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Abstract: Under a simple model of transition between two states, we can 
work out the probabilities of different data outcomes in four species with any 
given phylogeny. For a given tree topology, if all characters are evolving 
under the same probabilistic model, there are two quadratic forms in the fre- 
quencies of outcomes that must be zero. It may be possible to test the null 
hypothesis that the tree is of a particular topology by testing: whether these 
quadratic forms are zero. One of the tests is a test for independence in a 
simple 2 x 2 contingency table. If there are differences of evolutionary rate 
among characters, these quadratic forms will no longer necessarily be zero. 
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1. Introduction 

How to infer phylogenetic relations among a group of species by exa- 
mining discrete-state data such as molecular sequences is a problem of sta- 
tistical inference that remains quite poorly understood. For a discussion of 
some of the problems, see reviews by one of us (Felsenstein 1983a, 1983b). 
For simple models of nucleic acid evolution, maximum likelihood estimates 
can be made under simple models of nucleotide change (Neyman 1971, Fel- 
senstein 1981), but little is known about the exact behavior of these estima- 
tion methods. In particular, there has been little examination of methods of 
testing whether the data support one topology of the evolutionary tree or 
another. Some progress has been made (Cavender 1978, Cavender 1981, 
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Felsenstein 1985a) by studying simplified versions of the problem, with 2 
states instead of the 20 that would be needed at minimum to represent 
amino acids, or the 4 (or 64) that would be needed to cope with nucleic acid 
sequences. These studies have assumed that there are only 3 or 4 species, 
and have assumed symmetry of substitution probabilities. They have also 
restricted examination to test statistics based on parsimony. These studies 
have revealed that even in these idealized cases, this popular method of 
inference has surprising and unwelcome statistical properties. It is also pos- 
sible to use "bootstrap" data resampling techniques to infer a confidence 
limit (Felsenstein 1985b), although this is necessarily an approximate tech- 
nique. 

The objective of this paper is to take a broader look at the possible 
statistics that may be used to test differences between tree topologies. In 
particular, we point out that in a simple model there are polynomial con- 
straints on the expected frequencies of various data configurations. 
Although this does not solve the problem of how to test differences between 
tree topologies, it does suggest that there may be a way of reducing prob- 
lems of phylogenetic inference to questions of whether the class frequencies 
in multinomial distributions satisfy certain algebraic constraints. 

We consider four species, A, B, C, and D. These are related by one 
of the three unrooted phylogenetic trees of Figure 1. Our problem is to dis- 
tinguish which of these three topologies is the correct one. There are 
assumed to be N characters, each one of which may have any one of S 
states. If a character represented a site in a nucleic acid sequence, S would 
be 4. Evolution of a nucleic acid sequence is particularly likely to depart 
from this model if it codes for a protein, so that many of the base mutations 
would be rejected by natural selection; noncoding sequences are more likely 
to have their evolution well-approximated by it. For protein sequences, we 
could take S to be 20, although to do so might be to ignore the complexity 
of the mapping from the 64 codons to the 20 amino acids plus stop signal. 
Dayhoff and Eck (1968, pp. 33-41) have adopted just such a simple Markov 
chain model of amino acid change, tabulating the state transition probabili- 
ties empirically. Let f~ikt be the probability of a character being in states i, 
j ,  k, I in species A, B, C, D, respectively, given some particular phylo- 
geny. In an example with nucleic acid sequences, perhaps fA,C,C,a = 0.003. 
(Note that in this expression the symbols A, C, and G stand for three 
nucleic acids, and are not species names). We assume that the evolutionary 
processes, and hence these probabilities, are the same for all characters and 
that the evolutionary processes in different characters are independent. We 
give the name pattern to these chance assignments of states to species; that 
is, (A, C, C, G) is an example of a pattern. 

Under our assumptions of independence, the sequence of patterns is 
exchangeable, and hence the observed frequencies of the patterns constitute 
all of the data. Any method of inference must proceed by comparing these 
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Figure 1. The three unrooted tree topologies, with their branch lengths indicated. 

observed frequencies with pattern probabilities f~ikt that may be computed 
given the tree topology and branch lengths. We regard the set of possible 
frequencies as a vector or point in a space of S4-tuples. A particular tree 
with a particular topology and substitution probabilities leads to a set of pat- 
tern probabilities which may be regarded as a vector in the same space. A 
se t  of trees leads to a set of  such points. For example, the set of all trees of 
the second topology leads to a surface in the space, as we shall show. If the 
sample of characters is large, then the vector of  frequencies will, with high 
probability, lie close to the vector of probabilities of the true tree. In fact, 
the vector of frequencies is a random vector with a multinomial distribution 
and the expected class frequencies of that distribution make up the vector of 
probabilities. 

Thus the hypothesis that the tree has the second topology, for example, 
is precisely the hypothesis that the probability vector lies in a certain point 
set, in this case the surface mentioned above. (In the degenerate case 
where the two interior vertices coincide, the tree belongs to all three 



60 J.A. Cavender and J. Felsenstein 

topologies). This hypothesis may be rejected if the observed frequency vec- 
tor lies far enough from that point set. In this paper, we do not attempt to 
discover how far is "far enough" or how the distance is to be measured. 
Instead, we algebraically characterize the point set, under the assumption 
that this is an essential step toward the invention of such tests. 

2. Substitution Probabilities 

Consider two species, X and Y. These may be chosen from among 
both internal and terminal nodes of the tree. Define P~i to be the condi- 
tional probability of a character having state j in Y given that it has state i 
in X. Then the matrix 

P xY -~ 

Pll Pl2 ... P l s  

Psi Ps2 ... Pss 

which we may also denote as [Psi] is the Markov transition matrix from X to 
Y. If X evolves into Y which evolves into Z, then elementary Markov 
chain theory (Feller 1968, section XVII.9, p. 424) gives 

P x z  ~ P x v  P vz 

This depends on an additional assumption: that changes in different edges of 
the tree are independent. Letting T be the determinant of P we have 

Txz  Txv Tvz 

by virtue of the general identity for determinants, det (AB) = 
(det A)(det B). We assume that the determinants are strictly positive. This 
will be the case if the transition matrices vary continuously with branch 
length. We let W ffi - In T so that 

Wxz  ~ Wxy  + W y z  • 

Because it adds in this simple way, W is a natural measure of branch length. 
A general form of the evolutionary clock hypothesis is that W is propor- 
tional to time along a branch. (In this paper, however, we make no assump- 
tion as to the truth of this.) 
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We will also assume that a Markov equilibrium exists throughout our 
evolutionary tree. That is, we assume there is one probability distribution 
~r -- (~'~,~'2 . . . . .  ~'s) such that 

~r P xY ~- Ir 

for every pair of species X and Y, and also assume that the probability of a 
character being in state i is actually ~r ~, whichever species you are looking 
at. This assumption of a common equilibrium distribution at all vertices of 
the tree is not inevitable; it would be of interest to investigate models in 
which it was not true, but we will not do this here. 

If P x r  = [Pu] and we employ the notation [qj/] for the components of 
the matrix P rx from Y to X, then 

1r i p~/ -~ ~r i q. , (1) 

both expressions being the probability of a character being in state i at X 
but in state j at Y (Feller 1968, section XV.11, p. 373). By noting that (1) 
can be rewritten as 

where 

D P x r  D -1 = P r x  

D ~ diag (It i,~" 2 . . . . .  ~r s) 

and using the product rule for determinants of products of matrices, we 
easily establish that 

det P x r  = det P yx 

Txr  = Trx 

W x r  = W r x  • (2) 

We note that T~< 1 and hence that every W is non-negative. 

3. Inequalities for Different Topologies 

The transition probabilities between two tip species, such as A and D, 
can easily be related to the expected pattern frequencies. Say for example 
that 
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Then each side of 

PAD = [Pit] • 

p. = E E :,;k, 
.i k 

is the probability of a character having state i at d but state I at D. Hence 

1 E E fiikt Pit ~ "n'-~. .] k " 

Since Pit is expressible in terms of the f ' s ,  so are T.w and WAD. 
For a tree of the first topology, 

(3) 

VGc + VeBD = WAD + WBC 

as a glance at Figure 1 shows, equating the W's with branch length. For the 
second topology, however, the same two quantities are not equal, 

W'~c + WBD ( lend + WBc • 

This is also evident from Figure 1, but a careful proof of it must actually 
employ (2) and the fact that no W is negative. Since each distance W in 
these relations is observable, this provides a way of distinguishing topolo- 
gies. Corresponding relations in the determinants T are 

TAC TBO = TAO TBc 

and 

TAc rsD >f T~o TBc 

depending on the underlying topology. We summarize the relations of this 
type in Table 1. 

4. An Example 

To see this idea in action, we study the case of S = 2 with the simplest 
possible transition matrices. We assume that all transition matrices have the 
form 



lnvariants of Phylogenies; Simple Case with Discrete States 63 

TABLE 1 

Signs of inequalities in determinants and branch lengths 

under the three possible topologies. 

TAC TBD - TAD TBC and 

wAD+ WBc- WAc-WBv 

TAD TBC - TAB TCD and 

wA~ - wcD - wAD - WBc 

TAB %D- %C %D a,d 

Topolokry I Topology II Topology III 

0 + 

p =  [ 1 - z  z ]  
z 1 - z  

where z varies from branch to branch and 0 ~< z ~< 1/2. Then 

T = (1 - z) 2 -  z 2 

= l - 2 z  (4) 

That is, T is the probability 1 - z that the two species match at this charac- 
ter minus the probability z that they do not. The equilibrium distribution is 
7r = (1/2, 1/2). 

We introduce a more compact notation related to that of Cavender 
(1978) but with a different system of  numbering. Define 

f0---- f0000 + f l l l l  
f l  = f0001 + f l n o  
f2  ---- fOOlO+ fllOl 
f3 ffi foou + f . o o  
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f4  = f0100 + fl011 , 
f5  = f0101 + fl010 
f 6  ffi f0tl0 + fl001 
f7  ---- f0111 + fl000 

We can write the determinants as functions of  these. 

Ta~= fo  
rAc = fo  
TAD = To 
TBc = fo  
TBD = f O 
Too = fo  

+ f l  + f2 + f3-- f4-- fs--  A--f7 
+ f l+  fg+ f s -  f 2 - A - A -  f7 
+ f2 + f4 + f 6 -  f ! -  A -  A -  f7 
+ f l + f 6  + f T - f 2 - f 3 -  f4- - f5  
+ f2 + f5 + f7 -- f l  -- f3 - f 4 -  f6 
+f3  + f 4 + f T -  f l - -  f2-- f s - - f6  

using (4) or (3). For example, f0 + f l  + f2 + f3 is the probability that A 
and B match because it is the sum of the probabilities of those patterns in 
which A matches B; similarly, f4 + f5 + f s  + f7  is the probability that A 
and B do not match. Thus 

from (4). 
stitution. 

Tas--  ( 1 - z ) - z  

---- ( f 0 + f l  + f 2  + f 3 ) -  ( f 4 + f 5  + f 6 + f 7 )  

To derive the same formula from (3) is just a very laborious sub- 
Upon substituting these expressions into the right side of 

K1 = (TAc T o o -  TAD Tac)/4, we obtain 

Kt---- ( f 4 -  f T ) ( f 2  -- f l )  -- (f6 -- f s ) ( f o -  f3)  • 

(In this calculation, 120 terms cancel.) We have included the factor of 1/4 
in our definition of  Kt merely to improve the appearance of  this equation 
and its relatives in (5). We can define K 2 and K3 in an analogous fashion 
so that 

K~ -- (f4 - fT)(f2  - f l )  - (f6 - f s ) ( f 0  - f3) 

K2 = (f2 - f v ) ( f l  - f4) - (f3 - f 6 ) ( f o -  f s )  (5) 

K3 = ( f l  - f 7 ) ( f 4  - f 2  ) - ( f5  - f 3  ) ( f o -  f 6  ) • 

These respectively equal 
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(rAC rBO- rAo rBc)/4 

(TAo rac- tAB rCO)/4 

(TAB TCD- T,4 C TBD)/4. 

We have thus shown that 

K 1 = 0, K2 ~< 0, K3 >t 0 under topology I (6) 

K1 >I 0, K2 ffi 0, K3 ~< 0 under topology II (7) 

K 1 ~< 0, K2 >t 0, K3-- 0 under topology III (8) 

5. Statistical Properties 

We will not attempt to develop statistical tests it, this paper, but we 
should make a few observations. The quantities Ki are quadratic forms in 
the expected pattern frequencies. Suppose that we have sampled N charac- 
ters. Let xi be the number observed in pattern i. Then x~/N is an esti- 
mate of f ;  and may be substituted into (5) togive estimates ~'1 of K1, K2 
of K2, etc. By the law of large numbers, K~ will converge to K~ as N 
increases. Consequently, the following method of choosing a phylogeny is 
consistent: 

Prefer 
Prefer 
Prefer 
Prefer 
Prefer 
Prefer 

Topology II over Topology III if ~ 1 > 0  
Topology III over Topology II if K 1< 0 
Topology I over Topology III if K2<0 
Topology III over Topology I if K2> 0 
Topology I over Topology II i f / ( 3>0  
Topology II over Topology I if.K3<0 

By "consistent" we mean that the probability of this rule leading to a wrong 
answer vanishes as N grows very large. 

In principle, a statistical test could be built on this. One rejects topol- 
ogy I as a hypothesis if the data deviates with statistical significance from 
any of the relationships (6), and so on. Rejecting all three topologies means 
rejecting the model itself, an interesting and important possibility. We will 
not pursue this problem of hypothesis testing here. The question is how to 
test the hypothesis that the parameters of a multinomial distribution satisfy 
the quadratic equations and inequalities (6) through (8). It is complicated 
by the existence of further constraints on the parameters, which we take up 
next. 
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6. Invariants 

There are further functions of the expected frequencies f~ that are con- 
strained by the tree topology, and these can be found by a simple argument, 
although we do not have a general form for them analogous to the relations 
in Table 1. Consider tree I of  Figure 1. In the symmetric two-state case 
that we are considering the probability of a state transition in a segment of 
the tree does not depend on which state is present at the moment  of the 
transition. We can treat the state transitions as events that occur on seg- 
ments of the tree. Whether there is a transition in a given segment is then 
independent of whether there is one in another segment. Note that whether 
A and B are both in the same state depends only on events in branches a 
and b, and whether C and D are in the same state depends only on events 
in branches c and d. It is then clear that these two events are independent. 
The probability that A and B are identical is fo  + f l  + f2  + f3, and the 
probability that C and D are identical is fo  + f3  + f4  + fT. More gen- 
erally, we have the following probabilities 

C ~ D  C;~  D 

A--- B f o + f 3  f l + f 2  
A ¢ B f 4 + f 7  f s + f 6  

The independence of the events A -- B and C- -  D implies that the proba- 
bilities in this table are equal to the product of the row and column totals. 
This in turn implies that product of the upper-left and lower-right elements 
equals the product of the other two elements. Therefore under topology I 
we have 

(fo + f3)(]'5 + f6) ---- (art + fT) ( f l  + f2) 

By an exactly analogous argument we can find similar equalities for the 
other two topologies. If we define Ll, L2, and L3 by 

L1 = (f4 + fT ) ( f l  + f2) - Ors + f6 ) ( fo  + f3) 

L2 == (f2 + f 7 ) ( f l  + f4) - (f3 + f 6 ) ( f o  + f5)  

L3 == ( f l  + f 7 ) ( f 2  + f4) -- (f3 + f 5 ) ( f 0  + f6)  

then we can easily show that L1, L2, and L 3 are zero under tree topologies 
I, II, and III respectively. 
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As an aside we may comment that the test of whether a set of observed 
frequencies could have been generated by expected frequencies f i  satisfying 
(say) L1 = 0 is particularly simple: we construct a table of observed 
numbers of characters having A ~ B versus A # B and C = D versus 
C # D. Regarding this as a 2 x 2 contingency table we immediately see 
that independence of A = B from C - -  D can be tested by the standard 
tests of independence in a 2 x 2 table, Fisher's Exact Test and the chi- 
square test with one degree of  freedom. 

Before dropping this algebraic study, we point out the identities 

L t -  L2 = Ka 

L2- L3 =Kt 

L3- Ll = K2 

K~ + K 2  + K 3  = 0 

which imply that among the three K; and the three Li there are only three 
independent quantities. 

7. Some Geometry 

If the model is expanded so as to permit each character to have its own 
set {a,b,c,d,e} of edge lengths, then the inequalities (6) through (8) are no 
longer a reliable guide to the topology. An example will show this. 

Say A, B, C, and D are species joined by a tree of the first topology. 
We expect based on the above that 

K2 = ( f l  - f4) ( f2  - fT) - (f3 - f 6 ) ( f 0 -  f5) < 0 . (9) 

Now say that for each character there is a probability one-half that 
a = d - -  e = 0.02 and b = c = 0.2. Then, for these characters only, f = 
(0.602, 0.016, 0.150, 0.018, 0.150, 0.006, 0.038, 0.016). 

Say that for the remaining characters, a -  d =  e---0.057632 and 
b -- c = 0.392. For these characters, the W-lengths of the edges are exactly 
triple those that apply to the other characters. Then for these characters, 
f - -  (0.311, 0.039, 0.201, 0.043, 0.201, 0.032, 0.13I, 0.039). The value of 
f i  for the whole set of characters is just the average of the two values for 
the two subsets. That is, 

f---- (0.456, 0.027, 0.176, 0.030, 0.176, 0.019, 0.084, 0.027). 
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Figure 2. The hyperbolic paraboloid, an analogue in three dimensions to the seven- 
dimensional quadratic invariants discussed in this paper. 

Substituting these values into the left side of (9) gives the value 0.0013, so 
the invariants have failed. (For this particular example, KI, K2, K3, L1, L2, 
and L 3 are all nonzero, so with a large enough sample one has grounds to 
expect with a fully-developed statistical test to reject the model and not 
actually be misled.) 

A little geometry can make this phenomenon more understandable. 
The graph of 

( f 2 -  f 7 ) ( f l -  f4) - ( f 3 -  f 6 ) ( f 0 -  f5) -- 0 

is a seven-dimensional quadratic hypersurface in the eight-dimensional 
Euclidean space R s. Like the familiar, saddle-shaped hyperbolic paraboloid 
of solid geometry (Figure 2), it is a ruled surface, thoroughly webbed with 
straight lines. It divides R 8 into two parts, (one being the region where 
Topology I is preferred over Topology III, the other where Topology III is 
preferred over I) neither of which is convex. It is this non-convexity that 
made the above example possible. Two points were chosen on one side of 
the hypersurface in such a way that the midpoint between them was on the 
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L3=O 

KI=O 
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LI=O 

=2 
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Figure 3. A low-dimensional sketch of the geometric relationships between the F i, the g i, 

and the Z i. Five dimensions have been omitted and are left to the reader's imagination. 

other side. In previous papers (Cavender 1978, Cavender 1981, Felsenstein, 
1985a) we investigated criteria (formulations of parsimony) that did not 
have this problem. There, we chose the first topology (for example) when- 
ever the estimates x t N  of f~ fell in a certain small corner of R s. And that 
small corner was convex, with a flat boundary. 

A sketch (Figure 3) schematically shows the parts of (5). The sketch 
represents the space of all octuples f ~ ( f0 , f l  . . . . .  fT). The varieties F1 
F2, and F3, which are the graphs of equation (5), are reduced to points in 
order to draw them in the plane. (In reality, they are 5-dimensional and 
have a 4-dimensional set as a common intersection.) The graph of Kt --- 0 
is represented by a line passing through F1 and midway between F2 and F3. 
The frequencies (xl/N,x2/N . . . . .  XT/N), which constitute an estimate of 
f ,  can be plotted in the same sketch. For large N, such a point will fall 
close to F1, F2, or F3, so any surface that runs between F2 and F3 can be 
the basis for a consistent choice between the second and third topologies. 
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Our sketch shows a line m representing such a surface. What distinguishes 
the surface Kl = 0 is its symmetrical position midway between F2 and F3. 

8. Some Questions 

One may legitimately wonder whether all this has gained us anything. 
We started knowing that the likelihood function for a set of data had five 
parameters (the branch lengths) and ended with constraints on the expected 
frequencies of character configurations. In both cases we reduce the dimen- 
sions from 8 to 5, so it is not obvious that anything has been gained. We 
have converted the specification of a phylogeny from a statement in terms 
of branch lengths and topology to a statement in terms of quadratic func- 
tions of expected frequencies. 

Of course, what we would like to have is a statistical test discriminating 
among the tree topologies. Although it would seem possible to carry out a 
likelihood ratio test by maximizing the likelihood functions under the three 
alternative bifurcating topologies, these hypotheses are not nested one 
within another, and the theoretical properties of such a test are thus un- 
known. We have pointed out that if a test can be found of the quadratic 
inequalities (6), (7), and (8), this will be equivalent to a test of  the tree 
topology. We are still without such a test, but believe that this represents 
progress towards finding one. 

Two questions which need investigation are (i) whether the quadratic 
inequalities can be generalized to larger numbers of species, and (ii) 
whether counterparts can be found for models with larger numbers of states 
or with inequalities of probabilities of  change in different characters. One 
may doubt that things will be so simple in those models, but we believe that 
the investigation will yield results that cannot help being illuminating. 
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