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Abstract: Interpreting a taxonomic tree as a set of objects leads to natural 
measures of complexity and similarity, and sets natural lower bounds on a 
consensus tree Interpretations differing as to the kind of objects constituting 
a tree lead to different measures and consensus Subset nesting is preferred 
over the clusters (strict consensus) and even the triads interpretations 
because of its superior expression of shared structure Algorithms for com- 
puting the complexity and similarity of trees, as well as a consensus index 
onto [0,1], are presented for this interpretation The "full consensus" is 
defined as the only tree which includes all the nestings shared in a profile of 
rival trees and whose clusters reflect only nestings shared in the profile The 
full consensus is proved to exist uniquely for each profile, and to equal the 
Adams consensus 

Keywords: Full consensus; Adams consensus, Adams-2 consensus; Strict 
consensus; Rooted trees 

1. Introduction 

What information is represented by a taxonomic tree? This question is 
central to discussions of complexity, similarity measures, and consensus of 
trees, and has had a variety of explicit or implicit answers After an initial 
period in which they studied many techniques and measures, each with its 
own rationale, taxonomic researchers have been moving toward the recogni- 
tion that such measures and techniques should be grouped according to 
common "interpretation," that is, their assumptions about the nature of 
information to be found in taxonomic trees However, not all of these 
underlying interpretations have been presented, and some are inadequate 
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The most straightforward kind of interpretation is one of the form "a  
tree is a set of  identifiable objects." An example in the realm of fully 
labeled rooted trees is exemplified in the first consensus algorithm of Adams 
(1972), where a tree is assumed to be a set of ordered pairs of ancestor- 
descendant relationships. Such a tree is appropriate for representing evolu- 
tionary relationships among OTUs both ancient and modern Any interpre- 
tation of a tree as a set of objects (in this case, ordered pairs) is open to 
simple measures of complexity (the number of objects in the tree) and simi- 
larity (the number of objects shared by all the rival trees in a profile), and 
suggests a lower bound for a consensus tree (the set of  objects shared by 
rivals). A simple virtue of such an interpretation is that the elements of 
classification are themselves the basis of similarity 

This virtue is shared by some interpretations of trees with unlabeled 
internal vertices Such trees arise from algorithms used to represent taxon- 
omy and to infer phylogeny. One interpretation of such trees as sets of 
identifiable objects is the clusters interpretation, with its "strict consensus," 
proposed by, among others, Margush and McMorris (1981), and Sokal and 
Rohlf (1981). In this interpretation, each branch of a tree is associated with 
the set of leaves that it separates from the rest of the tree. Each such set is 
called a cluster of the tree, as is the entire set of  leaves. A tree is simply a 
set of  clusters In this interpretation, as above, two trees are more similar if 
they have more elements (clusters, in this case) in common. 

Other interpretations rely upon a more abstract, or less immediate, rela- 
tionship of classification to similarity For example, Robinson (1971) has 
suggested a similarity measure for unrooted trees based upon a count of 
nearest-neighbor interchanges. Such an interpretation makes it hard to point 
to any part of one tree and say "this is what makes this tree similar to that 
tree." Further, it is hard to characterize the meaning of classification in a 
tree when transposition of a pair of branches each bearing 20 leaves yields a 
very similar classification (i e ,  only one interchange), while transposition of 
three pairs of branches each bearing one leaf yields a much less similar 
classification (three interchanges). These advantages may not make it a bad 
measure, but they do clarify the advantages of an interpretation which more 
concretely relates similarity to classification. 

The interpretation of a tree as a set of clusters has proven a fruitful 
area of study, yielding a consensus (the strict consensus), a median (the 
"majority-rule consensus" of Margush and McMorris (1981)), a poset of 
trees closed under intersection, a variety of metrics of similarity or dissimi- 
larity (see Day (1985) for examples and references), and natural extensions 
to unrooted trees However, its use as a basis of taxonomic comparison 
must be due to the mathematical consistency of all these concepts, because 
it is unable to capture much of the structure that taxonomists intuitively find 
in trees. 
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Figure 1 Though the strict consensus of trees A and B is C, the structure common to A and B 
is better shown in D A cluster is the entire set of leaves below an unlabeled vertex 

Figure 1 demons t ra tes  the limitations of  the clusters interpretat ion and 
the strict consensus ,  as far as taxonomic  structure is concerned.  The  strict 
consensus  of  the two trees A and B is the " b u s h , "  or null tree (tree C). 
Most  taxonomis ts  would detect m u c h  more  shared structure than that, trees 
A and B seem to share a rather complex  tree involving leaves 1-10 (tree D) ,  
disagreeing only as to the p lacement  o f  the leaf 11. But, because no cluster 
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in A equals any in B, the strict consensus finds no shared structure. This is 
not a fault of the algorithm which could be patched up; the algorithm simply 
intersects the sets and finds a null intersection. Any extension to the strict 
consensus that depends on the same interpretation will also be necessarily 
limited in its ability to capture fine structural detail 

A procedure that might have a related interpretation is the s-consensus 
of Stinebrickner (1984), which captures more detail by accepting the inter- 
section of sufficiently similar clusters from the profile. In this way, it can 
extract dusters even when they are not attested exactly in any one rival tree. 
This implies that a tree is interpreted as a set of something other than clus- 
ters. But without knowing what kind of information a tree contains, we can- 
not know how much the s-consensus preserves and how much it discards 
Thus, it is hard to know how the s-consensus index relates to that shared 
information 

The same problems weaken our understanding of any method whose 
underlying interpretation is not known, such as my original consensus algo- 
rithm from Adams (1972), now called "Adams consensus" or "Adams-2 
consensus.'" We should identify and evaluate the interpretations underlying 
existing methods, in order to expose inherent strengths and weaknesses In 
new domains, we can similarly evaluate candidate interpretations, even 
before investing the effort to create algorithms or measures. 

So, in searching for a newer and better interpretation, consider the pro- 
posal "a  tree is a set of t r iads"  If two leaves, a and b, separate further 
from the root than they do from a third leaf, c, then we can say that a and 
b discriminate against c, or the triad t (a ,b ,c )=  c, whereas if they all 
separate at the same place, we can say that t(a,b,c) = 0, or no triad exists 
for (a,b,c). The concept of triads for rooted trees is analogous to the 
"quartet"  concept for unrooted trees proposed by Estabrook, McMorris, and 
Meacham (1985). Under this interpretation of a tree as a set of  triads, the 
intersection over a profile is the set of triads shared by all the rivals in the 
profile. Although this intersection does not always describe a tree on the 
entire set of leaves, the incomplete tree(s) that it constitutes can be quite 
suggestive. For example, tree D from Figure 1 embodies all and only the 
triads shared by trees A and B. Of course, wherever leaf 11 is added to this 
tree, additional triads will be implied which were not shared in the profile 
A rationale for choosing a place for leaf 11 could be devised, yielding a 
definition for a consensus tree, and the complexity and similarity measures 
could be based on the number of triads and the number of shared triads, 
respectively. 

But as promising as this interpretation is, it still fails to capture all the 
structural information of a tree, as shown in Figure 2. Disagreeing with 
Margush and McMorris (1981), I observe that in rivals A and B, leaves 1 
and 2 join at a lower level (i.e., further from the root) than the whose set 
does, and I believe that that closer relationship (which I will call subset 
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nesting) is part of  the information represented by both trees. As the trees 
share no triads, however, the intersection of the triads yields tree C, the 
bush. Possibly more compelling is the case of  rivals E, F and G, where leaf 
subset {12} is nested in a larger set {12345}. The consistency of I and 2 
deserves more recognition than they get in the triad intersection H. Thus, 
the interpretation of a tree as a set of triads is unsatisfactory. Extending 
from triads to pentads would still fail due to analogous counterexamples. 

A more extreme interpretation, "a  tree is a set of leaf subset nestings," 
permits the expression of this closer relationship of leaves 1 and 2. As it 
defines a tree as a set of identifiable objects, its complexity and similarity 
measures are simple counts. The shared information, exemplified in trees D 
and I, retains much more detail than the strict consensus, and even more 
than the triads consensus. In the remainder of this paper, I define the nest- 
ings interpretation, show how to compute its complexity and similarity 
measures, define its ("ful l")  consensus as the best tree that represents all 
the information shared among a set of trees, and prove that the Adams con- 
sensus is the full consensus. 

2. Leaf Subset Nesting 

The different definitions of the word tree used in this paper are 
equivalent mathematically, but some reveal taxonomic structure more 
effectively than others. 

A graph-theoretic definition of tree is an undirected acyclic connected 
graph with one distinguished vertex (the root) of degree greater than 1, an 
optional set of unlabeled vertices of degree greater than 2, and n uniquely 
labeled vertices of degree 1 (the leaves) In the illustrations, a tree is dep- 
icted with its root at the top and the leaves at the bottom. Similarly, the 
text uses the words up and down to mean "toward the root" and "away 
from the root," respectively. 

Another definition of tree is what Margush and McMorris (1981) call 
an "n- t ree"  a set T of subsets of N(--- {1 . . . . .  n}) satisfying the condi- 
tions 

N E T ,  (C1) 

o ~' T ,  (C2) 

{i} E T for every i in N ,  (C3) 

X N Y {O,X, Y} for every X and Y in T .  (C4) 

The universe of such trees is called R, .  The nonsingleton elements of a set 
T are called the clusters of the tree. 
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There is a natural bijection between graph-theoretic trees and n-trees. 
Each leaf vertex corresponds to a singleton element of T. Each nonleaf ver- 
tex is the root of  a subtree on a subset of the leaves, and corresponds to the 
cluster of T equal to that subset of leaves. Condition (C4) corresponds to 
the acyclicity of the graph, so that there is only one path from the root to a 
given vertex. As an example of  this bijection, tree E of Figure 2, viewed as 
a graph, consists of 8 vertices, three of which are unlabeled (the top one 
being the root). As an n-tree, or set of clusters, it consists of the 8 sets {1}, 
{2}, {3}, {4}, {5}, {123}, {1234}, and {12345} 

If X, Y 6  T, and X c  Y, then we say that X < Y .  The least upper 
bound in tree T of any subset M o f  N i s  the smallest X E  T s u c h  that 
M _ X, and is denoted lubr(M). If X < Y, we call X a descendant of Y, 
and Y an ancestor of X, and if there is no Z E T such that X < Z  < Y, 
then we call X a child of Y, and Y the parent of X We also use the ances- 
try terminology when referring to the corresponding vertices of the tree 
viewed as a graph 

The previous section introduced the notion of a nesting -- one set of 
leaves joining lower than an including set We can use this notion as the 
basis of a third interpretation of  the concept of tree Consider < r to be a 
relation on the Cartesian product Power 2 (N), where Power (N) is the set of 
all subsets of N, so that V i E N, V nonnull A,B,  C C N, 

A <rB- - - ,A  c B ,  ((:5) 

A -~ {i} "'* {i} < r A U { i } ,  (C6) 

A < r B - - , [ ( C C A - . C < r B )  h 

(A c C c  B - . A  < r C  V C<TB) A 

( B c  C - - A  < r C ) ] ,  (C7) 

A < r C  A B < r C - - ' ( A t J  B < r C  V A U  ) ~ = ~ ) .  (C8) 

Any ordered pair (A,B)  for which the relation holds is called a nesting, and 
we say that A nests in B, or B houses A. Condition (C5) asserts that only a 
strict subset can nest. Condition (C6) asserts that any singleton nests in all 
larger supersets. Condition (C7) expresses a limited form of transitivity, 
such that if we have a nesting (A,B), any set included in A nests in any- 
thing A does, any set strictly between A and B must be in a nesting with at 
least one of them, and any set that includes B houses A. Condition (C8) is 
analogous to (C4), in that if one set houses two sets, then either it also 
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houses their union, or they are disjoint. 
Each such relation < r corresponds to a tree T in R, by the following 

correspondence. X < r Y iff X C Y A lubr(X) < lubr(Y). To construct 
a tree T in R n from a relation < r, construct the cluster L (S) for each non- 
null S_C N to be {c E N I - , ( S < r S U  {c})}. Then T i s  the union of 
the set of distinct clusters {L(S). ~ c S _  N} and the singletons. 
Theorem 1 in Appendix A proves that the bijection holds. To understand 
this construction, see that L (S) is the largest superset of  S that S does not 
nest in. Viewed in the n-tree, L(S)  is simply lubr(S). For example, in 
tree E of Figure 2, where {12} < {124}, {12} < {125}, -,({12} < {123} ), we 
have L({12}) ---- {123}. Similarly, L({13})-- {123} and L ({14})= {1234} 

Whenever a classification is defined to be a set of objects, natural 
definitions of complexity, similarity, and consensus follow. Using the nest- 
ings interpretation of a tree, define the nesting complexity c, (T) of a tree T 
to be the number of its nontrivial nestings (i.e., nestings not also present in 
the null tree). This is analogous to the component information of an n-tree, 
as defined by Nelson (1979). 

The consensus over a profile of sets is their intersection, so define the 
intersection N e of a profile P of trees to be a relation R such that V 

A , B C  N, A R B  iff ( V p  E P) A < p B .  In other words, construct the 
relation consisting of all the nestings that are in all the rivals of the profile. 
Because it is the intersection, it is analogous to the strict consensus of n- 
trees. 

Finally, the similarity over a profile of sets is the size of their intersec- 
tion, so define the nesting similarity s n (P) to be the nesting complexity of 
the intersection It is analogous to the component information of the strict 
consensus. 

Figure 3 and Table 1 show examples of 5-trees and their nontrivial 
nestings, respectively. The algorithms for computing s,, and c,, are in 
Appendix B. 

From this point of view, the perceived similarity of trees A and B of 
Figure 1 can be quantified ( c , ( A ) =  cn(B)= 23129 and sn(A,B)--- 8204), 
as can the failure of the strict consensus to capture it (c,, (C) = 0), but it is 
hard to relate this result either to other definitions of consensus or to com- 
parison of other sized trees. To facilitate comparisons of comparisons, Day 
(1983) suggests that a consensus index should range from 0 (no similarity) 
to 1 (unanimity) inclusive, based upon a complexity measure that is an 
interval scale. An interval scale can be based upon logarithmic transforma- 
tions of c, and s,, as the asymptotic behavior of c, and s,, is exponential. It 
is important to have a sensible value for the null tree, so, to avoid In (0), we 
establish the transformations lc, (t) = In (1 + c,, (t) ) and 
isn (P) = in (1 + so (P)).  No logarithm base is to be preferred over another 
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Figure 3 Three 5-trees 

Table 1 

Nestings for Figure 3 a 

Tree A Tree B Tree C 

(12)3 (12)34 (12)3 (12)34 (12)3 (12)34 
(12)345 (12)35 (12)345 (12)35 (12)345 (12)35 
(12)4 (12)45 (12)4 (12)45 (12)4 (12)45 
(12)5 (123)4 (12)5 (34)I (12)5 (123)4 
(123)45 (123)5 (34)12 (34)125 (123)45 (123)5 
(13)24 (13)245 (34)15 (34)2 (1234)5 (124)35 
(13)25 (13)4 (34)25 (345)I (13)24 (13)245 
(13)45 (13)5 (345)12 (345)2 (13)25 (13)4 
(23)14 (23)145 (35)I (35)12 (13)45 (13)5 
(23)15 (23)4 (35)124 (35)14 (134)25 (134)5 
(23)45 (23)5 (35)2 (35)24 (14)235 (14)25 
(45)I (45)12 (45)I (45)12 (14)35 (14)5 
(45)123 (45)13 (45)123 (45)13 (23)14 (23)145 
(45)2 (45)23 (45)2 (45)23 (23)15 (23)4 
(45)3 (45)3 (23)45 (23)5 

(234)15 (234)5 
(24)135 (24)15 
(24)35 (24)5 
(34)125 (34)15 
(34)25 (34)5 

a (X)Y m e a n s  X < X u Y 
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for this scale, because we will ultimately be interested in ratios of complex- 
ity values. In this scale, one interval represents the difference in complexity 
between a tree of any size n and a similar one of size n + 1. Taking Figure 
1 as an example, lc , (A)  ffi 10.04 and Is , ({A,B})f f i  9.01. These numbers 
convey the impressionistic notion that tree A has as much nesting complex- 
ity as an idealized tree with 10.04 leaves, while the complexity of its inter- 
section with B is that of an idealized tree of only 9.01 leaves. In other 
words, the scale describes the size (number of leaves) of an equivalent 
idealized tree. (Of course, the "number  of leaves" is impressionistic, 
because the logarithm base is arbitrary.) 

Day suggests estimating the fit of a nominal consensus to a profile by 
the ratio of the complexities of the consensus and the profile. Following the 
spirit rather than the letter of his prescription, I interpret profile complexity 
as consensus complexity (i.e., nesting complexity of the consensus) plus 
dispersion (defined below) about the consensus. The complexity due to 
information u n i q u e  to a tree t compared to profile P is 
Icn(t) - Isn(P U {t}), while that due to information unique to profile P is 
ls ,(P) - /s ,(P O {t}), so define d( t ,  P) ,  the deviation of a tree t from a 
profile P,  to be their sum 

d(t ,  P)=, lc,,(t) + Isn(P) - 21sn(P U {t}) . 

Notice that if P contains t, this reduces to lcn(t) - ls , (P) ,  while if P just 
has one member u, it reduces to Ic,,(t) + Ic,(u) - 21s,({t,u}). In the nest- 
ings domain, the role of consensus can be played by either a tree or an 
intersection of trees (over either the profile of interest or some other 
profile), as intersections show the shared complexity exactly. So if the inter- 
section R 0 over a profile Q is proposed as a nominal consensus for profile 
P, define the dispersion of P about R o as the deviation of the rivals of P 
from Q, averaged among the rivals, IP~ -1 ~ ,p~ed(p ,Q) .  Following Day (in 
spirit), we can define the nesting f i t  of RO. to P as the ratio of consensus 
complexity to the sum of consensus complexity and dispersion about the 
consensus 

f , ( O , P )  = Isn(Q)/ (Isn(Q) + tel -1 ]Ep e d ( p , O ) )  . 

If the denominator vanishes, define f ,  (Q,P)  to be 0 This only occurs if all 
of the rivals in P and the intersection over Q are null trees. 

This measure evaluates the intersection over profile Q as a consensus 
for profile P. Because Q can consist of as little as one tree, the measure is 
useful for evaluating consensus trees produced by any candidate consensus 
method. We define the special case where Q and P are equal as the nesting 
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consensus index ci,, (P) ~ f,, (P ,P) .  It can easily be shown that 

ci,.(P) = IPI ls.(P)/ ~-,p¢t. lc.(p) . 

This index qualifies as a consensus index because it achieves unity exactly 
when P is unanimous and contains no null trees, tends toward zero if the 
dispersion increases, and is zero if Is, (P) is To complete the example from 
Figure 1, ci,,({A,B}) -- (2 x 9.01)/ (2 x 10 04) = 0 892. 

3. Full Consensus 

For statistical purposes, the comparison process can stop right here. the 
nestings of the intersection constitute all the shared information, and their 
number is known. If, however, we wish to visualize the shared information, 
we need to build a tree from the intersection. We shall call such a tree the 
"ful l"  consensus of a profile, as it should include all of the nesting informa- 
tion shared by all the rival trees in the profile An obvious definition of the 
full consensus tree C is that it should satisfy conditions (R1) and (R2). 

(~ A , B  c__ N) ((V T E P) A < r  B)--* A < c  B (R1) 

(V A , B  c N) A < c  B---, ((V T E P) A < r  B) (R2) 

In other words, all the nestings common to the profile should be in C, and 
all the nestings in C should be common to the profile Unfortunately, these 
conditions are too strong, as exemplified by Figure 4. The only shared nest- 
ings are {23}< {234} and {23}< {1234}, which justify the existence of two 
clusters {23} and {234}, but there is no place for 1, because neither 
{23}< {123} nor {123}< {1234} is in the intersection. 

Instead of requiring that all nestings of the consensus reflect nestings of 
all the rival trees, we could merely require that the most obvious nestings 
do so Thus condition (R2') requires only that the clusters of C reflect 
nestings shared by all 

(~t A ,B  E C) A < c  B--* ((~/ T E P) A < r B) (R2') 

Although this seems too weak, Theorem 2 ( in Appendix A) shows that 
there is no more than one tree satisfying (R1) and (R2') for a profile P. In 
fact, the full consensus tree exists for each profile and turns out to be the 
Adams consensus tree, as shown in Theorem 3 (in Appendix A) Although 
s, (P) ~< cn (C) for the full consensus C of P,  they are equal for the eases 
of unanimity and total disagreement, so the full consensus and consensus 
index ci, constitute a CI method, as defined in Day and McMorris (1985). 
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A A 
I 2 34 2 341 

Figure 4 The intersection of trees can fail to be a tree The shared nestings are (23)4 and 
(23)14 Either (23)1 or (123)4 is also needed to satisfy the tree conditions in the nestings 
domain 

Some drawbacks of the full consensus tree have been noted it is 
uncharacterized, its computation is moderately expensive, and it can contain 
clusters not present in any rival The first objection was an impetus for writ- 
ing this paper. The second is also valid, but computing power is getting less 
expensive each year. The third objection carries weight insofar as one feels 
that a tree is a set of clusters. But Figure 1 shows that the structure of a 
tree is far more complex than is manifest in a set of clusters. The interpre- 
tation of  a tree as a nesting relation between sets squeezes every drop out of 
the notion of structural information of  a tree, and the full consensus tree 
merely represents that shared information. Although it is true that it usually 
also represents additional information, the "uninterpretable" clusters do 
have an interpretation, by Theorem 3. any nondisjoint pair of clusters of the 
full consensus are in fact nested (i e., obey the < relation) in all the rivals. 
Theorem 2 says that no other consensus tree can make this claim (and still 
portray all the shared nestings)! 

4. Conclusion 

Understanding how a tree is interpreted to display classificatory infor- 
mation is important for evaluating existing complexity and similarity meas- 
ures and consensus procedures. It can also help direct searches for new 
ones, especially in other domains, such as unrooted trees and weighted 
trees. 

This paper has examined three interpretations of a tree as a set -- clus- 
ters, triads, and nestings -- and shown them to be in increasing order of 
inherent structural complexity. For the nestings interpretation, it has 
defined raw complexity and similarity measures, and normalized consensus 
index and consensus fit measures analogous to one proposed by Day (1983) 
Finally, it has defined the "full consensus" tree while guaranteeing that its 
nondisjoint clusters bear the nesting relation in each tree of the profile, and 
has shown that the full consensus is the same as the Adams consensus. 
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Appendix A 

Here are some useful lemmas in the domain of subset nestings. 

L e m m a l  A U B < B  13 C A A c C - - , A  < C  

Proof Assume A U B < B  U C and A C C. Then (C7) implies 
A < B 13 C Therefore, if -,(A < C) then, by (C7) But also C < B U C, 
so, by (C8), A U B U  C < B  or C N (A U B ) - - f l ,  both of which are 
false SoA < C  • 

Lemma2 .4 c B A A c C A -,(A < B  ~/ A < C) ---. -, (A < B  U C) 

Proof Assume A c B, A c C, and -,(A < B  V A < C ) .  Suppose 
A < B  13 C. Then, by(C7) , - , (A  < B )  impliesB < B I 3  C a n d - , ( A  < C )  
implies C < B U C These, with (C8), imply 
(B U C < B  13 C) (B A C - - ~ ) ,  both of which are false, so 
-,(A < B  U C). • 

Theorem 1 There is a b~iection between R,  and V,, the set of objects that 
satisfy the conditions (C5)-(C8). 

Proof The proof proceeds in two parts 

From T in R,  to V in IS,, Construct the function p Rn -'-' Vn as follows If 
X is a cluster of  T, declare that S < v S' O R,  ~/nonnull S _ S' c X and 
V nonnull R c_ N - X  (C5) is satisfied by definition, and (C6) is satisfied 
because V i E N, {i} E T. The first and third parts of (C7) are satisfied by 
definition If S < W is a nesting that results from this construction based 
upon X, then for all S' between S and W that are subsets of X, S' < v W 
also results, while for all S' between S and W that are not subsets of X, 
S < v S' results, so (C.7) is satisfied If A < v C and B < v C have been 
constructed, then there were two clusters X1 and X2 (possibly equal) such 
that A __. X~, B__c)(2, C - X t ~ ,  and C - X 2 ; ~ .  Since 
X1 N X2 E {~,XI,X2}, A and B are either disjoint or subsets of the smaller 
of Xl and X2 The clauses of (C8) are satisfied by one of the two cases. 

Thus, for each element of R n there is an element of V,. For any dis- 
tinct pair of trees T and U in Rn, there must be a cluster X in one tree (call 
it T) that is not in the other. By the construction, there are nestings 
X < X  U {c} in p(T) for all c E N -  X, but there is no way for all of 
those nestings to be constructed in p ( U )  So distinct elements of Rn are 
related to distinct elements of V,, 
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From V in V n to T in R,. Construct the function q. V, ---, R, as fol- 
lows. Construct L(S) =-- {c E N I-~(S < S  U {c}) ], for all nonnull 
S c N. We need to show that conditions (C1)-(C4) are satisfied. 

Conditions (C1) and (C2) are obvious by construction. (C3) follows 
from (C2). Suppose 3 X - - - L ( R )  and 3 Y = L ( S )  for which 
X N  Y~'{~,X,Y}. Then ~ e  E X -  Y A ~ f E  Y - X .  By defimtion of 
L, -,(R < R  U {e}), -~(S < S  U {f}), R < R  U {f}, and S < S  U {e}. 
By Lemmas 1 and 2, - ,(L(R) < L ( R )  U {e}), -,(L(S) < L ( S )  U {f}), 
L(R)  U {f}, and L(S) < L ( S )  U {e}. Renamed, the last two clauses are 
X < X  U {f} and Y < Y O {e}. Because e E X and f E Y, (C7) implies 
X < X U Y and Y < X 12 Y Consequently, (C8) implies 
X U Y < X U Y or X N y -- o ,  both of which are false. This contradic- 
tion shows that all pairs of clusters are either nested or disjoint, so a tree 
defined in terms of nestings is equivalent to a tree defined in terms of clus- 
ters. 

To show that the correspondence is a bijection, we need to show that 
for any V in tl., p ( q ( V ) ) =  V. Suppose 3 1Io, II1 E V n such that 

= p ( q ( V o ) ) .  
For all S, S' _C N such that S <0 S', then S <0 S' U L(S) ,  by (C7), 

and as -~(S <0 L(S))  by repeated applications of Lemma 2, 
L(S) <0 S' U L(S),  by (C7). We can rewrite this as 
L(S) <0 L ( S ) U  ( S ' - L ( S ) ) .  Function q created a cluster equal to 
L(S),  and function p created the nesting S < l  S', because S ~ L(S)  and 
(S' - L (S)) __. N - L (S). 

On the other hand, consider V S C S' c N such that -,(S <o S'). By 
repeated application of Lemma 2, -,(S' <0 L(S')), so -~(S <0 L(S')) and 
-~(L(S) <0 L(S')), both by the contrapositive of (C7). Function q pro- 
duced a cluster equal to L(S) = L(S'),  so it could not produce a duster X 
where S _ X but S ' -  X ;~ o ,  so function p could not produce S < I  S', 
therefore - , ( S < I S ' ) .  Since (VSC-  S ' c  N) S < o S '  iff S < I S ' ,  
Vo=V .* 

To prove the theorems about the full consensus tree, we need a few 
definitions. Define D (x, T) to be the sequence 
D(x,T)[1] . . . . .  D(x,T)[n,:] of clusters of tree T that contain the leaf x, 
in order of decreasing size, so that D(x,T)[1] = N and D(x, T)[nx] = {x}. 
If leaf x E S, and lubr(S) = L, then define Cxr(L) to be that child of L in 
T that contains x. So, for example, D(x,T)[i  + 1] = Cxr(D(x,T)[i]). 

Theorem 2 No more than one tree satisfies conditions (R1) and (R2') for a 
profile P of rival trees. 
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Proof If two trees S and T satisfy the conditions, we will show that 
D(x,S)  = D(x,T)  for all x, by induction on the elements of D. Clearly 
D(x,S)[1] = D(x,T)[1] = N Now if D(x,S)[k] = D(x,T)Ik],  we will 
refer to this set as D [k]. Because S satisfies (R2'), 
D(x,S)[k  + 1] < s  D[k] ---, 6 / p  E P) D(x ,S)[k  + 1] < p  D[k]. Then, 
because T satisfies (R1), D ( x , S ) [ k + l ] < r D [ k ] ,  and, by (C8), 
(D(x,S)[k  + 1] U D(x,T)[k  + 1]) < r  D[k]. Call this union U. Sup- 
pose D(x,S)[k  + 1] - D(x,T)[k  + 1] ;~ ~. Because D(x,T)[k  + 1] lacks 
some member  of U, D(x ,T)[k  + 1] < r U < r D[k] But this contradicts 
the fact that D ( x , T ) [ k +  1] and D[k] are adjacent in tree T. So 
D(x,S)[k  + 1] - D(x,T)[k  + 1] -- O A symmetric argument shows 
D(x, T)[k + 1] - D(x,S)[k  + 1] = ~,  so they are equal and the induction 
hypothesis is advanced. • 

Theorem 3 For any profile P, Algorithm 2 in Appendix B computes a tree Tc 
that satisfies (R1) and (R2') for P. 

Proof To show that T, satisfies (R1), suppose 3 S c S' _ N such that 
V p  E P ( S < p  S') For any x E S, find k such that D(x, Tc)[k]= 
lub, (S') and call this set S". Clearly D(x, Tc)[k + 1] C S' _ S" and 
(V p E P) S' c_ lubr(S"). We need to show that S C_ D(x,T~)[k + 1], as 
S <e  S' follows immediately 

The algorithm will produce D(x,  Tc)[k + 1] --- Np Cxp(lubp(S")) C S', 
so 3 ~,.E P such tha t - , (S '  c_ C~p (libq (S"))),  or the intersection would con- 
tain For all such q, lubq(S')= lubq(S') by definition of lub, and 
because S < q S', lubq (S) < q lUbq (S") Thus lubq (S) ~ q Cxq (hlbq (S't)) 
and 

s c_ lubq(S) c_ Gq (lubq(S")) (1) 

But for those p E P, if any, for which S' c Cxp(lUbp(S")), 

s c_ s ' c _  ( t ub , ( s " ) )  . (2) 

C ii As (1) and (2) are the only cases, V p E P (S _ Cxp(lUbp(S ))) ,  and S is 
a subset of their intersection, which is exactly D (x, To)[k + 1]. 

To show that T, satisfies (R2'), assume S, S'  E To, and S c S'. We 
need to show that (V p E P) lubp (S) <p lubp (S') Use the algorithm to 
find the sequence D(x,  Tc) for some x E S, and identify i and k, where 
D(x, Tc)[i]----S and D(x, Tc)[k]= S' Then the algorithm computed 
O(x, Tc)[k + 11 = ¢3p C x p ( l U b p ( S g )  , so  (~t p E P) O(x,  Tc) [k + II C 
Gp (lubp (S') ), which implies 
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(V p E P) lubp(D(x,T~)[k + 11 ~<u Cxp(iubp(S')) (3) 

By combining (3), the assumption that S = D(x, T c) [i] C D(x, To) [k + 1], 
and an implication of the definition of Cx (V p 
Cxp(lubp(S')) <lubp(S'), we get (~/ p E P) lubp(S) p thatlubp (D(x, Tc)E [i]) P) 

<~p lubp(D(x,T~)[k + 1]) ~<p Cxp(lubp(S') <p lubp(S'). The first and last 
terms of this expression show (~/p E P) S <p  S .  • 

Appendix B 

Algorithm 1. 

Computing c, If c(i) is the size of cluster i, and p(i) is the size of 
the parent of cluster i, then 

(2 p(i)-c(i)- I )  (3 c(i) 2 c(i) c ( i ) 2  c ( i ) - l )  . c , ( T )  = ~ - - . iET - {N} . c ( i )> l  - -  - -  

The derivation proceeds upward from the leaves The sum consists of 
contributions from each cluster of  the tree T. For purposes of exposition, 
let us refer to the members of the phrase "A < B "  as the "twig" A and 
the "nes t "  B. Call a cluster of interest S and its parent S' 

If ISl -- c and Is ' l  --- p ,  then any one particular twig of size i from S is 
included in 2 ' - I  (2P-' - 1) nests from the set S' that include at least one 
element of S ' -  S There are C(c,i) such twigs (where 
C(c,i) ~ c ! / i !  ( c - i ) ! ) ,  and we are interested in twigs of sizes 2 through 
c, so the contribution due to cluster S is (2 p-c - 1) ~2~<~<c 2c-~ C(c,i). 
Recognizing that ~i~<~ 2c-i C(c,i)= 3 c, C(c,1) -- c and C(c,0) - 1, we 
can express this as (2 p-' - 1) (3 c - 2 c - c2 c-1) To compute cn(T), add 
the contributions for all nonsingleton S E T-{N}. By counting all twigs 
included in S, but only nests included in S', we avoid duplication. • 

Because the method for computing s, mirrors the operation of the 
Adams consensus algorithm defined in Adams (1972) and more succinctly 
stated in Neumann (1983), I will restate that algorithm here, after a few 
definitions. First, if P is a set of disjoint nonempty sets with union U, we 
call P a partition of U. If P is a partition of U, and V is a subset of U, 
define the partition of V induced by P to be the partition Q such that 
(~ q E Q) (3 p E P) q ---- V C1 p. Further, if PP is a set of  partitions Pi 
of U, define the partition product of PP to be the partition Q of U such that 
(~ q E Q) (~/ Pi E PP) (3 pi E P~) q ffi N~ Pi. 
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Algorithm 2. 

Computing the Adams consensus tree Tc over a profile P of trees T~ 
Start with T, containing the cluster N. Repeat the following for each non- 
trivial element S of T, Let PP,(S) be the partition of S induced by the 
children of lubj (S). Construct the new partition PPc (S) to be the partition 
product of the PP/(S) over all T,. in P Let Tc = Tc O PPc (S) • 

In order to describe the algorithm for computing sn, we need a supple- 
mentary counting formula To compute Gk ( {Xj} ), the number of subsets 
of  O ~<k X~ that overlap each of the X,., we develop a recursive formula, and 
then the more important closed forms Suppose that we know G:( {X~} ) 
for p < k. If we add a set, X/,+l, we might add some desired subsets Let e 
("extra")  be IXp+~ - 12 i~<~ X/l, the number of elements of Xp+ 1 that have 
never been in subsets before Now compose any set counted in Gv( {X~} ) 
with any subset of the extra set. There are 2 e G v ( {X~} ) of  these, nearly all 
of which should be members of Gp+l( {X~} ) The only composed sets to be 
rejected are those that don't overlap Xp+l. These were composed of (a) an 
element of Gp( {Xi} ) which did not overlap Xp+l, and (b) the null subset of 
the extra set There are G v ( { X / -  Xp+l} ) of these rejects, so the recursive 
formula is. 

Gl( {X,.} ) = 2 ° - 1, where a = IX~l, 

Gp+~({X/})-- 2eG~({X,.})- Ga({X/-Xp+I}), where e = IXa+l- tO :~pXil 

The closed forms of these formulas for k -- 2 and 3 follow Let a == IXI}, 
b = IX21, and c--- [X3I, and let ab--- IXl N X21 , etc As these literals are 
never multiplied, this will not be ambiguous. 

G2({X/}) = 2-~b(2 ~+b - 2" - 2 b) + I . 

G3({X/}) -- 2aa'-ab-~,-t~ (2~+b+c _ 2~+b _ 2~+¢ 

- 2 b+' + 2 a+bc + 2 b+'c + 2 ~+~b) + 1 . 

Algorithm 3. 

Computing s n over a profile P of trees T~, 2~< i~< IPI For each cluster 
S of Tc other than the root, consider a twig that joins at S and all nests that 
include it and are shared by the trees in P 
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Counting the twigs is easy To avoid multiple counting, we only count 
a twig that joins at S, namely one that contains at least one element from 
more than one "child" (member of PPc(S)). This is simply the number of 
twigs of size s from S, less the number of twigs of size s that derive from 
only one child, C(ISl,s)- c(IPP,(S)IJII,s), where i ranges over 
members of PPc (S) at least as large as s. 

We count all nests that include the twig and certain sets of  outliers. An 
outlier in T~ is any of the elements of N - lubi (S). For a nest to be shared 
by the trees in P, it must contain at least one outlier from each tree. Then 
the number of  nests around a twig of size s is 2 ' ' -s  GIe I ( { N -  lubi(S)}), 
where m = [SI. Multiplying by the number of twigs, we find the contribu- 
tion fro a given set S to be 

Gle I ({N-  lub~(S)J)~_,2a,~m2"-stC(m,s)- Z iC(IPP~(S)[ j] I , s ) I .  

Using the same identity as above, we can write this as 

GI?t({N-  lubj(S)})(3 m - 2 m _ m2m-1_ ~ i2m-q  (3 q - 2 q - q2q-l)) 

(where j ranges over members of the partition PPc(S) whose size 
q = [PPc(S)[J]I> 1), and sn is the sum of these contributions for all non- 
root clusters of To. 

To verify the correctness of this method, recognize that the maximal 
twigs less than N are exactly the elements of PPc (N). In one step of the 
algorithm, we compute the number of twigs (and their associated nests) that 
join at one (S) of these maximal twigs Then, to count the number of twigs 
restricted to just one child of S, we descend and locate the maximal twigs 
less than S: the elements of PPc (S). Thus the operation of the consensus 
algorithm produces exactly the clusters needed. • 
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