Acta Mathematica Academiae Scientiarum Hungaricae Tomus 17 (3—4),
pp. 419—422 (1966)

A PROOF OF SAINT-VENANT’S THEOREM ON
TORSIONAL RIGIDITY

By
E. MAKAI (Budapest)
(Presented by P. TURAN)

1. Let D be a simply connected plane domain, 4 its area, ¢ and ¢ the radius
and the area, respectively, of its greatest inscribed circle, P the torsional rigidity
of D defined by

(1) P=sup 4[[ racdy|’| [f rzespaxay
D D

(f=0 on the boundary, f continuous, f, and f, piecewise continuous inside D).
More than a hundred years ago B. DE SAINT-VENANT [5] conjectured that
of all domains D of equal area A the circular one has the greatest torsional rigidity, i.e.

A2
2 P=Pe==—.
( ) circle 7

DE SAINT-VENANT supported (2) by ample physical evidence, yet the first
rigorous proof of this inequality was given only comparatlvely late, in 1948, by
G. POLya [3]. Another proof of (2) by H. DAVENPORT is incorporated in [4], p
121—122.

We shall give here a proof of (1) in the case of simply connected domains,
which partly runs parallel with FABER’s and KRAHN’s proof of RAYLEIGH’S
conjecture as expounded in a previous paper [2], partly uses an idea of POLYA
and SZEGO to be found in [4], p. 100—102.

As a side result we get an upper estimation of P in terms of A and @, namely

) P<40%4.

If ng®?=0-<A4/8, this estimation is sharper than (2). It cannot be discussed here
whether the constant 4 in (3) can be replaced by a less number or not. For convex
domains, anyhow, one has the sharper estimation

P

th)

%QZA,

where the constant 4/3 is the best possible one [1].

2. If the boundary of D is sufficiently smooth, e.g. D is a polygonal domain,
then in the definition (1) of P the symbol sup can be exchanged into max, i.e. there
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exists a maximalizing function v=v(x, y) vanishing on the boundary for which
one has

@ p=af[[eacaf[[f o2 +epacar.

In this section we shall assume that D is a domain of this kind. Then, without
restricting the generality, one can assume that v satisfies the differential equation
Uy + 0y, +2=0 ([4], p. 88). Hence v cannot have local minima inside D and is always
positive there.

The level lines of v(x, y) will be labelled by a parameter < just as in [2]. The
meaning of the parameter 7 is as follows. If the function v(x, y) assumes on one
of its Ievel lines the value z and D(z) is a domain consisting of those points of D
where v(x, y) >z, then the area of D () should be equal to 7. The boundary of D(r)
will be termed the level line C,.

We introduce now in D instead of the coordinates x and y the new coordinates
¢ and s where s is an arc length counted from appropriate points of the possibly
disconnected level line C, and ranging from 0 to L(z), the total Jength of C.,. Further
we introduce the notation

| 9x

ox Ay
dr ot
ds s

and the function x(z) defined by

© 1@=v(x,y) on C.

Obviously y(z) decreases monotonically in 0=7=4 and 3(4)=0.
Then we have just in the same way as in [2]

A LD

0 [[vacdy = [1@ [ 141dsan
and D 4] 0 .
®) ,U@+wa@ fwmfw

Since 4 may vanish on the boundary of D and likewise 1/4 may vanish in
points where dv[dx=adv[dy=0 (these points are either of finite number or they
are countable) the integrals on the right sides are possibly improper ones.

We recall further the following formulae of [2}:

L(D) LD L(D) (o)

Of]A;ds=1, flAl [ 141ds = [f ds)" = {L@)?

VZT_C:L: if 0=1t=0,

and

©) L =M@ = %—i—n@ if o=r=A.
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The last inequalities are consequences of the classical isoperimetric inequality
and its refined form due to BONNESEN, a short proof of which may be found in [6].
Using these ine qualities in (7) and (8) we have

4 4
7) ffgv dx dy = fx(r) dr = — frx’(r) dr
D ¢} 0
since y(4)=0, and

ff(v +v2)dxdy = fx’z(‘c)f mdf

L(z) L(7)
@®) = f 72 ) f f 4] ds de =
A
= [ W2 @) de = f 2 (M2 () d.
0 0

Now we have using (7°) and (8")

(oo} (froray oy

(10) ———— = ?
ff(v +v2)dxdy fx'z(r)Mz(r)dr 0

G dr

‘by Schwarz’s inequality. Using the explicit expression (9) of M(z) one obtains
easily

A ¢ A
2 72 / T 2 c? [4
v /(M(‘c)] = /Ez?d” e ‘R“g[?]’
[¢] 0 _
Q

where

We remark here that if A(&)=£¢2—8g(E) then A(1)=0, H(&)=2¢(1 &)
-(1+¢)72, so that from (10) and (11) we have for any polygonal domain

A*—-2nP = A*>—80%g(Ajs) = o*h(4/o) =
(12)

Alo

¢
/2‘5[1%] a >0

1
since 4 >g¢.
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3. Let now D be any simply connected domain for which P is defined by (1).
We want now to show that the inequality

(12 , A? —2nP=0%h(A4/0)

still holds. For sake of simplicity we consider only those domains D which can
be approximated by a sequence of circumscribed polygonal domains D, (n=1, 2, ...)
with areas 4,, areas of the greatest inscribed circles o,, and torsional rigidities 2,.
We suppose (i) D,= D from which one has P,=P and (ii) 4,4 which implies
G, 0.

Then, by (12)
A2 —2nP = A?—2nP, = (A2 —2nP,)— (42— A% = c2h(4,/0,) — (47 — 4%)

and since for n — oo the right hand side tends to 624 (4/c) we obtain (12"). The integral
representation of #(A4]e) in (12) shows that the right hand side of (127) is positive
unless 4/c =1 i.e. unless D is a circular disk. On the other hand we get A*=2nP
in this exceptional case (formula (2)), so SAINT-VENANT’s theorem is proved.

4. Now we turn to the proof of inequality (3). In the case of polygonal domains
this follows from observing that for =1 one has g(&)<&—3/8, consequently
the right side of (11) is certainly less than

T

g (4 3 9’_4302
g 8

hence from (10)

Repeating the argument of Section 3 we have for any simply connected domain D

P _ ., 3 2
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