
Acta Mathematiea Academiae Scientiarum Hungaricae 
Tomus 21 (3~4), (1970), FP. 239--259 

STRUCTURES OF CONTINUOUS FUNCTIONS.  I 

By 
S. MROWKA (Buffalo) 

w 1. Introduction 

There are numerous theorems in the literature concerning representation of 
certain maps (functionals) defined on sets of continuous functions. As an example 
we shall quote the following two. 

KAKUTANI--RIESZ THEOREM. I f  X is a Hausdorff compact space and C(X) 
is the set of  all real-valued continuous functions defined on X, then every linear positive 
functional q~ on C(X) (i.e., a real-valued map q~ on C(X) satisfying: 9 ( f  +g) = 
= cp(f) + ~o(g) and 9 ( f )  >= 0 for f>: O) admits the integral representation 

(f) = f f d~ 
where Iz is a Baire measure in X. 

MAZUR THEOREM. I f  X is a separable metric space and F is a subring of C(X) 
such that F contains" all constant functions on X, F is closed under inversion (i.e., 
f E F and f (p) #O for every p ~ X, then l i f e  F), and F satisfies the following condition 
(1) i f  f l ,  f2 . . . .  are members of F such that 0 <=fn(P) <= 1 for every p CX and every n, 
then there exists a sequence of positive numers a, such that ~ ~, < + ~ and ~ a,,. f ,  C F, 

n 

then every linear multiplicative functional q~ on F is either identically equal to 0 o1" 
admits the following trivial representation 

9 ( f )  = f ( P o )  
where Po is a f ixed point of X. 

The purpose of this paper is to provide a general framework for the discussion 
of  such representation theorems. These theorems exhibit the following pattern 
(precise definitiorts of  the terms involved will be given in the next section): we 
consider a topological space E on which certain algebraic operations and/or 
relations are defined - -  we will refer to such an E as a topological algebraic 
structure. Given an arbitrary space X we denote by C(X, E) the set of all 
continuous functions f with f :  X-~E. Every operation (relation) in E gives 
rise to a "pointwisely defined" operation (relation, respectively in C(X, E)); 
C(X, E) becomes therefore an algebraic structure. Let F be a substructure of 
C(X, E); we are concerned with representation of homomorphisms (functionals) 
of  F; i.e., maps (p of F that preserve the given operations or relations. Note that 
in such a general setting, although we deal with continuous functions only, we do not 
exclude the case of a discrete X and in this case F is simply a substructure of the direct 
product of copies of E. In fact, the thechnique of structures of continuous functions 
is applicable to problems which - -  in their original formula t ion-- involve  no topology 
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(see Sections 6 and 7 of the present paper). Finally, note that there are two essentially 
different types of representation: i n  Mazur's theorem the representation formula 
involves only one point of the space; in the Kakutani--Riesz theorem the value 
of (0(f) depends upon values o f f  on a whole set o f  points. 

The present paper is the first in the series "Structures of continuous functions". 
Three papers of this series, III, IV, V, ([11], [17], [18]) have been already published. 
(In III, E is the set of integers considered as a ring and as a lattice; in IV, E is the 
lattice of the real numbers and V contains one result concerning the case of 
arbitrary E.) The second paper of this series was intended as a summary of results 
on E-compact spaces; however, in view of a rapid development in this area its 
publication was continuously delayed. A partial summary of related results will be 
published outside this series [13]. 

w 2. Structures of continuous functions 

The purpose of this section is to provide necessary definitions. By an algebraic 
structure we mean a triplet 

(1) {E; {Oo, ..., . . . ,  

where E is a set, or are operations on E, and Q~ are relations on E. We do not assume 
that these operations and relations are finitary. Whenever no confusion seems 
possible the structure (1) will be denoted simply by E. The type of the structure (1) 
is the pair of transfinite sequences 

(2) . . . ,  . . . ,  

such that o~ is a vcary operation and ~o. is an p.-ary relation. For structures of the 
same type it is possible to define the concept of a homomorphism and that of an 
isomorphism. Let E and E1 be structures of the same type; let o~ and 6r (0. and 0.) 
be the Corresponding operations (relations) in E and El ,  respectively. For simplicity 
of notation we will assume at this moment that these operations and relations 
are binary. A map (o: E-~E 1 is called a homomorphism provided that 

(3) (p(xiocx2) = q)(xi)~qo(x2) for every x i , x ~ , ~ E  and for every ~ < ~  

and 

(4) xlQ,x~ implies rp(xOO,(0(x2) for every x l , x 2 E E  and f or every I/</L 
r is called an isomorphism provided that q~ is one-to-one, cp satisfies (3), and (p 
satisfies (4) with "implies" replaced by "if  and only if". Note that according to the 
above definitions a one-to-one homomorphism need not to be an isomorphism. 

A substructure E o of (1) is a subset of E whose operations and relations are those 
of (1) restricted to Eo and which is closed under all of the operations of (l). 

A topological algebraic structure is a structure (1) in which E is a Hausdorff 
topological space and such that all the operations oe are continuous (relative to 
the product topology in the corresponding power of E). In general, we will not 
make any topological assumptions on the relations of (1), however, it is sometimes 
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useful to assume that they are closed (in the respective powers of E) or that they 
are E-compact. 

If  E is a topological algebraic structure and X is an arbitrary topological space, 
then by C(X, E) we shall denote the algebraic structure consisting of all continuous 
functions f :  X~E;  operations and relations in C(X, E) are the pointwisely defined 
counterparts of the operations and relations in E. That is, if o~ is an operation 
and Q,~ is a relation in E (assumed, for simplicity of notation, to be binary), then 
the pointwisely defined counterparts o~ x) and ~)~x) in C(X, E) of o~ and ~ ,  
respectively, are defined as follows: 

(4) h=fo~X)g if, and only if, h(p)=f(p)or for every p~X; 
and 

(5) fo}X)g if, and only if, f(p)Q,,g(p) for every pCX. 

The superscript X in o(~ x) and ~o(, x) will be omitted whenever possible. Note that the 
structure C(X, E) is of the same type as E. Furthermore, the assumption that the 
operations or are continuous implies that C(X, E) is closed with respect to the 
operations o(~ x). 

Throughout  the rest of the paper we shall use the following notations: E wilI 
be a topological algebraic structure, Ea will be an algebraic structure of the same 
type as E; F will be a substructure of C(X, E) and ~p will be a homomorphism of  
F into E~ (note that F and Ea are of the same type). 

To conclude this section observe that in the Kakutani--Riesz Theorem we 
have E = E  1 = the ordered group of the reals (i.e., E=E 1 = {~; +;<= }) and in 
the Mazur theorem, E=E~ = the ring of the reals (i.e., E=E 1 = {N; + ; .}) (where 
+ , . ,  <= denote, respectively, the addition, the multiplication, and the "less than 
or equal to"  relation in the set N of the reals). 

w 3. Supports and weak supports 

Our main tool in dealing with the representation problem will be the concept 
of a support and that of a weak support. ~ The algebraic structure will not eater 
into the considerations of this section (so one may consider E as a plain topological 
space and E~ as a plain set; thus (p is an arbitrary map with (p: F~E~). 

A closed set A c X is called a support of q) provided that for every f ,  g E F 
the equality f [A =gfA implies (p(f)  = ~o(g). A is called a weak support of 9 provided 
that for every open set U ~ X with A c U and for every f ,  g E F, the equality f ] U = g l U 
implies ~0(f) = ~p(g). 

Obviously, a support of ~p is a weak support of qo (the converse is not necessarily 
true, see Examples 4. 3 and 4.4). The concept of a weak support admits a natural 
and useful generalization: if eX is an extension of X (i.e., ear is a Hausdorff super- 
space of J ( in  which X is dense), then a closed subset A of eX is called a weak support 
prof  cp ovided that for every open subset U of eX with A ~ U the equality f[UN X = 
= g[ UN X implies (p(f)  = (p(g) (for every f, g E F), An analogous generalization 
of the concept of a support, is, of  course, superfluous. 

1 These concepts were introduced in [18]. 

1" Act~ Mathemcrtica Academiae Scientlarmn H~mgaricae 2x, z97o. 



242 s. MRdWKA 

Note that the empty set is a support of  9 iff 9 is a constant map. Any superset 
o f  a support (a weak support) of 9 is again a support (a weak support) of 9, in 
particular, the whole space Xis  always a support of  9. We shall therefore be interested 
in the existence of a smallest support 2 or a smallest weak suppor t?  

Note that the existence of a one-point support completely solves the represen- 
tat ion problem; indeed we have the following. 

3. 1. Suppose that F contains all constant functions from C(X, E) and let Po 
be a point from X. {Po} is a support of 9 ~ and only if, 9 can be represented in the 

form 
9 ( f )  = ~ ( f ( P o ) )  for every fE  F, 

where c~ is a fixed homomorphism o r e  into E~. 

w 4. The compact case 

In this section X will be assumed to be a Hausdorff  space. We shall give a few 
sufficient conditions for the existence of smallest supports and weak supports in 
the case of a compact X as well as discuss a few counter-examples. 

Let E be a multiplicative 3 base for closed subsets of  X. 4 We shall say that 
qo has the property II relative to ~ (in symbo l s : / / ( 9 ,  E) holds) provided that the in- 
tersection of two supports of  9 from C is a support of  ~0. 

4. 1. THEOREM. Let X be compact. I f  9 has the property 17 relative to ~, then 
the intersection of all supports of 9 from E is the smallest weak support of 9. 

PgooF. Let 

3,={A: A C e  and A is a support of 9}, Z , =  N 3 , .  

I t  is easy to see that the class 3 ,  is multiplicative. Let U be an open subset of X 
with Z ,  c U and let f [ U = g l U, f ,  g E F. Since 3~ is multiplicative (and Xis  compact), 
there is an A E 3 ,  with A c U. We have f IA=gIA, therefore 9 ( f ) = 9 ( g ) i  Thus 
Z ,  is a weak support of 9. 

Now, Z ,  is the smallest weak support of 9. Indeed, assume that Z is a weak 
support  of  9 and assume that Z,pdcZ. Let p o E Z , \ Z .  T h e r e  is an open set G 
such that  Z c G and Po ~ G. Since E is a base for closed sets, there is an A E E such 
that  G c A  and po~A. Since Z c l n t A ,  A is a support of  9- Thus AE3e ,  hence 
Z ,  c A, contrary to the fact that Po C Z ,  and Po ~ A, 

We shall now give sufficient conditions f o r / / ( 9 ,  E). 
We say that F has the property (K) relative to ~ (in symbols: K(F, C) holds) 

provided that the following condition is satisfied 

for every A, BEE and for every f,  gEF  with f [ A O B = g [ A ~ B  there exists 
an hE F such that f[A=h]A, and g!B=h]B. 

2 A smallest support (weak support) of ~p is a support (weak support) which is contained in 
every support (weak support) of (p. 

3 A class ~ of sets is said to be multiplicative provided that A, B E ~ implies A N B E~. 
4 A base for closed sets is a class of closed sets such that every closed set is an intersection of 

some members of this class. 
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4. 2. THEOREM. I f  F has the property (K) relative to ~, then CO has the proper O, 
H relative to ~. 

PROOF. Let A, B E e  and let A and B be supports of CO. If fiC=g]C, where 
f, gEF and C--AAB,  then there is an hCF with f [A  =h]A and glB=h]B. Since 
A and B are supports of CO, we have ~o(f) = CO(h) and c0(g) = cO(h), hence cO(f) = q~(g). 
Thus ~ is a support of cO. 

Note that F=C(X, E) has the property (K) relative to an additive s (and 
multiplicative) class ~ of closed subsets of X whenever X has the following extension 
property: for every A E r  every continuous function f :  A-~E admits a continuous 
extension f :  X ~ E  (e.g., F =  C(X, E) has the property (K) relative to the class 
of all closed subsets of X whenever J( is normal and E is an absolute (metric retract). 
Indeed, in this case we define ho(P)=f(p) for pEA and ko(p)=g(p ) for pEB 
(so that h o : A U B ~ E )  and then take a continuous extension h of ho with h: X-+E. 
A particular case of the above is: if J( is 0-dimensional, then F =  C(J(, E) has 
always the property K relative to the class ~ of all open-closed subsets of X. Con- 
sequently, if X is a O-dimensional compact space, then every map cO on C(X, E) has' 
a smallest weak support. 

We shall now consider a few examples. 

4. 3. EXAMPLE. Let E = E  1 be the lattice of the real numbers (i.e., E = E  1 = 
= ( ~ ;  V, A), where V, and A stand for maximum and minimum, respectively) 
and let F =  C(X, E) (i.e., F is the lattice of real-valued continuous functions on X). 
If  X is compact, then every (lattice-) homomorphism CO: C(X, E ) ~ E  has a one-point 
weak support (consequently, cO has a smallest weak support), i f  X is infinite 
(completely regular, but not necessarily compact), then there is a homomorphism 
cO without a one-point support (for these results see [17]). Such a (# has the property 
H relative to the class of all closed subsets of X (obvious by 4. 2) and this implies 
that cO does not have a smallest support. 

4. 4. EXAMPLE. Let X be the closed unit interval, let E = N  and let F consist 
of all continuously differentiable functions on X. Let ~ be the class of all finite 
unions of intervals of the form [a,b] where 0 < - a < b < - l ,  where a is rational, 
b is irrational or b = 1. ~ is an additive and multiplicative base for closed subsets 
of X. F has the property K relative to ~ (on the other hand, F has the property 
K relative to neither the class of all closed subsets of X nor the class of all finite 
unions of arbitrary closed subintervals of X). Thus (by 4. 2 and 4. 1), every map 
~o: F+EI,  where E l  is an arbitrary set, has a smallest weak support. The map cO, 
defined by cO(f)=f ' (xo),  (Xo - -  a fixed point of X) has {Xo} as its smallest weak 
support;co does not have a smallest support. 

4. 5. EXAMPLE. Let X=[0,  1], let E=Ea be the ring of the reals N, and let 
F consist of all polynomials in C(X, E). Define ~o( f )=f (2 )  for every fEF. F is 
a subring of C(Z, E) and F contains all constant functions in C(Z, E). cO is a (ring-) 
homomorphism of F. Every infinite closed subset of X is a support of cO whereas 
no finite subset of X is. If  ~ is an arbitrary multiplicative base for closed subsets 
of X, then q~ does not have the property H relative to g (~ contains infinite disjoint 

5 A class ~ of  sets is said to be additive provided that A, B E ~  implies A G B E ~ .  
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sets). Thus, F does not have the property K (relative to any such if). Every one-point 
set is a weak support of ~0; consequently (p does not have a smallest weak support. 

4. 6. EXAMPLE. Let N~, where c~ is an ordinal, denote the ordered product 
[0, 1)•  S(a) 6 (ordered according to second coordinates). Elements of N~ of the 
form (0, 3) will be denoted by 3. N~ will be considered as a lattice. N~ is connected 
relative to its order topology. 

Let X =  [0, 1] and let e be a fixed ordinal with ~ > O. Let F =  C(X, ~.). From 
the connectedness of X it is easy to infer that 

(i) i f f C C ( X , ~ )  and f ( x o ) < f 2  for some xoEX, then f (x)<f2,  for every 
xEX. 

Let F I = { f E F :  f ( x ) < ~  for every xEX}, F2={fEF: f (x )>=f2  for every 
x E X}. Clearly, F 1 ('1 F 2 = O and from (i) infer that F---- F 1 U F 2 . Define cp(f) =f (0)  
for fC  F1 and ~ 0 ( f ) = f ( 1 )  for fE  F2. cp is a (lattice-) homomorphism of C(X, ~ )  
(into the chain ~ ) .  The set A = {0, 1} is the smallest support of ~o (as well as its 
smallest weak support). It follows that the intersection of any two supports of 
cp is again a support of ~o. On the other hand, F =  C(X, ~ )  does not have the 
property K relative to any mukiplicative base ~ for closed subsets of X. 

We have seen that a smallest weak support need not exist. But if X is compact, 
then cr always has a minimal weak support (i.e., a weak support that does not 
contain properly another weak support). This follows immediately from the 
KURATOWSKI lemma ([5], statement (41), p. 88): repeating the  proof of 4. 1 we 
can show that the intersection of a chain of weak supports is again a weak support. 

We shall now turn to the existence of  smallest supports. In some cases it is 
possible to prove that weak supports of ~ are, in fact, its supports. This is, for 
instance, the case when ~o is continuous (in a certain sense) and if functions from 
F that agree on a weak support A of q~ can be approximated by functions that agree 
on neighborhoods of A. A formal statement to this effect can be formulated as 
follows. 

Let A be a closed subset of X and let D be a directed set. Suppose that we can 
define a convergence (1-3 for D-nets (i.e., nets with D as the set of indices) of elements 

of F such that 

(1) .for every f, gE F with UIA=g[A there exist net~' {fn: nED} and {g,: nED} 
of functions for F and a net {U,: n E D} of open subsets of X such thatf, ~) f ,  g, (1~ g, 
A c U , ,  and f,[U,=g,]U,. 

We have 

4.7. Let A be a weak support of q) and suppose that convergences ~ and (2~ 
of D-nets in F and E~, respectively, are defined. I f  ~) satisfies condition (1) and qo 
is eontinuou~ relative to these convergences, then A is a support of q~. 

Let us mention some cases when a convergence satisfying (1) can be defined. 

4. 8. I f  E is a normed linear space, then the uniform convergence of  sequences 
in C(X, E) satisfies condition (1) (relative to any closed subset of X). 

6 S(a) denotes the set of all ordinals ~<c~. 
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PROOF. In a normed linear space closed spheres are retracts of the whole space; 
consequently, we can define a sequence of continuous functions rn: E ~ E ,  n = 1, 2, ,.., 

such that ]]r.(e)[I-<=_1 and r.(e)=e for Nell <=-.1 Let A be a closed subset of X and 
n n 

let f ,  g~ C(X, E ) , f I A  =glA. Set f ,(x) = f ( x )  +r,(g(x)-- f (x))  and g,(x) = g(x) 
for n =  1, 2, . . . .  Clearly, f , - * f  and g, ~ g  uniformly on X; furthermore f ,  fU,= 

{ = g ,  lU~,where U,, = xEX:]Ff(x)-g(x)l[< , U,, is an open subset of X 

containing A. 
Clearly, 4. 8 can be generalized to other types of linear topological spaces 

which have bases of  (closed) neighborhoods that are retracts of the whole space. 
If  such a space does not satisfy the first axiom of countability, then one has to 
consider convergence of  uncountable nets. 

4. 9. Let E be a topological abelian group (written additively) having a base 
(5 of neighborhoods of  the zero-element 0 with card (5 <= m. Let X be O-dimensional 
compact. The uniform convergence of nets of cardinality <=m in C(X, E) satisfies 
condition (1) (relative to any closed subset of X). 

PRoof. Con sider (5 as a directed set; G precedes G 1 iff G D G1. Let f ,  g E C(X, E), 
f [ A  =gIA, where A is a closed subset of X. For  every GE(5 there exists a closed- 
open subset U G of X such that A c U~ and f ( p ) - g ( p ) E G  for p E UG. Define 

fG(P) =g(P)  for p E UG, fG(P) = f ( P )  for p E X"xUG and gG =g.  

A trivial case in which weak supports are is given by the following. 

4. 10. I f  either E or X is discrete, then every weak support of a (p : F ~ E  1 is 
a support o f  9. 

PROOF. If  E is discrete, then the diagonal of E X E is open in E • E; consequently, 
if two functions agree on a subset A of X, then they agree on an open superset of A. 
The case of a discrete X is obvious. 

w 5. Compact case: one-point weak supports 

We shall now consider the following question: for what structures E and E 1 
is it true that all homomorphisms ~o: C(X, E) ~ E  l, where X is an arbitrary Haus- 
dorff  compact space, have one-point weak supports? We conjecture (see [18]) that 
this question can be decided by examining finite spaces. A partial success, con- 
cerning only 0-dimensional compact spaces, has been obtained in [18]. We shall 
quote this result. 7 

We say that a topological algebraic structure E is an s-algebra provided that 
among the operations of E there is a binary operation o satisfying the following 
condition 

(s) for every compact subset C of  E there exist elements 0 c and 1 c such that Ocoe = 
=Ocoe" for every e, e 'EC and l c o e = e  for every eEC. 

7 This result has been announced in [16]. 
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Examples of s-algebras: every topological ring E with unit element is an 
s-algebra; one takes o to be the multiplication, 0 c and lc to be the zero element 
and the unit element of E, respectively. Every ordered set considered as a lattice 
with the order topology is an s-algebra; one takes, for instance, o to be the maximum 
(V) and 0 c = sup C, 1 c = i n f  C for every compact subset C of E. 

5. 1. THEOREM. Let E be an s-algebra and let E 1 be an algebraic structure of 
the same type as E. 8 I f  every homomorphism q~: C ( N 2 , E ) ~ E I ,  where 9 2 is the 
two-point discrete space, has a one-point support, then every homomorphism 
~o: C(X, E) ~ E  1 , where X is an arbitrary Hausdorff O-dimensional compact space, 
has a one-point weak support. 

As it was pointed out in [18] the above theorem fails if "weak support" is 
replaced by "support" in its conclusion. The theorem also fails if "0-dimensional" 
is removed from its assumption. Consider the chain N~ (e > f2) described in Example 
4. 6 and let E = E  1 =N~. It is easy to see that the assumptions of Theorem 5. 1 
are satisfied, but its conclusion fails for X = t h e  closed interval [0, 1]. But note 
also that C(X, E), X =  [0, 1], does not have the property (K) (see. 4); it appears 
that assumptions of this type would enable us to extend Theorem 5.1 to arbitrary 
Hausdorff compact spaces. 

w 6. E-compact spaces 

In the absence of compactness of X the study of supports become more difficult. 
In particular, it may happen that all functions in C(X, E) can be continuously 
extended over some extension eX of X (in fact, C(X, E) may turn out to be iso- 
morphic to C(eX, E)) and homomorphisms of C(X, E) may have very simple 
supports in eX which, however, are not contained in X. To eliminate such difficulties 
one needs to assume that X coincides with some of its extensions; an exact formulation 
of this assumption is that X is E-compact (see statement 6. 3 below). An exposition 
of the various facts concerning E-compact spaces and the related concept of E- 
completely regular spaces can be found in [4], [2], [19], [12], [13]; the purpose of 
the present section is to state in  a concise form some information that is reIevant 
to our discussion. Only 6.4 is proved since its proof cannot be found in the quoted 
literature. 

A space X is said to be E-completely regular (E-compact) provided that, for 
some cardinal m, X is homeomorphic to a subspace (a closed subspace, respectively) 
of some topological power E m of E. 

6. 1. Every structure of continuous functions C(X, E), where X is an arbitrary 
space is isomorphic to the structure C(X', E), where X" is an E-completely regular 
space. In fact, there ix a continuous map q) of X onto X" such that the map ~ defined 
by ~ ( g ) = g ~  for every gCC(X', E) is an isomorphism of C(X', E) onto C(X, E). 

From now on all spaces will be assumed to be Hausdorff. An extension of X 
is a pair (X, eX), where eX is a superspace of X in which X is dense. We will usually 

s E1 has therefore at least one binary operation, but  we do not  assume that E~ is an s-algebra. 
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denote (X, eX) simple by eX. Two extensions eX and elX are said to be equal in the 
sense of extensions (in symbols: eX ~x~ elX) provided that there exists a homeo- 
morphism h of sX onto e 1Jr such that h(p) =p for every p E X. 

6. 2. For every E-completely regular space X there exists an (unique up to ~x~ ) 
E-compact extension f~X of X such that every continuous function f E C(X, Y) where 
Y is an arbitrary E-compact space, admits a continuous extension f*E C(fEX, Y). 

6. 3. Assume that X is E-completely regular. X is E-compact if, and onh, if, 
flEX = X. 

According to 6.2 we can define a map (//of C(X, E) onto C(fEX , E) by setting 
7J ( f )= the  continuous extension f*  o f f  with f*EC(]3~X, E); X being dense in 
flEX implies the uniqueness off*.  In most cases, 7 j turns out to be an isomorphism. 

6.4. Let E be a topological algebraic structure such that all the relations o f  
E are E-compact. Let X be E-completely regular. The map ~ defined by 

~ ( f )  = the continuous extension f*  C C(f~X, E) o f f  E C(X, E), is an isomorphism 
of C(X, E) onto C(fiEX, E). 

PROOF. That kv preserves the operations follows easily from the continuity 
of the operations. Let 0 be a relation in E; assume for simplicity of notations that 
0 is binary. Let f, g E C(X, E), let f*  and g* be continuous extensions o f f  and g, 
respectively, with f*,  g*E C(flEX, E). We have to show that fo(X)g ifff*o(~X)g *. 
The "if" part is obvious. Assume fo(X)g. Define a map h of X into E X E  setting 
h(p)=(f(p) ,  g(p)) for every pEX.  The assumption fo(X)g implies that, in fact, 
h C C(X, 0). Consequently, h admits a continuous extension h* with h*E C(flEX, O)- 
]n other words, h*(p)E 0 for every p E flEX. But h~(p)= (f*(p), g*(p)) is a continuous 
map of fleX into E)< E which agrees with h* on a dense subset of flEX, hence h I(P) = 
=h*(p) for every pEflEX. This implies that h,(p)=(f*(p),g*(p))EO (i.e., 

f*(P)Og*(P)) for every p E flEX; i.e., f *  o(~X)g *. 
Recall that every subspace of a finite power ~" of the reals ~ is ~-compact; 

in other words, every finitary relation in ~ is ~-compact. Consequently, as a par- 
ticular case of 6.4 we obtain: 

For every completely regular space X the structures C(X, ~)  and C(fi~X, ~)  
are isomorphic relative to all pointwisely defined operations and alI finitary point- 
wisely defined relations. 

NOTE. If ~X is an arbitrary extension of X, then 71 is defined only on the 
substructure F~x of C(Z, E) consisting of all those functions f i n  C(X, E) that admit 
an extension belonging to C(eZ, E). Again, the continuity of operations implies. 
that kv preserves them; however, in this case kg need not preserve E-compact relations. 
For instance, let E = ~ ,  X = t h e  open interval (0, 1), ~X=the closed interval [0, 1]. 
F~x consists of all uniformly continuous functions on X. t/, does not preserve the 
relation -< ; in fact, there are functions fE  F~x such that f ( x ) > 0  for every x E X, 
but it is not true that f * ( x ) > 0  for every xEeX. On the other hand, an argument 
similar to that used in the proof of 6.4 shows that in case of an arbitrary extension 
~X of X, 7/preserves all relations that are closed in the respective powers of E. 

The class of all E-completely regular (E-compac 0 spaces will be denoted b y  
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~(E) (R(E), respectively). Note that R ( E ) c E ( E )  and R(E)=R(E1) implies i f (E)= 
= r  1). 

A space E is called admissible if there is a compact space E* with E(E) = E(E*). 
If E is admissible, then there exists a compact superspace Et of E with E(E) = E(Et) 
(for instance, E 1 = fl~,E). 

6. 5. Let E be an admissible space and let E~ be a compact superspace of E 
with E(E)=E(E~). An E-completely regular space X is E-compact if, and only if, 
the following condition is satisfied 

for every Po E f i~ IX \X  there is a continuous function f:  flezX-+E 1 such that 
f [  X ] c E  and f(po)~E. 

Note that the extension fi~X depends only upon the class of compactness of 
E;  in other words, 

6. 6. I f  R(E) =R(E1), then for every E-completely regular X we have peX ~t flE~ X" 

Let us now discuss a few examples. If  E = J  ( = t h e  unit interval [0, 1]) or 
-if E is the space of the reals N, then E(E) is the class of all (Hausdorff) completely 
regular spaces. E(@), where ~ is a two-point discrete space, is the class of all 
.(Hausdorff) 0-dimensional spaces; in fact, E ( E ) = E ( ~ )  iff E is a O-dimensional 
space containing more than one point. R(d)  is the class of all compact spaces. 
I~l(~) is the class of all 0-dimensional compact spaces; in fact ~ (E)=~ l (~ )  /ff E 
is a O-dimensional compact space containing more than one point. In the next section 
we  shall frequently refer to the class R(~f') 9 where ./K is the space of non-negative 
integers ( = t h e  discrete space of cardinality ~o). A discrete space is ~4/'-compact 
iff its cardinality is non-measurable in the Ulam sense. We have R ( E ) = R ( X )  
iff E is JV-compact and E contains a closed copy of ~4/'. Every JV-compact space is 
0-dimensional; every Lindelbf 0-dimensional space is d -compact .  In particular, 
for  every 0-dimensional non-compact subspace E of the reals N we have R(E) = R(,U). 

w 7. Non-compact case: F =  C(X, E) 

The purpose of the present and the next section is to show how the previously 
obtained results can be applied to the case of an arbitrary space X. No general 
theorems will be proved in these two sections; however, a general procedure will be 
described in rough terms and then illustrated by a few theorems concerning par- 
ticular structures E and E 1 . In this section we shall discuss the case when F is the 
whole structure C(X, E); the case of substructures of C(X, E) will be discussed 
in the next section. 

We shall assume that E is admissible; let E1 be a compact superspace of E. 
We denote by C*(X, E) the set of all functions f from C(X, E) such that f[X] is 
contained in a compact subset of E. (If E =  the space of integers, then C*(X, E) 
consists of all bounded functions in C(X, E); however, if E = the space of rational 
numbers, then C*(X, E) does not contain all bounded functions.) By 6. 2 every 

fEC*(X, E) admits an extension f*EC([tE1X, E); in most cases C*(X, E) and 
C([tnX, E) are isomorphic. 

9 This case was first mentioned in [4]. 
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A homomorphism ~o: C(X, E) ~E1 induces a homomorphism ~0* : C(flZl~r; E )  ---* 
~ E ;  ~0" is defined by ~p*(g)=p(g[X) for every gCC(fiE1X; E). Now, fi~X is a 
compact space; suppose that we are able to prove that a set A c fiEIX is the smallest 
support or the smallest weak support of cp*. Assuming that X is E-compact, we 
will try to prove that A c X; here we appeal to statement 6. 5. If  A c X is proved, 
then A is a support of ~0 (or weak support) restricted to C*(X, E); the last step 
is to show that A is a support of the whole ~o. On the other hand, if X is not 
E-compact, then we will try to get a negative result: to show an existence of a q~ 
which does not have such supports as those which exists in the case of a compact 
or E-compact X. 

We shall now illustrate the above procedure. 
To start with we shall reprove a theorem due essentially to BIALYNICKI--BIRULA 

and ZELAZKO [1] (see also [7]). 

7. la. THEOREM. Let B an algebra over a .field K, having the unit element e 
(both B and K are assumed to carry the discrete topology). I f  X is K-compact, then 
every homomorphism q~: C(X, B)-~K has a one point support. 

PROOF. Assume first that X is a two-point space, X =  {Pl, P2}. If there is 
a homomorphism ~o: C(X, B) ~ K  such that none of the points Pi is a support of  q~, 
then there are four functions f ,  gi, i =  1, 2, such that f(pi)=gi(P~) and ~0(f) 
~q~(&) for i = 1 ,  2. The function f = ( f l - g l )  ( f2--g2)  is identically equal to 0, 
but ~ 0 ( f ) =  (~o(f~)-~o(gl))(~o(f2)--~p(g2))r which is impossible. Thus, the 
conclusion of the theorem is satisfied for a two point space X; consequently, by 
Theorem 5. 1, if X is a 0-dimensional compact space, then every ~o: C(X, B ) ~ K  
has a one-point weak support. But B is discrete, hence by 4. 10, ~0 has a one-point 
support. 

If  K is finite, then the theorem is shown; in fact, in this case being K-compact 
is equival6nt to X being 0-dimensional Hausdorff compact. Assume therefore that 
K is infinite and let X be a K-compact space. We shall assume that K is contained 
in B. Let e be the unit element of B; e is also the unit element of K; let C0(X, K) 
denote the set of all constant functions f :  X-~K. For every kEK we denote by 

f(k) the constant function on X whose value is k. We can assume that 

(1) qo(f(k))=k for every kEK; 

indeed, (p restricted to Co(X, K) induces in a natural way an endomorphism of K, 
say a; this endomorphism does not vanish identically ((p(f(e))r  for otherwise 
q~(f) = 0  for everyfE  C(X, B)), hence a is one-to-one; compose ~o with ~-~. Clearly, 
if e -  ~ o ~o has a one-point support then ~0 has also. 

Let K~ be the one-point compactification of K; K~ is a compact superspace 
of K with ~(KI) = ~(K) = g(B). C*(X, B) consists of all functions in C(X, B) having 
finitely many values. Each t rac t ion fE C*(X, B) admits a continuous extension 
f* E C(fi~X, B). Let us set (p*(g)=~o(glX) for every gE(fir~X, B) and, by the first 
part of the proof, (p* has a one-point support {Po} in fiK,X. We shall prove that 
Po EX. 

Assume that Po E flr,X"-,X. There is continuous function go:fiK~X-+K 1 such 
that go[X] c K and go(Po) = oo (where ~ is the ideal point of the one point compacti- 
fication K I of K). Let fo=goIX; clearly foEC(X, B). Let ko=~O(f0). There is a 
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neighborhood U of Po such that go(P)r for every p ~ U. Let A = {p E fiK1X: 
go(p)=ko}; we have A A U = O .  Take a k l E K  with k l C k  o and set g~(p)=k 1 
for p E A and gl (P) = ko for p E fiKiX'x,A, g~ E C(,flK1X, B) and from (1) we infer 
that q~*(g~)=ko. Setting f~ = g l  IX, we have q)(fa)= ko, consequently, ~O(fo-fa) = O; 
but ( fo- f~) (p)EK and (fo--f~)(p)#O for every pEX; therefore f o - f l  has an 
inverse in C(X, B). This contradicts the fact that q?( fo- f~)=O;  hence poEX. 

It follows from the above that {Po} is a support of ~o restricted to C*(X, B). 
Let f l  and fz be two arbitrary functions in C(J(,B) with f1(po)=f2(Po). Let 
A={pEX:f l(p)=f2(p)};  A is a closed-open subset of X. Set f3(p)=e for 

( ~e(e)'~ e pEA, f3(p)=O.for p E X \ A .  Then f3EC*(Z,B), therefore (p(f3)=~o j j =  . 
On the other hand, the function ( fa-f2)f3 is identically equal to 0, therefore 
~~176 = (P((fl-f2) ' f3)= 0; therefore ~o(fl-f2 ) - - 0 ;  thus q0(f i )=  
= (P (f2). Consequently, {Po } is a support of ~o. 

The following is the converse of 7. 1.a. 

7. 1. b. THEOREM. Let K be afield with the discrete topology. I f  X is not K-compact, 
then there exists a homomorphism ~o: C(J(, K ) ~ K  which does not have a one-point 
support in X. 

PROOF. Every function fE  C(X, K) admits an extension f*  E C(fiKX, K); 
take a point Po EfiKX\ X (note that f lKXr and let q~(f)=f*(Po). 

Theorem 7. 1.a and 7. 1.b such be compared with the results of [1] (or with 
a more general version of these results given in [7]). If  K is finite, then (as it was 
already observed) X is K-compact iff X is compact; hence, in this case, a discrete 
X is K-compact iff X is finite. If Ro ~ca rd  K <  Rx, where R~ is the first measurable 
cardinal (in the Ulam sense), then X is K-compact iff X is N-compact; hence, in 
this case, a discrete X is K-compact iff card X <  RI. In general, setting m = card K, 
we have that a discrete X is K-compact iff card X <  R(m). R(m) is used here in the 
sense of [7]. 

Theorem 7. 1.a is not the best one. The proof shows that this theorem remains 
valid if K is integral domain satisfying the condition 

(2) for every space X and every non-constant homomorphism ~o: C(X, K)~K,  
if  fE C(X, K) and f(p) ~ 0 for every p E X, then (p (f) ~ O. 

It has been shown in [11] that the ring of integers satisfies (2) (see [11], w 5, (v)). 
Consequently, Theorem 7. 1.a is true if K is the ring of integers. (The last statement 
is more general than Theorem 2 in [11].) 

REMARK 1. Condition (2) obviously implies the following one 

(3) for every non-constant endomorph&m ~ of K we have ~(k)~0 for every 
kEK, k~-O. 

We do not know if (3) implies (2). It is easy to see that (3) is equivalent to 

(3a) every endomorphism c~ of K can be extended to an endomorphism ~ of K, where 
~2 is the field of quotients of K. 
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Similarly, (2) is equivalent to 

(2a) .]'or every space X, every homomorphism q~" C(X, K ) ~ K  can be extended 
to a homomorphism (o: C(X, ~2) -+K, where if2 is the field of quotients of K. 

We shall now discuss the case where E = E  1 is an ordered subgroup of the 
reals ~ .  In other words, we shall discuss maps q) of  C(X, E) into E. That preserve 
+ and <=. I f  E = ~ ,  then such maps coincide with integrals (in the case of  compact,  

o r  more generally, ~-compact ,  X);  consequently, they need not to have finite 
supports. In contrast to this we shall show 

7. 2. a. THEOREM. I f  E is a proper ordered subgroup of the additive group of 
the reals ~ and X is an ~Ar-compact space, then every homomorphism q~: C(X, E ) ~ E  
has a finite support. 

One can assume without the loss of  generality that  E contains the number  1. 
This assumption will be kept throughout the following discussion. 

The above theorem for the case of  a ~ - c o m p a c  t X has been announced in [10]. 
We shall start with the proof  of  this particular case. We need the following: 

7. 3. LEMMA. Let E be a subgroup o f  the additive group of the reals. Assume 
that there is a sequence ~1, v-2, ... of  positive numbers such that 
(a) z~c~,, < + 

n 

and 
(b) for every sequence x n C E with x,, -~ 0 we have ~ c~nx, C E. 

n 

Then E = ~ .  

PROOF. Let xCE,  x r  Then c~,x~E for n = l , 2  . . . .  ; hence E comains a 
sequence convergent to 0, therefore E is dense in ~ .  

Let c be an arbitrary real. By induction one can define a sequence x l ,  x 2 . . . .  
of elements of E such that 

(4) ]elxl  + ' "  +o~,x,-cl  < min c~,, 2 ( n +  1) c~"+l " 

Clearly, ~ e~x, = c. I t  remains to show that x,-~0.  We shall show that Ix~+~t < 
// 

1 
< - -  for n =  1 ,2 , . . .  Let c ~ = ~ x l + . . . + e n x , - c ;  we have 

n + l  

[c,[ < rain 2n ~' 2 ( n + l )  c~+i " 

N o w  

1 1 
[x.+ii  - -  = [c~ + I .3) <= 

~'n+ 1 ~ n +  1 

1 1 
<= --(Ic,+:~,+lX,+~[+[c,l)~,+ 1 = ~-~-+ (Ic,+11 + [c,,/) <= 

%+i n + l  n + l  
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Proof of Theorem 7.2.a for a ~-compact X. Let X be @-compact (i.e., 0-dimen- 
sional and compact) and let q~: C(X, E ) ~ E  be a given homomorphism. By remarks 
after Theorem 4. 2, :p has a smallest weak support A. Let (~ be the uniform con- 
vergence of sequences in C(X, E); by 4. 9, (~ satisfies condition (1) of  w Clearly, 
q~ is continuous relative to (~ and the usual convergence in E; consequently, 
A is the smallest support of q~. It remains to show that A is finite. 

Assume A is infinite. There is a sequence U1, U2,...  of  mutually disjoint closed- 
open subsets of X with U, A A ~ O f o r  n = 1, 2 . . . .  Set f,(p) = 1 for p E U, and 
f , ( p ) = 0  for p E X \ U , .  Let c~,=~0(f,). We have %CE and % > 0  (if c~,=0, then 
X \ U ,  would be a support of q~). On the other hand, q)(fl +"" +f,)<=q~(g), where 
g is the function identically equal to 1; therefore the series ~c~, is convergent. 

n 

Let x 1 , x 2 , ... be an arbitrary sequence of elements of E with Xn ~0.  The function f ,  
defined by f (p )=x ,  for pE U, and f (p )  = 0  for p ~ X ~ U  {U,: n =  1, 2 . . . .  }, belongs 
to C(X, E); moreover, f =  ~ Xn'f,, the convergence of the series being uniform. 

n 

It follows that ~ c ~ , . x , = ~  x , . c p ( f , ) = ~  q)(x,.f,)=~o(f)EE; consequently, by 
n t t  n 

Lemma 7. 3, E = N ,  contrary to the assumption. 
To complete the proof  we need still two lemmas. 

7. 4. LEMMA. For every f E C(X, E) there is a sequence gl, gz .. . .  of fimetions 
from C(X, E) such that each gn has only finitely many values and the set of functions 
nf-gn, n = 1, 2, ..., is bounded in C(X, E) (i.e., there is an h E C(X, E) such that 
Inf-g,] <=h for every n). 

PRoov. Select a sequence of numbers 0 < al < a2 < . . .  such that an ~ E and 
an~oo. For every n select a bnEE with aZ<b,. Let A 1 = {pEX: lf(p)I<al} and 
A,={pEX: an_l<[f(p)[<a,} for n = 2 , 3 ,  . . . .  The sets An are closed and open 
and U An=X. Define h(p) = bn+2  for pEA,. Clearly, hEC(X,E) and 

n 

f2(p)+2<h(p) for every pEX. 

Now, for a given n select % < ~ < . . .  < c~ so that 

~0~--n2-<:n2~s, l < e i + l - e i < 2  , cq~E. 

Since Cq+l-~i  >1  (and lEE) ,  we can find fliEE with cq</~i <cq+l for  
i = 0 , 1 , . . . , s - 1 .  Set B~={pEX:cq<nf(p)<e~+a} for i = 0 , 1 , . . . , s = l .  B~ are 
closed and open; the set B =  U {B~: i = 0 ,  ..., s - l }  is also closed and open. Set 

g,(p)=/~, for pEB,, gn(p)=O for p E X \ B ,  
We then have 

Inf(P) - gn(P)[ <= h(p) for every p E X. 

Indeed, if p E B~ (for some i), then 

In.f (P) - gn(P)] <= cq + 1 - cq 2 = h(p), 

on the other hand, i f p  E X \ B ,  then [nf(p) l =:~n 2, hence lf(P)[ ~n ,  therefore lnf(P)<= 
<-_ f~(p) <= h (p). 

We shall now consider additive maps of C(X, E) into E that are bounded 
(i.e., they carry bounded sets of functions in C(X-, E) into ,bounded sets of numbers). 
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Every homomorphism of C(X, E) into E is an additive bounded map; the difference 
of two additive bounded maps is again an additive bounded map. 

7. 5. LEMMA. Let C**(X, E) be the set of all functions in C(X, E) that have 
only finitely many values. I f  two additive bounded maps of C(X, E) into E agree on 
C**(X, E), then they agree everywhere on CO(, E). 

PROOF. It suffices to show that if an additive bounded map 0 of C(X, E) 
into E vanishes on C**(X, E), then 0 vanishes everywhere. Let f be an arbitrary 
function in C(X, E). By Lemma 7.4;  there exists a sequence gl, g2, ... of functions 
from C**(X, E) such that the set n f - g , ,  n =  1, 2 . . . .  , is bounded. Consequently, 
the set of numbers O(nf-g,), n = 1, 2, ..., is bounded. But 0(g,) = 0, hence 
O(nf-g,) = n 0 ( f ) ;  therefore 0 ( f ) = 0 .  

Proof of Theorem 7. 2a for the general case. Recall the material of w 6 and the 
remarks at the beginning of the present section. Let E1 be a 0-dimensional compact 
superspace of E. We have [3~1X ~xxt fi~X. Let q) be a homomorphism of C(X, E) 
into E; we can assume that q~ does not vanish identically. Since C*(X, E) is iso- 
morphic to C(~X,  E) (and the theorem is true in the compact case), we infer that 
q~ restricted to C*(X, E) has a finite support A contained in fl~X. Let A = {Pl . . . . .  Pk}. 
It is clear that we have 

(5) q~(f) = ~lf*(P~) § "'~ for every f E C*(X, E) 

where el . . . .  , ek are fixed numers and f *  denotes the continuous extension o f f  
over/~gX. We can assume that all e~ are positive. 

We shall prove that A c X, Indeed, assume that P~o E fi~X'x.X. Since X is 
X-compact,  there is a continuous function f6 ~ : /~X ~JV *  ( X * = Y U { ~ }  is the 
one-point compactification of Jg') such that f~(Plo)= co and f * (p )EX for every 
p E X; see 6. 5. Clearly, it cart be assumed that f*(Pi) = 0 for i ~ io. Let f0 =fo* IX; 
we have (in view of the assumption 1 EE)f  o E C(X, E). Let fo (") =loAn for n = 1, 2 . . . . .  
Clearly, fo (") E C*(X, E), hence, from (5) we infer that ~o(fo(")) = % .  n. But 0 <=fo (") -<-fo, 
therefore O~o(fo("~)<=qO(fo) for n = 1, 2, ... ; and this implies that, contrary to  
the assumption, % =0 .  Thus A c X .  

Knowing that A c X we can rewrite (5) as follows 

(6) ~o(f) = ~lf(P~)+ "'" +C~k(P~) for every fE C*(X, E). 

It suffices to show that (6) holds for every .rE C*(X, E). This, however, follows 
immediately from Lemma 7. 5. Indeed, the left-hand side of (6) defines a homo- 
morphism of C(X, E) which agrees with (p on C**(X, E) (in fact, on C*(X, E)). 
Therefore the left-hand side of  (6) agrees with ~0 everywhere on C(X, E). 

Theorem 7. 2a is shown. 
The converse of Theorem 7. 2a is obvious. 

7. 2b. THEOREM. I f  X is not E-compact, then there exists a homomorphism 
q~ : C(X, E)-~E without a .finite support. 

PROOF. It suffices to set 

~o(f)=f*(po) for every fEC(X, E), 
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where Po is a fixed point of f l E X \ X  and f*  denotes the continuous extension of  
f w i t h  f * :  fl~X-+E. It is clear that no compact subset of X is a support of ~o. 

As a still another example of the above procedure one could mention a gen- 
eralization of a result of Turowicz due to R. C. Moore. TUROWICZ [20] considers 
multiplicative functionals ~0: C(X, ~ ) ~  that are continuous with respect to the 
uniform convergence and proves that if X is compact, then every such functional 
has a countable support - -  in fact, Turowicz obtains a representation formula 
for such functionals. 1~ R .C.  MOORE [6] proves that every such functional has 
a countable compact support in X (and hence is representable in Turowicz's form) 
iff X is ~-compact.  ~1 

In [2] BLEFKO proves a result ~2 related to Theorems 7. la and 7. lb and Theorem 2 
in [111. 

7. 6. THEOREM (BLEFKO). Let N be the ring of rationals with the standard topology. 
Every homomorphism ~o: C(X, ~ ) ~  has a one-point support in X if, and only if, 
X is X-compact. 

The above seems to be the only result concerning a non-locally compact 
structure. 

w 8. Non-compact ease: Fc C(X, E) 

When dealing with substructures F of C(X, E) it can always be assumed that 
F separates points and closed sets of X. A formal statement to this effect is as 
follows. Let f~, "",fk be functions from X into E. We denote by ( f l ,  "-',fk) the 
:map of X into the product E k whose value at a point pCX, ( f l ,  ... fk)(P), is the 
point ( f l  (P),- . . ,  fk(P)) of E k. A class F of continuous functions from X into E 
is called an E-separating class for X provided that for every closed set A c X and 
every point p C X \ A  there is a finite number of functions f l ,  ..., fk from F such 
that ( f l  . . . . .  fk)(P)~ cl (f~, ...,fk)[A], where cl denotes the closure in E k. The 
following statement is a generalization of 6. 1. 

8. !. Let F c  C(X, E). There exists an E-completely regular space X'  and 
.a continuous map �9 of X onto X'  such that every fC F can be (uniquely) written 
in the form f = g o  8); furthermore, the elasx F' Of all those gEC(X',  E) for  which 
g o ~ C F ix an E-separating class for X'. 

Thus, if we let (as in 6. 1) ~(g) = g o  ~ for every g C F', then ~ is a one-to-one 
map of F" into F and obviously �9 is an isomorphism relative to pointwisely defined 
operations and relations. In other words, F is isomorphic to an E-separating 
:structure. 

In the preceding section when studying the whole structure C(X, E) we used 
certain relation between X and one of the maximal compactifications (statement 6.5). 

lo Turowicz has formulated his result only for the case of a compact metric X. However, in 
[3], BOURGIN shows that the same procedure can be applied in case of arbitrary compact (Haus- 
dorff) spaces. 

n This result has been announced in [15]. 
12 This result has been announced in [14]. 
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Sometimes this procedure can be applied also to substructures of C(X, E). For 
some substructures F of C(X, E)  it is possible to assign a compactification cX 
of X such that all homomorphisms of F have support of a certain type in X iff 
certain relation holds between X and c Jr. This procedure was applied in [8] to sub- 
structures of C(X, ~) ,  where ~ is the ring of the reals; let us briefly recall the k~own 
facts. 

If  X is compact, then all homomorphisms of the ring C(X, ~ )  into ~ have 
one-point support. A subset P of a space X is said to be Q-closed in X provided 
that for every poCX", ,P there is a continuous function f :  X~[0 ,  1] such that 
f ( p o ) = 0  and f ( p ) > 0  for every p CP. For an arbitrary (completely regular) space 
X all homomorphisms of the ring C(X, ~ )  into N have one-point supports in X 
iff X is Q-closed in fiX. Consider now subrings F of C(X, N) such that (a) F contains 
all constant functions on X, (b) F is inverse closed (i.e:, i f f ~ F  and f ( p ) r  for 
every p E X, then 1/fC F), and (c) F is closed with respect to uniform convergence. 
It was shown in [8] (Theorem 2) that to each subring F satisfying the above conditions 
it is possible to assign a compactification cX  of X such that all homomorphisms 
of  F have one-point supports in X iff X is Q-closed in cX. The compactification 
cX  can be defined, for instance, as the smallest compactification such that all bounded 
functions in F can be continuously extended over cX.13 It was shown in [9] that 
similar theorems hold true for some linear sublattices of C(J(, ~) .  

In this section we shall give still another illustration of the above procedure. 
We shall obtain results paralleling those of [8] but concerning some subrings of 
C(X, ~ ) ,  where ~ is the ring of integers (homomorphisms of the whole ring 
C(X, :~) have been studied i~ [11]). These results, in turn, will be applied to obtain 
a characterization of the class of strongly non-measurable cardinals in the Ulam 
sense (see [121). 

8.2a. THEOREM. Let F be a subring of  C(X, ~ )  satisfying the following conditions: 
(a) F contains all constant functions. 
(b) f ~  F iff  all truncations o f f  belong to F;  14 
(c) F is closed under composition with functions ~: ~ (i.e., f o r  every 

f 6 F and for every c~ : S ~ ~ ,  the composition c~ o f  belongs to 17); 
(d) F is ~-separating. 
Let cX be the smallest compactification such that every function f in F admits 

a continuous extension f * :  c X ~ U  { +.+_ ~}. I f X  is Q-closed in cX, then every homo- 
morphism ~o : F ~  has a one-point support in X. 

The proof  of this theorem is almost identical with that of Theorem 2 in [11]; 
let us only discuss the necessary changes. The compactification cX is 0-dimensional; ~5 

13 cX can also be defined as the smallest compactification such that every function f in F 
admits a continuous extension f*:cX ~ ~ U{_+ ~}, where ~ U{_+ ~} is the (unique) two-point 
compactification of ~.  

14 The i-t h truncation of f is defined by f(~) = - i V (fAi). 
as It is useful to formulate a general statement concerning such compactifications. 
Let E be a compact space, let x be an E-completely regular space, and let F be an E-separating 

class for X. 
(a) There exists the smallest compactification cX of X having the property 

(i) every f ~ F admits a continuous extension f*: cX ~ E. 
(b) This compaetifieation eX is E-completely regular. 
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hence if Po E e X \ X ,  then there is a continuous function g: cX~[0, 1] such that 
g(.Po) = 0 and g(p) > 0  for every p E X. Using 0-dimensionality of eX we can modify 
g so that its values on X are of the form 1In. Taking the reciprocal of g we obtain 
a cor~tinuous function f* :  e X ~ U { •  with f * ( p o ) = ~  and 0 < f ( p ) < +  
for every pEX. It is now clear that the considerations of [11] can be applied if 
we shall show that F contains all functions f from C(X, ~ )  that admit continuous 
extensions f* :  c X ~ U { ~ } ,  This will be accomplished in the following 
two lemmas. 

8.3. LEMMA. Let X be a compact space and let F be a subring of C(X, ~ )  
that satisfies (a) and (c) of  Theorem 8 .2a .  I f  F distinguishes points of X (i.e., 
if  for every p, q E X with p # q there is an f E F with f (p )  # f(q)),  then F= C(X, ~) .  

PROOF. A straightforward compactness argument shows that for each pair 
of disjoint dosed subsets A and B of X there is an f E  F with f ( p ) =  0 for p E A and 
f ( p ) = l  for pEB. Let g be an arbitrary function from C ( X , ~ ) ;  let kj . . . .  , k ,  
be all the values of g. Let A~ = g-l[ki]. There are functions f l ,  ..., f~ E F such that 
.~(p) = 0  forpE t . ){Aj : j< i}  a n d f i ( p ) =  1 for p E U  {Aj:j>-i}. Let f = f~ + ... +.~. 
We havefE F a n d  f (p) = j f o r p  E Aj. It suffices to composefwith a function c~: ~'-~Y" 
such that a(j) -~ kj for j = 1, 2, .... n. 

8.4. LEMMA. Under the notations and the assumptions of Theorem 8.2a, F 
contains all functions f on X that admit continuous extensions f* :  cX-~NU {_+~}. 

PROOF. Let F* be the set of all bounded functions in F. It follows directly 
from condition (d) that the class of all continuous extensions of members of F* 
over CX distinguishes points of cX (use also footnote~S). Consequently, by the 
preceding lemma, F* contains all bounded function from C(X, ~ )  that admit 
continuous extensions over cX. The lemma now follows directly from condition (b). 

Note that in the converse of Theorem 8.2a we can relax the condition on F. 

8.2b. THEOREM. Let F be an arbitrary subring of C(Z, ~ )  that is ~-separating 
and let cX be defined as in 8.2a. I f  X is not Q-closed in cX, then F admits a homo- 
morphism qg : F ~ ~ which does not have a one-point support in X. 

PROOF. There is a point p o E c X \ X  such that for no continuous function 
g: cX--,[O, 1] it is true that g(Po)=0 and g(p) > 0  for every p EX. It is clear that for 
every continuous extension f* :  c X ~  U { + ~o} of an fE  F we have f*(Po) E ~ -  
Consequently, the formula q~(f)=f*(P0) for every f E  F defines a homomorphism 
of F in to  A e, Clearly, ~p does not have a compact support in X. 

We are now ready to give the characterization of the class A e of strongly non- 
measurable cardinals (see [12]), 

(c) This compactification cX can also be characterized as the compactification having property 
(i) and the following one 
(ii) for everyp, q~cX~X, if p#q, then there is an fEF such that f*(p)#f*(q), where f* is the 
continuous extension of f with f* : cX-E. 

(Note that the implication in (ii) holds for every p, q E cX). 
Verification of the above statement is routine. 
In the proof of Theorem 8.2a we apply this statement with E= ~e u{_ ~}. 
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8. 5. THEOREM. Let m be a cardinal satisfying m ~o = m and let X" be a discrete 
space of cardinality m. The following are equivalent 

(a) mEJg;  
(b) there is a subring F of C(X', :~) such that F is ~-~.-separating, every homo- 

morphism q~ : F ~ ~ has a one-point support in X,,, and card F= ra. 

PROOf. Let mE~g. By Theorems 4. 1 and 5. 1 in [12], there is a class H of 
continuous functions h:fXm~[O, 1] such that h ( p ) > 0  for every pEX., and 
every hEH and for every p EflX,, \X,,  there is an hEH with h(p)=0;  further- 
more, card H=m.  Using 0-dimensionality of fiX,, we can assume that all the 
functions h in H have values of the form 1In on X,~. Let F0 be the class of the 
reciprocals of the restrictions of members of H to X ' ;  let F 1 be an arbitrary ~e_ 
separating class for Arm with card F1 = m. Let F be the smallest subring of C(Xm, Z) 
containing Fo U F 1 and satisfying conditions (a), (b), and (c) of Theorem 8.2a. 
From m so = m  we infer that card F<=m. It is easyto see that X,~ is Q-closed in the 
corresponding compactification cZ" of X ' .  Consequently, the conclusion follows 
directly from Theorem 8.2a. 

Conversely, assume that (b) is satisfied. Let cX" be the compactification 
corresponding to F. By Theorem 8.2b, X,, is Q-closed in cX'. From card F = m  
we infer that cX" has a base of cardinality m; in fact, the class of all continuous 
extensions f*  : cX~, ~ Z  U { _  oo} of functions f E  F is a ~ U  { +_ co }-separating 
class for cX,,. Consequently, by Theorem 5. 1 in [12], m E-~'. 

It is easy to see that if the cardinal m in the above theorem is of the form 
m -- 2", then we can find a ring F satisfying (b) which is closed relative to any system 
of m operations each having <-rt arguments. 

Theorem 8. 5 was announcend in [12]. As it was pointed out in [12], a similar 
theorem can be proved for subrings of C(X,,, ~) (where ~ is the ring of the reals). 
In general, with the aid of the class M one can prove for various structures E the 
existence of substructures F of C(X', E) O.e., of direct products of copies of E) 
such that F has essentially the same homomorphisms into E as C(X,, E) but F 
is not isomorphic to any C(X, E). Furthermore, for sufficiently large Ulam non- 
measurable cardinals, F can assumed to be closed relative to large systems of 
operations of huge numbers of arguments. This indicates the impossibility of 
axiomatic description of direct products of E by means of formulas (of possibily 
infinite length) involving only elements and homomorphisms of C(X', E), provided 
that the number of these formulas and their length is Ulam non-measurable. More 
remarks on this subject will be published later. 

w 9. Concluding remarks 

In Section 7 we used the substructure C*(X, E) to reduce the study of supports 
to the compact case. Sometimes a different procedure is possible. If  E admits a 
compact superstructure E*, then C(X, E) is isomorphic to a substructure o f  
C(fE,X, E*). The same is true for substructures of C(X, E). We can therefore use 
C(fE,X, E) to reduce the study of supports to the compact case. This procedure 
can be used, for instance, when C(X, E) is considered as a lattice of continuous 
functions with values in a chain E; indeed every chain E can be extended to a 
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compact chain. In fact, this procedure has been used implicitly by several authors in 
the study of homomorphisms of lattices of continuous functions. The author plans 
to publish a paper containing further applications; it will be shown that results 
similar to those discussed in the preceding section can also be obtained for some 
sublattices of  C(X, ~). 

Representation theorems for homomorphisms frequently lead to the so-called 
"homeomorphism theorems". The first such theorem is due to Banach: if X and 
Y are compact metric spaces and C(X, ~)  and C(Y, ~)  are isomorphic as Banach 
spaces, then X and Y are homeomorphic.  We shall say that a structure E is (topologi- 
cally) determining, provided that for every E-compact spaces X a n d  Ythe isomorphism 
of C(X, E) and C(Y, E)  implies the homeomorphism of X and Y. It  follows f rom 
6. 4 t h a t / f  the relations of E are E-eompacL then the class of all E-compact spaces 
is a maximal Class of spaces in which the above implication may hold. There is a group 
of theorems asserting that the various structures on the set N of the reals are determin- 
ing. Perhaps the best known is the one in which N is considered as a ring; at the 
same time, this is the weakest theorem in this direction. In fact, if ~b is a ring- 
isomorphism between C(X, ~)  and C(Y, ~), then �9 is an isomorphism relative 
to all pointwisely defined operations and relations. The strongest out of  presently 
known theorems is the one where ~ is considered as a lattice. It  would be interesting 
to  see whether this is, in fact, the strongest possible theorem in this direction. The 
question can be formulated as follows. Suppose that E = { N ;  {0o, ..., 0r ...}~<~; 
{Q0, ..., Q,},<p} is a determining structure on the reals N. Is it true that every iso- 
morphism between C(X, E) and C(Y, E) is, in fact, a lattice-isomorphism? 

(Received 22 August 1968) 
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