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Constrained Best Approximation in Hilbert Space 

Charles K. Chui, Frank Deutsch, and Joseph D. Ward 

Abstract. In this paper we study the characterization of the solution to the 
extremal problem 

inf{llxlllx ~ cc~ M}, 
where x is in a Hilbert space H, C is a convex cone, and M is a translate of a 
subspace of H determined by interpolation conditions. We introduce a simple 
geometric property called the "conical hull intersection property" that provides 
a unifying framework for most of the basic results in the subject of optimal 
constrained approximation. Our approach naturally lends itself to considering 
the data cone as opposed to the constraint cone. A nice characterization of the 
solution occurs, for example, if the data vector associated with M is an interior 
point of  the data cone. 

1. Introduction 

An important area of research in approximation theory is constrained approxima- 
tion, which can be briefly described as follows. In addition to approximating or 
interpolating a given set of data, the approximant is also required to preserve 
certain shapes such as positivity, monotonicity, and/or  convexity that the ,data 
set dictates. In various specific formulations, this problem is often posed in data 
analysis, computer-aided geometric design, and mathematical modeling (see [6]). 
One common deficiency is the lack of a good criterion since the problem typically 
has infinitely many solutions. The usual approach is to select the solution from 
the ones that satisfy an optimization property. In other words, the mathematical 
problem is to study the existence, uniqueness, characterization, and computational 
aspects of  the solution to the extremal problem 

inf{llxllix ~ C n M}, 

where x is in a normed linear space X, C is a convex cone that defines the 
constraint, and M is a translate of a subspaee of X determined by the interpolation 
conditions. The available techniques in the study of this problem include the 
Kuhn-Tucker optimization method, the Langrange duality, and various methods 

Date received: November 2, 1987. Date revised: October 15, 1988. Communicated by Charles A. 
Micchelli. 
AM5 classification: Primary 41A65; Secondary 41A29, 41A05. 
Key words and phrases: Conical bull, Polar of a cone, Best constrained interpolation. 

35 



36 C. K. Chui, F. Deutsch, and J. D. Ward 

in variational calculus and optimal control theory. All these techniques are 
essentially built on the Hahn-Banach separation theorem. 

In this paper we introduce a simple geometric property called the "conical 
hull intersection property" (or CHIP for short) that provides a unifying framework 
for the basic results in the subject of optimal constrained approximation. In 
addition to its simplicity, the property CHIP allows us to handle finitely many 
constraint cones and it encompasses much of the known material. However, we 
do not investigate the "dual" problem which is important for the development 
of algorithms. For this line of thinking, the reader is referred to [4] and [17]. 
Our approach naturally lends itself to considering the data cone as opposed to 
the constraint cone. Thus, for example, we show that the assumption used in 
Micchelli and Utreras [17], which we call the MU property for short, is equivalent 
to the corresponding data vector being interior to the data cone. 

This paper is divided into six sections. Following the introduction, Section 2 
lays the groundwork for the remainder of  the paper by introducing the property 
CHIP. In addition, several ancilliary results about CHIP are derived. In Section 
3 we restrict attention to the case of a cone intersecting a flat. Various conditions 
including the Slater point condition and the MU property appearing in [17] are 
shown to have the property CHIP. Along the way we show that the MU property 
is equivalent to the data vector being an interior point in the data cone, and thus 
recover the result that the minimum norm interpolant has the form Pc(x),  where 
Pc denotes the metric projection onto C. In Section 4 we also recover the main 
resuRs of [16] and [22] by using the CHIP approach. Section 5 deals with the 
case of  infinite interpolation constraints while Section 6 interprets the CHIP 
property in a geneal normed linear space setting. 

Much of the notation is defined as it is used. However, certain symbols are 
used repeatedly. In particular, int K, /~, span K, and co K corresponding to a 
set of  vectors K are used to denote the interior of K, K closure, the linear span 
of  K, and the convex hull of  K, respectively. In addition B(x, ~) denotes the 
open ball of  radius 8 centered at x, and ~ ( A )  represents the range of  a linear 
operator .4. 

In this paper we concentrate our attention to the Hilbert space setting although 
most of  our results have Banach space formulations. 

2. Dual Cones 

The concept which is fundamental to our work is the notion of a dual cone of 
a given set. Throughout this paper, unless otherwise specified, X always denotes 
a (real) Hilbert space. 

Definition. Let S be any nonempty set in X. The dual cone of S is defined by 

(2.1) S~ {x ~ Xl(x, y)<- 0 for every y ~ S}. 

We remark that the dual cone of S is also called the (negative) polar of S. 
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The importance of the dual cone from our viewpoint stems from its role in 
characterizing best approximations from convex sets. More precisely, we have 
the following. 

Proposition 2.1. Let K be a convex subset o f  X,  x ~ X ,  and koEK. Then the 
following statements are equivalent: 

(1) ko is the best approximation to x from K;  
(2) (x - ko, k - ko) <- 0 for every k ~ K;  
(3) x - k o ~ ( K - k o )  ~ 

The equivalence of  the first two statements is a classical result (see Moskovitz 
and Dines [18]), while the equivalence of  (2) and (3) is obvious. Here, recall 
that ko~ K is a best approximation to x if llx-koll---inf{llx-kltlk~ g } .  Further, 
since K is convex, a best approximation, when it exists, is necessarily unique, 
and we denote it by PK(x).  Thus, k o = P r ( x )  i f  and only if  x - k o ~ ( K - k o )  0. 
This shows that to obtain detailed information on which element ko~ K is the 
best approximation to x, we must have a precise description of  the dual cone 
( K - k o )  ~ In practice, K often has a representation as the intersection of  a 
collection of"s impler"  convex sets Ks, K = f-)~ Ks, so that the dual cones (Kj - ko) ~ 
are "easier" to obtain. It would be desirable in this ease to be able to express 
the dual cone (K -ko)  ~ in terms of  the individual dual cones ( K i -  ko) ~ We give 
the precise condition on the collection {Kdi ~ I} in order that this is possible (see 
property CHIP in the definition following Lemma 2.4). First, however, we record 
some useful facts about dual cones. 

Recall that a set C is called a convex cone if it satisfies 

C + C c C and pC = C for all p > O. 

The conical hull of a nonempty set S in X, denoted by con S, is the intersection 
of  all convex cones which contains S. With the exception of part (4) of Lemma 
2.2 and Lemma 2.4 whose derivations require the separation theorem, the follow- 
ing four lemmas are standard and their proofs are therefore omitted. 

Lemma 2.1. 

(1) con S is a convex cone. 
(2) Con S := con S is a closed convex cone. 
(3) S = con S i f  and only i f  S is a convex cone. 
(4) con S = {Y~ p~x, lp~ >-- O, x, ~ S, n ~ N}. 
(5) l f  S is convex and O ~ S, then con S = {pylp > O, y E S}. 

Lemma 2.2. Let 0 ~ S ~ X. Then: 

(1) S o is a closed convex cone; 
(2) s ~  (g)o; 
(3) SO = (con S) ~ = (c--~ S)~ 
(4) SOo = e-Eft S. 
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As usual, the annihilator of  a set S is denoted by S • 

Lemma 2.3. Let C be a convex cone and let M be a (linear) subspace of X. Then: 

(1) C~176 (:'; 
(2) ( C - y )  ~  C~ for a n y y e  C; 
(3) M ~  M • 

In addition, the sum of  a collection of  subsets $, of  X is denoted by ~ S,. 

Lemma 2.4. Let {Ci[i ~ I} be a collection of  closed convex cones in X. Then )o 
(2.2) c ,  .-- y~ c~. 

i 

We are now ready to introduce the notion of  property CHIP.  

DefinRion,  A collection of  convex sets {K, li~ I} is said to have property CHIP 
(Conical Hull Intersection Property) if 

(2.3) co/1(-] (g ,  - k) = f'] con(K, - k) 
i i 

for all k e (']i K,. 

As mentioned earlier, property CHIP  is the precise condition which allows a 
representation of  the dual cone of  I'~i ( K , -  k) in terms of  the dual cones of  the 
individual sets K, - k. This is the content of  the equivalence of  (1) and (4) in the 
next lemma. 

Lemma 2.5. Let {Kill ~ I} be a collection o f  convex sets in X. Then the following 
statements are equivalent: 

(1) ( K, li ~ 1} has property CHIP;  
(2) c-'~["], (Ki - k) ~ ("~i con(K, - k) for every k ~ f'], K,; 
(3) con["]i (K, - k) is dense in f ~  "c~(Ki - k) for every k ~ f']i Ki; 
(4) ((']~ K, - k) ~ = ~, ( K, - k) ~ for every k ~ ('~ K,. 

Proof .  Since con ("1, (K, - k) = [']i c o n ( K i -  k) is always true, the equivalence 
of  (1) and (2) is obvious. In addition, the equivalence of  (2) and (3) is trivial. 

To prove that (1) implies (4), we note that, by Lemmas 2.2 and 2.4, 

(A,  K , -  k) ~ = ( K , -  k) = [ c ~  A ( K , -  k)] ~ 
�9 i ]o 

= c-~(K,  - k) = ~ , [ ' c ' ~ ( K , - k l ] ~  ~ 
�9 i i 

for any k e (']i Ks. 
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Now suppose that (4) holds for all k e (-]i K~. If  (2) fails for some k, there 
exists an 

x ~ A con(K, - k)\c--~ ("1, ( K , -  k). 
i 

By the separation theorem, there is a z e X so that 

(2.4) sup{(z, Y>IY ~ ~ ('~ (K~ - k)} = 0 < (z, x>. 
i 

Then (z,y)<-O for all ye ( "~  ( K t - k )  so 

Thus, there exist z, ~ ~i [ c - ~ ( K i -  k)] ~ converging to z. Since x e boh(K~- k) for 
every/ ,  we obtain (z,, x)<-O for all n and so (z, x ) - 0 .  But this contradicts (2.4). 
Hence (2) must hold. [] 

As an immediate consequence of  Proposition 2.1 and Lemma 2.5, we obtain 
the main characterization theorem of  this paper. 

Theorem 2.1. Let {Krl ieI}  be a collection of convex subsets of X which has 
property CHIP and K = ("~i Ki. Then, for each ko ~ K, 

(2.5) (K - ko)~ = • ( K , -  k0) ~ 
i 

Moreover, for any x E X and koe K, ko= Pr(x )  i f  and only i f  

(2.6) x - koch. ( K, - ko) ~ 
i 

To apply this theorem, it is essential to know when K can be represented as 
the intersecton of  some convex sets {K~]ieI} that have property CHIP.  The 
following examples shed some light on this question. In the next section we 
examine in detail the situation when K = C c~ V, where C is a dosed  convex 
cone and V is a closed linear variety. 

The next result follows easily from Lemma 2.4 and Theorem 2.1. 

Proposition 2.2. Any collection of  closed linear varieties { Eli ~ I} has property 
CHIP. Moreover, for each v e V := A i  Vi, 

(2.7) ( V- v) ~ = E M~, 
i 

where Mi = V~ - vt with vie V~. In addition, for any x e X and roe V, Vo = Pv(x) if 
and only i f  

(2.8) x -  Vo~E M/'. 
i 

Before proceeding, it is perhaps worthwhile to give an example which shows 
that not all collections have property CHIP.  
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E x a m p l e  2 .1 .  Consider the closed convex cone 

Kl = con{(a,/3, 1)142+ (/3 -- 1): = 1} 

and the dosed  linear variety 

K~= ko+{4(1, 0, 0)14 ~n}, 
where ko= (0,0, 1). It is easy to cheek that ko~ KlcaK2, (K l -~ )ca(K2-ko)=  
(0, 0, 0), and so con[(K1 - ko) ca ( / ( 2 -  ko)] = (0 ,  0, 0). But with c0n(Kl - ko) = 
{(4,/3, 3~)1/3 - 0} and M :-- con(K2-/co) = {/3(1, 0, 0)[/3 ~ R}, we have 

eon(Kl -/Co) n c--~'~(K2- ko) = M # (0, 0, 0), 

so that {K~, Ks} fails to satisfy property CHIP.  

While property CHIP fails in general even for a collection of  two convex sets, 
it is easy to show that the conical hull (rather than dosed  conical hull) can always 
be interchanged with intersection, provided that the collection of  convex sets is 
finite. 

3. Best  Constra ined  Interpolat ion  

In this section we consider the special case when the convex set K is the 
intersection of  a closed convex cone and a closed linear variety. This situation 
includes a number of  problems (e.g., "'shape-preserving" or constrained interpola- 
tion) studied by several authors in recent years (see, e.g., [4]-[6], [15], and the 
survey article [23]). 

Our set-up in this section is the following: X and Y are Hilbert spaces, C is 
a closed convex cone in X, d e Y, A e ~ ( X ,  Y), i.e., A is a bounded linear operator 
from X into Y, V = { x e X I A x = d } ,  K = C c a V = { x e C I A x = d } ,  x e X ,  and 
koe K. We wish to characterize ko = Pr(x) by using Theorem 2.1. 

Note that V = )r + ko, where N(A) = {x ~ XIAx = 0}, and 

K - ko = (C - ko) ca N(A). 

T h e o r e m  3.1. Let C, A, V, and K be as above and assume that { C, V} has property 
CHIP. Then for any x ~ X and ko c K the following statements are equivalent: 

(1) ko= P,~(X); 
(2) x - k 0 ~ C O ca k~-+ ~ (A*), where ~ (A*) denotes the range of the adjoint A*. 

Proof. By Theorem 2.1, ko = PK (x) if and only if x -/co ~ (C - ko)~ )r "~. But 
since it is well known (see [9]) that N(A) l = ~ and (C - ko) ~ = C O n k~ from 
(2) in Lemma 2.3, we have 

( C - k0)~ .Ac(a)x = C O ca kg- + ~ = C O r~ k~" + ~ (A*) 

which completes the proof. [] 

Before giving applications of  this theorem, it will be useful to discuss and 
compare various properties which guarantee that the pair {C, V} has property 
CHIP.  
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Note that K := C n V ~ O if and only if d ~ A C  := {Axlx  e C}. We call any 
point in A C  an admissible data point, and A C  the data cone. Some conditions 
stronger than d being an admissible data point are given below, and their 
relationships are shown in Lemma 3.1. 

Definition. 

(1) d is called a Slaterpoint if d eA(int  C) (or equivalently, Vn in t  C ~ O ) .  
(2) d is called a strong interior data point if there exist Vo~ C n  V and r > 0  

so that d e int A [ C  :a B(v0, r)]. 
(3) d is called an interior data point provided d e int AC. 

Lemma 3.1. Consider the following statements: 

(1) d is a Slater point; 
(2) d is a strong interior data point; 
(3) d is an interior data point; 
(4) {C, V} has property CHIP. 

Then ( 2 ) ~ ( 3 ) ~ ( 4 ) .  
In addition, i f  A is surjective, then (1 )~(2) .  Furthermore, i f  Y is finite- 

dimensional, then (2)<=>(3). However, in general, (2):~(1) and (4):g,(3). 

Proof. (i) ( 2 ) 0 ( 3 )  is obvious. 
(ii) To show (3 )~ (4 ) ,  assume d ~ int AC. Then 

(3.1) B(d, ~-~= A C  

for some e > 0. We first show that there exists r > 0, 8 > 0, and  y e Y so that 

(3.2) B(y, 8) :" A[( C - ko) c~ B(O, r)]. 

To see this, note that by (3.1) 

0 { A [ ( C - k o ) n B ( O ,  N ) ] c ~ } = ~ .  
N = I  

By the Baire category theorem, there exists an integer r = No so that 

A[(C-ko)r~B(O, r)] c~ B 0--'(b'~, ~) 

contains an interior point y; namely, 

(3.3) B(y, 8)cA[(C-ko)c~B(O,r)]r~cA[(C-ko)c~B(O,r)]. 

Given any y'  ~ B(y, 8), there exists an x, ~ ( C - ko) r~ B(O, r) so that y '  = lim Axn. 
Since {x~} is bounded, by passing to a subsequence, we may assume x, -> x weakly. 
But ( C - k o ) r a B ( O , r )  is closed and convex, hence weakly closed. Thus, 
x e ( C -  ko)c~ ~ r). Further, since A is weakly continuous, we have 

y'  = lira Ax~ = A x e  A[ ( C - ko) c~ B--'(~, r) ]. 
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Replacing r with anything bigger, we deduce that 

y'~ a [ (c -  ko) n 8(0,  r)] 

and so (3.2) holds. 
Next we show that there exist 8 ' > 0  and r ' > 0  so that 

(3.4) B(O, 8') = A[(C - ko) n B(0, r')]. 

To see this, note that by (3.3), y e ~  so that Ilyll-< e. By (3.1), we have 

y ~  B(O, e)= A C - d  = A ( C - k o ) .  

Now since - y ~ B  0--'('~,e), there exists Xo~(C-ko)  so that A x o = - y .  Let 
r '~  �89 +�89 Then for each w ~ B(0, 8/2),  2w ~ B(0, 8) so (2w +y) ~ B(y, 8) and 
(3.2) implies that there exists an x ~  ( C - k o ) n  B(0, r) such that 2w+y =Ax. 
Hence 

�89 + xo) ~ ( C -  ko) n B(0, r') 

and 

w -- �89 = A(�89 + Xo)) ~ A[(C  - ko) c~ B(0, r')]. 

This proves that (3.4) holds with 8 ' =  8/2. 
To verify that {C, V} has property CHIP,  it suffices by Lemma 2.5 to show 

that for each koe C ~  V and each z~con(C-ko )c~M,  there exists z , e  
eon(C - ko) n M so that z, --> z. where M : -  V -  ko = 2r I f  z = 0, we take z, = 0 
for all n. If  z # 0, then by scaling we may assume Itzll = 1. Since z ~ con(C - ko), 
it follows from Lemma 2.1 that there exist x, e (C  - ko) and p, > 0 so that p,x, ~ z. 
Then p, IIx. II -~ Ilzll---1. There are two cases to consider. 

Case 1. Suppose that {p,} is unbounded. 
Then by passing to a subsequence, we may assume p, ~ co, so that Ilx, II ~ 0. Now 

[[ax"l[=llx"ll l[ a ( ~ ) I I  -- ''~"" I l a ( ~  - z )  II 

where 

Xvl 

since p.l lx. l l -~ 1. se t  y .  =Axe. Then  it follows that [[y.]}-< [IAI[ [[x.llA . for all n. 
Next choose r.--> co so that: 

(a) r.y. r B(0, 5') (and hence (r~ - 1)y. ~ B(0, 8')) and 
(h) r . l lx.t l-~ oo (and hence 1/r .  ]Ix. [] --> 0 and p. /r .  --> 0). For example, we may 

take r. = ~'/2[IY. [[ if y.  # 0 and r. ---- n if y.  = 0. 
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Finally, by (3A) we may choose w, ~ (C -/%) c~ B(0, r') so that 

Aw,,=(1-rn)y. for all n. 

Then {w.} is bounded, 
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w . . -  x .  + w. ~ ( C - / % )  

by convexity, and 

Aw.= r . -1  A x . + I A w . = r . - !  y.+--1 ( I -  r . )y.  =0.  
I". r. rn r. 

Thus, w" ~ (C -/%) c~ M. Setting z. = p.w', we see that z. ~ eon(C - k0) c~ M and 

[l r. rn r. 

Case 2. Suppose that {p~} is bounded. 
Then by passing to a subsequenee, we may assume that p. -> pomO. Note that, 

for all a .  > O, 

pnOtn = p.x~ -> Z. 

Choose (x. > 1 large enough so that p~, := p.a. ~ oo. Then by convexity, 

x " = I x " + ( l - 1 )  a. , 

so x . /a . - -x . '~(C- /%) ,  p ' x ' ~ z ,  and p ' ~ o o .  Now Case I applies. This 
completes the proof of (3 )~ (4 ) .  

(iii) Now assume that A is surjective. We have to show (1 )~(2 ) .  Suppose 
that d is a Slater point. Then there exists vo~ V and e > 0  so that B(vo, e ) =  C. 
By the open mapping theorem. A[B(0, ~)] ~ B(0, 6) for some 3 > 0 .  Thus, 

A[ C c~ O(vo, e)]= A[ B(vo, e)] = A[ B(O, e )+  vo] 

= A[ B(0, ~)] + d ~ B(0, 8) + d = B(d, 8). 

Thus, d ~ int A[C c~ B(vo, e)], so that (2) holds. 
(iv) Finally, assume Y is finite-dimensional and d is an interior data point. 

In this ease we may assume that Y = R" and there exists an independent set 
{xl, x 2 , . . . ,  x,} in X so that 

Ax = ((x, x0 ,  (x, x : ) , . . . ,  (x, x,)) ,  x ~ X. 

Since d ~ int AC and all norms are equivalent in R", there is an e > 0 so that 
B~'~, e)~ AC. where B~(d. e) denotes the/~-ball about d of  radius e. Since the 
set of extreme points ext B~(d, e) is finite, say 

e x t ~  = {e,, e 2 , . . , ,  e,,,}, 
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by choosing c~ r C so that Act = e~ for i = 1, 2 . . . .  , m, we have 

Bi(d, e) = co{el, e2 . . . . .  e=} = co{Acl, Ac=, . . . ,  Ac=} = AC1, 

where C~ := co{c~, c2 , . . . ,  cm} c C. In particular, C1 is a bounded convex subset 
of C. Choose any Vo~ Cc~ V (so Ave=d) ,  and let C:=co{C~, re}, we see that 
(7= is a bounded convex subset of C. Finally, choose r > 0 large enough so that 
B( vo, r) D C2. Then B( vo, r) c~ C D C2 and 

Bl(d, e ) c  ~ =  AC2c  A[C n B(vo, r)]. 

Since for some 0<  e ' <  e we have B(d, e ' )c  Bl(d, ~), it follows that d is a strong 
interior data point. Thus, (3)~(2)  when Y is finite.dimensional. 

The last statement of the lemma follows from examples given below. �9 

Recently, Micchelli and Utreras [17] showed that under certain additional 
restrictions, the conclusion of Theorem 3.1 may be strengthened; namely, the 
closure bar may be removed from (2) and (3). (However, as we shall see in 
the examples below, the closure bar is necessary in general.) It turns out 
that the condition they assumed is actually equivalent to d being an interior data 
point (Lemma 3.4). We now turn to this circle of ideas. 

For the remainder of this section, we assume that Y is finite-dimensional and 
A is surjective. Thus, we may assume Y = R" and 

Ax := ((x, xO, (x, x~}, . . . ,  (x, x.)), x e x ,  

for some linearly independent set {x~,xa, . . .  , x , }  in X. Note that the adjoint 
mapping A*: R" -+ X is then given by 

A*A = ~  A~xi, A=(A1,A2 . . . . .  A,)e R", 
I 

and the range of A* is the subspace ~(A*) = span{x1, x 2 , . . . ,  x,}. 
Clearly, K = C c~ V # O if and only if d ~ AC. We should mention that the 

data cone A C  is not closed in general, even if C is closed and the range space 
is finite-dimensional. 

Example 3.1. Let X = L2[0, 1] and C = {x e X[x > 0}. We construct functions 
xl,  x 2 ~ X  so that if A: X-->R 2 is given by 

Ax := ((x, x0,  (x, x=)), x ~ X, 

then the data cone A C  is not closed. 

For any set S c [ 0 ,  1], let Xs denote its characteristic function. Set xi =X[o.u 
oo 

and Xz=~.l nxt2-".z .... ,1. T h e n  [[xlll = a and 

oo f 2  -#  Ilxdl2= dt = ~. n22 -" <o0. 
�9 / 2  - ' + ~  1 

Further, for any x ~ C, 

(x, x ,)= x(t) d t -  x(t) dt = E a. ,  
1 . / 2  - ' + l  l 
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where 

Also, 

Thus, 

a11 :--- x(t)  dt>-O. 
- n + l  

(x, x2)= x(t)~nxt2-"a .... ,~(t)dt= n x(t) dt=~na11. 
1 ! w I 1 

A C  = a, ,  ~ na11 a ,  = x(t) dr, x > 0 

I 11=L .... , x ( t )  at, 

Hence, we may observe that (I /n,  1) ~ A C  for every n, but (0, 1) ~ AC. This shows 
that (0, 1 ) e A C \ A C  and A C  is not closed. 

The next two lemmas characterize when a point is in the closure of the data 
cone and the interior of the data cone, respectively. 

Lemma 3.2. Let d~R" .  Then d ~ A C  if  and only i f  ~A,dt--<0 whenever 
~! Atxte C ~ In particular, i f  d eAC,  then ~i A~di- 0 whenever ~ A~xte C ~ 

Proof. Since AC is a closed convex cone in R", it follows by the separation 
theorem that d ~ ~ if and only if there exists A e R" so that 

(3.5) sup(A, Ax) --- 0 < (A, d). 
x ~ C  

But (3.5) holds if and only if 

n n 

Z At(x, x,)_< o < X A,dt 
! 1 

for every x r C, or, equivalently, 

--<0< At 

for every x e C. This may be formulated as 

(3.6) ~Atx tEC 0 and ~Aidi>0. 
1 ! 

Thus, d ~ A C  if and only if there exists A e R" so that (3.6) holds. From this 
the result follows. [] 

Lemma 33.  Let d e A C .  Then d e i n t A C  i f  and only i f  Y~1A~t =0  whenever 
n M 

]~ A~xt~ C ~ and El Atdt =0- 
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n 0 n I1 �9 
Proof ,  (i) ~uppose ~] A~xj ~ C and ~.t Aid~ = 0, but ~ i A~ # 0. Since A # 0, there 
exist y(k) = (y~k),..., y~)) ~ R" so that Ily <k)-  d I] ~ 0 and ~ A~y~ k) > 0 for each k. 
By Lemma 3.2, y(k) ~ ~--~'. Since yfk) _~ d, d ~ int AC. 

(ii) Suppose d ~ int AC. It suffices to show there exists ~ Aix~ ~ C~ with 
~ A~d~ = 0. If not, then, for all ~ A~ e C~ we must have, by Lemma 3.2, 

n n . n 

that ~i  Aidf < O. By scaling, we deduce that ~1 Aid~ < 0 for all A E R" with ~-t A.~i 
"A C o and llXt ~il] = 1. Since the set 

A:= A e R  ~ A N t e C  o , A~x~ =1 

is closed and bounded, hence compact, and the mapping A ~ A-~ ~ )t~d~ s R is 
n continuous and negative on A, there exists ~ > 0 so that ~t  A,d~ -~ - 8  for all A ~ A. 
n Hence, there is e > 0  so that, for every y E B ( d ,  ~), ~1 AO,~--- - 8 / 2 < 0  for all 

A cA. This proves that ~:~ A~v~ <0  whenever 2~ A~xis C ~ IlX~ A,x, II = 1, and y s  
B(d,  e). Again by scaling, ~ A0,~<0 for every y ~  B(d, e) whenever ~ A ~ e  
C~ By Lemma 3.2, y e ~ for all y e B(d,  e). That is, d ~ int A C.  Since A C  
is a finite-dimensional convex set, it follows that int A C  = int A C  [20]. Thus, 
d ~ int A C  which contradicts the hypothesis. �9 

The following condition of Micchelli and Utreras [17] was an essential 
hypothesis to their main results: 

(MU) {A*y[(y, d)  >- 0} c~ C O = {0}. 

We now show that (among other things) the (MU)-condition is equivalent to 
the data point d being an interior data point. 

Lemma 3.4. Let d ~ R ~ and assume that K = C r~ V #  ~ .  Then the following 
statements are equivalent: 

(1)  the (MU)-condition is satisfied; 
(2) {A*yl(y, d)  = 0} n C O = {0}; 
(3) ~(A*)  c~ k ~- c~ C O = {0} for  each k ~ K;  
(4) ~(A*)  c~ K "~ c~ C O = {0}; 

c ~ = O} = {o};  
(6) d is a strong interior data point; 
(7) d is an interior data point, i.e., d e int AC. 

Moreover, i f  any of  the above conditions holds, then 

C~ r~ k• + ~ ( A  *) 

is closed for  each k ~ K. 

Proof. By Lemmas 3.1 and 3.3 we see that (5), (6), and (7) are equivalent. Now 
consider the sets 

S~ = {A*yl(y, d)  > 0} ~ C ~ 

S~ = {A*yl(y, d) = 0} n C ~ 

$~= ~(A*)r'~ g ~" c~ C ~ 

S , = S , ( k ) = ~ ( A * ) c ~ k ~ c ~ C  ~ k r  
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and 

S~ = Aixi A.,xi ~ C ~ A~d~ = 0 . 

To complete the p roof  of  the equivalence of  statements (1)-(7),  it suffices to 
show that  all the sets $ 1 , . . . ,  Ss are equal. 

Let x r $1. Then x ~ C o and x = A*y for some y ~ R" with (y, d ) -  0. For each 
k ~ C c a  V, 

0 <- (y, d) = (y, Ak)  = (A 'y ,  k) = (x, k) <- 0 

so that (y, d) = 0 and x ~ $2. 
I f  x ~ $2, then x ~ C o and x = A*y ~ R(A*) for some y ~ d • Hence, for any 

k ~ K ,  

(x, k) = CA*y, k) = Cy, Ak)  = (Y, d) = 0 

and this yields x e  K x and x e  $3. 
Since K •  k • for each k e  K, it follows that $3c  $4(k). 
I f  x e S4(k) for some k ~ K, then x e k • n C o and x = A*A for some A ~ R n. 

~ n  
Thus, x = ~ l  ANi. Also, 

A,d~ = (A, d) = CA, Ak)  = (A'A,  k) = (x, k) = 0. 
1 

Thus, x e S3. 
n gl 

Finally, let x ~ S s .  Then x = ~ l  y~x~ for some y e R " ,  x e C  ~ and Y~ yid~=O. 
Hence x = A*y and (y, d) = 0. Thus, x e $1. 

We have shown that  

Sl ~ $2:$3  = S4( k ) : S5 = $1 

for any k e  K. Thus, all these sets are equal, or (1)-(7) are equivalent. 
The p roof  of  the last statement of  the l emma follows f rom the fact which 

derives immediately from the "Dieudonne  separation theorem" [10, p. 105]. 

Fact. I f  D is a closed convex cone and M is a finite-dimensional subspace in X 
such that D n M = {0}, then D + M is closed. 

To prove the last statement o f  the lemma,  take D =  C ~  k "~ and M = ~ ( A * ) ,  
and note that indeed D n  M = {0} by (3). []  

During the course of  the p roof  of  the above lemma we have verified the 
following curious fact which will be needed in Section 4. 

Lemma 3.5. For each k ~ K, C O ca k z ca ~l (A*) = C O ca K • c~ ~ (A*). 

Also, we should mention that each of  the statements in Lemma 3.4 is equivalent 
to the statement 

(8) X = c o n ( C - k ) + ) C ' ( A )  for each k e  K. 
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This follows, for example, by taking dual cones of both sides of the equality in 
(3) and (8). Statement 8 is closely related to (2.6b) of Proposition 2.1 of [4]. 

Now we can easily prove a variant of Theorem 3.1 which will be useful to us 
throughout the sequel. 

Theorem 3.2. Let C be a closed convex cone in the Hilbert space X, let Y be a 
finite.dimensional Hilbert space, d ~ Y, A ~ ~ ( X ,  Y),  K = {x ~ CIAx = d}, and 
assume {C, V} has CHIP and, for each kE K, C O n k  I + ~ ( A * )  is closed. Then, 
for any x ~ X and ko e K, the following statements are equivalent: 

(1) ko = PK(x); 
(2) x - k o c  C~ c~k~ +~(A*) ;  
(3) ko = Pc(x+A*y)  for some y ~ Y. 

Note that the hypothesis in the above theorem is satisfied if, for instance, d is 
an interior data point or any of the six equivalent conditions in Lemma 3.4 holds. 

Proof. The equivalence of (1) and (2) follows from Theorem 3.1 using Lemmas 
3.1 and 3.4. By Proposition 2.1, (3) holds if and only if x + A * y -  ko~ ( C -  ko) ~ 
for some y ~ Y. But, by Lemma 2.3, (C- /%)o= c o n  k~ and the equivalence of 
(2) and (3) follows. �9 

Using variational methodg, Micchelli and Utreras [17] proved the equivalence 
of (1) and (3) in Theorem 3.2. However, as we shall see in the next section, 
Theorem 3.1 is valid even in certain cases where Theorem 3.2 does not apply. 

4. Best Positive Constrained Interpolation 

In this section we apply the theory of the preceding section to characterize best 
approximations in L:(/z) from the set of nonnegative functions which also lie in 
a finite-codimensional linear variety. The main result is Theorem 4.2. 

Let /~ be a measure on a o--algebra of subsets of a set T. As usual, L:(/z) 
denotes the Hilbert space of all (real) measurable functions x on T with 

] 1/2 

Then L2(~) is a Hilbert space with the inner product 

(x,Y)=  Txyd . 
Here, and in the following, we do not distinguish between two functions which 

agree almost everywhere. Also, all sets are defined only up to a set of measure 
zero. For any x~ L2(~), the support of x is defined by 

supp x := {t ~ T[x( t) ~ 0}, 

and the positive part of x is the function 

x+( t ) = max{x(t), 0}. 
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Let C denote the cone of  nonnegative functions in L2(/z), let {xl,  x 2 , . . . ,  XN} 
be a finite set in L2(/z), d = (dl ,  d 2 , . . . ,  d N ) e R  N, 

V:= {x E L2(/~)[(x, xi) = di(i = 1, 2 , . . . ,  N)}, 

and 

K := Cc~ V = { x e  L2(tz)lx-> 0, (x, xl)= d, ( i=  1, 2 , . . . ,  N)}. 

The problem then is to determine the best approximation P r ( x )  of  a given 
x ~ L2(tz) from K. 

First we note that since K is closed and convex, best approximations always 
exist. Also, if  we define A on L2(/z) by 

Ax := ((x, xl), (x, x~) , . . . ,  (x, xN)), 

it follows that A ~ ~(L2(/~), R N) and the adjoint map A*: R u -~ L2(/z) is given by 

N 
A*A = ]~ A.,xt 

1 

so ~ (A*)  = span{x1, x2,. � 9  xN}. Thus, 

K = { x e  L2(~)[x--- 0 and Ax = d}. 

Our problem is now in the same form as that in Section 3. 
To apply Theorem 3.1, first we need to prove the following. 

Theorem 4.1. { C, V} has property CHIP. 

Proof. By Lemma 2.5, it suffices to show that, for each k E K, c o n ( C -  k)r~ M 
is dense in con(C - k) n M, where 

M : =  V - k  = { x e  L2(tz)l(x, x,) = 0  (i = 1, 2 . . . .  , N)}. 

Consider 

Eo={tE Tlk(t)=O}, E l = { t e  T l k ( t ) >  1}, 

and, for n = 2 , 3 , . . . ,  

E, = {t ~ Tin -1 < k( t )  <- (n - 1)-1}. 

Then {E, l n - 0 }  is a disjoint sequence of  measurable sets whose union is T. 

Claim 1. c o n ( C - k ) ~ / 3 ,  where 

n 

U := {x e L2(ke)]x = YX~, + Y~ zjXE,, y e L2(I~), YXeo >- O, zj e l.~(i.~), n < oo}. 
1 

To verify this, let y e L:(tz), YX~, >-" O, and c = yx~,+ k. Then c e C and 

YX~, = c - k ~ ( C - k) ~ con(C - k). 

Next fix any integer j_> I, and consider zj ~ L~(/~) and z = z~xe~. Then 

tzl-< fzA-- ItzAl~ < oo. 
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Also, for t e  Ej, we have that k ( t )>  1/j. Thus, for any p > 0  with pllzjllo~<l/j, 
we see that, for t e Ej, 

and, for t ~ Es, 

Thus, k + pz ~ C and 

k( t) § pz( t ) ~ l -  p llzllo~> O 
J 

k ( t ) +  pz(t)  = k(t)>-O. 

1 
z~n i = z = -  ( k + pz - k) e con(C - k). 

P 

Since c o n ( C -  k) is a cone, sums of functions of the type YX~ and zjge~ are also 
in e o n ( C -  k). This proves the first claim. 

Claim 2. Let 

Then, c o n ( C - k ) =  W. 

w := {x e L~(~)lxx~ >- 0}. 

To prove this, let x e c o n ( C - k ) .  Then x = p ( c - k )  for some p > 0  and cE C. 
Thus, 

x x ~  = pcx~ >- 0 

and x e  W. Since W is closed, ~ ' n ( C - k ) ~  W. If there exists an xoe 
W \ ' c - ~ ( C - k ) ,  then by the separation theorem there exists z e L2(/.e) so that 

sup{(z, Y)IY e "c-J'~(C - k)} = 0 < (z, Xo). 

By (2) in Lemma 2.3 and (3) in Lemma 2.2, we have z ~ C ~  k ~. Thus, z ~ 0  and 
(z, k)--0. Since k-> 0, it follows that zk = 0 so that z = 0 on E~, the complement 
of Eo. Hence, 

o ~ a 

which is absurd. Thus, W c  c o n ( C -  k) and Claim 2 is proved. 
To prove the proposition, it suffices by Claims 1 and 2 to verify that U n M 

is dense in WorM.  Fix any x o e W n M .  Then xox~,~-O and (xo, x~)=0 
(i = 1, 2 , . . . ,  N).  Setting 

fl,=frXoX~,x~dl~ ( i =  1 , 2 , . . . ,  N),  

we see that ST XOX~,X, d/x = -/3j for all L 
In the space 

L2(E~) := {x e L2(~) lxx~,  = 0}, 
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we see that the convex set 

Uo= ( ~ gPfE~'gj E Lo~( Iz), n <~ } 

= { x  e Ulxx~--  0} 

contains all simple functions in L2(Eg) and thus is dense in L2(E~). Further, the 
set 

Vo:= {x ~ L2(Eg)l(x, x,)-- -/3~ (i -- 1, 2 , . . . ,  N)} 

is a linear variety of  finite-codimension in L:(Eg). It follows that Uon Vo is dense 
in Vo. Further, xo~'e~;e Vo. Hence, given any e > 0 ,  choose Uo~ Uon Vo such that 
II Uo-Xox~zll < ~. But since Uo = • ~ zjxei for some zj ~ L~o(/z), setting u = XoXeo + Uo, 
we see that u e U, 

( u, x,' = f r XOX~ox, d~, + f r uox, d~ = fl, - ~, = O 

(i = 1 , . . . ,  N) ,  so that u e M, and 

II u - xoll = I1 U o -  Xox~zll  < ~. 

This proves that U n M is dense in W n M. []  

I.emma 4.1. Let xe  L2(~) and koe C. Then: 

(1) C~ L2(/~)lu --- 0, u = 0  on supp/Co}. 
(2) The following statements are equivalent: 

(i) ko = Pc(x); 
(ii) x - k o c  C~ r~k~; 

(iii) ko = x + .  

Proof. (1) Let u e C ~  k~-. Then u-< 0 and (u, ko)= 0. Since u k o -  < 0, it follows 
that uko=0 so u = 0  on supp ko. Conversely, if u-<0 and u = 0  on supp/Co, then 
u ~ C o and (u,/Co) = 0. 

(2) Using Theorem 2.1, and statements (1) and (2) in Lemma 2.3, we see that 
ko = Pc (x) if  and only if  x -/Co e C O c~ k~, or, equivalently, x - ko <- 0 and x - ko = 0 
on supp/co, that is, k0=x+.  [] 

Before stating the main result o f  this section, it is convenient to isolate a special 
case that will simplify the proof  of  this result as well as some subsequent ones. 

Lemma 4.2. Let K be as defined above and define 

(4.1) f~:= U supp k={t~  Tlk(t)>O for some k~ K}. 
k e K  

l f  x~Xt~=O for i = 1, 2 , . . . ,  N, then for each xe  L2(l~), 

(4.2) PK (x) = x+xl~. 



52 C. K. Chui, F. Deutseh, and J. D. Ward 

Proof. Since x~ = 0 on f~ for each i, we have (k, x~) = 0 for each k c K. That is, 

K = {y ~ L~(tz)ly >- 0, (y, x~) --- 0 (i --- I, 2 , . . . ,  N)}. 

It follows that K contains every nonnegative function whose support is in 12. In 
particular, k0 := x+xn is in K. For any k ~ K, k = kxa >- 0 and so 

Ilx-koll = falx-x+[  fr, lxl=d  
<- fa  l x -k l2  d~ + f ~ a  Ixl2 dtz =llx- kl'2" 

That is, P r  (x) = ko. I 

Now we come to the main characterization of  best approximations in this 
section. It states that the best approximation to x from K is the positive part of 
the sum o f x  and an element in span{x1, x2, � 9  xN} multiplied by the characteris- 
tic function of  an explicitly prescribed subset of  Z 

Theorem 4.2. Let {Xl,X2,...,XN}~Lz(I~), d = ( d l , d 2 , . . . , d N ) r  N, and 
assume that the set 

K := {y ~ L:(/z)ly >- 0, (y, x,) = d, (i = 1, 2 . . . .  , N)} 

is not empty. Define 

= {t ~ Tlk(t) > 0 for some k ~ K} 

and set F = T i f  { x~ , x2, . . . , xN } is linearly independent over f~ and F = f l  otherwise. 
Then, for each x ~ L~(# ), 

(4.3) P K ( x ) = ( x +  ~ 

for any set o f  scalars a~ chosen to satisfy the equatidns 

(4.4) x +  a-,x, = dj ( j  = 1 , . . . ,  N).  

Proof. Equations (4.4) guarantee that the element in (4.3) lies in K. Also, by 
replacing {xl ,x2 . . . .  ,xN} by a maximal linearly independent subset, we 
may assume that {x~,x2 . . . .  ,xN} is linearly independent. Let M =  
span{x~, x 2 , . . . ,  xN}. We consider two cases. 

Case 1. {x~, x2, . . . .  xN} is linearly independent over fL 
We first show that C ~  k~+ M is closed for each k e K. By Lemma 3.4, it 

suffices to show that Mc~C~ Let ~ a ~ x , ~ M c ~ C ~  "~. Then 
F ~  a,x~<0 and ( ~  a~x,, k)=O for every k ~ K .  Hence ( ~  a,x,)k=O a.e. for 

�9 �9 N 

each k e K lmphes that supp(~ 1 a,x,) c~ supp k = O for each k ~ K. It follows 
N N 

that supp(Y~ i a~x~)c~[~=O so ~ t  a~x,=0 on N. By the hypothesis, al=a2 -- 
�9 . . = a N  = 0 .  
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This proves C ~  k-~+ M is closed. By Theorem 3.2, for any x e L2(t~), 

Pr(x) = Pc( x + ~ aix,) 

for some scalars a~. By Lemma 4.1, 

Case 2. {xl, x2, . . . .  XN} is linearly dependent over 12. 
If xo(a = 0 for each/, then PK (x) = x+xa by Lemma 4.2. Thus, we may assume 

xixa ~ 0 for some i and, by reindexing, that {x~, x2 . . . .  , xj} is a maximal linearly 
independent subset over ~ ,  1 -<j < N. Note that {x~xa, xz,,(a,..., xjxa} is linearly 
independent over 12, 

K = {y e L2(/x)ty -> 0, {y, xova) = d~ (i = 1, 2 , . . .  ,j)}, 

and P,:(x)=Pr(xxa) for every x e  L2(/z). Applying Case 1 (to xxa instead of 
x), we obtain 

P~(x) = Pr(xxa)=(xxn+~a,x~a)+=(x+~a.,x~)+Xn 

for some scalars a~. 

Remarks. (1) Micchelli, Smith, Swetits, and Ward [16] considered the problem 
of best positive constrained interpolation in any Lp(p.)-space (1 <p<oo) .  In 
particular, using arguments motivated by Lagrange duality, they proved Theorem 
4.2 under the additional assumptions that L2(tz) is separable, x = 0 ,  and 
{x~, x: . . . . .  xN} is independent. 

(2) Theorem 4.2 suggests a possible method for computing best approxima- 
tions. We first determine the set 12 and decide whether F = T or F = 12. In order 
that the element 

ko = x + ~ a-.x i +)(1 ~ 

will be the best approximation to x from K, it is necessary and sufficient that 
the scalars a~ be chosen to satisfy the interpolation conditions 

(ko,  xj) = 4 ( j  = 1, 2 . . . .  , N ) .  

These conditions represent N (nonlinear) equations for the N unknown 
scalars ff~. 

An example in [16] shows that the characteristic function cannot be dropped 
as a factor in the best approximation. However, there is a class of examples 
where the characteristic function may be dispensed with as a factor in the best 
approximation. The next result gives a useful sufficient condition which allows 
this. 
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Theorem 4.3. Let  {x~,.. .  ,XN} be a finite set in L2(l~), ( d r , . . .  , d N ) E R  N, and 
assume 

K := {y e L2(I~)]y >- O, (y, xr) = dr (i = 1 , . . . ,  N)} 

is not empty. I f  C~  c~ kJ-+span{xa,. . . ,  xN} is closed for  each k ~  K,  then, f o r  any 
x ~ L2(I~), 

(4.5) P, : (x)= x +  aix~ 
4- 

f o r  any  scalars ai chosen to satisfy the equations 

N 

(4.6, ( ( x + ~  a-,x,)4• x / ) =  dj ( j =  1 , . . . ,  N, .  

Corollary 4.1. Let  {xz , x2, . . . , XN } be a f ini te  set  in L2(I~ ), d = ( dl , d2, . . . , dN ) e 
R N, and K = {y ~ L2(y)[y -> 0, (y, xr) = dr (i = 1, 2 . . . .  , N)}. A s s u m e  that d is an 
interior data point or, equivalently, any o f  the other six s tatements  o f  L e m m a  3.4 
holds. Then, f o r  each x ~ L2(/~), PK ( x ) =  (x  + ~  a,x~)+ fo r  any  ar ~ R chosen to 
satisfy equations (4.6) o f  Theorem 4.3. 

Easy examples show that the interior data point condition is not necessary to 
obtain best approximations which are the positive parts of functions (without 
characteristic functions as factors). 

The following result is an easy consequence of Theorem 4.3. 

Corollary 4.2. I f  x~ , . . . , XN are nonnegative continuous piecewise linear funct ions 
on [ a, b] and  dl , . . . , dN are positive numbers,  and  

K ={y~ L2[a, b]ly>-O, (y, x~)= d/( i  = 1 , . . . ,  N)} # O, 

then fo r  any x ~ L2[ a, b ], 

PK (x)  = ~,xr 
1 + 

f o r  any al  . . . . .  aN ~ R,  chosen to satisfy equations (4.6) o f  Theorem 4.3. 

A nice application of Theorem 4.2 is that of constrained spline interpolation. 
The reader should see [16], along with [10], [11], [12], [19], and [1], for more 
details. 

As a final application of Theorem 4.3, we recover and extend a result of Smith 
and Wolkowicz [22]. 

Theorem 4A. Let  A be an m • n real matrix,  d ~ 12(m), and  

K = {x  ~ 12(n)lx > O, A x  -- d }  ~ 0 .  

Then, f o r  each x ~ 12( n ), 

P r ( x ) = ( x + A V X ) +  
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for any A ~ 12( m ) chosen so that A[ (x + ATA )+] = d. (Here A r denotes the transpose 
of  A.) 

Proof. Letting xt denote the ith row o f  A, we see that x~ e 12(n) and A is the 
linear opera tor  from 12(n) to 12(m) defined by Ax = ((x, xl), (x, x2) . . . .  , (x, xm)) T. 
Also, A T may  be identified with the adjoint o f  A: 

Ara = A*ot = ~ a,x,, a ~/2(m). 
1 

The result now follows f rom Theorem 4.3 if we show that 

COn k •  x2, �9 �9 x,~} 

is closed for  each k e K, where C = {x e t2(n)lx ~ 0}. That this set is closed follows 
immediately from the next lemma. I1 

Lemma 4.3. Let {y~, Y 2 , - . . ,  YN} be a linearly independent set in X, let E be the 
convex cone 

E={~p~,Ip,>-O foreach i}, 

and let L and M be finite-dimensional subspaces of  X. Then ( E n L) + M is closed. 

Proof. Assume first that L = X. We claim that, for each x ~ E + M, there are 
vectors e ~ E and rn e M so that x = e + m, where 

llell + ttmtl = inf(lle'll  + IIm'lltx = e'+ m', e'e E, m'e M}=: r(x). 

To see this, choose e, ~ E, m,  e M so that  x = e, + m, and 

lle~ll+llm.ll<r(x)+ 1, n>-l.  
n 

This proves that the sequences {e~} and {m.} are bounded.  Since each of  these 
sequences lies in a finite-dimensional subspace,  by passing to a subsequence, we 
may assume that m. ~ m ~ M and e. ~ e e E (since M and E are closed). Thus, 
x = lim(e~ + m~) = e + m and 11 e II § II m 11 = r(x). 

Now assume x.  e E + M and x.  ~ x. We need to show that x ~ E + M. Choose 
e~ e E and mn ~ M so that x.  = e. + m. and 11 en 11 + [1 m.  l[ = r(x.). I f  either {e.} or  
{ran} has a bounded subsequence,  say {en}, then by passing to a subsequence we 
may assume e. --> e ~ E. Thus, 

m. = x . - e ~  ~ x - e = :  m~ M 

and x = e + m ~ E  + M. 
The other possibility is that [[ e~ [[ --> oo and I[ mn l[ --> eo. But we show that this 

cannot  happen.  By passing to a subsequence, we may assume that 

m___._~_~ 
llm~ll -" m ~ M ,  Itmll =1- 
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�9 0 -  m = : e ~  

By r e i n d e x i n g  the  vec tors  yi, we m a y  a s sume  tha t  

N 
e = ~ p ~ ' .  

i 

where  p~ > 0 fo r  i -< k, a n d  ps = 0 for  i > k. 

Also ,  we can  wr i te  

e .  N 
= ~ P.O'i for  some  

IIm.II ,=, 

where  

phi > O, 

where  

m .  -I-�89 e M.  
IIm, II 

H e n c e  we see tha t  

(4.7) 

a n d  

It  fo l lows  tha t  

f o r  n~>no  . 

Since e = - m  ~ M, we have  tha t  

m. t-�89189189 
Ilm.II 

e. �89 e-�89189 
IIm.II 

en 

x.--IIm.II I1~11 
= e ' + m ' ,  

[ l?l n e \  

e . - l l m o  e. e 
II 

for  n >-- no 

for  al l  n - no. H e n c e  

N 
e. �89 = ~. (p . , - �89 ~ E 

Ilm.[I ,=, 

p,~'-> p~ (i  = 1, 2 , . . . ,  N ) .  

In  pa r t i cu l a r ,  s ince  Pl > 0 for  i - -  k, there  exists  an  in teger  no so tha t  

pn,>�89 ( i =  1 , 2 , . . . , k )  
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and 

ran-Ilmn + ~M. 

From (4.7) and the choice of e, and m,, we conclude that, for n -> no, 

H en eli +[[m.[[[[ m~ eli U e,~ II + It m~ II ~ II e" I[ + [I m" 1[ = 1[ m. 1[ II m~ II 2 N + 

SO 
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llm.ll Ilmnll + + 2  " 

Passing to the limit in this last expression yields 

llell + 1 ~ �89 + �89 = Hell 

which is absurd. This proves that E + M is closed. 
But a moment's thought reveals that the same proof shows that (E c~ L)+ M 

is closed for any subspace L. �9 

To see that Lemma 4.3 actually completes the proof of Theorem 4.4, note that 

C~ p~y, lp,>-O}, 

where y~Elz(n) satisfy y~(j)=-8 o. Then take E = C  ~ L=k ' ,  and M =  
span{xl, x 2 , . . . ,  xm}. 

5. Infinite Interpolation 

Much of the theory on constrained approximation has been devoted to the case 
of finitely many constraints. There is good reason for this. Many of the techniques 
employed to handle finite contraints fail badly in the infinite constraint situation. 

While making no claims on handling general infinite constraint problems, there 
are many infinite.dimensional situations where the techniques herein apply. In 
this section we first wish to point out how a certain class of infinite-dimensional 
problems is derived from the approach of this paper. Then we give an application 
to interpolation by piecewise linear splines. 

As usual, X denotes a Hilbert space. Let {x~}~~ X be an unconditional basis 
(see [7]) for its closed linear span H := span{x l, x2,...}, and let A: X ~/2 be 
given by 

Ax = ((x, xl), (x, x2), �9 �9 .), x 6 X, 

so that A*: 12~X is given by 

A*(al, az . . . .  )-- atX j. 
1 
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Let C be a closed convex cone in X, and let d = (d~, d2 , . . . )  be an admissible 
data vector in the cone AC; that is, d ~ AC. Also, let 

K := {x CIAx = d} 

= {x ~ X l x  ~ C, (x,  xi)  = 4 (J = 1, 2 , . . . ) } .  

The infinite constrained interpolation problem may then be stated as follows: 

Characterize PK (x) for any x e X. 

First we define a sequence of  finite-dimensional problems based on the infinite 
problem. For each n = 1, 2 . . . .  define A,: X--> 12(n) by 

A,,x := ((x, xl), (x, x2), �9 �9 �9 (x, x.)),  x ~ X, 

so that A*: 12(n)..~X is given by 

n 

x 
1 

For the given data vector d E/2, define 

and let 

d ("):= (dl ,  d 2 , . . . ,  dn) 

K.  := {x ~ C[A,,x = d (')} 

= {x ~ XIx e C, (x,  x~) = d, ( i  = 1, 2 . . . .  , n)} .  

(5.1) 

i f  

(5.2) 

then 

(5.3) 

Moreover, 

PK.(x) = Pc(x+A*A.)  (n = 1, 2, . . . ) .  

p ' :=sup  Y~ A2.j <oo, 
n \ j = l  

PK(x)=Pc(x+A*A)  forsome ~t~12. 

Pr  (x) = lira/Dr,, (x). 
fl 

We have the following result. 

Theorem 5.1. Assume that d(")e in t  A~C for each n, x~  X, and assume that 
A,, = (A,,l, A , 2 , . . . ,  A,,,)~ 12( n ) is chosen so that 
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Proof. We first verify that the range of  A*, denoted by ~ (A*) ,  is closed. Now 
A* has a closed range if (and only if) A* is bounded below on the norm-one 
elements of  (ker A*) • Clearly, ker A * =  {0}. Since unconditional bases for a 
Hilbert space are unique, there is a constant p > 0 such that 

2 1 
(5.4) [IA*AII2= H~ A t i l t [ - > ~ - ~  A z - l j  - p 2  

for all {Aj} with Y a~ = 1. Hence, ~ ( A * )  is closed. 
Next, let r~ = d(x, K,,) for n -- 1, 2 . . . .  and r~ = d(x, K) .  Since K = K~+I = K~, 

we have r~ <__ r~+~ -<- r~ and 

tim rn-< r~o<oo. 

By (5.1), 

r , = l l x - P c ( x + A * A , ) l l  ( n =  1 , 2 , . . . )  

and hence {Pc(x+A*~t,,)} is bounded.  By the Ebeflein-Smulian theorem, we 
may pass to a subsequenee and assume that 

w 

(5.5) Pc(x + A*A,,) ~ c 

for some c ~ X, where ....w denotes weak convergence. Clearly, c ~ K, for every 
n so c ~ g .  Thus, 

(5.6) r~o-< IIx - c I1 --< lim infl]x - Pc  (x + A~*A,)II -< roo 
N 

implies that IIx-  cll = and c = PK (x). 
To complete the proof, we verify that c = Pc (x + A'A)  for some a ~/2. 
By (5.2) the sequence {A*A,} is bounded,  so (again by the Eberlein-Smulian 

theorem), by passing to a subsequence, we may assume that 

w 

A~*A ~ z 

for some z e X .  Since A 'AneW(A*)  for each n and ~ ( A * )  is closed, hence 
weakly closed, it follows that z = A*A for some A ~/2 and 

A,*A, w ---- A*y. 

By (5.5) and (5.6) we see that 

and 

This implies that 

(5.7) 

t,V 

x -  Pc(x + A*.,X,,).---~ x - c  

I lx-  Pc(x + A* 2t,,)ll-" I Ix-  cll. 

Ilc- Pc(x+ A*~t~)ll--,O. 
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Using Proposition 2.1 and (2) of  Lemma 2.3, we deduce that, for an element 
yo~ C, yo=Pc(X) if and only if z-yoa-C~ Using this, we see that, for 
each y ~ C, 

ix + A*A - c, y) = limix + A*A~ - Pc (x + A*A,), y) <- 0 

and 

(x + A*A - c, c) = lim(x + A~*An - Pc(x + A'An), c) 

= lim(x + A'An - Pc (x + A*~An), c -  Pc (x + A* A~)) = 0 

by (5.7). Again using the characterization of  best approximations from C, we 
deduce that c = Pc (x + A'A)  which completes the proof. []  

The following example illustrates an application of  Theorem 5.1. Let Mo be 
the piecewise linear B-spline having the values 0, 1, and 0 at the integers -1 ,  0, 
and 1, respectively, which is supported on [~-1, 1] and set 

Mj(t) = Mo(t-j) ,  -oo < j  < co. 

It can be deduced from [3] that the B-splines { M j l j = 0  , • +2 . . . .  } from an 
unconditional basis for the d o s e d  subspace they span in L2(R). Consider the set 

K = {y r ~ 0, (y, Mj) --- dj, -oo  < j  < co} 

where 

ClAy =d}, 

C = {y ~ L2(R)[y -> 0}, 

d = ( . . . ,  d-z, do, d l , . . .  ) is in/2 = I2(Z), dj = (k, M/), and A: L2(R) -->/2 is defined 
by 

Ax := ( . . . ,  ix, M-I),  ix, Mo) , . . . ) .  

That is, (Ax)(j)= ix, Mj), -co  < j  < 00. In the following, we use the notation 

 dA  fj} 
if there exist positive constants cl and c: such that cld~ <-fi <- c2dj for all j. Hence, 
by setting dj = (k, Mj) where k = ~,~_oo (5/(] il + 1))XE~+I/zJ it is clear that k e L2(R) 
and 

Consequently, K is nonempty. Our problem is to characterize PK (x) for each 
x e L2(R). By a simple translation, we may simply consider the case x = 0. Since 
(y, ~)--, 0 as IJl" ~ ,  the data cone will contain no interior points. Nevertheless, 
we have the following result. 



Proposition 5.1. 

(5.8) 

for some a ~ 12. 

Proof. 
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The element of minimal norm in K is given by 

and set 

and 

For each integer n >0,  define A.: L2(R)--> 12{-n, - n + l , . . . ,  n} by 

A.x  := ((x, M_.), (x, M_,,+,) . . . .  , (x, M,,)), 

d{"~= ( a_., a_.+, . . . . .  a.) s h { - n , . . . ,  n} 
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But, by Lemma 4.1, 

If p <oo, then Theorem 5.1 implies that 

PK(o) = Pc(A'x) 

Thus, the proof is complete if p < oo. 
While it can be shown that p < oo, the proof is rather involved and lengthy. 

We prefer to take an alternate (and shorter) approach to verifying (5.8). By 
Lemma 4.1, 

S+ : = Pc (A 'A . )=  (~=~ A.,M~)+. 

We next prove that, for each j, 

or := supra.j[  <oo.  
n 

This is accomplished by showing that lim. sup]A.j] = oo leads to a contradiction. 

p := sup ]IA*A. ]1 = sup 
n n j 

for some A e/2. 

K. = {x ~ CIA.x = dC"~}. 

Then by Corollary 4.2, since dj > 0 for all j, d c") ~ int A . C  for each n. By Theorem 
3.2, there exists A. = (A. ,_. , . . . ,  A,~.) ~ 12{-n, . . . .  n} such that 

(5.9) Pr. (0) = Pc (A*A.). 

Let 
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Case I. Sone subsequence of {A.j} diverges to +co. 
By passing to a subsequenee, we may assume that 

A.j = Ix,jl~oo as n --> oo. 

Then since {dj}---{1/({j[ + 1)} and 

1 f J+' f J+' . 
(5.10) l j l + l = J j _ ,  S.+Mj = JJ- ,  (X .~ - ,Mi - ,+~ . jMj+~ . . j+ ,Mj+ , )+Mi .  

the following must hold: 

A.j_, = - Ix . . j - , I  -~ - co  

and 

A..y+,= -]X.j+,]-->-~ as n-->co 

for otherwise the integral would tend to infinity. Note that the restriction of S.  + 
to [ j -  1.j + 1]. call it S.+j. is a piecewise linear spline supported on [ j -  e . , j  + 6.], 
where e. -~ 0, $. --> 0, and + " S . j O )  = ~.j. 

Now since (S,+j, Mj>= dj, d~ is approximately equal to 2 - ' ( e ,+  8.)A,j which 
equals the area under S,+j. On the other hand, the square of the L2-norm of S : j  
is equal to (e, + 8.) A 2j which is approximately equal to 2djA,j. Hence II P~ (0) I1 = -> 
liS.+lt~___ tlS~At ~-~ 2 d ~ . - ,  ~o as n -,  co. This contradiction shows Case 1 cannot 
occur. 

Case 2. Some subsequence of {A.j} diverges to -co. 
By passing to a subsequence, we may assume that 

xnj = - I x . { - ,  -co.  

We consider three possible subcases. 

Subcase 2(a). A.j-1 <0,  X.~-->-co, and A.j+1-0. 
From Case 1, A.,i+,-< p~+, for all n and hence the function 

(A,j_, Ml_ , + A.jM~ + A,j+, Mi+,)+ 

has the graph of a triangle having maximum height py+, and base shrinking to 
zero. Thus, the expression in (5.10) is equal to 

f 
j+l  

= (A,,,.i_,My_,+A,,jMj+A..j+,My+,)My-."O o<dj JJ-, 

as n ~ co which is absurd. 

Subcase 2(b). A..y_, > 0, A.y -> -co, and A..y+, < 0. This is similar to Subease 2(a). 

Subcase 2(c). 0 < A..j-t -< pj-,, A.i --> -co, and 0 < A.j+, --< pj+,. This also follows 
along the lines of Subcase 2(a). 

Thus, we have proved that. for each A {A.j} is a bounded sequence. 
Note that 

H PK (o)i{ >--i} e,,,(o){}--}}s~}i 
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for all n so {S~ +} is a bounded sequence. By the Eberlein-Smutian theorem, we 
may pass to a subsequence and assume that 

W 

s Z -  g 
for some g ~ L2(R). The same proof as in Theorem 5.1 shows that g = PK (0) and 
IIS -gll- 0. 

It follows that on any interval I - N ,  N],  lim,_~S~ += S +, i.e., g is the plus 
function of a spline on I - N ,  N]. The coefficients in S += (~-~o AjMj)+ are the 
limits of the A,j. It follows that S + = g in L2(R), so S + = PK (0) and the proof is 
complete. [] 

6. Final Remarks 

We point out that the definition of a dual cone may be formulated in any norrned 
linear space. Hence, property CHIP may be defined just as in the inner product 
space setting. In particular, a result characterizing best approximations that 
generalizes Theorem 2.1 and is the basis for many applications to non-Hilbert 
space can be stated as follows. 

Theorem 6.1. Let {K~li ~ I} be a collection of  convex subsets of  a normed linear 
space X,  K = [ ~  Ki, x ~ X,  and ko r K. Then ko r PK ( x ) i f  and only i f  

D ( x  - ko) n ( K  - ko)~ 0 .  

Moreover, i f  {K,]i ~ I} has protmrty CHIP, then ko ~ PK (X) if and only if 

D ( x -  ko) c~ w*-cll ~ ( K , -  ko)~ ~ O. 
[ . i ~ l  

Here D denotes the norm-duality map D: X-> 2 x* defined by 

D(X) = {x* ~ x*ll lx*l l  --- Ilxll, x*(x) = IIx*ll Ilxll} 
and "w*-cr' denotes "weak* closure of." 
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