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Introduction 

In the paper [1] one of the authors has introduced the concept of the Darboux 
property of topological cardinal functions. In [1] several results and problems 
were stated. The main aim of this paper is to give some further results and simpler 
proofs for the results of [1]. 

In w 2 Theorems 1 and 2 give some information on the Darboux property of 
the weight function on the classes of T 1- and Ts-spaces respectively. However the 
results are still incomplete. 

The rest of the theorems in this w deal with the density function and give an 
almost complete discussion of its behaviour on the different classes of spaces. 
We point out Problem 2 which remains unsolved. 

In w 3 we prove Theorem 5 concerning linearly ordered spaces which settles 
the Darboux property of the weight (and density) function on these spaces. Without 
giving exact references we mention that at least in special cases the result 
must be contained in some theorems of W. Sierpifiski and D. Kurepa concerning 
the Suslin problem. 

In w 4 we introduce a new class of spaces lying between T a- and T3-spaces, 
called strongly Hausdorff spaces, and we prove a special result relevant to a problem 
stated by J. DE GROOT [2]. 

w 1. Notations. Definitions 

]HI denotes the cardinality of the set H. We assume that each ordinal is the 
set of all smaller ordinals. 

4, t/, ~ . . . .  denote ordinals; 
e,/~, q~, ~ . . . .  denote cardinals (i.e. initial ordinals); 
2 will always denote a limit cardinal. 
e+ denotes the immediate successor of the cardinal ~. 
If  t/is a limit ordinal, cf (t/) is the least cardinal, which is cofinal with t/. 
The cardinal e is said to be regular if cf (c 0 = e and singular otherwise. 
A regular limit cardinal is said to be inaccessible. 
A limit cardinal 2 is said to be a strong limit cardinal if  e < 2 implies 2 ~ <2 .  

(We sometimes write exp ~ for 2~.) 
A strong limit inaccessible cardinal is called strongly inaccessible. 
w e  will often make use of the generalized continuum hypothesis which will 

b e  briefly referred to as G.C.H.  o)e denotes the increasing sequence of infinite 
cardinals, COo =co. 
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26 A. t-IAJNAL AND I. JUH,~Z 

Capital letters K, 11, .... X, Y, ... denote sets, R, S, D . . . .  denote topological 
spaces. 

The class of all topological spaces will be denoted by Y, while the class of 
T~-spaces will be denoted by 9-7~, i = 0  . . . . .  5, respectively. L a denotes the class of 
linearly ordered spaces provided with the usual interval topology. 

A topological cardinal function is a function defined on a certain class of topolog- 
ical spaces with cardinal values. 

In this paper we will consider the following cardinal functions. 
The weight function w, defined as usual by 

w(R)=max {co, min {[2~1: for the open bases ~3 of R}}. 

The density function d: 

d(R)=max {co, min {Is[: for S c R ,  S=R}}. 

The spread function s, where 

s(R)=max {co, sup {ID[: D c R  where D is a discrete subspace of R}}. 

The space R will be said left separated (right separated) if there exist a well- 
ordering {xr = R  of the points of R and a sequence {Ur of type (o of open 
subsets of R such that xe CUr and x~ ~ Ur for ~/< ~ [x, ~ Ur for ~ > 4] for every ~ < r 
respectively. 

To have a brief notation we introduce the following symbols. 
Let ~ be a cardinal function defined on the class c~ of topological spaces; 

denotes that the following statement is true. 
For each R C ~g, r  ~ implies that there exists a subspace S CR such that 

�9 (s) 
(~, c~)_~ denotes the negation of the above statement. 
If (~, c g ) ~  holds for every [regular] ~ then ~ is said to have the [regular] 

Darboux property on (g. 

( ~  ~)  [~, ~]-~2 

denotes that the following statement is true: 
If for each c~<2 there exists a subspace S c R  with ~ ( S ) < 2  then there 

exists a subspace S o c R  with ~(So)=2. 
[@, c#]-+;2 denotes the negation of this statement. 
If ~ has the Darboux property on c# and [~, c~]-~2 holds for every 2 then 

is said to possess the closed Darboux property on c~. 
The concepts of (regular, closed) Darboux properties were formulated in [1]. 

The introduction of the symbols ( ~ )  and ( ~  ~)  depending on the parameters 
~, 2 enables us to give a more detailed analysis of these properties. 
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TOPOLOGICAL CARDINAL FUNCTIONS 27 

w 2. The Darboux properties of the weight and density functions 

First we are going to deal with the weight function w. In this case we know 
negative results only, except some trivial positive facts. 

THEOREM 1. If 2 is a singular cardinal, then 

(w, ~)+2.  
PROOF. Let H be a set of potency 2, provided with the topology whose non- 

trivial (i.e. different from H)  closed sets are exactly those of cardinality not greater 
than cf (2). As every one-point set is closed in H, it is a Tl-space, indeed. 

For each KcH,  let w*(K) be the smallest cardinal fl such that there exists a 
system s ts =f l  of non-trivial closed subsets of K, with the property that every 
non-trivial closed subset of K is contained in one o f  the elements of ~. Since each 
base for the closed sets in K has this property we get immediately 

w*(K) <- w(X). 

On the other hand, if s is the above mentioned system of  power w*(K), let 
be the system of all sets of the form Z\{x} ,  where Z E ~ and x C K. Then 

[~31 <_- 1s cf (2) = w*(K) cf (2), because Z~  E implies ]Z[ <= cf (2). At the same time 
is a base for the closed sets in K for if S is an arbitrary non-trivial closed set in K, 

then there is a set Z C ~ with S c Z, and so we get 

s =  n (Z\{x}). 
x C Z \ S  

These considerations show immediately 

w(K) -<_ cf (2). w*(K) 

and so w*(K) ~ c f  (2) implies 
w(/O = w*(K) 

and w*(K) < cf (2) implies w(K) ~- cf (2) < 2. Now assume w*(K) ~- cf (2). We will 
prove that w*(K)= w(K)# 2. Assume on the contrary, that w*(K)= 2 and let 
be the required set-system of power 2. Let the cardinals er be chosen for each 

< cf (2) such that ar < % if ~ < q and 

<: cf(2) 

The system s can be rcpresented in the form 

~= U ~,  
~ <cf(.~) 

where ~<t /  implies ~cs and Is Then [s for each ~ < c f ( 2 ) ,  
and so one can find a non-trivial closed subset of K, say Sr with Sr cL Z for each 

Z ~ s 1 6 2  Let 
s =  U s~. 

~ <cf(~) 

Then, by definition, ISr and so ] U S~l=]Sl-<-cf(2), i.e. S i s  a closed 
~<r 
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28 A. HAJNAL AND I. JUH/{SZ 

subset of K. Now if Z is an arbitrary element of ~, then Z E ~r for some ~ < cf (2), 
and so 

s~cs~z,  

which contradicts the definition of ~, consequently 

w*(K) = w(K) # ;~. 

Finally, we have to prove w(H)>2. Let, indeed, 23 be an arbitrary family of 
non-trivial subsets of H with [231<2. Then JU 23[~ [231 c f (2 )<2 ,  hence w(H)->2. 
This obviously implies w(H)>2. 

THEOREM 2. 2~>~ + implies 

(w, Y-s)+~ +. 

PROOF. Let D~ be the discrete topological space of power ~ and flD~ its 
Stone--Cech compactification. It has been proved by B. POS~'IgiL (see [3]) that 
there exists a point p E f lD~\D, whose every base of neighbourhoods has the cardi- 
nality 2 ~, in other words, the character Z(P, flD~) o f p  in fiD~ equals to 2 ~. It follows 
from this that the character Z(P, R) of p in D~ U {p} = R is also 2 ~ because fiD~ 
is regular and R is dense in it. Trivially R belongs to ~ .  Now let A c D~, .4 its 
closure in R and A~ its closure in fiD~. It is well-known that gP is open-and-closed 
in flD~ and so A = .4~ 0 R is also open in R. But then p ( .4 implies 

z(p, ~) - -z(p ,  R ) = 2  ~. 

Let S c R  be an arbitrary subspace of R. Then there are three possibilities: (i), (ii) 
and (iii). 

(i) p~ S, then S is obviously discrete, and so w(S)= lS]<=a. 
(ii) p E S  but p ~ S \ { p } ;  then S is discrete, too, thus w( S) = l S[ <= a. 
(iii) p E S and p E-S\{p};  it means that S \ { p }  is dense in S, so (as we have 

seen above) 
2(p, S) = ~(p, S \ { p } )  = 2 ~ 

which immediately gives us w(S)= 2 ~. Hence every subspace of R has a weight either 
at most ~ or 2 ~. This proves Theorem 2. 

COROLLARY. I f  G. C, 1t. fails then w does not possess the regular Darboux 
property on J-5. 

After this manuscript had been completed we obtained a result saying 
(w, J z ) §  +, if ~+ = 2  ~. This result is going to be published in our joint paper 
"'On hereditarily a-separable and e-Lindel6f spaces" in the Annales Univ. Sei. Buda- 
pest, 11 (1968). 

From this result, together with the above Theorem 2 we can get easily that for 
any ~, which is not strong limit or inaccessible, (w, J z ) ~ a  holds. However, we 
still do not know the answer to the following problem. 

PROBLEM l. IS (W, ~ ) ~ 2  ~ true for i ~ 3 ,  ~--~o? 
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TOPOLOGICAL CARDINAL FUNCTIONS 29 

The following cardinal function we shall consider is the density. In this case 
at least assuming G.C.H. we can give a rather complete discussion of the symbols 
( ~ )  and ( ~  ~) .  The only problem left open is the one stated on p. 34. 

The following Lemma 1 was first published in [6] (Theorem II). We give here 
a new proof of it, which does not make use of transfinite induction. The same idea 
will be used in the proof of Theorem 5. 

LEMMA 1. Each RE J- contains a left separated subspace S ~ R  with IS[ >-d(R). 

PROOF. Let 
(1) R={qe:  4 < # }  

be an arbitrary well-ordering of R. A point q E R will be called minimal if it has 
a neighbourhood Uq, whose minimal element in the above well-ordering is q. Let 

(2) S =  {pc: ~ < 0} 

be the well-ordering of the set of all minimal points of R induced by the well-order- 
ing (1). Then S is dense in R and so d(R)<= ISI. Indeed, if G is an arbitrary non- 
void open set in R then there exists a point q E G with a minimal suffix in the well- 
ordering (1). Hence, by definition, qES and so GN Sr 

On the other hand it is trivial, that if Pc E S and Ur is the neighbourhood of 
pc whose first element is pr then Ue does not contain any predecessors of pC. 

COROLLARY. I f  ~ is regular then 

(d, x )  ~ .  

PROOF. Let, indeed, R E Y  and d(R)>a. According to Lemma 1 there is a 
sequence S = {pc: ~ < q } of points of R such that Q ~ a and every pC has a neigh- 
bourhood Ur not containing any points p~, ~ < ~. Let 

T =  {p~C S: ~<~}. 

We state that d(T)= ~. d(T)<-~ is trivial since IT] = a. On the other hand, if K ~  T 
and ]K I < ~, then there exists an ordinal ~ < a such that ~ < I? for each pc E K, because 
of the regularity of a. But then pc ~[ U, for each pc E K, which shows that K is not 
dense in T and so d(T)>-_a i.e. d(T)=c~. 

LEMMA 2. I f2  is a strong limit cardinal, [R I =2 and RE :2 then d(R)=2. 

PROOF. It is well-known (see e.g. [4]) that R E ~2 implies [R[ <=exp exp d(R). 
Since 2 is a strong limit cardinal d ( R ) < 2  would imply ]R[<-_expexpd(R)<2, 
which is impossible. So d ( R ) = L  

COROLLARY 1. For each strong limit cardinal 2 

(d, ~)--~ 
holds. 

COROLLARY 2. I f  2 is a strong limit cardinal then ~ 

[d, ~ ]  -~ ~. 
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30 A. HAJNAL AND I. JUH/~SZ 

PROOF. If  for every ~ < 2 there exists a subspace S of the space R for which 
d(R)>-_~, then obviously IRIs2 .  

TI-tEOR~M 3. If cf (2) ---- o~ then 

(d, f2 )  -~2. 

PROOF. Let, indeed, R C J z, d ( R ) > 2 ,  then according to Lemma 1 there 
exists a left separated subset R ' c  R of the power 2 +. In what follows we are going 
to consider only this subspace R'. Let ~ be the system of all sets G c R'  being open 
in R'  and having a cardinality not greater than 2. We will distinguish two cases 
(i) and (ii): 

(i) JU~SI--2 +. Then we define a sequence {q~: 4 < 2  +} of points of R' by 
transfinite induction on ~ as follows. Let R ' =  {p~: v < 2  + } be a well-ordering of 
R" and let Uv be a neighbourhood ofp~ not containing any predecessors ofp~. 

Now let P~o = qo be the first element of U (~ and let Go be an arbitrary element 
of ffi with qo ~ Go. Assume that the points q, and their neighbourhoods G, are 
defined already for all q less than some 4 < 2  +. Then 

q 

and so U ( 5 \  U {G,: q < 4} # 0; we choose the first element p ~  of the above non- 
void set as qr Gr will be an arbitrary element of ~ containing q~. Put D = {q~: ~ < 2 + }. 
We prove that D is discrete. Let us consider the neighbourhood Vr Uv~ ~ Gr 
of qr  for 4 < 2  +. Since by definition q,(iU~e if ~/<~ and q,~Gr if q > 4 ,  
Vr162 for 4 < 2  +. Hence D is discrete. Thus R" and so R also contain a 
discrete subspace of potency 2, which is of density 2, too. 

(ii) ] U (~[ < 2  +. Then let R" = R ' \  U ~5. Obviously each non-void open subset 
of R" has the cardinality 2 +. 

Now because of cf(2)---~o there are regular cardinals ~ (k<o))  such that 

2 =  Z ~ k .  
k<to  

Since every infinite Tz-space contains infinitely many pairwise disjoint, non-void, 
open sets we Can choose non-void subsets Gk (k < co) open in R" such that G, N G~ = 0 
if k # l. As we have seen above 

IG~I =~+ 

for each k < co. By Lemma 1 and the proof  of  its Corollary for every k < co there 
exists an SkCGk with d(Sk)= 1S~] = ~ ,  (because ~ is regular). 

Now let S- -  U sk �9 Since 1SI = 2  it is sufficient to prove d(S)=>2. Let M c S  
k<:o  

be an arbitrary dense subset of  S. Then M(-1 Sk is dense in  Sk, tOO, because 
M\(MN Sk)C U GlcR"\Gk, and so none of the points of  SkCGk iS a cluster 

l=/:k 

point of M\(MN Sk). But then d(Sk)----ak implies [MN Ski =~k and so 

IMI = Z IMnSkl = Z '  ~,, = ~, 
k < o.7, / r162 

which proves our statement. 
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Theorem 3 is one of the new results of this paper. The problem stated originally 
in [1] still remains open for singular cardinals 2 with c f (2 )>o) .  The simplest un- 
solved problem is 

PROBLEM 2. IS (d, J2)~co~I true? 
(Note that assuming G.C.H. the answer is yes by Corollary 1 of Lemma 2.) 

Corollary 2 of Lemma 2 implies assuming G.C.H. that d has the closed Darboux 
property on J2 .  We will point out that without assuming G.C.H. we cannot solve 
the following 

PROBLEM 3. Is [d, J2]~coo, true? 
This should be compared with the remark made after the proof  of Theorem 7. 
The following theorem shows that for Ta-spaces the above result does not 

remain true. 

THEOREM 4. For  every singular 2 

(d, 4 ) + 2  and [d, ~ ] + 2 .  

PROOF. Let us consider the topology on the set 2 + whose non-void open sets 
are exactly those of the form [~, 2 + ) \ { 0 1  . . . . .  Qk} where 

[Q, 2 + ) = { o : r  +} and Q,~I , . . . ,Qk < 2 + , k < e ) .  

Let R denote this space which is obviously a Ta-space. 
Let now S be an arbitrary infinite subspace of  R and let z(S) be its order-type 

as a subset of 2 +. It is well-known that z(S) has a unique decomposition 

�9 (s)  =~(s)  + k(S), 
where ~(S) is a limit oIdinal and k(S)<~o. 

Now let H be the set of the last k(S) elements of S and let C be an arbitrary 
cofinal subset of S \ H .  Then it is obvious that for every f E S \ H  and i t  . . . .  , it < 2  + 

S (~ ([4, 2 +) \ { ~ ,  ..., ~,}) N (C U H)  # 0, 

i.e. C U H  is dense in S. 
On the other hand, if T is dense in S, then T \ H  must be cofinal with S \ H ,  

because ~C S \ H  and Q > o  for every o-~ T \ H  would imply 

T('/([~, 2 + ) ~ H )  = O. 

Hence we have got the result d(S) = cf (((S)). So e.g. d(R) = cf (((R)) ---- cf (2 +) = 2 +, 
and since cf (0  is always a regular cardinal, none of the subspaces of R have the 
density 2. 

On the other hand, since for every regular cardinal ~ < 2 there is a subspace 
of the density ~, the same example shows that the second statement of our Theorem 
holds, as well. 
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w 3. A theoremon ordered spaces 

The main aim of this section is to prove Theorem 5. 

THEOREM 5. I f  R C ~ ,  then for each ~ < d (R)  there exists a discrete subspace 
of  R, which is of  power ~. Hence d(R)<=s(R) +. 

PROOF. Let a <s(R)  be arbitrary, and assume that R does not contain a discrete 
subspace of power ~. The original order relation of R will be denoted by < while 
-< is chosen to denote an arbitrary well-ordering of R. 

As usual a set 
(x, y)= (z R: x<z<y} 

is called an open interval of R. 
An element p ~ R is called normal if there exists an open interval (x, y) contain- 

ing p, such that 
p-<z for every z~(x,  y ) \ { p } .  

It is easy to see that the set N of all normal elements is dense in R. Let, indeed, 
(x, y) be an arbitrary non-void interval of R, and p be the first element of (x ,y)  
with respect to the well-ordering -<. Then p is a normal element by definition. 
Thus IN l >--d(R) >-~. 

For every p ~ N let I v denote the maximal convex set containing p as the first 
element with respect to -<. Of course, Ip contains p in its interior. 

Now let N* b e  the collection of all such sets Ip for p C N. It is trivial that 
p ~ q, p, q E N implies Ip r Iq since the least elements of Ip resp. Iq a r e  different. 
We define a partial ordering < *  of N* as follows, 

Iq < *Ip iff p E I~. 

As p ~ Iq obviously implies q < p  and so q-< z for every z ~ I v, Iq < *Ip implies Ip ~ Iq, 
since Ip (3Iq # 0  and so Ip (J Iq is a convex set containing q as its first element, and 
therefore Ip U !~ CIq. From this remark we get immediately that the relation < *  is 
transitive. 

Let now qi,  q2, P E N, ql -< q2 and /q, < * / ;  and Iq2 < *I v. Then p C Iql C~ Iq2 
and so Iq, U Iq2 is a convex set containing both ql and qz. But then clearly Iq, (3 Iq2 c Iq, 
which implies 

From these considerations it follows immediately that for every I v E N* the segment 

Sp={IqEN*: Iq < *I,} 

is well-ordered by the relation < *, because for I~, I~ E Sp 

ql -< q2 ~ Iq~ < *Iq~. 

So the partially ordered set (N*, <* )  is a ramification system (or tree) in the sense 
of  [7]. Let now A c N be a set for which any two elements of the set-system 

A*=  {I,: p CA} 

are not comparable with respect to <* .  Then A is a discrete subspace of R since 
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I v is a neighbourhood of p which - -  by definition - -  does not contain any other 
points of  A. Consequently we obtain [AI=IA*l<cr  

Now it is ve ry  easy to see that  every ramification system of power greater 
than or equal to a +, and not containing a pairwise incomparable elements contains 
a chain of  length c~, i.e. a set of  power r every two elements of  which are comparable 
(see e.g. [7]). Let C * c  N* be a chain of  length c~ and 

C={p N: 
We can assume that  the order-type of C (by <)  is c~. For  every p E C let p + be the 
successor of  p in C with respect to -<. For  every p E C let us choose an element 

x,c ,\zp+ 
Since Iv+ is convex, either x v > z  or z > x  v for each zEIv+; in the first case we call 
x v a right point and in the second case a left one. The set of  all right points is denoted 
by H r and that of  the left points by H t. Of  course IH*UHr[=[CI=a and thus 
either ]Hr]=~ or [HZ]=~. 

Assume, for instance, [Ht[ =~ .  Then for xvl, xp2EH ~ we get 

X v ~ < X v 2  ~ P l  - ( P 2 .  

Let indeed p~ -<P2, then p+ ~P2  so Iv~clp~ i.e. xp~EIw+ which implies 

xr~ < xp~ 
by the definition of H t. 

Thus we have got a subset of  R of potency a, whose original ordering < 
coincides with the well-ordering -<. According to our assumption R can not contain 

isolated points and so we have a subset H c H  ~ of power ~ not containing any 
isolated points and whose induced ordering < is a well-ordering. We shall denote 
by x + the successor of x E H  in H with respect to < .  

Since H does not contain any isolated points, one of the intervals (x, x +) and 
(x +, x + +) is not void. Consequently there are ~ distinct non-void open intervals 
of  the form (x, x+), x E 1 t  which is in contradiction to our assumption, since these 
intervals are pairwise disjoint as well. Hence we have proved the existence of a discrete 
subspace of power ~ in R. 

An analogous consideration leads to the same result, if [Hq--~, however 
then < coincides with the converse of -<. 

As an immediate consequence of Theorem 5 we get 

COROLLARY 1. The cardinal function d has the Darboux property on ~ .  

We also prove 

COROLLARY 2. For every singular cardinal 2 

[ d, ~ff] -,- 2. 

PROOF. I f  for cofinally many  a < 2  there exist subspaces of R E ca of  the 
corresponding density, then by Theorem 5 one can find discrete subspaces, whose 
cardinalities are cofinal with 2, too. But it is easy to see that if  a linearly ordered 
space contains an infinite discrete subspace, then it contains as many  pairwise 
disjoint open intervals as the cardinality of  this discrete subspaee. 
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On the other hand, ERD6S and TARSKI [5] proved that in every topological 
space the least cardinal for which the space does not contain as many pairwise 
disjoint open subsets, is always regular. So if R contains c~ disjoint open intervals 
for each ~ < 2, then it contains 2 disj.oint open intervals, t o o .  Hence R contains a 
discrete subspace of  cardinality (or density) 2, too. 

We do not know whether d has the closed Darboux property on L~ asince we 
cannot solve the following. 

PROBLEM 4. Does Corollary 2 of Theorem 5 hold for inaccessible 2's as well? 
Note that in [5] an example is given showing that the theorem we used for the 
proof  of Corollary does not remain true fo r inaccessible cardinals greater than o9. 
In order to get similar results about the Darboux property of the weight function 

on .~q~, we have to make some preliminary remarks about the relation between the 
weight and density of the ordered spaces. 

Let R E •. A pair (x, y) of two distinct points x, y E R is called a gap in R, if 
the open interval (x, y) is empty (i.e. y is the successor of x), but neither x nor y 
is isolated. Let U(R) be the set of all gaps in R, and g(R) = IU(R)I. 

LEMMA 3. I f  R E ~,  then w(R) = d(R) + g(R). 

PROOF. We can assume lRr _->co. Now let S c  R be a dense subset of cardinality 
d(R) and H be the set of the endpoints of all the gaps in R. First we will show that 
the open intervals (a, b), where a, b belong to S U H, plus the isolated points, which 
of course all belong to S, constitute a base for R, which evidently implies 

w(R) <= IS U HI <- d(R) + g(R). 

Let, indeed, x E R be not isolated, and (t7, q) be any open interval containing x. 
Now, if x does not have either a predecessor or a successor, then we can find a E S 
wi tha  E (p, x), and b E S With b E (x, q), hence x E (a, b) c (p, q). If  x has a predecessor, 
say a, then a certainly belongs to S U H, because either it is isolated, or it constitutes 
a gap with x, since the latter is not isolated. Since in this case x has no successor, 
we can find b E S with b E (x; q), and then x E (a, b) c (p, q) holds again. The case, 
when x has a successor can be settled quite analogously. 

In order t o  get the converse inequality 

w(R) >-- d(R) + g(R), 

it is obviously enough to prove w(R)>=g(R). This follows, however, immediately 
from the observation that, if (x, y)E U(R) is an arbitrary gap, then any base of R 
has to contain a set with x as last element and a set with y as first element. Thus 
our Lemma is proved. 

COROLLARY 3. W has the Darboux property on ~ .  

PROOf. Let R E ~ and w(R)>~. Then we have the following two possibilities 
a) and b), respectively. 

a) w(R)=d(R). In this case it follows immediately from Theorem 5 that R 
contains a discrete subspace of cardinality - -  hence of weight - -  ~. 

b) w(R)=g(R). In this case let U1 c U(R) be a set of gaps with lUll = a ,  and 
H1 be the set of all endpoints of the gaps belonging to U 1. Obviously, ]HI I=  
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as well. One can see easily that the subspace H a c R is of the weight e, and this 
completes the proof  of the corollary. 

Since the weight function is monotone, and for monotone cardinal functions 
the Darboux property and the closed Darboux property are equivalent (see e.g. [1]), 
we also have that w has the closed Darboux property on ~.  

w 4. Strongly Hausdorff spaces 

We will say that a Hausdorff space R is strongly Hausdorff if for each infinite 
subset S c R one can select a Sequence {xi}~<o~ of points of S and a sequence {Ui}i<~, 
x iCU ~ of neighbourhoods such that i # j<q~  implies Ui('l U j=0 .  The following 
theorem shows that this class of  spaces is wide enough. 

T~ECREM 6. Every Uryson space, hence every regular Hausdorff space, is strongly 
Hausdorff . 

PROOF. Let R be an Uryson space and let S c R  be an arbitrary infinite sub- 
space of it. Let xo and Yo be two arbitrary points of S and Uo and Vo a closed neigh- 
bourhood of xo and Yo respectively that are disjoint. We can assume S \ U o  is infinite. 
Assume that the points x i E S and their neighbourhoods U i have been already defined 
for each i < k  ( k > 0 ) i n  such a way that S \ (  U U ]  is infinite. Then we can choose 

t i <k J 

two points x~,YkC S \ ( i U k U  0 , and two disjoint neighbourhoods Uk and Vg of x k 

and Yk, respectively which are contained in the open set R \  U Ui, and which 
have disjoint closures in R. We can also assume that ~<k 

s \ u  v,l\V  = s \  u 
i<k  " i < k + l  

is infinite since 

v, = u u u 
i<k  f < k  / i<k  .' 

and the roles of  Xk and Yk are perfectly symmetric. The sequence {xf}i<~o defined 
by induction on k obviously satisfies the requirements having the pairwise disjoint 
neighbourhoods Ui. 

On the other hand, the following example shows that there are Hausdorff 
spaces which are not strongly Hausdorff. 

EXAMPLE. Let the set R consists of two kinds of elem rats: R = P U H, where 
P A H =  0. Both P and H a r e  countaNe, the elements of P are uenoted by xo, ..., Xk . . . .  
(k < co), while H is regarded as the set of all quadruples (j, l, m, n) where j,  l, m, n < co. 
For  the topology in R, the points of H are assumed to be isolated and a neigh- 
bourhood base ~3k----{V},k~ ) : r ,  s<co} for x k is defined as follows: 

V(k) r,s-- { x k } U { ( k , l , m , n ) : l > r } U { ( j , l , m , k ) : j < k ,  l<=k, m>s} .  

It is easy to see that 
g ( k )  (~ v ( k )  = v ( k )  

rl~s 1 1 '  --r2~s 2 - - r~s ,  

where r = m a x  {rl, r2} and s = m a x  {sl, s2}. 
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Furthermore 

N = (xk/, 

since for every ( j , / ,  m, n) E H either j = k and then ( j , / ,  m, n) = (k,/, m, n) ~ Vl! k) 
or k # j  and then (], l, m, n) ~ v(~k~. 

Finally if k 1 < k  z then xkl and Xk2 have disjoint neighbourhoods since for 
example 

v ( k l )  ~ v ( k 2 )  = 0 k2, s r, s 
for every r, s < co. 

This altogether shows that R is a Hausdorff space. But R is not strongly 
Hausdorff, indeed, since if {xk~: t<co} is an arbitrary sequence of points from P, 

ktl<ktz if t l < t  2, and Vr(, k~ is an arbitrary neighbourhood of Xko, then 

V(ko) ,-, ~(kt) ~ 0 r ,s  I I  Y p ,  q 

for each p, q < co whenever t > 0  and kt > r ,  because then for example 

(ko, k~, q + 1, kt) ~ V (k~ N r (k~) r,s p,q �9 

Finally we are going to show an application of the notion introduced above. 
First we need a 1emma, which is, however, interesting in itself, too. 

LEMMA 4. Let R be an arbitrary topological space with ]R] = ~ > c o ,  and f l<a.  
Then either R contains a discrete subspace of power ~, or the set Sp of all points x E R 
having a neighbourhood Ux with [ UxI < fl is of  cardinality less than ~. 

PROOF. Assume IS~I =a .  Then we can define a set mapping F on S~ as follows: 

F(x) = Ux~.{x}. 

Thus IF(x)[ < f i < a  holds for all xC Sp, hence a theorem proved by A. Hajnal (which 
is also known as Ruziewicz' conjecture, see e.g. [8]) can be applied, and we can get 
a free subset S c S ~  with [Sl=z.  This means, however, that x~ Uy holds for each 
pair of distinct points x, y C S, i.e. S is a discrete subspace of power a. 

THEOREM 7. Let c f ( 2 ) = o ,  2>o9, and assume that for each a<,~ the strongly 
Hausdorff space R contains a discrete (or right separated, or left separated, respectively) 
subspace, of  cardinality ~. Then there exists a discrete (or right separated; or left 
separated, resp.) subspace of power 2 in R as well. 

PROOF. Let {ek: k<co} be such a strictly increasing sequence of regular 
cardinal numbers, for which 

Z ~ k = 2 ,  and %>co.  
k < o  

Let Rk be a discrete (or right separated, or left separated ) sub'pace of R with IRk[ = ek 
(k < co), and let 

R ' =  U R  k .  
k < o  

Let us apply now Lemma 4 to R' with fl = ~k. We get then that we can assume, for 
each k < co, less than 2 points of R" have neighbourhoods of cardinality < %. Indeed, 
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otherwise we should know the existence of a discrete subspace of power 2, and our 
theorem would be proved. 

We shall define a sequence of pairwise distinct elements of R '  by induction 
as follows: Let Xo be any point in R' ,  every neighhourhood of which is of  power 
--> ~o. (The existence of such a point is assured by the foregoing remark.)Assume,  
xt has already been defined for each l < k < o ) .  Then we can choose such a point 
x k ~ R ' \ { X o  . . . .  ,Xk_~}, every neighbourhood of which has a cardinality >----ek, 
analogously as Xo was chosen. 

Since R is strongly Hausdorff, we can select such an infinite subsequence 
{Xk,}Z<,oC{Xk}k<,o, whose elements have pairvise disjoint open neighbourhoods 
(in R, hence in R" as well). 

Let Ut be the neighbourhood of xk, in R' ,  mentioned above. Hence JUt[-->ak,, 
according to the construction of the Xk'S. Now 

Ut=UtNR:  = UlO (k~<~ Rk) =k<o[3 (UI~Rk), 

hence there exists a k o < o )  with 
]Vt~Rkol>--c%. 

In other words: Ut contains a discrete (or right separated, or left separated, resp.) 
subspace S~ of  cardinality -> c%. But then S =  U St is a discrete (or right separated, 

l < o  
or !eft separated, resp.) subspace of cardinality 2, which completes the proof. 

Let us denote the class of  strongly Hausdorff  spaces by ~2"- Then a similar 
reasoning as in the proofs of  the above theorem and lemma would yield us the 
following relation: 

[d, J2*] ~ 2  (cf (2) = co). 

Note  that J. DE GROOT [2] stated the problem whether each T2-space R contains 
a right separated or discrete subspace of maximal cardinality. Thus Theorem 7 is 
a partial answer to his question. 

�9 (Received 28 July 1967) 
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