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Interpolation of Scattered Data: Distance Matrices 
and Conditionally Positive Definite Functions 

Charles A. Micchelli 

Abstract. Among other things, we prove that multiquadric surface interpolation 
is always solvable, thereby settling a conjecture of R. Franke. 

1. Introduction 

For solving practical problems of data fitting in two dimensions, two methods 
seem to be most popular: thin plate  splines (TPS) by Duchon [8] and Hardy's 
mult iquadric  surfaces (MQS) ([14, 15]; see also Franke [10]). The theory for TPS 
has been developed in a series of papers by Duchon [8] and Meinguet [21]. 
However, beyond its numerical performance, little seems to be known about the 
MQS method. For instance, in his lecture notes for a recent meeting, Franke [11] 
proposed (based on extensive numerical experience) the following conjecture: 

Conjecture. Given any distinct points x x . . . . .  x" in the plane 

(1.1) ( - l ) n - l d e t r  § II x / -  xJll 2 > 0, 

where Ilxll 2 = x 2 + x 2, x = (x~, x2),  is the Euclidean norm of x. 

This conjecture says, in Particular, that there is a unique surface f ( x ) =  

c~r + IIx - xq l  2 + " '"  +cnr + IIx - x"ll 2 that interpolates (data) y p . . . ,  y,, 
at x L . . . . .  x" .  Apparently, when this conjecture was made it was not even known 
that interpolation by MQS is always possible according to Wahba [29]. 

As an extension of MQS, Barnhill and Stead [5] explored surfaces based on the 
kernel K , ( x ,  y ) =  (1 + IIx-YllZ) -", where /, is a real number, in contour 
plotting for three-dimensional interpolation. Thus they used 

(1.2) f ( x )  = c l K ~ ( x ,  x 1) + . . .  + c n K ~ ( x ,  x " )  
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to interpolate scattered data 

(1.3) f ( x  i) = y,, i = 1 . . . . .  n, 

and sought those values of bt for which (1.3) has a unique solution. A similar 
question was recently raised kernel K ( x ,  y) = log(1 + IIx - yll 2) by N. Dyn [9]. 

The purpose of this paper is to address these questions. We place them into a 
unified context so that we can draw upon ideas from the theory of positive 
definite functions by Stewart [28] and distance matrices by Blumenthal [6]. 
Therefore it is possible that some of what we say here may already be accessible 
in the literature. 

2. Background and Results 

Let X be an abstract point set. Suppose K is a real-valued kernel defined on 
X • X and kl(X ) . . . .  , k , , ( x )  are given real-valued functions over X. A sufficient 
condition that guarantees that the interpolation problem (1.3) has a solution of 
the form 

n ftt 

(2.1) f ( x )  = E c i K ( x ,  x i )  + ~-, d i k i ( x ) ,  m < n, 
i = 1  i = 1  

that satisfies the auxiliary condition 
n 

( 2 . 2 )  E c i k j ( X i )  = O, j = 1 . . . . .  m ,  
i = 1  

when rank ( k i ( x J ) )  = m is that the quadratic form 
n 

E c,cjK(x',x ) 
i = 1  j = l  

is strictly positive definite whenever c = (cl . . . . .  c,) satisfies (2.2). The motivation 
for this type of interpolation comes from methods of optimal interpolation. Thus 
some quadratic seminorm can be introduced on a subspace of real-valued 
functions on X and the method (2.1), (2.2) will have the least norm among all 
solutions to (1.3). This equivalence is discussed by several authors (Matheron [19, 
20], Salkauskas [23]). For instance, when m = 0, i.e., only the kernel K is present 
in (2.1), the construction of X can be based on Aronszajn's theory of reproducing 
kernels [3]. These matters are not of concern to us here. Rather, we are interested 
in explicit examples of (2.1), (2.2) which can be used to solve the scattered data 
interpolation problem in, for instance, two and three dimensions. For this 
purpose, we restrict X = R s and K ( x ,  y) = F( l l x  - yl[2), where F is a continu- 
ous real-valued function defined on [0, oo). Furthermore, we consider only the 
case where the span of k l ( x  ) . . . . .  k m ( x  ) is the space ~rk_l(R s) of polynomials of 
total degree < k - 1. 

Definition 2.1. A continuous function F(t),  defined on [0, oo), is said to be 
conditionally (strictly) positive definite of  order k on R s i f  for any distinct points 
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X 1 . . . . .  X "  E R s a n d  scalars  c 1 . . . . .  c,, such  tha t  

(2.3) E cip(x') = o 
i=I 

for all p ~ 7rk_l( R') ,  the quadratic form El'= " , , i z) 1F/=l~//F([lx - xJll is (positive) 
nonnegative. 

We will denote the class of conditionally positive definite functions by ~k(RS). 
Obviously, ~ k + l ( R ' )  c_ ~k(Rs).  

A famous theorem of Bochner characterizes any f ( x )  = F(llxll 2), F ~ ~0(RS) 
as the Fourier transform of a finite Borel measure on R'  (see Stewart [28]). 
Because f ( x )  is a radial function this result has an equivalent formulation 
expressing F( t )  as a certain Bessel transform of a measure on R ~. Specifically, 

F(t) = f fa , ( tu)  

where a(u)  is bounded and nondecreasing, and ~, is defined by Schoenberg [26, 
27] in terms of Bessel functions as 

cost,  s = 1, 

Similar characterizations are available for the class 9~k(R') [13, Chapter II]. 
We are especially interested in the class of functions that are conditionally 

positive definite of order k over any R ~, i.e., 

(2.4) 2~k= N ~ k ( R ' ) .  
s>_l 

To state our result about ~k we recall that a function F is said to be completely 
monotonic on (0, oo) provided that it is in C~(0, oo) and (-1)/F(/)(x)>_ 0, 
x ~ (0, oo), l =  0 , 1 , 2 , . . . .  

Theorem 2.1. F ~ ~ k  whenever F is continuous on [0, oo) and ( - 1 ) k F  (k) is 
completely monotonic on (0, oo). 

The case k = 0 of this theorem is due to Schoenberg [27]. He even showed the 
equivalence of these conditions in this case. The general case and its elementary 
proof embody the TPS and MQS interpolation methods and lead us to a proof of 
(1.1). 

Another result of this type is 

Theorem 2.2. Let l = [s/2] - k + 2 be a positive integer. Then for any function 
defined on (0, oo) such that ( -  1)k+JF(k+))(t) is nonnegative, nonincreasing, and 
convex for j = 0 , 1 , . . . , l - 2  on (O, oo) ( i f  l =  1, we require only that it be 
nonnegative and nonincreasing), it follows that F(v~) ~ gZ k( RS ). 
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The proof of this theorem uses a result from Askey [4]. 
Finally, we will prove 

Theorem 2.3. Suppose F '  is completely monotonic but not constant on (0, ~ ) ,  F is 
continuous on [0, ~ )  and positive on (0, oo). Then for any distinct vectors x 1 . . . . .  x"  

R s (s arbitrary) 

( - 1 ) " - l d e t  F(II x * -  xJl] a) > 0. 

Consequently, the choice F ( t ) =  (1 + t)  1/2 in Theorem 2.3 proves Franke's 
conjecture. 

Before we prove these theorems we recall the important notion of an almost 
positive definite matrix, which is relevant to our discussion (see Donoghue [7]). 

Definition 2.2. 
provided that 

A r e a l  n x n symmetric matrix A is called almost negative definite 

~ cicjAij <-~ 0 
j = l  i = l  

whenever ET=xci = O. 

Let us denote this class by ~r and note that if A~j = [Ix g - xJl] 2 for some 
x 1 . . . . .  x"  ~ R s, then A is in d ,  because 

n 2 

(2.5) - 2  <_ o 
i=1  j = l  i=1  

when ET=lci = 0. There is a beautiful converse to this observation (see Schoen- 
berg [25] and Blumenthal [6]) that states 

Theorem A. Let  A be an n x n real symmetric matrix with zero diagonal entries. 
There exist vectors x l , . . . ,  x"  ~ R s for some s such that Ai j  = II x~ - xJll 2 if and 
only i f  A is almost negative definite. 

Besides being useful in distance geometry, the notion of almost positive definite 
matrices is important in probability theory, where it is used to characterize 
infinitely divisible laws (see Luckas [18]). 

Since the matrix (llx i - xJll 2) appears in the formulation of Definition 2.1, we 
can express Theorems 2.1-2.3 in terms of almost positive definite matrices, 
provided we give the condition (2.3) its proper interpretation. For this purpose, 
we require 

Corollary 2.1. A ~ d if  and only if any one of  the following conditions holds: 
(a) There exist o = (01 . . . . .  o,) and x 1 . . . . .  x " ~  R s for some s such that 

A,j  = oi 4 a, + II x~ - xJll 2" 
(b) There exist o = (01 . . . . .  o,) and a B = (Bu) ,  i, j = 1 , . . . ,  n, that is posi- 

tive definite such that d i j  = o i + oj - Bij. 
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(c) (e-~A' 0 is positive definite for all a > O. Moreover, it is strictly positive 
definite if and only if 

l A g ) ,  i 4: j .  (2.6) AU > 5(A,, + 

Proof. For the first two claims it suffices to remark that when A ~ d ,  Theorem 
A says that there exist x 1 . . . . .  x" such that 

IIx' - # 1 1 2  = A,j - l( hii "~- A j j ) .  

The first part of assertion (c) is a well-known characterization of the class d (see 
Donoghue [7]). As for the last claim, when A e d inequality (2.6) means that in 
the representation for A in part (a) the points x 1 . . . . .  x" e R '  are distinct. Hence 
we need only recall that (e -allx'-x:ll') is strictly positive definite because of the 
formula 

( 2 . 7 )  e - a z l l x ' - x q l z / 2 =  ( 2 ~ r ) - S / 2 [  e i ..... " 'e- '  ........ /e-Ilxl12/2 dx 
,J Rs 

and the linear independence of e i ' ' l  . . . . .  e ixx", x ~ R s �9 

We will have occasion to use several subclasses of ~r First, the distance 
matrices in d ,  i.e., matrices with zero diagonal entries, will be denoted by d J. 
We let d + be the matrices in d with nonnegative entries and ~r be the 
subclass of ~r for which part (c) of Corollary 2.1 holds. 

With these facts at hand, we are now ready to prove Theorems 2.1-2.3. 

3. Proofs  

We begin with 

Lemma 3.1. f n i Ei=lCip(x ) = 0 for allp ~ ~rk_l(R s) then 

( - - 1 ) k ~  ~ c , c j l l x ' - - x J l l  2 .>-0 ,  

and 

(3.3) ~ CiCjq( [IX i -- X Jl] 2 ) --- 0,  q ~ ~r k ( R  1) 
j = l  i ~ l  

are equivalent. This remark leads us to our final definition. 

(3.1) 
i = l  j = l  

where equality holds in (3.1) if and only if 
tl 

(3.2) ~ ciP(X i) = O, p ~ ~rk(R" ). 
i= l  

Remark 3.1. Applying Lemma 3.1 inductively, we see that the conditions 
t! 

Ec, p(xi)=o, 
i=1 
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Definition 3.1. For any class rill of symmetric matrices with nonnegative entries we 
let o~t,(J! ) denote all continuous functions F(t), t ~ [0, oo), such that for any 

n n A ~ Jtt, E,=lY.j=lcicjF(Aij) > 0 whenever 

c.c.qIA..) = o for a ,  q " . I { R I )  
i = 1  j = l  

Remark 3.2. The proofs we present below show also that F ~ o~k(ag+ ) whenever 
both F is continuous on [0, oo) and ( - 1 ) ~ F  (k) is completely monotonic on 
(0, oe). In addition, for functions F satisfying the hypothesis of Theorem 2.3 we 
have that ( - 1 ) " - l d e t  F(A~j)> 0 for any A ~ ag'. These statements are useful 
reformulations of Theorems 2.1 and 2.3, as it is sometimes easier to generate 
matrices in ~r directly than to express them as the square of mutual Euclidean 
distances between vectors. 

Let us now prove Lemma 3.1. 

Proof. First note that 

~ cicjllx'-xJlL 2k 
i = 1  j = l  

= k ~ c,c,(llxql 2 + Ilxql 2 -  2(x ' ,  x ; ) )  k 
i = 1  . / = 1  

= ~ c , c j E  E ( -1 ) ' 2 '  i 2,, i 2,~ x 0 ' .  i=1~=1 /=0,1+,==k-1 ~ l l x l l  II2 II (x', 

Using our hypothesis on (c 1 . . . . .  c ,)  we see that whenever 2q  + l < k or 2t 2 + l 
< k the corresponding summand above is zero. Since 2t 1 + 2t 2 + 2l = 2k we 
must therefore have 2t a + l = 2t 2 + l = k for the nonzero summands. Hence 

(3.4) 

= ( - 1 )  k qcj E 2' (k ?1)/2 Ilxqlk-qlxJllk-Z(x" xj)t 
i = 1  j = l  I = 0  

k - / = even 

= ( - 1 )  ~ E 2' ( k - 1 / / 2  
I = O  

k - l =  even 

x ~ c&llxqlk-qlxJll '-z ~ (x ')"(xJ) ~ 
i = 1  j = l  l a l = l  

= ,~o E l c, llxql~-'(x') ~ , 
k - 1 = even 

which proves the inequality (3.1). Furthermore, when (3.2) holds each summand 
in (3.4) is zero, because i lxl lk-/ /"  is a polynomial of degree _< k, since lal = 1 _< k 
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and k -  l is even. Conversely, if the quadratic form (3.1) 
summands in (3.4) corresponding to I = k give 

n 

Y', c i (x i )  ~ = 0, all lal = k ,  
i = l  

so that 

is zero, then the 

c ,q(x  ~) = 0 
i=1  

for all homogeneous polynomials q of degree k. Thus (3.2) follows and the proof 
is complete. �9 

This lemma states that F(t)  = ( -1 ) I t  t is in 9~ k for any l < k, a special case of 
Theorem 2.1. Next we prove the general case. 

Proof of Theorem 2.1. Suppose ( - 1 ) k F  (k~ is completely monotonic on (0, ~) .  
Then by a theorem of Bernstein (see Widder [31]), 

(3.5) ( - - 1 ) k F ~ k ) ( t ) = f ~ 1 7 6  t > 0 ,  
"0 

where dtt(o)  is a Borel measure on (0, ~) .  For e > 0, we define F~(t) = F(t  + e), 
so that using (3.5), we get 

k - 1  F(1)(O) fo e t ' =  - -  e - ' ~  ~_, I dl~(o). F , ( t ) -  /=0E l-----~, ok ~ t=O l! ) 

Setting t = Ilx i - xJll 2 above, multiplying both sides by cicj, and summing over 
i, j ,  Lemma 3.1 leads to the equation 

. . = f e-O.o-, E " cicje_,,.._.,lt, ~ E c~cjF([Ix ' -  xJ[I 2 + e) o~ E dt~(~ 
j = l  i=1  "0 i=1  j = l  

whenever ZT=lcip(x i) = O, p ~ 7rk_l(R s) and e > 0. Hence letting e --, 0 +, we 
conclude F ~ ~k  because of Eq. (2.7). �9 

Remark  3.3. When x 1 . . . . .  x" are distinct, the measure d/,t in (3.5) has mass other 
than at the origin; i.e., if F qi qrk(R 1) and F (j), j = 0, 1 , . . . ,  k - 1, are continu- 
ous on [0, ~ ) ,  then F is strictly conditionally positive definite of order k. 

A converse of Theorem 2.1 can be obtained from arguments given by Schoen- 
berg [27] for the case k = 0. In the general case, we need the representation for an 
F in 9~ k given by Gelfand and Vilenkin [13, Chapter II]. For s sufficiently large, 
we can successively differentiate this equation, by letting s ~ oo and using the 
asymptotic properties of Bessel functions of large order. Since this is not our main 
concern here, we do not elaborate on these details. Instead, we give a short proof, 
based on Corollary 2.1, of a converse for k = 1. Thus suppose F ~ 9~1; then by 
part (c) of Corollary 2.1 and Schoenberg's theorem [27] we conclude that 
G(t )  = e '~F(t) is completely monotonic for a > 0. However, for l > 1, G(t)(t) = 
aFU)( t )  + O(a2), so the desired conclusion follows. 
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Finally, we observe that the method used above gives also 

Corollary 3.1 (a) I f  A ~ ear + and F is completely monotonic, then (F(Aey)) is 
positive definite. 

(b) A ~ ~r if and only if Aij > 0 and ((1 + XAij) -1) is positive definite for all 
X > 0 .  

Proof. The first statement follows from the Bernstein representation (3.5) (when 
k = Q) and part (c) of Corollary 2.1. Thus we see that A ~ .~r implies ((1 + 
XA~/) -1) is positive definite, because (1 + M)  -1 is completely monotonic on 
[0, ~ )  for )k > 0. Conversely, if ((1 + XAq) - t )  is positive definite for all X > 0, 
then by Schur's theorem, so is ([1 + (X /n )A i f l - " )  for all n (see Donoghue [7]). 
Letting n ---, ~ we get that (e-XA'0 is also positive definite, which by Corollary 
2.1, part (c), gives A ~ .~r thereby completing the proof. �9 

Let us also observe that part (a) is best possible in the following sense. Suppose 
A is a symmetric matrix with nonnegative entries such that (F(Aq))  is positive 
definite for any completely monotonic F. Then A ~ ~r because we can choose 
F ( t )  = e -xt .  Also, given a continuous F such that F(A~:) is positive definite for 
all A ~ ~r then F is completely monotonic. This is just Schoenberg's theorem, 
because our hypothesis implies F ( l l x  i - xJll  2) is positive definite on any R'  and 
so F is completely monotonic. 

Proof of Theorem 2.2. We base the proof of Theorem 2.2 on Williamson's [32] 
representation formula for any function F satisfying the hypothesis of the 
theorem. Namely, we have 

( - 1 ) k F ( k ) ( t ) =  fo~176 dt~(o), t > 0 ,  

where, as in (3.5), dlt(a) is a Borel measure on (0, o~). 
Following the proof of Theorem 2.1, we see that it suffices for the proof of 

Theorem 2.2 to show that the matrix ((1 - ] I x  ~ -  xYl[)l+ +~-1) is positive definite 
for x 1, . . . ,  x n ~ R'. 

Askey [4] pointed out that ((1 - IIx i - x J l l S ) + )  is positive definite on R s when 
> [s /2]  + 1. For the best lower bound of (s + 1)/2, see (6.9) of Gasper [121 

and references therein. �9 

Next we prove Theorem 2.3. 

Proof of Theorem 2.3. The condition on F and the method of proof used for 
Theorem 2.1 shows that the matrix Aq = F ( l l x  i - xSll 2) is in d ,  and in fact its 

r n t /  n ~__ ~__ quadratic fo m Y'.i=l~'~j=lCiCjAij is zero for ~i=lCi 0 if and only if c i 07 
i = 1 , . . . ,  n. Since we also have Y'in=tY~=lAij > 0, the theorem follows from the 
elementary 

l_emma 3.2. Let A be a real symmetric n • n matrix such that 
(i) ~7_lE",_xcic,Ai, < 0 whenever ~2~=1c i = 0 with equality if and only if c i = 

- -  j - -  j J 

�9 . . ~ C n ~ "  0 7  
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(ii) There is some vector d ~ R" such that 

~ d,djA,j > O. 
i=1 j = l  

Then A has one positive and n - 1 negative eigenvalues. 

Generally, if A is negative definite on a subspace of codimension m, for 
instance when Aij= - F ( l l x i -  xJl[2 ), m = dim%_l(RS), and F ~ k ( R s ) ,  
then A has at least n - m negative eigenvalues. 

Let us now turn to some examples. 

4. Examples 

Several important examples come from the function F(t) = 1 / ( r  2 + 0% r > 0, 
a > 0. This function is clearly completely monotonic on (0, oo). Hence the matrix 

(4.1) ((r  2 + I I x ' -  xq[2) -~) 

is strictly positive definite for all r > 0 and a > 0. Furthermore, recalling that 
any time F(l[x - yll 2) is positive definite we must have IF(t)l _< F(0), t > 0, we 
see that a > 0 is also necessary for (4.1) to be positive definite. 

The positive definiteness of 1/(1 + Ilxl12) ~ on R s for a > s/2 can also be seen 
in the following way. The Fourier transform of this function can be computed 
explicitly: 

e ix'.v (2rr) ~/2 / .~  1 

fiRS( 1 "[" [[el]2) a dj [ix[is/2_l Jo (1 + o2),~o,/as/2_l([[x][o)2, H ( x )  do, 

which, according to Abramowitz and Stegun [1, p. 488] gives 

eiX'.V (2rr) s/2 

(4.2) H ( x )  = fn s (1 + Ilxl12) a dy = 2a_l[lx[lS/Z_aF(a ) Ks/i_a(llxll ). 

[K a is sometimes called Macdonald's function (Watson [30, pp. 78-79]).] Fur- 
thermore, Ka(x ) > 0 for x > 0 (see Abramowitz and Stegun [1, p. 374]), which 
substantiates, by Fourier inversion, the positive definiteness of (1 + I lx l l2 ) -L  
a > s/2, x ~ RL We also mention that Macdonald's function gives the reproduc- 
ing kernel for fractional Sobolev spaces. Specifically, if we let 

Ha= ( f E~_ L2(RS): f w ( l +  ,[xl[2)a[f(x)12 dx < m} .  

where 

f ( x )  = (2~r)-S fg f -~x 'y f (y)  dy, 

then for a > s/2 the reproducing kernel of H a is given by 

Ra(x ) = s + ilyl[ 2) -aeiXy dy, 
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which in view of (4.2) gives 

(2~) ~/~ 
(4.3) R . ( x )  = 2._lllxll,/2_.F( a ) K~/2-.(IIxN). 

Now,  let us observe that the k th indefinite integral of F is given by 

1 

F(-k) ( t )  = (1 -- a ) (2  -- a ) . . . ( k  - a )  ( r2  + t)k-=" 

Thus,  choosing 0 < a < 1, we see that ( r  2 + t)  k - "  is strictly k-positive definite. 
Let t ing a ~ 0 § we get that - ( r  2 + t) k l og ( r  2 + t) is also k-positive definite. 
These  last two examples correspond to the TPS method.  

Nex t  we describe the relationship of these functions to Riesz potentials (see 
Helgason [16, p. 64]). 

Accord ing  to the proof  of Theorem 2.1, we have for 0 < a < 1 

(-1) 
( 1  - - r  § - 

oo  n n t a -1  

= fo t - k i l l  ~-'cicje-tllx'-xJll~F(ot) e - ' d t  
j = l  

if n i ~. i=lCiP(X ) = O, p ~ 7rk_l(RS).  If we scale x i by (1 /V~- )x '  and let h --, 0 +, 
we get f o r k _ > 1  

(-1) 
(4.4) (1 - a) (k  - a) i ~. c,c)]] x i -  xJN 2'k-'~) 

" ' "  i=1  j = l  

_ lr(a) "Of~176 d t ' i = l  j = l  

This fo rmula  is independent  of the "ba se"  space R s in which x lies. Alterna- 
tively, using Riesz potentials we get for a > s /2  and a = s /2  q! Z § the identi ty 

(4.5)  

when  Z~=lcip(x i) = O, p ~ ~k_l(RS), and k > a - s/2.  Hence,  choosing a = 
+ s/2,  we see that  ( - 1)kt" is strictly condit ionally positive definite of order  k for 
k - 1 < ~" < k, which already follows from (4.4). When k = 1, this result was 
observed by  von Neumann  and Schoenberg [22] for �9 = �89 Furthermore,  by 
Corol lary  2.1 and the fact that (11 xi - xJl127) ~ ~r for 0 < ~" < 1, we see that 
(1 + I lxl l ' ) -~ is strictly positive definite for/z > 0, 0 < ,r < 2. For  the case s = 1, 
/z = 1, see Linnik [17]. 

Fo l lowing  the advice of Remark 3.2, we are ready to give a stronger version of 
inequal i ty  (1.1). Since (11 xi - xJll 2") ~ d '  for 0 < T < 1, we get 

( - 1 ) n - l d e t  ( r  2 + IIx i -  xJll2") 8 > 0 
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whenever  r > 0, 0 < ~ < 1, 0 < ~" _< 1, and x x . . . . .  x"  are distinct vectors in R ~. 
Also using Corol lary  2.1, we obtain the well-known fact that e -xllx-.vll', 0 < "r _< 2, 
is strictly positive definite for any k > 0. The function e -Mlxl7 is the characteristic 
funct ion of  a stable law (see Luckas [18, p. 36]). For  ~" = 2, the Gaussian case, this 
kernel  is used in Schagen [24] for scattered data  interpolation; they are also 
discussed by  Agterberg [2]. 

Finally,  we remark that the following formula can easily be verified: 

(2 , , )  ~/2 ( _ a )  "+~ ,, ,, 
K c, cjllx'- xJll 2" log I I x ' -  xJII 

2 ~ - t F ( a )  2"n! i=1 i=1 

n I 2a =f (~.,cteiXY /,,yl, idY 
R'~l/=l / ] 

when  KT=lQp(x t) = 0, p c ~r,,(R'), n = a -  s/2. This equation can be com- 
pa red  to 

1 ~_. cic/Ix i xJll 2(k-~l log IIx i - xJll 2 
(k  1)! ;=1j=1 

= f 0 ~ (  ~-~i=1 j=l~cicje- t l lx ' -xql~/(-- t )k)  dt 

when  K'/=lcip(x i) = 0, p ~ * r ,_ l (R '  ), k > 1, which comes from (4.4) by using 
the expansion IIx -Yl l  2" = 1 + 2a  log IIx -Yl l  + O(a2).  Similarly, we have 

- s I1 + Hx' - xJll / 
i = l j = l  

=fo ~176 ~ ~cicje-llx'-xJll2'e-tdt 
i=1 j = l  t 

n 
i f  Ei=lCi = O, 
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