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Abstract Recent developments concerning the unsteady dy- 
namic forces on a spherical particle at finite Reynolds num- 
ber are reviewed for solid particles and clean micro-bubble. 
A particle frequency response function and an energy trans- 
fer function are derived for a solid particle or a contaminated 
micro-bubble in gas or liquid flow. A simple, unified method 
for estimating the cut-off frequency, or cut-off size, of a solid 
particle or a contaminated bubble is developed. Particle 
motion in isotropic turbulence is examined. Responses of the 
tracer particle to integral length scale structure, to turbulence 
energy, and to Taylor micro-scale structure are discussed 
in terms of the particle turbulence diffusivity, the particle 
turbulence intensity, and the ensemble average of the second 
invariant of fluid turbulence deformation tensor evaluated on 
the particle trajectory. 

1 
Introduction 
In using modern optical techniques to measure fluid velocity 
field, such as laser Doppler velocimetry (LDV), particle image 
velocimetry (PIV), particle tracking velocimetry (PTV), and 
holographic particle image velocimetry (HPIV), tracer par- 
ticles are seeded in fl0w fields that may be inherently three- 
dimensional and unsteady (Adrian 1991). Although different 
techniques are involved in obtaining the tracer particle veloc- 
ity, it is commonly assumed that the tracer particle velocity 
equals to the local, instantaneous fluid velocity. While this is 
true in the limit of vanishing particle diameter (and inertia) 
the particle size in reality must always be finite, in order to 
obtain good quality optical signals. From this viewpoint, 
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the following fundamental questions are sources of frequent 
concern in applying those optical techniques: 
1) how well does the velocity of a tracer (or seed) particle of 

given size represent the unsteady fluid velocity? 
2) how does one determine the largest possible size of the seed 

particles for a flow field of given time scales without 
affecting the velocity fidelity? 

Since experimental conditions vary widely, it is not possible to 
give simple answers to those questions. The fluid may be liquid 
or gas and the seed particles may be solid, liquid droplets, or 
gas bubbles. The fluid velocity may range from micron per 
second to as high as O(103) m/s. Interests in the flow field 
measurements may vary from large scale vortex structure 
to small scale structure on the order of Kolmogorov length 
scale. 

In this paper, the issues raised above will be addressed by 
beginning with a detailed review of the recent development 
of particle dynamic equations for small and finite particle 
Reynolds number. Particle Reynolds number, Re, based on the 
slip velocity and particle diameter may be larger than one if 
particle size is large and the fluid velocity is highly turbulent. 
The frequency response of the seed particle will be sub- 
sequently examined. A criterion for determining particle size 
in terms of Stokes number and particle-to-fluid density ratio is 
suggested. The responses of the seed particle to turbulence 
structure on the integral length scale, to the turbulence energy, 
and to the Taylor micro-length scale structure are examined via 
a Monte-Carlo simulation of particle motion in a pseudo- 
turbulence and an analytical study (Mei and Adrian 1995). 
A simple asymptotic expression for predicting the energy 
loss of heavy fine particles due to small inertia in isotropic 
turbulence is derived. While the work in this paper is not 
experimental, per se, it is hoped that the experimentalists will 
find the results useful in designing and conducting fluid 
mechanical experiments. 

2 
Particle dynamics at finite Reynolds number 

2.1 
Unsteady drag on a solid particle at zero Reynolds number 
The earliest work related to the unsteady drag on a spherical 
particle was that of Stokes (1851) and Basset (1888). Their 
results were derived in the frequency and time domains, res- 
pectively, in the creeping flow limit. For a sphere of radius 
a moving through stationary fluid of viscosity/z and density pf 
with unidirectional velocity V(t), Basset obtained the following 



expression for the hydrodynamic force on particle at zero 
Reynolds number, 

F ( t ) = - 6 ~ #  aV(t)-6~#a2 i --dV 
_~ dr 

= Fos( t) + F,(  t) + FA~( t) 

dr 2 dV 
3 rm3pf d f  

(1) 

where v is the fluid kinematic viscosity. The first term, los (t), is 
a quasi-steady viscous force. The second term, F~(t), is called 
the history force or Basset force. It is due to the diffusion of the 
vorticity from the particle surface to the bulk fluid flow. The 
third term, FAM(t), is the added-mass force which is purely 
inertial. If the frame of reference is fixed with the sphere and 
the fluid moves with a uniform velocity U(t) in a far field over 
a stationary sphere, the force is 

t dU dr 
F( t) =6npaU ( t) + 6n#a 2 

- o3 & 
2 dU 4 dU 

+7 (2) 

The first three terms are the same as in Eq. (1). The last term, 
4na3pf (dU/dr), is the product of the acceleration and the fluid 
mass displaced by the particle; it results from the coordinate 
transformation since the frame of reference of the particle is 
non-inertiaL 

Tchen (1947) proposed an equation of motion for particles 
moving in an unsteady non-uniform flow in a form that 
essentially combines the above two equations in an ad hoc 
manner. A more rigorous derivation of the equation of motion 
for small spherical particles of density p; at zero particle 
Reynolds number was given by Maxey and Riley (1983) in the 
form of 

d V 4  
rca3p; -d~=~ ;ca3(pp--pf )g--6rc#a V - - U - - ~  

d ( V _ U _ ~ a Z V 2 U )  am 
ito ~ x ~ ( t - r )  

d ( v  1 ) 4 DU 2 7ca3pf --U--]-~ a2VaU -t- 7 7za3pf 

=FG_~+Fos(t)+Fn(t)+FAM(t)+FFs(t ) (3) 

where V and U are the velocities of the particle and the fluid 
and g is the gravitational acceleration. The first term, F a_B, is 
the body force (gravity minus buoyancy). Here, dldt refers 
to the time derivative on the particle trajectory and can be 
evaluated as (OIOt + V.  V ) and D/Dt  = ~/~t + U. V refers to the 
time derivative evaluated on the trajectory of the fluid elements 
that surrounds the particle at an}( given instant. The Faxen 
terms, a2V2U, in (3) are normally small in comparison with 
any of the remaining terms, and so they can be neglected. The 
last term in (3), Frs(t) = 4za3pf (DU/D t), includes the last term 
in Eq. (2), 4xa3pf (~U/(~t). The derivation of Eq. (3) can be 
briefly summarized as follows. Consider a spherical particle 
introduced at x=xp  with a velocity V into an otherwise 
undisturbed non-uniform flow field of velocity U(t, x) and 
stress field o °. The flow field around the sphere is modified to 
be u(t, x) with u(t, x) = V  on the particle surface S defined by 

Ix-xpl  =a ,  and u(t, x)--*U(t, x) as I x - x p l ~  ,~. The resulting 
stress field can be expressed as 0-= a S +  a '  in which a '  is the 
disturbance stress field and is related to the relative velocity 
( V -  U). While the hydrostatic pressure gives rise to Fa-B, 
~s n .  cr' dS contributes to Fos (t), FH (t), and FaM (t) in gq. (3), 
and the contribution from aS becomes FFs (t) = ~s n .  aS dS 
4zca3V • ¢r ° =4~a3pf (DU/Dt) by using the divergence theorem 
and Navier-Stokes equation for the undisturbed flow field, 
pf (DU/Dt )=V.  cr °. 

It should be noted that the added-mass force described by 
(3) is proportional to (d/dr) ( V - U ) .  However, based on an 
analysis of inviscid non-uniform flow over a sphere, Auton 
et al. (1988) have shown that added-mass force on a sphere in 
general should be expressed as 

2 DU 
FA~(t)-----7 z~a3pS D-t dtt (4) 

Since in the derivation of Eq. (3) by Maxey and Riley, the 
nonlinear convection term in the Navier-Stokes equation 
governing the relative motion between the particle and 
the surrounding fluid was not included, the difference, 
DU/D t--  dU/dt = ( U -  V) .  V U does not appear in the equa- 
tion, and it has no tangible impact on the accuracy of Eq. (3) 
within the low Reynolds number approximation. At finite 
Reynolds number, this is no longer true, and the correction of 
Auton et al. (1988) should be incorporated into Maxey- Riely's 
equation. However, for typical seed particles having reasonably 
small inertia, I U -  V I << I U [ in order for the measurement error 
to be small. Thus the difference ( U - V ) .  V U is quite small 
compared with the typical term U . V U  in DU/Dt  and Eq. (3) 
can be used in unmodified form. It is also noted that this 
difference vanishes when a particle is in a uniform flow. 

2.2 
Unsteady drag on a solid particle at finite Reynolds number 
Let L be a characteristic length of the flow field and a usual flow 
Reynolds number is defined as ReL = UL/v in which U is 
a characteristic velocity. Defning particle Reynolds number 
as 

Re = L U - V I 2 a / v  (5) 

the small error requirement, I U -  V b / I U ] << 1, implies that 
Re (v/a I U I ) << 1. This is equivalent to (ReIReL) L/a << 1 or 
Re << (a/L)ReL by using U as an estimate for [U I. Ordinarily, a/L 
is very small. In PIV measurement of a liquid flow, a ~ 10 pm 
and L ~> 10 m m  so that a/L..~ 10 -3. In an air flow, am 1 gm 
and L >~ I0 mm so that alL ~ I0-4. Thus one requires Re 
<< 10-3 _ 10 -4 ReL. If the flow is laminar, typically Rec < 103 
and Re<< 1 can be satisfied. If the flow is turbulent, ReL > 103 
permits Re > 1 with small measurement error. Thus for laminar 
flow we can use the low Reynolds number Eq. (3) to study the 
particle motion. For turbulent flows, a finite Reynolds number 
particle dynamic equation is needed to adequately describe the 
particle motion. 

2.2.1 
On the quasi-steady force 
There have been various attempts to extend Tchen's or Maxey 
and Riley's equation to particle Reynolds number of order 



unity or larger. A common approach, often adopted in many 
books and papers in the literature, is to consider the quasi- 
steady force and simply neglect the unsteady forces F,(t)+. 
FAM(t) +Frs (t). The quasi-steady force is usually represented 
by using the steady-state drag coefficient with instantaneous 
velocities ( U -  V), 

FQs=6rc#a~(U-V) (6) 

where ~b accounts for the deviation from the Stokes drag when 
the Reynolds number becomes finite. A commonly used 
expression for qb is (Cliff et al. 1978) 

q~ = (1 + 0.15Re °'687) (7a) 

and more accurate forms compiled by Cliff et al. (1978) are 

3 
q~ = 1 +~-~ Re, Re~<0.01 (7b) 

= 1 +0.1315Re °82-°'°s~, w=loglo Re, 0.01 <Re~<20 (7c) 

= 1 + 0.1935/~e °'63°5, 20<Re~<260 (7d) 

mass force from the imaginary part of the unsteady drag in 
the high frequency limit at finite Re, based on the numerical 
results. It was demonstrated that the force due to the added 
mass at finite Re, is the same as in creeping flow (Re-*O) and 
in potential flow. Note that in this problem V = 0 and V U = 0 

2 3 SO FAM=gZCa pf (DU/Dt) is the same as in (3), derived in the 
creeping flow limit. The findings about the added-mass force 
cited in the review by Torobin and Gauvin (1959), which 
stated that, "The added mass concept is shown to be both 
completely inadequate and theoretically unsound", are 
simply incorrect. No correction is needed for the added-mass 
force at finite Reynolds number since it is a purely inertial 
effect independent of viscosity. Rivero et al. (1991) carried 
out a numerical procedure to separate the contributions to 
the total unsteady force from the history force and the 
instantaneous added-mass force. The analysis of an oscillat- 
ing flow and a uniformly accelerating flow demonstrated that 
the added-mass force is the same as in potential flow. The 
recent simulations for oscillatory motion and linear acceler- 
ation (Chang and Maxey 1994, 1995) in the time domain 
also support this conclusion. For finite Reynolds number 
particle dynamics, Eq. (4) is thus used for the added-mass 
force. 

2.2.2 
On the added-mass force and history force 
The neglect of the unsteady forces is not always justified. For 
a solid particle in liquid, the unsteady forces can be significant 
with moderate acceleration (Clift et al. 1978, p. 286). Odar and 
Hamilton (1964) and Odar (1966) performed carefully control- 
led experiments to measure the unsteady drag on an oscillating 
sphere in a stagnant oil tank for Re < 62, and they proposed 
modifications for Fe(t) and FAM(t) based on an acceleration 
parameter. Sch6neborn (1975), Karanfilian and Kotas (1978), 
Cliff et al. (1978, p. 296), Tsuji et al. (1991), and Linteris et al. 
(1991) adopted the approach of Odar and Hamilton to 
correlate their experimentally measured unsteady forces using 
the acceleration parameter. 

However, the modifications of the history force and the 
added-mass force due to Odar and Hamilton (1964) are not 
physically sound because they do not give correct long-time 
asymptotic decay of the history force, and they do not ap- 
proach Stokes' (1851) solution for an arbitrary acceleration 
as Re--*O. The expression for the history force proposed by 
Odar and Hamilton (1964) and Odar (1966) has the same 
integration kernel as the creeping flow approximation, and it is 
not valid at non-zero Re. Furthermore, the experiments were 
conducted only for several discrete frequencies, which are 
relatively high and do not cover the entire frequency domain. 
Mei (1993) compared Odar and Hamilton's expression for 
FH (t) with the finite difference solution for the transient force 
when the particle is impulsively started and a constant veloc- 
ity is subsequently maintained. It was shown that Odar and 
Hamilton's (1964) empirical expression under-predicts the 
short time history force by over 50%, and it significantly 
over-predicts the long-time history force. 

Mei et al. (1991) computed the unsteady force on a station- 
ary sphere in a flow with a large mean free-stream velocity and 
a small fluctuation by solving the unsteady Navier-Stokes 
equation in the frequency domain. They deduced the added- 

2.2.3 
A proposed particle dynamic equation at finite Re 
Using the results of a numerical analysis at finite Re over a wide 
range of frequencies from Mei et al. (1991), an asymptotic 
analysis at small Re and low frequency, the principle of 
causality, and an interpolation for the imaginary component of 
the history force in the frequency domain, Mei and Adrian 
(1992) modified the history force kernel for a sphere experienc- 
ing a large mean free-stream velocity with a small fluctuation. 
The important result from this study is that the history force 
kernel recovers the ( t - ~ ) -  1/2 behavior at small times, but it 
possesses a ( t - r )  -2 decay at large time, as opposed to the 
( t - r )  1/2 decay derived by Basset (1888). This (t--~C) -2  

long-time decay results from retaining the nonlinear convec- 
tion terms in the Navier-Stokes equation; it is consistent with 
the result of Sano (1981). The realization that the history force 
kernel decays rapidly at large time resolves the paradox of 
Reeks and Mckee (i 984), wherein the initial velocity difference 
between the particle and the fluid makes a finite contribution 
to the particle long time diffusivity. 

Using the history force expression proposed in Mei and 
Adrian (1992) for the case of a large mean free-stream velocity 
with a small fluctuation, and the expression for the added-mass 
force by Auton et al. (1988), Mei (1994) proposed the following 
dynamic equation to describe the uni-directional motion of 
spherical particles at finite Reynolds number, 

~Tca3p f dV 4 3 
d t = ~  7ra (pp-pf  )g +6rcpa4(Re) (U-  V) 

+ 6rc,ua i" K(t--v) d ( U -  V) 
- dr to 

dz 

2 +~rca3pt/DU| dV'~} 4 DU (8) 



where 43 (Re) is given by Eq. (7). The history force kernel 
K(t -  ~) is approximated as 

2 A 

[ ~r~ I U(~-) _ V(~-) 13 31 /2 )  --2 

with 

f~ (Re) = 0.75 + 0.105Re (10) 

For a particle introduced to the flow field at x =Xo at time t =  to 
with an initial velocity V0 different from the local fluid velocity 
U0 = U(to, Xo), the lower limit of the integration in (8) is to 
(Mei 1993), the instant right before the particle is introduced. 
Thus the history force term can be further expanded as 

F~=6n#a i K(t--z) d ( U -  V) d~ + 6n#a(Uo- Vo)Ko(t) 
q dr 

(11) 

where t~- is the instant right after the particle is introduced, 
and Ko(t) is the kernel based on the velocity difference at 
t = to. For two- or three-dimensional  flows, Eq. (8) may  
be generalized to a vector form; but  much  remains to be 
investigated. 

Equation (8) is only an approximation, since K(t--z) was 
developed in an approximate manner. Several tests have been 
performed (Mei 1994) to examine the accuracy and the validity 
of Eqs. (8-10) against numerical and experimental results. 
These tests include: 

i) a purely oscillating sphere in a stagnant liquid using the 
numerical results of Mei (1994) and the experimental 
results of Odar and Hamilton (1964); 

ii) a iarge mean free-stream velocity with a small fluctuation 
passing a sphere based on the numerical results of Mei 
et al. (1991); 

iii) a sphere that possesses a large terminal velocity settling in 
a stagnant viscous liquid with initially zero velocity based 
on measurements of Moorman (1955). 

Comparisons were made for each force component in addition 
to the total drag. The test results indicate that, when the 
unsteady forces are not negligible, Eqs. (8-10) are reliable, 
robust, accurate at small time, and qualitatively correct at large 
times over a large range of Reynolds number. It is easily seen 
that Eqs. (7-10) reduces to (3) as Re-~O except for FAM(t) 
where the more correct form given by Eq. (4) is used. Thus, 
Eqs. (7-10) may be used for Re < 173. Beyond this value the 
three-dimensional instability will develop (Kim and Perlstein 
1990). 

Mei (1993) and Lawrence and Mei (1995) further conside- 
red an unsteady flow due to a step change in the velocity of 
a sphere from U= U~ >~ 0 to U = U2 > 0. The transient force was 
obtained using a finite difference method for finite Re over 
a large range of time. The history force on the sphere could 
be obtained by subtracting the steady drag from the com- 
puted total drag because FAM(t) and Fps (t) vanish for t>0 .  
For such a singular acceleration, the numerical results 
indicate that the approximate expressions (9-10) give 
the correct short time behavior for the history force and 

capture qualitatively its long-time behavior for finite Re. 
Most importantly, the asymptotic and numerical results of 
Lawrence and Mei (1995) have convincingly shown that the 
history force associated with the step change in the velocity 
(from UI>~0 to U2>0) decays as t -2 at large time which 
supports the qualitative long-time behavior of F~ (t) given by 
equations (9-10). This t -a long-time decay of the transient 
force at finite Re for the case of a sudden change in the 
particle velocity from U~ > 0 to U2 > 0 is also in excellent 
agreement with a more recent, and a more accurate, low- 
Reynolds-number analytical result by Lovalenti and Brady 
(1995). Mei and Lawrence (1996) also give detailed asymp- 
totic and numerical analyses for the flow field associated with 
the sudden change in the velocity which support  the t -2 
long-time decay of the transient force. 

However, because of its approximate nature, there are 
several extreme cases for which Eq. (9) cannot describe the 
long-time history force correctly. They are: i) a particle stops 
impulsively; and ii) a particle reverses impulsively. In those 
two cases, the long-time decay of the transient force is t -  
instead of t -2 due to the fact that the particle encounters the 
laminar far-wake it created earlier (Lawrence and Mei 1995; 
Mei and Lawrence 1996). For a sphere oscillating at low fre- 
quency, it was also pointed out (Mei 1994) that the imaginary 
part of the history force Dm exhibits a - co log co depend- 
ence on frequency co, as opposed to Dm~ co for the case of a 
large mean free-stream velocity with a small fluctuation. In 
a strict sense, Eq. (9) thus fails to capture this low frequency 
co log co behavior. Nevertheless, those impulsive accelerations 
for particle motions are rare and the history force at low 
oscillation frequency is of a small magnitude in comparison 
with the quasi-steady drag. 

Lovalenti and Brady (1993a, b) used a reciprocal theorem 
and Oseen's point force to develop a complicated, but more 
accurate, expression for hydrodynamic force at low Reynolds 
number, 

1 (n  I/2erf(A)_e -A2 u '1 

(~r1/2 erf(A) -- e - a 2 ) l  U± (~)} 

2dr 2 4 DU 
x (t_r)3/~---5+ ~ na3&d(t) +3 7m3pi Dt (12) 

where u ( t ) = U ( t ) - V ( t ) ,  A relates to the magnitude of the 
relative displacement between time ~ and t, 

t ds 1 1 ! -u(s )  (13) A(t ' r )=lA(t ' z ) l=2 

and u II (T), u±(z) are the components of the relative velocity at 
time ~, respectively parallel and perpendicular to the displace- 
ment vector A(t, z). While the above equation is valid for 
numerous cases of unsteady particle motion, the long-time 
behavior of the transient force due to a sudden change in the 
particle (or fluid) velocity in the same direction is not correctly 



predicted (Lawrence and Mei 1995; Lovalenti and Brady 1995); 
Eq. (12) gives an exponential decay of the transient force rather 
than t a decay. For an oscillating flow over a stationary 
particle, it was shown (Mei 1994) that the prediction based on 
Eq. (12) gives excellent agreement with the numerical solution 
of the Navier-Stokes equation at low Reynolds number. Hence 
Eq. (12) is accurate and useful in most cases when particle 
Reynolds number is less than one. 

2.2 
Unsteady drag on bubbles in a unidirectional motion at 
finite Reynolds number 
Depending on the extent of the contamination of the liquid, 
a bubble may behave as a rigid particle if the liquid/gas 
interface is immobile, or as a clean bubble that exhibits a high 
interfaciai mobility (or zero shear stress) on the interface if the 
effect of surfactant is negligible. In most bubbly flows, there is 
sufficient contaminant in a natural liquid environment to 
suppress the liquid/gas interface mobility. If the bubble size is 
not large, the surface tension force is able to keep the bubble 
in spherical shape. For droplets and micro-bubbles with an 
immobile interface, the dynamic equations are the same as for 
solid particles. Hence, Eqs. (7-10) can be used to describe the 
motion of contaminated micro bubbles in unsteady flows. 

For clean spherical bubbles, the steady drag is ~ of that on 
a rigid particle in the creeping flow regime. Brabston (1974) 
numerically obtained the steady drag for the range Re = 0.1-60. 
For unsteady motions, the history force also exists on a clean 
bubble besides the quasi-steady force and the added-mass 
force (Auton et al. 1988; Drew and Layhey 1990), as was 
demonstrated in Chen (1970), Sy et al. (1970), Kim and Krilla 
(1991), Yang and teal  (1991), Mei and Klausner (1992), 
Lovalenti and Brady (1993b), and Mei et al. (1994). While 
Lovalenti and Brady's (1993b) equation for the unsteady force 
on a fluid bubble or drop is accurate, it is only applicable for 
Re < 1. For finite Reynolds number, Mei et al. (1994) developed 
an approximate expression for the total force on a clean bubble 
executing a rectilinear motion which can be symbolically 
given as 

4 3 dV 
~ a  pb~=F~_G+Fos(t)+FH(t)+FAM(t)+FFs(t)  (13) 

where Fe G, FAM (t), and FFs (t) are identical to those on solid 
particles. The quasi-steady force on the clean bubble is given 
by 

LRe +~el/2)J 
(14) 

The history force F u is also expressed as 6~/~ayl K(t--'c) x 
• 0 

[d ( U -  V)/dr] dr. The expression for the kernel K(t--r) that 
approximates both small time and large time behavior cor- 
rectly is lengthy and can be found in Mei et al. (1994). In 
the solid sphere case, the history-force kernel at small time is 
given as K(t--z) ~ [~(t---c)v/a2] -1/2. The kernel for a clean 
bubble at small time, K(O), is finite valued and decreases with 
increasing Re. For an impulsively started flow over a bubble, 
accurate finite difference results show that the history force on 
the bubble decays a s  t - 2  at large time. Satisfactory agreement 

was observed between the proposed history force and the 
numerical solution for the impulsively started bubble. 

Park et al. (1995, 1996) obtained accurate measurements of 
the trajectories of spherical bubbles rising in a clean, stagnant 
liquid. The terminal Reynolds number and Weber number 
ranged from 6 to 212 and 0.03 to 0.69, respectively. The 
agreement between the measurement and the prediction using 
the approximate expression for the history force F~ (t) on 
a clean bubble proposed by Mei et a1.(1994) for finite Re was 
excellent• Hence the approximate expression for FH(t) was 
validated for rising bubbles in a clean, stagnant liquid. It 
was also demonstrated that neglecting F~ (t) resulted in a dis- 
cernible over-prediction for the bubble trajectory. Using 
the creeping flow result for FH(t) could lead to a significant 
under-prediction for the trajectory at large Re due to the over- 
prediction in F~ (t). 

In strong shear flows, the effects of shear lift force (Saffman 
1965, 1968) and Magnus force (Rubinow and Keller 1961) add 
another dimension of complexity to the particle dynamic 
equation at finite Re. The shear lift force is important if the 
shear rate and the slip velocity between particles and fluid are 
both large. While the interaction between the lift force and 
unsteadiness in the translational motion of the particle is n o t  

clear, recent experimental and computational works by Tsuji 
et al. (1985), Dandyand Dwyer (1990), McLaughlin (1991), Mei 
and Klausner (1994), Sridhar and Katz (1995), Cherukat et al. 
(1995) shed further light on the complex behavior of the lift 
force at finite Reynolds number. 

3 
Particle frequency response function and cut-off frequency 

3.1 
Response function in the high frequency (co) limit 
In determining the response of seed particles to the unsteady 
fluid velocity, it is the high-frequency part of the spectrum that 
is of interest. If a particle can follow the high frequency 
fluctuation, it can certainly follow the lower frequency fluctu- 
ation better. To this end, we first consider the unsteady drag on 
a stationary sphere of radius a experiencing a high-frequency 
(co) rectilinear oscillation of the fluid flow, 

bi(t)= ~t(co) e-i°~t (15) 

in which ~/(co) is the amplitude of the fluid velocity oscillation. 
The Reynolds number Re = ~2a/r is finite. Defining a Stokes 
number 

=,/gA2  >> 1 (16) 

asymptotic analysis (Mei 1994) gives the following form of the 
unsteady drag on the sphere at finite Re, 

F/[6~r#aff(co)]~e-i° ' t[--~ie2+e(1-- i)+lj ,  e>>l (17) 

In the above _2 ieie-io, t results from FAM/[67c#ad(co)] = 
--2ig2e-i°)t and FFsl [6~/~aff(co)] = -- 4 is2e-i~ot. The history 
force gives the contribution e (1 - i) e - i~t in Eq. (17). The quasi- 
steady force is O(1) at large e. It should be pointed out that 
although e>> 1 is required in the asymptotic analysis at finite 
Re, Eq. (17) becomes exact for Re<< 1, and it is quite accurate 



for ~ near  one when Re is less than 20. When  the part icle is 
al lowed to respond  to this oscil lating flow field, it can be easily 
shown with the aid of Eq. (17) that  Eq. (8) can be cast in the 
form of 

4 7ca3pp ~(o)) e - i , o ~  67c#a ( i f --  ~) e-ioot 

+ 6~z#a (1 --  i) e (~7 --  17) e - i~ot 

• 2 3 
+1co ~ rca py 9(oo)e -i°~ 

--  ic027ca3pf O(co)e -j~°~ (18) 

It is noted  that  since the particle dynamic  equat ion for the 
con tamina ted  mic ro-bubble  is the same as for solid particles,  
the above equat ion is also valid when pp~0 .  Let the part ic le- to-  
fluid densi ty  rat io be 
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Fig. 1. Particle energy transfer function ]H(e) 12 as a function of Stokes 
number g 

p = pp l& (19) 

and a part icle inert ia  pa ramete r  (whose inverse is a part icle 
response t ime) be 

9 i0 
f l - - -  (20) 

2 ( p + l / 2 ) a  2 

Then, the part icle velocity ampl i tude  ~Y(co) can be expressed as 

1 + e - i e - i [ 3 c o l  (2 0 + 1)fi] 
9(co) ~(co) (21a) 

1 + e - ie - ioolfi 

o r  

1 + g-- ig-- i -~g 2 
17((0) 1 + e - - i g - - i 4 ( p +  !~22, f f (co)=H(co)z/ (o))  (21b) 

where H(co) is frequency response funct ion of the particle. It is 
impor tan t  to note that  the only pa ramete r  in Eq. (21b) is the 
par t ic le- to-f luid densi ty  ratio O because the part icle inert ia  is 
embedded  in the Stokes number .  The energy transfer funct ion 
at for a rb i t ra ry  e with small  Re or asymptot ica l ly  large e with 
finite Re is 

(1 + e)2 + (g ~_ 2G2)2 
IH(co)/2= ]H(g)I z -  (22) (1 + ,~)2 + [e + }e 2 +~(p- -  1)e2] z 

Figure 1 shows the dependence  of IH(e)12 on the Stokes 
number  e over a wide range of densi ty  ratio p. The following 
observat ions are wor th  noting• 

i) For a neutra l ly  buoyan t  particle,  p = 1, and IN(c)I z=  1, 
which implies perfect response of the seed particle.  

ii) At p=O, IH(e)[2~9 as e ~  Go which suggests a significant 
over-shoot  at high frequency• 

iii) For p < 1, ]H(e)h2> 1 so that  buoyan t  part icles tend  to 
over-respond.  

I ~ P  e at in termedia te  c. This implies  iv) F o r p > > l ,  IS(e)  2 s~ -2 -4 
a low-pass filtering behavior  of heavy particles; at large g, 
[H(e) 12~9p -2 which implies  pract ical ly  negligible fre- 
quency response.  

3.2 
Cut-off frequency for solid particle and contaminated bubble 
Define cut-off  frequencies of the part icle based  on either 50 % 
or 200% energy response,  

gcut_off={g t IS(e)12=½ or  2}• (23) 

Then G,t-off can be ob ta ined  as a funct ion of p f rom Eq. (22). 
Figure 2 shows the dependence  of eout_orf on p. The following 
can be observed easily. 

i) For 0.56~<p~1.62,  0 .5<1HI2<2  implying very good 
response of the seed particle.  

ii) For a solid part icle in air, reducing p alone f rom 1000 
to 100, say by  using a hol low sphere,  will only  increase 

(Ocut_of f by  a factor of x /10=3 .16 .  
iii) At a given p, decreas ing the part icle d iameter  by a factor 

of 10 will increase (Dcut_of f by  a factor of  100 since 

e)cut_of f = 2v (gcut_off/a) 2. 
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Fig. 2. Cut-offStokes number as a function ofparticle-to-fluiddensity 
ratio 



For convenience, the following interpolation formulae are 
provided to estimate Gut-off 

[2.38W + (0 .65_9 ' ~ ' / ~  " 
,  _-093 

8cut-°ff [_ \0.561 - - p  

for p<0.561 (24a) 

[( c o.93  )7', 
g~ut-orf ~ 2 ~  72 + \ p - -  1.621 

for p>1.621 (24b) 

Using 

v e~ off (25) 
cut-off ~ 

the cut-off frequency of the seed particle can be easily 
determined. For example, for a droplet in air with p = 813 and 
v=0.15 cruZ/s, one obtains Gut-off ~ 0.0535 from (24b). For 
0.5 gm< a < 5 ~tm, the cut-off frequency fo~-off ~ v/n(eou~.off/ 
a) 2 ranges from 54.7 kHz to 547 Hz. For phenolic micro- 
balloons (or hollow spheres) in air with particle size in the 
range of a = 15-25 gm, the particle effective density ranges 
from 100-500 kg/m 3, which gives the density ratio rang- 
ing from 81.3 to 406.5. It is estimated that e~t-off ~ 0.176 to 
0.0762. The cut-off frequencies range between 658 237 Hz 
and 123-44.4 Hz, respectively for pp = 100 kg/m 3 and Pv 
= 500 kg/m 3. For contaminated bubbles in a liquid of viscosity 
v=0.01 cm~/s, G,t-orf ~ 2.38. If the bubble radius ranges 
from 5 to 25 gin, the cut-off frequency then ranges from 72 to 
2.9 KHz. 

If the desired cut-off frequency is specified, the cut-off 
particle size below which the seed particle responds to the fluid 
velocity well can be easily determined as 

acut_of f ~,~ ~cut_eff~-fcut.off/V (26) 

where ~:cut-off is estimated from Eq. (24) for a given particle-to- 
fluid density ratio. 

4 
Particle response to isotropic turbulence 
Complex flows often possess h wide range of length scale and 
time scale. Thus, it may be insufficient to just use one criterion 
in the outset to determine the cut-off particle size acut_of f in 
measuring the statistics of inherently unsteady, nonuniform 
flows unless the highest cut-off frequency is specified. We 
consider the response of the seed particle to isotropic turbu- 
lence as an example. In using PIV or HPIV to measure an 
instantaneous turbulent flow, one is interested in capturing the 
large scale structure, turbulence energy, Taylor micro-scale 
structure, and/or even Kolmogorov length scale structure if the 
seed particle density is high. In an LDV measurement of 
turbulent flows field, it is typically required that seed particles 
respond well to the velocity fluctuation in the energy contain- 
ing range so that turbulence intensity of the fluid can be 
represented by that of the seed particles. For example, fluid 
turbulence energy spectra were obtained in a solid-gas sus- 
pension flow using LDV (Tsuji et al. 1984) which requires 
a good response of the seed particles to all wave number 
components. 

4.1 
Particle diffusivity, turbulent intensity, and the second 
invariant 
Based on the studies on the particle dispersion in turbulence 
(Taylor 1921; Reeks 1977), it is known that the long-time 
particle diffusivity is controlled by the large scale structure, 

D ~ =  R .... (z) d z = - S  .... (oo=0), ~=1,2 ,  o r3  (27) 
0 

where R v?j(z) and S v?~(co) are the Lagrangian correlation tensor 
and power spectrum tensor of the particle velocity fluctuation. 
For particle diffusivity D~ to represent accurately the fluid 
diffusivity Dr, only the low-frequency range of the Lagrangian 
fluid velocity needs to be accurately represented. The particle 
turbulence intensity (i.e. the mean square value of the particle 
velocity fluctuation) is dictated by the energy containing range 
of the fluid turbulence spectrum, 

( ~ )  =R~v~(z=0)= ~ S~(co)  dco (28) 
0 

where ( ) denotes ensemble average. For the turbulence 
intensity @2) of the seed particle to represent accurately the 
fluid turbulence intensity, u~, almost the entire Lagrangian 
power spectrum of the fluid turbulence needs to be faithfully 
followed by the seed particle. 

Turbulent flow is full of intense vortical regions and high 
strain-rate stagnation regions. Let us consider the second 
invariant of the turbulence deformation tensor, 

1 ~.u~ Ouj_ ($2 (2jQj/4)/2 ' (29) 
IIa= 2 c~xj ~?xi 

where S= (sijsj~) ~/2 is the Euclidean norm of the strain-rate 
tensor s O = (c~uJc~xj+ ~uJOxi)/2 , Oj is the jth component of the 
vorticity, and f22= ~2jg2j is the enstrophy. For homogeneous 
turbulence, it can be shown (Hinze 1975; p. 347) that 

(n~)  =0 (30) 

so that 

(S 2) =¼ (f2j f2y). (31) 

However, for seed particles with finite inertia, the trajectories 
are biased either toward intense vortical regions for bubbles or 
high strain rate stagnation regions for heavy particles (Maxey 
1987; Squire and Eaton 1990; Tio et al. 1993; Wang and Maxey 
1993; Mei 1993). Denote Sp(t; fi) and f2~(t; fi) as the respective 
Euclidean norm of s~ and the enstrophy of the fluid turbulence 
seen by the particle with finite fi at a given instant t. It is noted 
that the time averaged or ensemble averaged value (S2p(fi)) is 
different from that of fluid, ($2). Only for inertialess particle, 
(S~(fi~ oo))= ($2). It is observed in Monte-Carlo simula- 
tions (see Sect. 4.2) that (S~(fi)) and (f2~(fi))/4 of finite 
inertia deviate from (S 2) similarly, but in opposite directions 
as the particle inertia fl-~ increases. Thus one may use 
1 -($2(f i ) ) / ($2)  or simply combine the biases in S 2 and 02 to 
define a dimensionless number 

(S~(f i ) ) - (Q2e(f i ) ) /4  2 (I la(f i))  
r= (s~) (s2> (32) 



that is useful to measure the bias in the sampling of vortical 
and stagnation regions by seed particles. It is noted that r~0  as 
particle inertia fi-~ goes to zero, which is the ideal case. 
A larger value of r, or (IIa), implies a more non-uniform 
instantaneous spatial distribution of particle concentration 
(Maxey 1987). In Wang and Maxey (1993), the connection 
between the particle concentration and the enstrophy (f22 ), 
hence r, was shown clearly. The extent to which non-uniform 
particle concentration affects particle-based fluid velocity 
measurements depends directly onthe magnitude of r and the 
quantity of interest. Systematic bias is observed in the particle 
settling velocity due to increasing values of r (Maxey 1987; 
Wang and Maxey 1993; Mei 1993). If the fluid vorticity is of 
interest and heavier seed particles are used, the result may be 
biased to give lower vorticity since the particle concentration is 
lower in the vortical regions. The dimensionless value of r thus 
provides a convenient measure of the statistical bias towards 
the vortical or stagnation regions. One may consider r~  0.1 to 
be quite undesirable since it represents a 10% bias, in the 
mean square sense, in the sampling of the vortical and 
stagnation regions by the seed particles. Since (IIa) involves 
the statistics of the spatial derivatives of the velocity, (IId) 
clearly scales by u~/22 in which 2 is the Taylor micro-length 
scale. Thus, r measures the fidelity of the particle in tracking 
the Taylor micro-length scale structure. This scaling is also 
easily seen from the definition of IId in Eq. (29). 

It is also noted that 2/Uo gives the Kolmogorov time scale 

1 2 (33) 
"L'K~ N ~  NO 

which is the relevant time scale used to describe the particle 
preferential concentration or particle trajectory bias in Wang 
and Maxey (1993). We will use D~, (v2~ }, and r to characterize 
the response of the speed particle to the integral length scale 
structures, to turbulence energy, and to the Taylor micro- 
length scale structure. 

4.2 
Turbulence energy spectrum and Monte-Carlo simulation 
The following energy spectrum E(k) (Mei and Adrian 1995) is 
used to describe the spatial structure of the turbulence, 

k 4 1 
3 u~c~- e x p ( - ~ k  2) (34) 

~(k)=~ k~ [1+ (k/k0)~] ~* 

where ct is the normalizing coefficient, k0 is a wave number 
typical of the energy containing range, and the parameter 
q0 = t/0k0 is related to the turbulence Reynolds number Re;. 
Although an exponential cut-off for E(k) in the viscous 
dissipation range has been observed at finite Rez (Comte-Bellot 
and Corrsin 1971; Yeung and Pope 1989; Domaradzki 1992 and 
and Wang and Maxey 1993), the Gaussian decay is adopted 
because an approximate relation between ~0 and Re z has been 
developed for the energy spectrum model described by (34) 
and the model has been used to study the dispersion of heavy 
particles (Mei and Adrian 1995). A composite form of the 
Eulerian turbulence power spectrum/5((9), which is the 
Fourier transformation of the Eulerian autocorrelation of the 
turbulence in the reference frame moving with the mean flow 
velocity, was constructed in Mei and Adrian (1995) to describe 

the temporal structure of the turbulence, 

-~o~  ) (35) /~(co) =X  exp ( 2 2 

1 + (To)) 2 

where X is determined by satisfying S~oo I5(co) doo= 1. The 
Eulerian integral time scale To, which is equal to ~LS(0), is 
related to the integral length scale kn as To=cELll/uo. The 
relation between ko~b and Re~, the dependence of c E on Re~, the 
choice for ~1, the relation between T and To, and the results on 
the dispersion of Ma W particles using the above E(k) and 
/3((o) can be found in Mei and Adrian (1995). 

To study the response of seed particles to turbulent liquid 
flow, a random, isotropic, Gaussian, pseudo-turbulence is 
simulated. The velocity is represented as 

N 
ui(x, t )=  ~ [b} '~/cos (ktm).x+o)(mk) 

rr/=l 

+ cl ~° sin (k ('~). x + co(~)t) ] (36) 

where N ( = 128 in this study) is the number of the Fourier 
modes, and k ('1 and o) Iml are the wave number and frequency of 
the m-th mode. Without loss of generality in the Monte-Carlo 
simulation, k0 is set to one. The random wave number k (~) is 
chosen to follow an algebraically decaying probability density 
function (pdf) as 

L--1~--1 
p , ~ ( k ~ ) = ~ - ( l + l k ~ l )  -¢ f o r i = l , 2 ,  or3 .  (37) 

In this study, ~ = 1.2 is used to allowpti(k~) to decay slowly so 
that the high k components are sampled sufficiently. This slow 
decay of p~i(ki) is important to ensure convergence of the 
high-order statistics such as (IIa} and (S 2 } at high Re;. The 
random frequency co (~) is chosen according to the following 
pdf 

1 1 
7z 1 + (60/00) 2 (38) p~(o~) 

where 

0% = x /~uo /Ln  (39) 

is a typical frequency. The random coefficients bl m) and 
cl ~) follow a normal distribution and are scaled to satisfy E(k) 
and/5(o)). The rest of the implementation details can be found 
in Maxey (1987) and Mei (1990). The simulation results are 
based on ensemble averages over 4000 10000 particles. 

Equation (8) in vector form can be made dimensionless by 
introducing 

t*=tO3o, oo*=~o/O.)o, x * = x x / ~ / L l l ,  u*=u/u0, 

V*=V/u0, k * = k L n / , ~ .  (40) 

Neglecting the gravitational force for simplicity, the resulting 
equation is 

aw L 1 d t * - f i s  qb(u*-V*)+ao K(t*--z*) d ( u * - V * )  
o & * 

3 1 Du* 
+ -  (41) 

2 p + l / 2  Dt*" 



The particle displacement is obtained from 

dY*=v , "  
dt* 

(42) 

The initial conditions are 

y* (0 )=0 ,  V * ( 0 ) = u * ( x = 0 ,  t = 0 ) .  (43) 

In Eq. (41), 

fis = 9v/[2 (p + 1/2) a2ooo ] ,  (44) 

2 v2 3 ~0 = (a oo0/2v) = ~  [ fis(P + 1/2)] z/2 (45) 

are the dimensionless particle inertia parameter and the Stokes 

number. The particle diffusivity is normalized by uoLn/x/2rc, 
2 and (IIa)  by 22/u~. In the particle turbulence intensity by u 0, 

presenting the results, the following dimensionless inertia 
parameter based on the Kolmogorov time scale, 

ilK=fiZz, (46) 

will be used, following Wang and Maxey (1993). Hereinafter, 
the superscript "* ' '  will be omitted for convenience. The 
equation of motion is integrated with second order accuracy. 
The evaluation of the history force is similar to that of Reeks 
and Mckee (1984). For simplicity, we restrict the discussion to 
fine particles so that particle Reynolds number is very small. 
For solid particles in gas flow, the results of the analytical study 
(Mei and Adrian 1995) using Eqs. (34-35) and independence 
approximation will be examined and re-interpreted. 

4.3 
Discussion 
Figures 3 and 4 show the diffusivity, D 2 2  , and turbulence 
intensity, (v~), of  contaminated micro-bubbles over a large 
range of particle inertia in isotropic turbulence with Re; = 53.5. 
Monte-Carlo simulations with and without the history force 
(FH) are carried out. The inclusion ofF H increases the inertia of 
the bubble and thus reduces D22 and (v~) of large size bubble. 
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With FH included (which is more realistic), D 2 2  is insensitive to 
the inertia over a large range of fiz,:. The turbulence intensity 
( ~ )  approaches unity only after fl~z exceeds 10. Hence (v~) is 
a more stringent measure for seed particle fidelity. Since the 
diffusivity of solid particle is not sensitive to fl in general, it is 
clear that D~ is not a good quantity to gauge the fidelity of the 
seed particle. The behavior of diffusivity or the fidelity on the 
integral length scale will not be discussed further. 

Figure 5 shows the variation of - r as a function of fizK. With 
flzK< 1, r is close to be - 10%. It was observed that as particle 
inertia increases, (S2p(fi)) and ((2~(fl))/4 deviate from the 
fluid value (S 2 ) similarly but in opposite directions. Since 
r < 0, the bubbles sample more frequently the vortical regions 
than the stagnation region because they tend to accumulate in 
the vortical region. Clearly, it takes even larger values of fizK 
(cf. last paragraph) to reduce the trajectory bias of the seed 
particle on the Taylor micro-length scale. 

Figure 6 shows the energy loss of the heavy particle, 
eloss= 1 -- (v~), as a function offizK for Re;=40.6, 53.5, 124.4, 
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and 528.8 (corresponding to J/0k0=0.1, 0.05, 0.01, and 0.001). 
The results are obtained using the method developed in Me[ 
and Adrian (1995) for hea W particles with the unsteady forces 
neglected. Since (vz z) is obtained by carrying out numerical 
integration, the numerical accuracy in e~o~s is low for 
Rex = 124.4 and 528.8 with large value of fizK. Two different 
asymptotes for elos~ in different ranges of fizK are obtained in 
this study; details are given in the Appendix. For intermediate 
values of fizK, elos~O((fizK) 2 / 3 ) .  For Re~>~40 and fizz>2.5, 
Fig. 6 shows that elo~ scales with flrK and the asymptotic 
behavior of the particle energy loss (see the derivations leading 
to Eq. (A17)) is given by 

e~os~ ~ 0.3127 (fi"cx) - -2  (47) 

to the leading order. Even better agreement between the 
asymptotic prediction and numerical integration can be 
obtained if (A16), which includes the next-order term, is used 
for finite values of ~/0 k0( < 1). Since Eq. (47) is for all Re~ ( >~ 40), 
it is thus useful for practical purpose. It may be used for heaw, 
fine particles with e~o~s < 5% or flzK> 2.5. 

Suppose one desires to select the seed particle in a gas flow 
with 95% or more energy captured by the seed particle. The 
above asymptotic relation and Eq. (20) give the required 
particle size if zK is known and p is specified, 

y T  g 

a < 2.84e~o/4~ ~/P + 0.5 for elo~ < 0.05. (48) 

This result is not just limited to isotropic turbulence. For 
anisotropic turbulence, the anisotropy is usually on large scales 
to which the seed particles can easily respond. Hence the 
small-scale isotropy approximation can be invoked, and Eqs. 
(47-48) can be applied to estimate the energy loss or the 
desired cut-off size of the seed particle. 

Figure 7 shows the dependence of r = 2 (II~)/(S 2) on fir K for 
solid particle at Rex = 53.5. The result is obtained from the 
Monte-Carlo simulation outlined in Sect. 4.2. It is seen that 
trajectory bias for solid particle peaks around fir K = 2.3, which 
is in qualitative agreement with the observation made by Wang 
and Maxey (1993) that the particle preferential concentration 
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as a function of firK at Rea = 53.5 

maximizes near fizK= 1. Similar to Fig. 5, ( I Ia)  decreases 
slowly with increasing fizz. Even for fizK=8.7, r is around 5% 
while eloss is only 0.4% based on (47). While the energy loss 
on this order of magnitude may be acceptable for an LDV 
measurement, r ~  5% may produce a noticeable micro-scale 
non-uniform concentration which biases the measurements 
toward higher strain-rate stagnation regions. One should also 
note that due to the Gauss[an decay of E(k) in (34) and the 
neglect of the triple correlation in the turbulence in (36), the 
present simulation may have already under-predicted the 
trajectory bias (cf. Wang and Maxey 1993). How this level of 
trajectory bias affects the overall measurement errors of the 
vorticity field is not clear at this stage, and should be the 
subject of further studies. 

As seen from Fig. 1, particle response improves with 
decreasing density ratio p for p > 1. For solid particles in 
liquid, the effect of the unsteady forces is clearly important. 
Hence, Monte-Carlo simulation is carried out to investigate the 
response of seed particles. Figure 8 shows (v~) at fizK= 2.254, 
Rex = 53.5 over a large range of density ratio p. Clearly, the best 
response is achieved near p = 1 as expected. On the other hand, 
since (v~) does not change much for p > 2.5, one may use 
Eqs. (20) and (47) to estimate the required particle size for 
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a given energy loss. Of course, if neutrally buoyant particles are 
used, better 'velocity fidelity will be achieved. Figure 9 shows 
r over a wide range of p under the same condition. The bias in 
the particle trajectory vanishes as p approaches 1. 

In summary, one needs to use large values of fi to reduce 
(IIa) and elo~ for solid particle in gas flow. One needs to use 
large fl and near unity p to effectively eliminate (II a) and 
e~o~ for solid particles in liquid. 

Appendix 

Asymptotic behavior of the energy loss of heavy fine 
particles 
The intensity of turbulent fluctuation of heavy particles can be 
evaluated as 

o0 
(v 2 ) =f i  j' exp (--fiz)R~(v) dz 

0 

(Mei 1990) where R~(~) is the fluid velocity correlation 
evaluated on the particle trajectory. Defining 

t=tkouo, (b=oo/kouo, x=xko ,  u*=u/uo ,  

v * =  V/Uo, k =k/ko (A2) 

where ko is the same typical wave number appearing in 
Eq. (34), it is easy to show in the large/7 limit that if 

/ ~ , ( f ) ~ l - c f  b for "~<<1, (A3) 

(A1) gives 

(v~) ~ 1 -- cF(b + 1)fi -b (A4) 

where F(x) is the Gamma function. Mei and Adrian (1995) 
have shown using independence approximation for heavy 
particles in isotropic turbulence whose energy spectrum is 
described by (34) with zero settling velocity that 

-~L(~) = c~(qo)~(~)  
~{[r /2+½f(f) ]v2}.  (A5) 

In dimensional forms, D (z) is Eulerian auto-correlation whose 
Fourier transformation is given by (35) and Y(z) is the mean 

(A1) 

square particle displacement which can be evaluated, in 
dimensionless form, as 

Y(f) = 2  ~ ( f-- t ' )R~(t ' )  dt'. (A6) 
o 

To gain an insight on the dependence of e~os~ on particle 
inertia and turbulence structure, we consider the following 
limits, 

1~o << 1 (A7) 

and 

fi= fikouo>> 1. (A8) 

Under the condition fi>> 1, (v~) ~ 1 to the leading order so that 

~(f )~½f2 for "~<<1. (A9) 

Mei (1990) has derived for q0<< 1 that 

~--1 (110) ~ 1.0325-  2.031 lq  2/3 . (A10) 

For very small f, the Eulerian auto-correlation can be ex- 
pressed as 

/)(g) ~ 1 --½g2/g~, (Al l )  

where f;, is the Eulerian Taylor micro-time scale of the tur- 
bulence and is given by 

g 2 ~ q 0 T  0 for ~0<<1. (g12) 

In Eq. (A5), 

-1,~ltr/0-2 +,~ f (.g) ] ~/2 } ~ 1.0325 -- 2.0311 [t~ + ½ Y('{) 1 v3 

1.0325--2.0311 [#2+lf2]v3 (A13) 

for small values of [q~ +½ Y(f)] 1/2 and f2. Two different 
expansions for [ ~  + ½ fff)]l /3 are possible: 

i) fi>>O0-1>>l so that [}f~+I~2]i /3  ~]0-2/3--1--'2--}-~'~ ~]0 4/3 

for f<<fi-~<<qo (A14) 

and 

ii) qo I >> fi>> 1 
1 

that [1[~ + ½i21v3 ~ 2@/3 f2/3 SO 

for ~0<<r<<fi-k (A15) 

For the first case, fi>>t/ol>> 1, Eqs. (A4-A5) give 

eloss = 1 -- (1~2)[U~ ~ 0.6557 (f i -2qo 4/3) + (fi'~2)--2. 

Noting iK ~ ~ 2.6744q~/3 = 0.6905q~/3 for E (k) given by (34), the 

above becomes 

eloss ~ 0.3127 (fizK) --2 + (~-~/~0 T0 ]~2 ) --1 = 0.3127 (fizK) --2 

r-~ 2 

+0.3237 C~oo ( ] ~ )  2 

= 0.3127 (fizK) -2 [1 + 1.04G2/(dr0)]. (A16) 

To the leading order, eloss is given by 

eloss~0.3127(fiz~) -2 for fizx>>l. (A17) 
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For the second case, qol>>fi>>l, Eqs. (A4 A5) lead to 

2.0311 F(5 /3 )  fi-2/3 
el°ss 1.0325 21/3 +( f i£x)  2 

1.41 (rKkouo)2/3(fi:K) 2/3 (A18) 

or 

elos S~ 1.1~09(fi.cx) 2/3 (A19) 

For predict ing the energy loss of seed particles, Eq. (A17) is 
more appropriate since (A18) is only valid in a l imited range 

of ft. 
It is interest ing to note that both Eqs. (A16) and (A18) 

indicate that the leading order terms of the energy loss for 
Ma  W fine particles result from its inabili ty to follow the 
mot ion  associated with the fine spatial turbulence structure 
on the Kolmogorov length scale. Another  word, the origin of 
first term in eloss can be traced back to the decay of ~ : {[t/~ + 
i f ( f ) ]  1/2} which is related to the spatial structure. The 
inabil i ty of the particle to follow the mot ion  on the Taylor 
micro-t ime scale only contributes to higher order terms in 
(A16) and  (A18) in the energy loss s ince /SU) ,  which appears 
in Eq. (A5) for the correlation/~Pu(£), decays at a slower rate 
near £ = 0 .  If E(k) with an exponential  decay at high wave 
n u m b e r  is used, there will be a quanti tat ive difference in the 
coefficient in Eq. (A17); bu t  eloss shall still scale with fi:x for 
small inertia. 

References 
Adrian RJ (1991) Particle-imaging techniques for experimental fluid 

mechanics. Ann Rev Fluid Mech 23:261-304 
Auton TR; Hunt JCR; Prud'homme M (1988) The force exerted on 

a body in inviscid unsteady non-uniform rotational flow. J Fluid 
Mech 197:241-257 

Basset AB (1888) A Treatise on Hydrodynamics. Vol. 2, Dover 
Publications Inc. 

Brabston Jr DC (1974) Numerical-solutions of steady viscous flow past 
sphere and gas bubbles. II. Numdrical-solutions of singular end- 
point boundary-value. PhD thesis, California Institute of Techno- 
logy 

Chang E; Maxey MR (1995) Unsteady flow about a sphere at low to 
moderate Reynolds number. Part I. Oscillatory motion. J Fluid Mech 
277:347-379 

Chang E; Maxey MR (1995) Unsteady flow about a sphere at low to 
moderate Reynolds number. Part II. Accelerated Motion. J Fluid 
Mech 303:133-153 

Chen JLS (1974) Growth of the boundary layer on a spherical gas 
bubble. J Appl Mech 41:873-878 

Cherukat P; McLaughlin JB; Dandy DS (1995) A computational study 
of the inertial lift on a sphere in a linear shear flow field. J Fluid 
Mech, submitted 

Clift R; Grace JR; Weber ME (1978) Bubbles, drops and particles. 
Academic Press, New York 

Comte-Bellot 13; Corrsin S (1971) Simple Eulrerian time correlation of 
full- and narrow-band velocity signals in grid-generated, 'isotropic' 
turbulence. J Fluid Mech 48:273 337 

Dandy DS; Dwyer HA (!990) A sphere in shear flow at finite Reynolds 
number: effect of shear on particle lift, drag, and heat transfer. 
J Fluid Mech 216:381-410 

Domaradzki JA (1992) Nonlocal triad interactions and the dissipation 
range of isotropic turbulence. Phys Fluids A4(9): 2037-2045 

Drew DA; Lahey Jr RT (1990) Some supplement analysis concerning 
the virtual mass and lift force on a sphere in a rotating and straining 
flow. Int J Multiphase Flow 16:1127 30 

Hinze IO (1975) Turbulence, McGraw-Hill, New York 
Kim S; Karrila S (199i) Microhydrodynamics principles and selected 

applications. Butterworth-Heinmann Series in Chemical Engineer- 
ing 

Kim I; Pearlstein A] (1990) Stability of the flow past a sphere. ] Fluid 
Mech 211:73 93 

Kranfilian SK; Kotas TJ (1978) Drag on a sphere in unsteady motion in 
a liquid at rest. ] Fluid Mech 87:88-96 

Lawrence CJ; Mei R (1995) Long-time behavior of the drag on a body 
in impulsive motion. J Fluid Mech 283:307-327 

Linteris GT; Libby PA; Williams FA (1991) Droplet dynamics in 
a non-uniform field. Combust Sci Tech 80:319 335 

Lovalenti PM; Brady JF (1993a) The hydrodynamic force on a rigid 
particle undergoing arbitrarily time-dependent motion at small 
Reynolds number. J Fluid Mech 256:561 605 

Lovalenti PM; Brady IF (1993b) The force on a bubble, drop, or 
particle in arbitrary time-dependent motion at a small Reynolds 
number. Phy Fluids A5 (9): 2104-16 

Lovalenti P; Brady ] (1995)The temporal behavior of the hydro- 
dynamic force on a body in response to an abrupt change in veloc- 
ity at small but finite Reynolds-number. J Fluid Mech 293:35-46 

Maxey MR (1987) The gravitational settling of aerosol particles in 
homogeneous turbulence and random flow fields. J Fluid Mech 174: 
441-465 

Maxey MR; Riley ]J (1983) Equation of motion for a small rigid sphere 
in a nonuniform flow. Phys Fluids 26 (4): 863-889 

McLaughlin ]B (1991) Inertial migration of a small sphere in linear 
shear flows. J Fluid Mech 224:262-272 

Mei R (1990) Particle dispersion in isotropic turbulence and unsteady 
particle dynamics at finite Reynolds number. Ph.D Thesis, Univer- 
sity of Illinois at Urbana-Champaign, Urbana, IL 

Mei R (1993) History force on a sphere due to a step change in the 
free-stream velocity. Int J Multiphase Flow 19(3): 509 525 

Mei R (1994) Flow due to an oscillating sphere and an expression for 
unsteady drag on the sphere at finite Reynolds number. J Fluid Mech 
270:133 174 

Mei R; Adrian RJ (1992) Flow past a sphere with an oscillation in the 
free-stream velocity and unsteady drag at finite Reynolds number. 
J Fluid Mech 237:323 341 

Mei R; Adrian RJ (1995) Effect of Reynolds number on isotropic 
turbulent dispersion. ASME J Fluids Eng 117(3): 402 409 

Mei R; Klausner IF (1994) Shear lift force on spherical bubbles. Int 
I Heat Fluid Flow 15(1): 62 65 

Mei R; Lawrence C] (1996) The flow field due to a body in impulsive 
motion. To appear in J Fluid Mech 

Mei R; Lawrence CJ; Adrian R] (1991) Unsteady drag on a sphere at 
finite Reynolds number with small fluctuations in the free-stream 
velocity. J Fluid Mech 233:613-628 

Mei R; Klausner JF; Lawrence CI (1994) A note on the history force on 
a spherical bubble at finite Reynolds number. Physics of Fluids A: 
Fluid Dynamics, 6(1), 418 420 

Moorman RW (1955) Motion of a spherical particle in the accelerated 
portion of free fall. Ph.D Thesis, University of Iowa, Iowa 

Odar F (1966) Verification of the proposed equation for calculation of 
the forces on a sphere accelerating in a viscous fluid. J Fluid Mech 
25:591-592 

Odar F; Hamilton WS (1964) Forces on a sphere accelerating in 
a viscous fluid. ] Fluid Mech 18:302-314 

Park WC; Klausner IF; Mei R (1995) Unsteady forces on spherical 
bubbles. Exp Fluids 19: 167-172; (1996) Erratum. Exp Fluids 21:70 

Reeks MW (1977) On the dispersion of small particles suspended in an 
isotropic turbulent fluid. J Fluid Mech 83:529-546 

Reeks MW; Mckee S (1984) The dispersive effects of Basset history 
forces on particle motion in a turbulent flow. Phys Fluids 27(7): 
1573-82 

Rivero M; Magnaudet J; Farbe, J (1991) New results on the forces 
exerted on a spherical body by an accelerated flow. C. R. Acad. Sci. 
Paris, 312, S6rie II, 1499 1506 



Rubinow ST; Keller ]B (1961) The transverse force on a 
spinning sphere moving in a viscous fluid. J Fluid Mech 11: 
447 459 

Saffman PG (1965) The lift on a small sphere in a slow shear flow. 
J Fluid Mech 22:385 400 

Saffman PG (1968) Corrigendum to: The lift on a small sphere in 
a slow shear flow. J Fluid Mech 31:624 

Sano T (1981) Unsteady flow past a sphere at low Reynolds number. 
J Fluid Mech 112:433 441 

SchiSnehorn P-R (1975) The interaction between a single particle and 
oscillating fluid. Int J Multiphase Flow 2:307 317 

Squires KD; Eaton JK (1990) Particle Response and Turbulence 
Modification in Isotropic Turbulence. Phys Fluids A 2(7): 
1191-1203 

Sridhar G; Katz J (1995) Drag and lift force on microscopic bubbles 
entrained by vortex. Phys Fluids 7(2): 389 399 

Stokes GG (1851) On the effect of internal friction of fluids on the 
motion of pendulum. Trans. Camb. Phil. Soc. 9, 8. Reprinted in 
Math. and Phys. Papers III, Cambridge University Press, Cambridge 
(1992) 

Sy F; Tauton JW; Lightfoot EN (1970) Transient creeping flow around 
sphere. AIChE J 16:386-391 

Taylor GI (1921) Diffusion by continuous movement. Proc Lond Math 
Soc Ser 2, 20, 196-211 

Tchen CM (1947) Mean value and correlation problems connected 
with the motion of small particles suspended in a turbulent fluid. 
PhD thesis, Delft University, Netherlands 

Tio KK; Ganan-Calvo AM; Lasheras JC (1993) The dynamics of small, 
heavy, rigid spherical particles in a periodic Stuart vortex flow. Phys 
Fluids 5(7): 1679-93 

Torobin LB; Gauvin WH (1959) Fundamental aspects of solid gas flow. 
Part III. Can J Chem Eng 37:224-236 

Tsuji Y; Morikawa Y; Shiomi H (1984) LDV measurements of an 
air solid two-phase flow in a vertical pipe. J Fluid Mech 139:417-434 

Tsuji Y; Morikawa Y; Mizuno O (1985) Experimental measurement of 
the Magnus forces on a rotating sphere at low Reynolds number. 
J Fluids Eng 107:484 

Tsuji Y; Kato N; Tanaka T (1991) Experiments on the unsteady drag 
and wake of a sphere at high Reynolds numbers. Int J Multiphase 
Flow 17(3): 343-354 

Wang LP; Maxey MR (1993) Settling velocity and Concentration 
Distribution of Heavy Particles in Homogeneous Isotropic Turbu- 
lence. J Fluid Mech 256:27 68 

Yang SM; Leal LG (1991) A note on memory-integral contributions to 
the force on an accelerating spherical drop at low Reynolds number. 
Phys Fluids A 3(7): 1822-1824 

Yeung PK; Pope SB (1989) Lagrangian statistics from Direct Numer- 
ical Simulations of Isotropic Turbulence. J Fluid Mech 207:531-586 

13 


