 ,  h ' (~)=2~(1-~)  2. 
�9 (1 + 0  -2, so that from (10) and (11) we have for any polygonal domain 

(12) 

since A >o-. 

A 2 -  2rcp >= A 2 - 8~2 g (A /a )  = cr2 h (A /a)  = 

Ala  

1 - ~  d ~ >  

1 
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3. Let  now D be any simply connected domain  for  which P is defined by (1). 
We want  now to show tha t  the inequality 

(12') A 2 - 2r:P >= a2h(A/(r) 

still holds. Fo r  sake of  simplicity we consider only those domains  D which can 
be approx ima ted  by a sequence of  circumscribed polygonal  domains  D.  (n = 1, 2 . . . .  ) 
with areas A. ,  areas of  the greatest  inscribed circles G ,  and tors ional  rigidities P . .  
We  suppose (i) D . ~ D  f rom which one has P,,>=P and (ii) A . - + A  which implies 
{7 n --~ 0". 

Then,  by (12) 

A 2 - 2uP  >= A 2 - 2~zP. = (A 2 - 2rcP.) - (A 2 - A 2) _-> o -2 h ( A . / G )  - (A 2 - A 2) 

and since for  n --* r the right hand  side tends to 0-2h (A/(r) we obtain (12'). The  integral 
representat ion of  h(A/cr) in (12) shows that  the right hand  side of  (12') is posit ive 
unless A/(~ = 1 i.e. unless D is a circular disk. On the other  hand  we get A 2 = 2r~P 
in this exceptional  case ( formula  (2)), so SAINT-V~NANT'S theorem is proved.  

4. N o w  we turn to the p r o o f  of  inequality (3). In  the case of  polygonal  domains  
this follows f rom observing tha t  for  r =>1 one has g ( r  consequently 
the right side of  (11) is certainly less than  

rc rc 8 ~z 

hence f rom (10) 
p 30 "2 
- -  < A r  2 - 
4 8r~" 

Repeat ing the a rgument  of  Section 3 we have for  any simply connected domain  D 

P 3~ 2 
-4  <= A02 8re < A~2" 
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