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SOME REMARKS ON A PROPERTY
OF TOPOLOGICAL CARDINAL FUNCTIONS

By
A. HAINAL and I, JUHASZ (Budapest)

Introduction

In the paper [1] one of the authors has introduced the concept of the Darboux
property of topological cardinal functions. In [1] several results and problems
were stated. The main aim of this paper is to give some further results and simpler
proofs for the results of [1].

In § 2 Theorems 1 and 2 give some information on the Darboux property of
the weight function on the classes of Ty- and Ts-spaces respectively. However the
results are still incomplete.

The rest of the theorems in this § deal with the density function and give an
almost complete discussion of its behaviour on the different classes of spaces.
We point out Problem 2 which remains unsolved.

In §3 we prove Theorem 5 concerning linearly ordered spaces which settles
the Darboux property of the weight (and density) function on these spaces. Without
giving exact references we mention that at least in special cases the result
must be contained in some theorems of W. Sierpinski and D. Kurepa concerning
the Suslin problem. ‘

In §4 we introduce a new class of spaces lying between T,- and T,-spaces,
called strongly Hausdorff spaces, and we prove a special result relevant to a problem
stated by J. pE GrooT [2].

§ 1. Notations. Definitions

|H| denotes the cardinality of the set H. We assume that each ordinal is the
set of all smaller ordinals.

& n,, ... denote ordinals;

o, f, @, ¥, ... denote cardinals (i.e. initial ordinals);

A will always denote a limit cardinal.

ot denotes the immediate successor of the cardinal «.

If n is a limit ordinal, cf (y) is the least cardinal, which is cofinal with 7.

The cardinal « is said to be regular if cf (x)=o and singular otherwise.

A regular limit cardinal is said to be inaccessible.

A limit cardinal 1 is said to be a strong limit cardinal if « <2 implies 22 <.
(We sometimes write exp o for 2%)

A strong limit inaccessible cardinal is called strongly inaccessible.

We will often make use of the generalized continuum hypothesis which will
“be briefly referred to as G.C.H. w, denotes the increasing sequence of infinite
cardinals, w,=w.
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26 A. HAJNAL AND I. JUHASZ

Capital letters K, H, ..., X, Y, ... denote sets, R, S, D, ... denote topological
spaces.

The class of all topological spaces will be denoted by 7, while the class of
Tspaces will be denoted by 7, i=0, ..., 5, respectively. & denotes the class of
linearly ordered spaces provided with the usual interval topology.

A topological cardinal function is a function defined on a certain class of topolog-
ical spaces with cardinal values.

In this paper we will consider the following cardinal functions.

The weight function w, defined as usual by

w(R) = max {o, min {|B|: for the open bases B of R}}.
The density function d.:
d(R)=max {o, min {|S|: for ScR, S=R}}.
The Spréad Junction s, where »
s(R) =max {o, éup {{D|: Dc R where D is a discrete subspace of R}}.

The space R will be said left separated (right separated) if there exist a well-
ordering {x:};., =R of the points of R and a sequence {U,},,, of type ¢ of open
subsets of R such that x, € Uy and x, ¢ U; for n <¢ [x, ¢ U, for n=¢] for every <o
respectively.

To have a brief notation we introduce the following symbols.

Let & be a cardinal function defined on the class € of topological spaces;

(*) _ (D, €) >

denotes that the following statement is true.
For each R¢ ¥, ®(R)>o implies that there exists a subspace S CR such that
D(S) =0
(@, ¥)+o denotes the negation of the above statement.
- If (@, ¥) >« holds for every [regular] a then @ is said to have the [regular]
Darboux property on %.

(¢ %) [0, €] 4

denotes that the following statement is true:

If for each a~< A there exists a subspace S R with a= &(S)<A then there
exists a subspace S, R with &(S,)=A.

[®, €]+ A denotes the negation of this statement.

If & has the Darboux property on ¢ and [®, €] —~A4 holds for every A then &
is said to possess the closed Darboux property on €.
. The concepts of (regular, closed) Darboux properties were formulated in [1].
The introduction of the symbols (%) and (s %) depending on the parameters
o, A enables us to give a more detailed analysis of these properties.
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TOPOLOGICAL CARDINAL FUNCTIONS 27

§ 2. The Darboux properties of the weight and density functions

First we are going to deal with the weight function w. In this case we know
negative results only, except some trivial positive facts. :

ToeorReM 1. If A is a singular cardinal, then
(v, 7))+

- Proor. Let H be a set of potency A, provided with the topology whose non-
trivial (i.e. different from H) closed sets are exactly those of cardinality not greater
than cf (1). As every one-point set is closed in H, it is a T;-space, indeed.

For each Kc H, let w*(K) be the smallest cardinal B such that there existsa
system £, {2|=p of non-trivial closed subsets of K, with the property that every
non-trivial closed subset of K is contained in one of the elements of £. Since each
base for the closed sets in K has this property we get immediately

w*(K) = w(K).

On the other hand, if £ is the above mentioned system of power w*(K), let
B be the system of all sets of the form Z\ {x}, where Z¢® and x€K. Then
1B =8| cf (1) =w*(K) cf (1), because Z¢ £ implies |Z|=cf (1). At the same time
% is a base for the closed sets in K for if S is an arbitrary non-trivial closed set in X,
then there is a set Z¢€ £ with S Z, and so we get

S= N (Z\{x}).
xX€ZN\S
These considerations show immediately
_ w(K) = cf (1)- w*(K)
and so w*(K)=cf (1) implies
w(K) =w*(K)

and w*(K)<cf (1) implies w(K)=cf (A) <i. Now assume w*(K)=cf (1). We will
prove that w*(K)=w(K)s1. Assume on the contrary, that w*(K)=1 and let &
be the required set-system of power A. Let the cardinals o, be chosen for each
§=<cf (2) such that a.<a, if £<#n and

2 Ge=4A

E<cf(d)
The system £ can be represented in the form
2= U g,
g<ef(®)

where {<n implies 8,8, and |€;]=a,. Then |&,|<w*(K) for each &<cf (1),

and so one can find a non-trivial closed subset of K, say Sg, with S, Z for each

Zeg,. Let
E<ef(D)

Then, by definition, [S,/=cf (1) and so | U S¢=|S|=cf()), ie. Sis a closed
é<cf(d)
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28 A. HAJNAL AND I. JUHASZ

subset of K. Now if Z is an arbitrary element of ¢, then Z €&, for some & <cf (),
and so
S SCZ,

which contradicts the definition of £, consequently
wH(K) = w(K) # A.

Finally, we have to prove w(H)=A. Let, indeed, B be an arbitrary family of
non-trivial subsets of A with |B|<Al. Then |U B|=|B|cf (A) <4, hence w(H)=A.
This obviously implies w(H) > 4.

THEOREM 2. 2*=ua* implies
(W: ayS)_+><x+

ProoF. Let D, be the discrete topologlcal space of power « and fD, its
Stone—Cech compactlﬁcatlon It has been proved by B. Pospi$iL (see [3]) that
there exists a point p € fD,\ D, whose every base of nelghbourhoods has the cardi-
nality 2%, in other words, the character y(p, ﬁD ) of pin D, equals to 2% It follows
from this that the character x(p, R) of p in D,U{p}=R is also 2* because gD,
is regular and R is dense in it. Trivially R belongs to J5. Now let AcD,, 4 its
closure in R and A? its closure in gD,. It is well-known that 4? is open-and-closed
in BD, and so A=A4fNR is also open in R. But then p¢ 4 implies :

x(p, A)=y(p, R)=2"

Let SR be an arbitrary subspace of R. Then there are three possibilities: (i), (ii)
and (iii).
(@) p4¢ S, then S is obviously discrete, and so w(S)=|S|=u.
(ii) p€ S but pQS\{p} then S is discrete, too, thus w(S)=|S|=a.
(iii) p€ S and p€ S\{p}; it means that S\{p} is dense in S, so (as we have
seen above)
1o, 8) = x(p, S\{p}) = 2*

which immediately gives us w(S)=2* Hence every subspace of Rhas a weight either
at most o« or 2% This proves Theorem 2.

COROLLARY. If G. C. H. fails then w does not possess the regular Darboux
property on Js.

After this manuscript had been completed we obtained a result saying
(w, T3)-+a*, if at=2% This result is going to be published in our joint paper
“On hereditarily a-separable and a-Lindeldf spaces™ in the Annales Univ. Sci. Buda-
pest, 11 (1968).

From this result, together with the above Theorem 2 we can get easily that for
any o, which is not strong limit or inaccessible, (w, Z,)-+a holds. However, we
still do not know the answer to the following problem.

ProsLem 1. Is (w, F;) 2% true for i=3, a=w?
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TOPOLOGICAL CARDINAL FUNCTIONS 29

The following eardinal function we shall consider is the density. In this case
at Jeast assuming G.C.H. we can give a rather complete discussion of the symbols
() and (k ). The only problem left open is the one stated on p. 34.

The following Lemma 1 was first published in [6] (Theorem II). We give here
a new proof of it, which does not make use of transfinite induction. The same idea
will be used in the proof of Theorem 5.

LemMma 1. Each R€J contains a left separated subspace S R with |S|=d(R).

ProoF. Let .
M R={g;: {<p}

be an arbitrary well-ordering of R. A point g€ R will be called minimal if it has
a neighbourhood U,, whose minimal element in the above well-ordering is g. Let

) S={p:: ¢E<o}

be the well-ordering of the set of all minimal points of R induced by the well-ordei-
ing (1). Then S is dense in R and so d(R)=|S|. Indeed, if G is an arbitrary non-
void open set in R then there exists a point ¢ € G with a minimal suffix in the well-
ordering (1). Hence, by definition, g€ .S and so GN.S=0.

On the other hand it is trivial, that if p,€ S and U, is the nelghbourhood of
pe Whose first element is p, then U, does not contain any predecessors of p;.

COROLLARY. If o is regular then
d, T7)—~a.

ProoF. Let, indeed, R¢7 and d(R)=>0a. According to Lemma 1 there is a
sequence S={p,: €<g} of points of R such that ¢ =« and every p, has a neigh-
bourhood Uy not containing any points p,, n<¢&. Let

T={p:cS: ¢<a}.

We state that d(T)=a. d(T) =o is trivial since |7]=a. On the other hand, if K& T
and |K| <, then there exists an ordinal # <a such that & < for each P: € K, because
of the regularlty of . But then p,¢ U, for each p,€ K, which shows that X is not
dense in T and so d(T) =« i.e. d(T)-—oc

Lemma 2. If A is a strong limit cardinal, |R|=A and R€ T, then d(R)=A.

Proor. Itis well-known (see e.g. [4]) that R€ .7, implies |R|=exp exp d(R).
Since 4 is a strong limit cardinal d(R)<A would imply |R|=exp exp d(R)<1,
which is impossible. So d(R)=A.

COROLLARY 1. For each strong limit cardinal A

(d, T3) >4
holds.
COROLLARY 2. If Ais a strbng limit cardinal then
[d, 73] A
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30 A. HAINAL AND I. JUHASZ

Proor. If for every a <A there exists a subspace S of the space R for which
d(R)=a, then obviously |R|=A4.

THEOREM 3. If cf (A)=w then
(d, T)~A.

ProoF. Let, indeed, R€Z,, d(R)=41, then according to Lemma 1 there
exists a left separated subset R”C R of the power A*. In what follows we are going
to consider only this subspace R’. Let ® be the system of all sets G C R” being open
in R’ and having a cardinality not greater than A. We will distinguish two cases
() and (ii):

(@) [UG|=A4t. Then we define a sequence {g.: {<A*} of points of R" by
transfinite induction on & as follows. Let R"={p,: v<A*} be a well-ordering of
R’ and let U, be a neighbourhood of p, not containing any predecessors of p,.

Now let p,, =g, be the first element of U ® and let G, be an arbitrary element
of ® with g,€G,. Assume that the points g, and their neighbourhoods G, are
defined already for all y less than some £ <A™. Then

= 1ElA=12

n<¢

and so UGN\ U{G,:n=<E}#0; we choose the first element p,, of the above non-
void set as g;. G, will be an arbitrary element of ® containing ¢;. Put D= {g:: E<AT).
We prove that D is discrete. Let us consider the neighbourhood V,=U, NG,
of qg( py,) for E<A*. Since by definition ¢,¢U,, if y<¢ and ¢,¢G; 1f n>.§,
V. D={q,} for £<Ai*t. Hence D is discrete. Thus R’ and so R also contain a
discrete subspace of potency 4, which is of density A, too.

(i) |U®|<A*. Then let R”=R"\_U®G. Obviously each non-void open subset
of R” has the cardinality A*.

Now because of ¢f (1)=w there are regular cardinals &, (k<) such that

l = Z OC;V
k<o

Since every infinite 7,-space contains infinitely many palrwise disjoint, non-void,
open sets we can choose non-void subsets Gk (k<) open in R” such that G, N G;=0

if k=1 As we have seen above
le] =47

for each k<. By Lemma 1 and the proof of its Corollary for every k< there
exists an S, C G, with d(S,)=|S,| =0, (because o, is regular).
Now let S= |J S, . Since |S|=1 it is sufficient to prove d(S)=A. Let MC S

k<o
be an arbitrary dense subset of S. Then MM S, is dense in Sy, too, because

M NMNSYc U G, R"\G,, and so none of the points of S, Gy is a cluster
point of M \(M ﬂ Sy). But then d(S,) =g, implies |M N S;|=0 and so
(M| = 2 [MNS| = 2 o = 4
k<o k<a
which proves our statement.
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TOPOLOGICAL CARDINAL FUNCTIONS 31

Theorem 3 is one of the new results of this paper. The problem stated originally
in [1] still remains open for singular cardinals A with cf (1) >®. The simplest un-
solved problem is

ProBLeMm 2. Is (d, ;) -, true?

(Note that assuming G.C.H. the answer is yes by Corollary 1 of Lemma 2.)
Corollary 2 of Lemma 2 implies assuming G.C.H. that 4 has the closed Darboux
property on Z,. We will point out that without assuming G.C.H. we cannot solve
the following

ProBLEM 3. Is [d, 7]>w,, true?

This should be compared with the remark made after the proof of Theorem 7.

The following theorem shows that for T,-spaces the above result does not
remain true.

THEOREM 4. For every singular A
d, 7))+ and [d, T+

ProoF. Let us consider the topology on the set A* whose non-void open sets
are exactly those of the form [g, A7)\ {¢;, ..., 0x} Where

[, AN)={o:¢9=6<i*} and g, 0, ....,0<2T, k<o.

Let R denote this space which is obviously a 7;-space.
Let now S be an arbitrary infinite subspace of R and let ©(S) be its order-type
as a subset of A*. It is well-known that 7(S) has a unique decomposition

(S)=U(S) +k(S),
where ((S) is a limit ordinal and &(S)<w.

Now let H be the set of the last £(S) elements of S and let C be an arbitrary
cofinal subset of S\ H. Then it is obvious that forevery E€ S\ H and &, ..., & <A+

Sﬂ([&a /1+)\{€1: veey él})n(CUH)¢ﬂa

i.e. CUH is dense in S. :
On the other hand, if 7 is dense in S, then 7\ H must be cofinal with S\ H,
because ¢€ S\ H and ¢ >0 for every o€ T\ H would imply

TN(e, AY)NH)=0.

Hence we have got the result d(S) =cf ({(S)). So e.g. d(R)=cf ({(R))=cf (A1) =4A",
and since cf ({) is always a regular cardinal, none of the subspaces of R have the
density A.

On the other hand, since for every regular cardinal « </ there is a subspace
of the density «, the same example shows that the second statement of our Theorem
holds, as well.
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32 A. HAJNAL AND I. JUHASZ

§ 3. A theorem on ordered spaces

The main aim of this section is to prove Theorem 5.

- THEOREM 5. If R¢ %, z‘hén Jor each a<d(R) there exists a discrete subspace
of R, which is of power o. Hence d(R)=s(R)*.

PrROOF. Let o <s(R) be arbitrary, and assume that R does not contain a discrete
subspace of power «. The original order relation of R will be denoted by < while
< s chosen to denote an arbitrary well-ordering of R.

As usual a set

(x, y)={z€R: x<z<y)}

is called an open interval of R.
An element p € R is called normal if there exists an open interval (x, y) contain-
ing p, such that
p~<z forevery z&(x, y)\{p}.

It is easy to see that the set N of all normal elements is dense in R. Let, indeed,
(x, ¥) be an arbitrary non-void interval of R, and p be the first element of (x, y)
with respect to the well-ordering <. Then p is a normal element by definition.
Thus |Nj=d(R)>o.

For every p€ N let I, denote the maximal convex set containing p as the first
element with réspect to < Of course, I, contains p in its interior.

Now let N* be the collection of all such sets /, for peN. It is trivial that
P#4q, p, €N implies I,#=1, smce the least elements of I, resp. I, are. different.
We define a partial ordermg <* of N* as follows,

I,<*I, iff pel,.

As p ¢, obviously implies g < p and so g< z for every z€ 1, Iq<*I implies I,C1,,
since 1, ﬂIq?fO and so 1, is a convex set containing g as its first element and
therefore Lurcl,. From this remark we get immediately that the relation <* is
transitive.

Let now ¢y, 4, PEN, q,<q, and I, <*I, and I,,<*I,. Then pel, NI,
and so 1,, U, is a convex set containing both g1 and q,. But then clearly I, Ul,, 1,
which imphes

Iq = *I qz2°
From these considerations it follows immediately that for every I,€ N* the segment
S,={I,eN*: I,<*I,}
is well-ordered by the relation <%*, because for I, I, €S,
g1 <q, = I < I

So the partially ordered set (¥*, *) is a ramification system (or tree) in the sense
of [7]. Let now AN be a set for which any two elements of the set-system

A*={l,:pe4d}

are not comparable with respect to <*. Then A4 is a discrete subspace of R since
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TOPOLOGICAL CARDINAL FUNCTIONS 33

I, is a neighbourhood of p which — by definition — does not contain any other
pomts of A. Consequently we obtain [4]=|4%|<o.

Now it is very easy to see that every ramification system of power greater
than or equal to ¥, and not containing « pairwise incomparable elements contains
a chain of length «, i.e. a set of power «, every two elements of which are comparable
(see e.g. [7]). Let C*C N* be a chain of length « and

C={peN: IEC*}

We can assume that the order-type of C (by <) is a. For every p€C let p* be the
successor of p in C with respect to <. For every p€ C let us choose an element

X, €L\, 0.

Since I,+ is convex, either x,>z or z>x, for each z€1,.; in the first case we call
X, a right point and in the second case a left one. The set of all right points is denoted
by H" and that of the left points by H'. Of course [H'UH"|=|C|=a and thus
either |H"|=u or |H'|=u.

Assume, for instance, |H'|=o. Then for x,,, x,, € H' we get

Xpy <Xp, © Py <Py.
Let indeed p; < p,, then pf <p, so I,,C L+ ie. x,, €L+ which implies

Xp1 <= Xp,
by the definition of H’.
Thus we have got a subset of R of potency &, whose original ordering <
" coincides with the well-ordering <. According to our assumption R can not contain
« isolated points and so we have a subset HC H' of power « not containing any
isolated points and whose induced ordering < is a well-ordering., We shall denote
by x* the successor of x¢ H in H with respect to <.

Since H does not contain any isolated points, one of the intervals (x, x*) and
(x*, x*%) is not void. Consequently there are « distinct non-void open intervals
of the form (x, x*), x € H which is in contradiction to our assumption, since these
intervals are pairwise disjoint as well. Hence we have proved the existence of a discrete
subspace of power « in R.

An analogous consideration leads to the same result, if |H'|=a, however
then < coincides with the converse of <.

As an immediate consequence of Theorem 5 we get

COROLLARY 1. The cardinal function d has the Darboux property on Z.
We also prove
COROLLARY 2. For every singular cardinal

[d, ]2

Proor. If for cofinally many a<A4 there exist subspaces of R¢.% of the
corresponding density, then by Theorem 5 one can find discrete subspaces, whose
cardinalities are cofinal with 4, too. But it is easy to see that if a linearly ordered
space contains an infinite discrete subspace, then it contains as many pairwise
disjoint open intervals as the cardinality of this discrete subspace.
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On the other hand, ERDOs and TARSK1 [5] proved that in every topological
space the least cardinal for which the space does not contain as many pairwise
disjoint open subsets, is always regular. So if R contains « disjoint open intervals
for each a< 4, then it contains 4 disjoint open intervals, too. Hence R contains a
discrete subspace of cardinality (or density) 4, too.

We do not know whether d has the closed Darboux property on & since we
cannot solve the following.

ProBLEM 4. Does Corollary 2 of Theorem 5 hold for inaccessible A’s as well?
Note that in [5] an example is given showing that the theorem we used for the
proof of Corollary does not remain true for inaccessible cardinals greater than .
In order to get similar results about the Darboux property of the weight function
on %, we have to make some preliminary remarks about the relation between the
weight and density of the ordered spaces.
Let ReZ. A pair {x, y) of two distinct points x, y€ R is called a gap in R, if
the open interval (x, y) is empty (i.e. y is the successor of x), but neither x nor y
is isolated. Let U(R) be the set of all gaps in R, and g(R)=|U(R)].

LeMMA 3. If Re %, then w(R) = d(R)+g(R).

Proor. We can assume |R] =w. Now let ST R be a dense subset of cardinality
d(R)and H be the set of the endpoints of all the gaps in R. First we will show that
the open intervals (a, b), where a, b belong to SU H, plus the isolated points, which
of course all belong to S, constitute a base for R, which evidently implies

w(R)=|SUH|= d(R) +g(R).

Let, indeed, x€ R be not isolated, and (p, ¢) be any open interval containing x.
Now, if x does not have either a predecessor or a successor, then we can find a€ S
with'a€(p, x), and b€ S with b€ (x, ¢), hence x € (a, b)) < (p, ¢). If x has a predecessor,
say a, then a certainly belongs to SU H, because either it is isolated, or it constitutes
a gap with x, since the latter is not isolated. Since in this case x has no successor,
we can find b€ S with b€(x, ), and then x€(a, b) C(p, q) holds again. The case,
when x has a successor can be settled quite analogously.
In order to- get the converse inequality

WR) = d(R)+g(R),

it is obviously enough to prove w(R)=g(R). This follows, however, immediately -
from the observation that, if (x, y)€ U(R) is an arbitrary gap, then any base of R
has to contain a set with x as last element and a set with y as first element. Thus

our Lemma is proved. -
COROLLARY 3. w has the Darboux property on L.

Proor. Let R€.% and w(R)=o. Then we have the following two possibilities

a) and b), respectively.

a) w(R)=d(R). In this case it follows immediately from Theorem 5 that R
contains a discrete subspace of cardinality — hence of weight — o.

b) W(R)=g(R). In this case let U, C U(R) be a set of gaps with |U;|=«, and
H, be the set of all endpoints of the gaps belonging to U1 Obviously, |H|=«
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TOPOLOGICAL CARDINAL FUNCTIONS 35

as well. One can see easily that the subspace H,CRis of the Welght o, and this
completes the proof of the corollary.

Since the weight function is monotone, and for monotone cardinal functions
the Darboux property and the closed Darboux property are equivalent (see e.g. [1]),
we also have that w has the closed Darboux property on %.

§ 4. Strongly Hausdorff spaces

We will say that a Hausdorff space R is strongly Hausdorff if for each infinite
subset S C R one can select a sequence {x; }1<w of points of S and a sequence {U,};.,
x;€ U; of neighbourhoods such that ixj<a implies U;NU;=0. The followmg

theorem shows that this class of spaces is wide enough.

THEOREM 6. Every Uryson space, hence every regular Hausdorff space, is strongly
Hausdorff.

ProoF. Let R be an Uryson space and let SR be an arbitrary infinite sub-
space of it. Let x, and y, be two arbitrary points of S and U, and ¥, a closed neigh-
bourhood of x, and y, respectively that are disjoint. We can assume S\ U, is infinite.
Assume that the points x;€ § and their neighbourhoods U, have been already defined
for each i<k (k=0) in suchaway that S™\ U U) is infinite. Then we can choose

two points x, ykES\( U Ui] , and two dlS_]Oll’lt neighbourhoods U, and ¥V, of x;
i<k
and y,, respectively which are contained in the open set R\ U U,;, and which

~ have disjoint closures in R. We can also assume that ' i<k
NOe=8\ U U
(S\,ka] kT i<k+1

is infinite since

SNUT; = [[SNUTPNTY[(S\U TN,
i<k i<k i<k
and the roles of x; and y, are perfectly symmetric. The sequence {x;};.,, defined
by induction on & -obviously satisfies the requirements having the pairwise disjoint
neighbourhoods U,.
On the other hand, the following example shows that there are Hausdorff
spaces which are not strongly Hausdorff.

ExampLE. Let the set R consists of two kinds of elem uts: R=PU H, where
P H=40. Both P and H are countable, the elements of P are uenoted by x,, ..., Xz, ...
(k <w), while H is regarded as the set of all quadruples (j, /, m, n) where j, [, m, n< .
For the topology in R, the points of H are assumed to be isolated and a neigh-
bourhood base B, = {V,("s) r,s<w} for x; is defined as follows:

ViR = Uk, Lm,n): 1 = ryU{(j, Lm,k):j < k, I=k, m>s).

It is easy to see that
VLNV = VR

where r=max {r,,r,} and s=max {s, 5, }.
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Furthermore
‘ n Vrg,k.z = {xk}s
rs<o
since for every (j, I, m,n)€H either j=k and then (j,, m,n)=(k, 1, m,n)§ V®
or k#j and then (j, I m,n)¢ V¥,
Finally if k; <k, then x; and x,, have disjoint neighbourhoods since for
example
VEsOvip =0
for every r, s <.
This altogether shows that R is a Hausdorff space. But R is not strongly
Hausdorff, indeed, since if {x,,:#<w} is an arbitrary sequence of points from P,

k, <k, if t,<t,, and V¥ is an arbitrary neighbourhood of x,,, then
VI OV 0
for each p, g <w whenever ¢ =0 and k, >r, because then for example
(k09 kt: Q+ 1’ kt) E Vlg,kSO) n Vl(llfﬁl)'

Finally we are going to show an application of the notion introduced above.
First we need a lemma, which is, however, interesting in itself, too.

LemMma 4. Let R be an arbitrary topological space with |R|=a>w, and p<a.
Then either R contains a discrete subspace of power o, or the set Sg of all points x€ R
having a neighbourhood U, with |U,| < B is of cardinality less than a.

PROOF. Assume |Sp| =o. Then we can define a set mapping F on S as follows:
F(x)=UN{x}.

Thus |F(x)| < <« holds for all x¢€ Sj, hence a theorem proved by A. Hajnal (which
is also known as Ruziewicz’ conjecture, see e.g. [8]) can be applied, and we can get
a free subset S S; with |S|=o. This means, however, that x¢ U, holds for each
pair of distinct points x, y€.S, i.e. S is a discrete subspace of power o.

THEOREM 7. Let cf (D) =w, A=, and assume that for each a<2A the strongly
Hausdorff space R contains a discrete (or right separated, or left separated, respectively)
subspace, of cardinality o. Then there exists a discrete (or right separated; or left
separated, resp.) subspace of power 1. in R as well.

Proor. Let {o:k<w} be such a strictly increasing sequence of regular

cardinal numbers, for which

Do =4, and oy>@.

k<o ’
Let R, be a discrete (or right separated, or left separated) subgpace of R with |R,| =0
(k<w), and let

R, = U Rk'
k<w

Let us apply now Lemma 4 to R” with f=u,. We get then that we can assume, for
each k <, less than 4 points of R” have neighbourhoods of cardinality <. Indeed,
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otherwise we should know the existence of a discrete subspace of power A, and our
theorem would be proved.

We shall define a sequence of pairwise distinct elements of R’ by induction
as follows: Let x, be any point in R’, every neighbourhood of which is of power
=q,. (The existence of such a point is assured by the foregoing remark.} Assume,
x; has already been defined for each /<k-<w. Then we can choose such a point
X € R’ \{xo, ..., X4—1}, every neighbourhood of which has a cardinality =0,
analogously as x, was chosen.

Since R is strongly Hausdorff, we can select such an infinite subsequence
{%.}1<0C {Xilico» Whose elements have pairvise disjoint open neighbourhoods
(in R, hence in R’ as well).

Let U, be the neighbourhood of x;, in R’, mentioned above. Hence |Uj|=o,
according to the construction of the x,’s. Now :

U=UNR = Ulm[ U -Rk) = U (UlﬂRk);
k<o k<o
hence there exists a ky<w with
|[UN Ry, | =y,

In other words: U, contains a discrete (or right separated, or left separated, resp.)

subspace S, of cardinality =, . But then S= |J S;is a discrete (or right separated,
<o

or left separated; resp.) subspace of cardinality A, which completes the proof.

Let us denote the class of strongly Hausdorff spaces by Z,*. Then a similar
reasoning as in the proofs of the above theorem and lemma would yield us the
following relation: '

[, 73] >4 (cf (D) =w).

Note that J. DE GRroor [2] stated the problem whether each T,-space R contains
a right separated or discrete subspace of maximal cardinality. Thus Theorem 7 is
a partial answer to his question.

- (Received 28 July 1967)
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