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A b s t r a c t  This paper describes a unified variational theory for 
design sensitivity analysis of nonlinear dynamic response of struc- 
tural and mechanical systems for shape, nonshape, material and 
mechanical properties selection, as well as control problems. The 
concept of an adjoint system, the principle of virtual work and 
a Lagrangian-Eulerian formulation to describe the deformations 
and the design variations are used to develop a unified view point. 
A general formula for design sensitivity analysis is derived and in- 
terpreted for usual performance functionals. Analytical examples 
are utilized to demonstrate the use of the theory and give insights 
for application to more complex problems that must be treated 
numerically. 

N o m e n c l a t u r e  

The notation for analysis of nonlinear structural mechanics prob- 
lems tends to be tedious and complex. To facilitate reading of 
the paper, the nomenclature used in the development of various 
concepts is summarized here. Bold faced letters represent tensors 
or matrices, and a %" between two letters implies direct tensor 
product. 

a right superscript that identifies a quantity for the adjoint 
structure 

b design variable vector 

B a strain operator 

dV differential volume in the undeformed configuration 

dV differential volume in the fixed reference domain 

f body force per unit undeformed volume 

g integrand of the displacement specified boundary integral 
in the response functional 

G integrand of the volume integral in the response func- 
tional 

h integrand of the traction specified boundary integral in 
the response functional 

J Jacobian of the transformation from the undeformed con- 
figuration to the reference volume 

7 area metric for transformation from the undeformed con- 
figuration to the reference volume 

n unit normal vector to the surface /~ 

r left superscript or subscript for quantities in the reference 
domain 

R surface traction 

R ° prescribed surface traction 

R subscript referring to the traction specified surface 

S second Piola-Kirchhoff stress tensor at time t 

S a stress tensor for the adjoint structure 

t time 

T total time 

T left superscript representing the quantity at the final time 
T 

T right superscript indicating transpose of a vector or ma- 
trix 

T Jacobian of the transformation for the time to the refer- 
ence time-domain 

n subscript referring to the displacement specified surface 

u displacement field at time t 

u ° prescribed displacement field 

u ~° prescribed adjoint displacement field 

u a displacement field for the adjoint structure 

°x~ coordinates in the undeformed configuration 

rx~ coordinates of the particle of the body in the reference 
domain 

V, V volume in the nndeformed configuration and the reference 
domain 

W ~ virtual work expression in which arbitrary variations are 
replaced by the corresponding adjoint fields 

X Jacobian matrix for the transformation from undeformed 
configuration to the reference volume 

X inverse of the Jacobian matrix X 

z composite state vector consisting of displacement, veloc- 
ity and acceleration fields 

AI augmented 'action' functional defined in (9) 

(r adjoint strain operator 

V gradient operator 

8 variational operator 

~e a an operator for the adjoint structure defined in (26) 

Dirac delta function 

• Green-Lagrange strain tensor at time t 

e ~ strain tensor for the adjoint structure 

~f Lagrangian multiplier for the terminal conditions 



38 

augmented Lagrangian functional defined in (9) 

function that specifies the terminal conditions 

F surface in the undeformed configuration 

F surface in the reference volume 

Fn, F,, traction and displacement specified surfaces in the un- 
deformed configuration 

functional for the constitutive law 

p mass density at time t 

performance functional in the space-time domain 

¢ integrand of the performance functional g' 

r time in the reference time-domain 

¢ terminal time in the reference time-domain 

Derivatives 
The 'comma' notation for partial derivatives is used, i.e. G,u = 
~G/Ou. An 'upper dot' represents material time derivative, i.e. 
fi = 02u/Ot2. A 'prime' implies derivative with respect to the 
time measured in the reference time-domain, i.e. u ' -- du/dr. 
Design variations 
The following varational notation is used for design variation of 
various quantities: 

7( total design variation of ( ); i.e. 7( ) = ~ - ~ b  

~( explicit design variation (partial derivative) of ( ); i.e. 
~( ) = o ~ b  for which state fields are frozen 

~( design variation of the fields that implicitly depend on 
the design variables, such as displacements, strains, ve- 
locities, accelerations, etc.; also design variation of func- 
tionals with respect to the implicit state fields; for this 
variation, the explicit dependence on the design variables 
is frozen 

1 I n t r o d u c t i o n  

The subject of design sensilivity analysis (DSA) is concerned 
with the development of procedures for the calculation of 
performance functional gradients with respect to design vari- 
ables. DSA represents an important tool for design improve- 
ment and is a necessary stage within the optimization pro- 
cess. Considerable work has been done recently in develop- 
ing DSA methods for various classes of problems (Hang and 
Arora 1979; Adelman and Haftka 1986; Hang et al. 1986; 
Haftka and Adelman 1989; Cardoso and Arora 1988; Tsay 
and Arora 1990). Basically, the methods can be classified as 
either direct differentiation or adjoint methods (Arora and 
Hang 1979). Adjoint methods of sensitivity analysis may be 
viewed as the general Lagrangian multiplier method (Bele- 
gundu 1985). Shape and nonshape problems have been ad- 
dressed independently in the literature. Material derivative 
idea and domain parameterization (or reference volume) con- 
cepts have been used for shape design sensitivity analysis 
(Dems and Mr6z 1984; Haber 1986). The dynamic response 
problem has been addressed by Hang and Arora (1979), Hsieh 
and Arora (1984), Merit (1988), Hang and i a n i  (1984), Tor- 
torelli and Lu (1990) and Choi and Wang (1990). Great 
interest has recently been shown in optimization and con- 
trol of structures and so-called flexible systems. Structural 
and mechanical systems have been traditionally treated with 

separate formulations and flexible systems have been mostly 
included in the second group. Shape and control design 
problems have also been approached separately and indepen- 
dently; however the subject of integrated optimal control and 
design has been addressed recently (Belegundu 1987; Khot 
1988). For a more detailed review of the subject, Adelman 
and Haftka (1986) and Haftka and Adelman (1989) should 
be consulted. 

Using the concept of a fixed reference volume (Eulerian 
coordinates) for design variations, a Lagrangian formulation 
to describe the deformation of the continuum, the principle 
of virtual work and an adjoint structure, a unified variational 
theory of design sensitivity analysis has been developed for 
nonlinear static structures, including large strains and mate- 
rial nonlinearities (Cardoso and Arora 1988; Tsay and Arora 
1990). Within the framework of this theory, there is no dis- 
tinction between shape and nonshape design if volume inte- 
grals are used throughout the formulation. The theory has 
been discretized with isoparametric finite elements and ap- 
plied to DSA and optimization of nonlinear structural sys- 
tems (Arora and Cardoso 1989). 

This paper extends the foregoing theory to nonlinear dy- 
namics of structural and mechanical systems. In order to 
do that, virtual work is formulated as balance of virtual me- 
chanical energy referred to the underformed configuration of 
the system. The virtual fields are replaced by the state fields 
of an adjoint structure. The idea of the fixed reference vol- 
ume is extended to the time domain. An action integral of 
the performance functional augmented with the virtual work 
equation is transformed to the fixed space-time configuration 
and the Lagrangian approach of sensitivity analysis is applied 
to that integral. Simple analytical examples are used to show 
use of the theory and gain insights for its application to more 
complex systems. 

2 Def in i t ion  o f  t he  p r o b l e m  

Using the total Lagrangian formulation to describe the mo- 
tion of the continuum, the equation of motion for the body 
at the time t is 

(1) 

where all the quantities are referred to the initial or un- 
derformed configuration, 8 represents variation of the state 
fields, ' . '  refers to the standard tensor product, the upper 
dot ' . '  refers to the material time derivative, p is the mass 
density at time t = 0, u is the displacement field, S is the sec- 
ond Piola-Kirchhoff stress measure, ¢ is the Green-Lagrange 
strain tensor, f is the body force per unit volume, 1~ is the 
surface traction, V is the underformed volume of the body, 
and F = F R U Fu is the surface of the body; Fu and F R be- 
ing the parts of the surface where the displacements u = u 0 
and the loads R = R 0 are prescribed, respectively; 0u and 
0fi are the initial displacement and velocity, respectively. In 
the formulation, the left superscript will represent the time 
at which the quantity is measured, unless specified otherwise; 
no left superscript implies time t. A left subscript will rep- 
resent the configuration of reference, no left subscript means 
configuration at t = 0. 



The Green-Lagrange strain tensor is given as 

¢ = 1 [(VuT) + (VuT)T + (VuT)(VuT)T] " (2) 

The nonlinear stress-strain law, in general, may be written 
a s  

S = ~(¢, b ) ,  (3) 

where b is the design variable vector. It is important to 
note that, for many applications, the functional form for ~i is 
not known. In numerical implementations, the explicit form 
is not needed. Only an incremental stress-strain relation is 
required. For hereditary materials, ¢ takes an integral form. 

Note that an inertial reference frame is used in deriving 
the system equations (1)-(3). The procedure accounts for fi- 
nite deformations and strains. In addition, the strain and 
stress measures are invariant under superposed rigid body 
motion. Therefore, the governing equations represent struc- 
tural as well as mechanical systems. 

Consider the general performance functional defined in 
the space-time domain as 

f edt, 

+ / h(z,b,t) dFR(b)] dt, (4) 

where the vectors of the state fields at time t are given as 

z = ( s ,  z ) ,  ,. = (u, u, a ) .  (5) 

Consider also a terminal condition 

Td(Tz,T b, T) = 0, (6) 

where [0, 71] is the time interval of interest. 
The DSA problem to be solved is to derive the total design 

variation of the functional (4) for a system represented by the 
equation of motion (1) and subject to the terminal condition 
(6). 

3 Lagrangian form of des ign  sens i t iv i ty  analys is  

Considering the total design variation of the functional k~ in 
(4) with respect to the design b, we obtain 

~kP = ~kP + ~P, (7) 

where ~ represents total variation with respect to the design 
variables, and ~ and ~ represent explicit and implicit varia- 
tions, respectively. 

The basic idea of introducing an adjoint structure is to 
replace the implicit design variations of the state fields in (7) 
by explicit design variations and certain adjoint state fields. 
After replacirLg the arbitrary state fields by the adjoint fields, 
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the virtual work principle of (1) may be written symbolically 
a s  

w a = 0.  (8) 

Using now the same Lagrangian methodology (Cardoso 
and Arora 1988b; Arora and Cardoso 1991), we form an ex- 
tended 'action' functional 

= / L d t + T T ¢ ,  L = ¢ - W  a, (9) 21 

where 7 is a multiplier. Since ~W a = ~ (T¢) = 0, the total 
design variation of (9) gives 

~AI = ~ko'. (10) 

Now if we require the implicit design variation of AI to vanish, 
i . e .  

~ A / =  0, (11) 

then, the total design variation of the functional ~P is given 
a s  

=  AI. (12) 

Equation (11) leads to the definition of the adjoint problem 
as explained in the sequel. Equation (12) shows that the total 
design variation of the performance functional ~ is given by 
the explicit design variation of the action functional in (9). 

4 Des ign  sens i t iv i ty  analys is  

Before performing the design variations as stated in Section 3, 
we proceed with the transformation of the various quantities 
to a fixed reference domain (Haber 1986; Cardoso and Arora 
1988). In the reference domain, the volume V is mapped onto 
a fixed volume V with the boundary as T. This transforma- 
tion of the independent variables needs to be introduced into 
all the governing equations and state fields. The Jacobian of 
the space transformation is given as 

a(0Xl'  0x2' 0x3) X = X -1  (13) 
J ----IXl, X = (9(rxl ' rx2, rx3) , 

The area metric ff is defined as 

7= JINTnlI. (14) 

The time domain t E [0, T] is transformed to r E [0, (] as 

T = T { .  (15) 

In the foregoing equations, superscript or subscript r refers 
to the reference coordinates and n is the unit normal to the 
surface T.  For oriented bodies such as bars or beams, J and 
IXl may be different from each other if we use volume inte- 
grals throughout the sensitivity analysis. The time Jacobian 
T may be the total time T if the time interval is transformed 
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to the unit interval in reference configuration, it may be the 
inverse of the frequency in problems where the reference con- 
figuration is in the phase domain, or still it may be equal to 
t/w if the reference configuration is in the frequency domain. 

We replace the virtual state fields for the primary struc- 
ture in (1) by certain adjoint fields identified with the su- 
perscript 'a'. Therefore, we have the following transformed 
equations. 

Virtual work equation (8) at time t 

IV a = f (pii • u a "4- S • ~a _ f • ua)J  d V -  

- /R•uaydT=0 ,  (16) 

where ca replaces & after substitution of 5u by u a. Equa- 
tions that determine these fields will be derived later. 

Green-Lagrange strain tensor 

¢ = B(uT)  , 

B 0 = ~{XT[r~'()] -t- [r~7()]Tx-t - XT[rV()][r~7()]X} • (17) 

Adjoint strain tensor 

1 
: ~ ( u a ) ,  ~ 0 : [ / X T [ r V ( ) ] "  + [ rV() ITx+ c a 

+XT[rV()][rVuT]Tx- t -  XT[rVuT][rV( ) ]Tx}  . (18) 

Velocity and acceleration fields 

~i = du/dt  = (du /dr ) (dr /d t )  = u 'T  -1,  ii = u " T  -2.  (19) 

_Functional for sensitivity analysis 

+ f h(z, b, r ) ~ ( b ) d r R ] r  d r .  (20) 

Note that the integrands in (20) are now given in terms of 
the reference coordinates. 

Carrying out the design variations as indicated in (12), 
combining terms, and replacing certain terms by the adjoint 
stress sa  (to be defined later), using (9) and considering time 
T as an independent field, the total variation of the perfor- 
mance functional is 

6~ = f f  ~K dt + 7~-T¢ = 

= / ( ~ ¢  - ~W a) dt + 7~T¢ = 

= f [ f { [ c   .xb + ( G , , + a T - 1 ) ~ T + u a •  (~f--ii~p)-- 

_(~a _ G, S ) . ~q~ _ s a • ~c _ S • ~¢a]]-~ 

q - [ a -  pii • u a - S • c a "4" f • ua]~J} dY-t- 

+ / {  [h,b • 6b + ( h , T q - h ~ - l ) ~ T  + u a • ~ R 0 ] T q  - 

+[h + rt ° 7} aTR + f { [g,b + :qS+ 

+[g + u a° • R]SJ}  dTu] T dr + 7(T¢,b •6b + T ¢ , T ~ T ) ,  (21) 

where 5~5 stands for design variations of the stress-strain law 
(3) with respect to the material parameters, and explicit de- 
sign variations of the primary and adjoint strains in (17) and 
(18), due to dependence on X, are given as 

~¢ = ~B(uT) ,  ~ea = ~a(uT) .  (22) 

In derivations to follow, we will enforce 

ua0 = - g , R  on Fu, (23) 

as the prescribed displacement for the adjoint structure, and 

S a = (ca _ G, S ) • ¢ ,e  - - C , e ,  (24) 

is the constitutive relation for the adjoint structure. 
Implicit design variation of the extended functional is 

5A = f ( e ~ T  + LST)  dr + Vg (T¢) 

/ { ( g ¢  - gwa) ' r  q- ¢~7} dr  + 75 (T¢) = 

= f ( / { - p u a • 6 i i - s a • 5 ¢ - S * 5 O a + ( a , z + f , z • u a ) • S z +  

+ ( a T  -1 + a , T + f , y • u a ) 6 T } J  dV+ 

+ /(g ' - l  + g,,)'TS dC~ + f {(h,~+RO,~•ua)•$~+ 

q- (hr -1  -t- h , r  ~ -t- R 0 ,~ . u a ) 6 T ) ~  d r R )  d r+  

+7(T¢,~ ~z + T¢¢~T), (25) 

where T is taken as implicitly dependent on the state fields, 
as for the minimum time control problems (an example illus- 
trates this point later), 

~¢a = ~e a .q_ ~r/a, ~e a = a(~ua) , 

• rl a = I { X T [ r v u a T ] [ r V 6 u T ] T x  + 

-t - ~ r  [r V6u T] [r v " a T ] T ' x } ,  (26) 



and the following expression has been used since it constitutes 
the equation of motion of the primary structure: 

/ ( - p a • ~ u  a -  S • ~ e  a + f • 6 u a ) j d V + / R  0 •~u a'] d-F R 

: 0 .  

Substituting now for z from (5), using the implicit design 
variations of velocity and acceleration in (19) as 

~fi = T - 2 6 u "  - 2 T - 3 u " 6 ~  = T-26un  - 2T- l i i6T ,  (27) 

and integrating by parts, (25) becomes 

~AI = / [ f  {-pfia • '~u-  Sa • $c -  S o ~oa + [G,u -a, i ,  + 

+G,a +(f,u - t , ~  +f,/i ) • ua -- (f,~ --2f,fi ) • l ie+ 

+f,~ •fia] • ~u + [G + G , ~ T  - G,6 •il - 2G,~i •fi+ 

+ ( f , y  y - t',,i "il - 2f,~ •ii + 2pfi) • u e ] T - I  6T}J dV+ 

+/{g + d?,, + 

+( R0 ,u --l~O,fi "I'-RO,,~ ) • ua -- (R0,it --21~0,fi ) " ~la+ 

-[-R 0 ,/~ •ii a] • ~u -4- [h -4- h , T ~  - h,4 •il - 2h,a . i i+  

+(R 0 ,~T- R 0,~ . i l -  2R0,fi •fi) • ua]T- 16"T} J dFR] T dr+ 
+/([p(Tila) q_ TG,,i _ TG,fi +(Tf,~i T f , f i  ) • (Tua)_  

_Tf,~ •(Tila)] • $ (Tu) + 

+[_p(rua ) +TG, a + T f , ~  • (Tue)] • ~ ( T i l ) } j d V +  

+ f{[Th,it-Th,~t +(TR0, ,  i -Tl~0,fi ) • ( T u a ) -  

T R 0 , f i  (Tile)] • ~ (Tu)_{ - 

+[Th,i~ +TR0,a  (Tug) ] .  $ ( T i l ) } ~ d ~ R +  

+7[T¢,u •~ (Tu) + T¢,~ • ~ (Til)+ 

+ T ¢ , ~ .  ~ (Tii) + T¢C~T--] , (28) 

where initial conditions have been assumed satisfied which 
eliminates certain terms at t = 0. Using the condition of (11) 
in (28), the adjoint problem is defined as 
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f {pfia . 6u-{- S a • 6e ÷ S * 6rla}j d~ = 

-(f , , i  -2i',~ ) • ila + f,fi • f i e ] .  6uJ  dVA 

+/{h,~ -J,,~ +i,,~ +(R °,~ - i t  °,~ + R  °,~ ) • u e -  

-( R0,,i -2R0,~ ) * ile + R0,~ •fie}. 6uJ dFR, (29) 

/ p (Tile).  (ru) J 

_(Tf,~ _Tf,fi ) • (Tua) + Tf,fi • (Tile)} • $(Tu)  J dV+ 

+ f{Th,i, +Th,~, _(TROi ' _TlkO a ). (T.e)+ 

+TR0,fi *(Tile)} • 6 (Tu)f fdTR - 7(T¢,u ) • (6Tu),  (30) 

f p(Tua) • 6 (Til)J  dV = 

= / { T G ,  a +Tf,,~ • (Tua)} • ~ (Tfl)j dV+ 

+ J{Th  +TriO (T.a)}. (Til)7 dTR+ 

+7 (T¢,,i) • ~ (Til), (31) 

7 (T¢,fi) • ~ (Tii) = 0, (32) 

f [ f { a  + GTY-a~,.6-2ar,.a+ 

+(f ,T  T - f,,i •it - 2f,fi •fi + 2pfi) • u e } J  dV+ 

+ / { h  + h , y T  - h,fi •il - 2h,fi . f i+  

+(R°,T~ - R°,~ •il - 2R°,~ •fi) • ue }TdTR+ 

The adjoint equations (29)-(33) solve for the adjoint state 
fields required for design variation calculations in (21). Equa- 
tions (30)-(32) are the terminal conditions for (29), and (33) 
solves for the Lagrangian multiplier 7. Damping forces are 
included as part of the applied body forces f and surface 
forces R °. Comparing (29) with (1), we see that the adjoint 
structurM masses and primary structural masses are identi- 
cal. Also comparing (29) with the incremental form of (1) 
(Cardoso and Arora 1988), we observe that the adjoint stiff- 
ness is the tangential stiffness of the primary structure. We 
may note, however, that the adjoint system is dependent on 
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the trajectory of the primary system. This mear~s that the 
history of the primary state fields must be memorized in or- 
der to have it available for the backward integration of the 
adjoint problem. Also note that the unknown fields appear 
on the right-hand side of (29). This implies that iterations 
will be necessary to solve (29). The other option would be to 
keep all the unknown terms on the left-hand side of (29) and 
deal with asymmetric operators which can also be computa- 
tionally expensive. If the performance functional is linearly 
dependent on the state fields, as is the case for many struc- 
tural response functionals, and the primary system is linear, 
then the adjoint system is not dependent on the state fields. 
This leads to considerable simplifications in numerical com- 
putations. 

In (21), no distinction has been made between design and 
control variables. Usually, control is included in forces f and 
R 0. Thus, design variations ~f and ~R 0 may be viewed to 
include control variations, if we keep control variations inside 
the time integral. This means that the continuum formu- 
lation in time does not provide sensitivities with respect to 
control in the sense of total derivatives 5~P/Sb, but only con- 
trol variations ~¢. If b is not dependent on time (design 
variable), then 6~/~b = f(~¢/~b)dr. For a time-discretized 
system there is no such distinction. 

5 Examples  

5.1 Nonlinear freely vibrating structure 

Consider the two-bar structure shown in Fig. 1, with an at- 
tached concentrated mass M at the centre node. The mass of 
the bars is neglected in comparison with the mass M. Con- 
sider the free vibration of the structure induced by an initial 
displacement 0w of the central node. Transformation to the 
reference domain is shown in the figure. The design variables 
for the problem are b =- (M, E,A, L). The Green-Lagrange 
strain measure and the stress in the members are given, re- 
spectively, as 

M 0 l 
L L,E,A 

a=AA 

Fig. 1. Two-bar vibrating structure and mapping of half the struc- 
ture to a control volume 

1 1 _- ~[(tL2 - L2)/L 2] = -~w ~, , S = Ee.  (34) 2T-2  

This is a geometrically nonlinear problem where the fre- 
quency of free vibration depends on the initial conditions. 
The velocity at the centre is calculated as (Panovko 1971) 

= 1 E A L - 3 M - I ( O w 4  - w4). (35) ~b 2 

It is required to perform design sensitivity analysis for 
the velocity of the central node at the time t = p, when 

the corresponding displacement vanishes for the first time 
(one fourth of the period of vibration). The functional for 
sensitivity analysis is given as 

1 

¢] = / / / (AL) - l~v~(~  - l ) ~ ( t -  p)ALd-Ad~ dt = 

o-~ 
1 

= / / / - ( A L ) - l w ~ ( ~ -  l ) ~ ( t -  p)ALd-Ad~ dt = 

o-~ 

=ffGJALdVdt, 

G = - ( A L )  - l w ~ ( ~ -  1 ) ~ ( t - p ) ,  J = AL,  

G,w = - ( A L ) - I ~ ( ~  - 1)~(t - p),  (36) 

where the symbol ~ represents a Dirac delta function. The 
adjoint problem is given from (29) as 

1o / / -~Mib . S w +  (sase + s sya )J  dV = G,wSwJ dV,(37) 

with the time boundary conditions 

P(v a : Pw a = 0. (38) 

Substituting into (37) the quantities 

= 6 ( l w 2 L  -2 )  = wn-25w , 

ga = wwaL-2 , sa = Ega , 

~c a = wL-26w a + waL-2~w = ~e a + 6r] a , (39) 

we have the adjoint problem as 

i a ~ -~M(~ + E A L - 3 w 2 w a = - 6 ( t - p ) .  (40) 

The solution for the adjoint problem is 

$ 

w a = 2(M12a) - 1 / - ~ ( ~ r  - p) sin 12a(t - or) da = 

0 

= 2M -1  cos $2a(t - p), 

where (12a) 2 = 3 M - 1 E A L - 3 w  2. (41) 

The adjoint total axial displacement and the displacement at 
any point are given as 

ua(L) = w a sin0 = wawL -1 , ua(~) = w a w L - l ~ .  (42) 

The general design sensitivity equation (21) reduces to 
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2 d 
o o o x  

+~c]a  + [c  - s~al~a} dA d~] dr. (43) 

Various quantities for (43) are given in (39) and (41), and 

5J = LhA + A-hL, ~GJ + G-hJ = O, 

~ = ~E ,  ~ = ~w2~L -2 = -w2L-3~L, 

~¢a = wwa~L-2 = _wwaL-3~L,  

P 

i -waiD dt -M-lP~D. (44) 

0 

Substituting these quantities into (43), we obtain 

- ~ ! [ z : ( P ( v ) [ _ ~ M - I - ~ M - P l E - I ~ E - t - I A - I ~ A  _ 

_ 3  L_I-~L] , (45) 

which can also be obtained directly from (35). 

5.2 Harmonic oscillator 
Consider the simple harmonic oscillator shown in Fig. 2, 
where the time T required for the mass M to move its initial 

0 p re-compressed resting position u = 0 to its final position, 
" u  is the quantity for design sensitivity analysis with respect 
to the vector b = (M,K, a), where a is the pre-loaded dis- 
tance. The motion and response of the system are 

J ~  J J / / / / ] / ] J  

Fig. 2. Harmonic oscillator 

M i i + K u = K a ,  0 u = 0 ~ = o ,  u = a ( 1 - c o s w t ) ,  

w 2 = K / M .  (46) 

The functional for sensitivity analysis is given as 

T 1 

0 0 

The adjoint problem of (29)-(33) is given as 
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M~t a T Ku a--O,  M(Tit a ) = - 7 ( T ¢ , u ) = - 7 ,  

1 

Tua=O,  I G d r + 7 ( T ¢ ) ( =  l + 7 ( T / 0 = 0 ,  (48) 

0 

and its solution gives 

7 = _ ( T ~ ) - I ,  u a = [Mw ( T / 0 ] - I  sinw(t - T) .  (49) 

Now, the total design variation of the total time func- 
tional of (47) is performed using (21), which for this case is 
simplified as 

T T 

5~ = ~M i - u a i i d t  + ~K i ( - u a u  + aua) dt+ 
0 0 

T 

+~aK i ua dt. 
0 

(50) 

Substituting (46) and (49) into (50), we have 

T T 

i ua dt = -[Mw(Ti~)] -1 i s i n w ( t  - T) dt = 
0 0 

= [K ( T £ ) ] - I ( 1 -  cos m T ) :  (KaTi t ) - lu ,  

T 

i --uau dt = 

0 

T 

= - [Mw ( T ~ ) ] - l a  i [ ( 1  - coswT) sinw(t - T)] dt = 

0 

: [K (T/t)] - I  [a(1 - coswT) - 1T(T£) ]  = 
2 

= -1 -TK-1  + [K (T~) ] - l a (1  - c o s  ~T)  
2 

T T 
/ - u a i i d t  = - [M (Tit)]-lwa i coswts inw(t -  T) dt = 
0 0 

= l[M(Ti l )] - lawT s inwT= 1 T M - 1 .  

Therefore, the total design variation of ~ from (50) is 

-hVg = 1 T ( M - I ~ M  - K - I ~ K )  + u(Ti~a)-l~a. (51) 

This result can be verified by first calculating the total time 
from (46) as 
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T =  w -1  c o s - l [ 1 -  (Tu/a)], sinwT = (aw) -1  (T/t), - P  sinr] }w -1  dr ,  (58) 

and then taking its direct design variation as 

-Sk~ =_ 5T = - T w - l ~ w  + u(T ita) - l~a  = 

= ~ T ( M - I ~ M  - K - I ~ K )  + u(T/ta)- l~a,  

which matches with (51). 

5.3 Nonlinear system with harmonic loading 
The equation of motion of a nonlinear system harmonically 
excited is given as 

Mii + kOU + ku 3 = Ps inwt ,  (52) 

where the driving frequency is taken as w = V/ff'o-/M to sim- 
plify future calculations. This equation may represent a non- 
linear pendulum where the function sin u is approximated as 
[u - (1/6)u3]. The method of direct linearization gives an ap- 
proximate equivalent governing equation and its steady-state 
solution as 

M £ t + K u = P s i n w t ,  u = U s i n w t ,  (53) 

where ii = w2u u , u u = d2u/dr 2. For total design variation 
of the functional ~, (21) is reduced as 

~-/2 
-hkP ==_ ~AI = / [(-uaua)~k + (u a sinr)~P] w-1 dr ,  

0 

(59) 

where 

: 0 ,  

u = U s i n r ,  u " = - U s i n r = - u ,  (60) 

have been used. The adjoint system is governed by (29)-(31) 
a s  

(ua),, + (Oa)%a = a , ~  = ~ r - ~ , 

qu a =q (ua) ! = 0,  (~a)2 _ i Jr- 3 k M - l w - 2 u  2 , (61) 

which has a solution as 

ua = _ ( M I 2 a ) - l w s i n f 2 a ( r -  Zr) . 
2 

(62) 

where 

I f = k  O+(5/7)kU 2, U = ( K - M w 2 ) - I P .  (54) 

Manipulating (54), we have for the maximum amplitude of 
vibrations at the time t = q = 7r/(2w) 

U = { ( 7 / 5 ) P / k }  l l a  • (55) 

Consider the displacement at the time q (maximum displace- 
ment) as the functional requiring sensitivity analysis, and the 
design vector as b - (M, k 0' k, P). The direct variation of 
the functional in (55) gives 

-5(qu) =-- -hU = 1U(p-1-hP - k-16k) • (56) 

For the adjoint method of sensitivity analysis, we may 
write the functional as 

r 

o o 

G = u ~  r , T = T ( ,  ~ = ~ - 1  

where we have used the time transformation r = wt or t = 
w-17-. 

The 'action' extended functional is given, for this case, as 

Substituting the adjoint field of (62) into (59), we have 

u a sin vhPw -1 dr = (1/3)Up-1-hP , 

0 

/ -uaua-hkw -1 dr = (1/3)gk-l-hk,  

0 

~gj  = ( 1 / 3 ) U ( p - l g p  _ k - l g k )  , (63) 

which verifies (56). The first of equations (63) has been 
checked by numerical integration for different values of the 
system parameters. The second equation may be checked 
by usin{ the result of the first, the equation of motion, and 
i i  ~ - - ~ 2 -  t / .  

If P is a control variable, (59) and (61) are still valid, 
now with different values for u and u a. In this case we could 
obtain the control variation of ~ as 

~ = f (u a sinr)hPw -1 dr.  

o 

(64) 

The sensitivity of ~' with respect to control P would be taken 
with respect to the point control P(ri) ,  r i E [0, 7r/2], as 

6v~/hP(ri) = ~o-lu a s in r ,  for r > r / ,  

.-= j 
o 

5~/SP(ri) = 0, for r < 0, 

where -6P(r)/-SP(ri) = 5(v - T/) has been used (Arora 1989). 



6 Conclus ions  

A unified formulation for design sensitivity analysis of non- 
linear dynamic structures has been derived that accounts for 
shape and nonshape design variables, selection of material 
parameters and controls. Structural and mechanical systems 
have been addressed with the same formulation that is ex- 
plained as follows. 

1. The Lagrangian description of the motion referred to an 
inertial reference frame that accounts for finite deforma- 
tions and strains is used. Appropriate strain and stress 
measures that are invariant under any rigid body motion 
are used. This allows one to treat mechanical systems 
within the nonlinear structural dynamics formulation. 
Since a time-like parameter is already used in nonlinear 
static analysis, all one needs to do to unify structures 
and mechanical systems is to add the inertial term to 
the principle of virtual work. This allows the use of the 
same nonlinear analysis code for mechanical and struc- 
tural systems. 

2. Using Eulerian coordinates (fixed reference coordinates) 
for design sensitivity analysis, volume integrals are trans- 
formed to the reference domain and free domain prob- 
lems are transformed into the fixed domain problems. 
Using the volume integrals throughout the derivations, 
shape and nonshape problems are unified in the same 
formulation. 

3. Extending the dimension of the problem domain to in- 
clude time, the design space becomes included in the 
control space. This way the design variables are simply 
the control variables that are not dependent on time. 
Using time integrals throughout the derivations, control 
and design problems are unified in the same formulation. 

4. Extending the dimension of the fixed reference domain 
to include a parametric time variable, integrals in time 
domain are also transformed to the fixed reference do- 
main. This way the free optimal time control problems 
are transformed into fixed time optimal control prob- 
lelTiS. 

5. The adjoint structure concept is a major unifying factor 
for design sensitivity analysis, since it does not depend 
on the type of design variables but just on the type of the 
performance functional. However, the adjoint problem 
is a terminal value problem that needs to he integrated 
backwards in time. This implies that the adjoint system 
cannot be defined until the analysis problem has been 
completely solved. Most of the information generated 
during the analysis phase is also needed for solution of 
the adjoint system. This may make numerical imple- 
mentation of the method somewhat tedious compared 
to the direct differentiation method. 
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