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Constrained Lp Approximation 

C.A. MiccheUi, P.W. Smith, J. Swetits, and J.D. Ward 

Abstract. In this paper, we solve a class of constrained optimization problems that 
lead to algorithms for the construction of convex interpolants to convex data. 

I .  Introduction 

Given points 0 _ t~ < . . .  < tn - 1 in [0, 1] and a function ~eL~[0, 1], the 
Soboley space of functions with k-th derivatives in Lp[O, 1], the " b e s t "  interpolant is 
defined to be s ~ L ~  satisfying 

i (i) IIs % = inf {llfck)llp:f(tl) = ~(t,) ,  

(1.1) (ii) s(ti) = ~(t~), i = 1 . . . . .  n .  

i = l  . . . . .  n}, 

Assuming that 1 < p < 0% a best interpolant exists (and is unique if n -> k and 
1 < p < oo). For  a nice discussion of  these results the reader is referred to [1]. In 
particular, it is shown in [1] that for 1 < p < ao 

(1.2) s <k) = ~J  q-1 sgn q~, 

where 

n - k  

j=l 

The Mj, k are the B-splines determined by the knots t i . . . . .  tj+k, and q is the conjugate 
index of  p .  

In particular, when p = 2 (q = 2) the best interpolant s is the famous (and infa- 
mous) natural spline of  order 2k. One of  the unfortunate features of  these functions 
is that they can have inflection points not suggested by the data. This undersirable prop- 
erty could be eliminated for k = 2 and controlled for k > 2 by considering the following 
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problem: Let G be the set of functions in L~ whose k-th derivative is nonnegative on 
fl~ and nonpositive on f~2 (fl~ A f12 = ~l). We seek s satisfying 

I (i) 

(1.3) (ii) 

(iii) 

s ( Q  = g ( t l )  i = 1 . . . . .  n ,  

seG, 

IIs(% = min {llf<%: f ( t l )  = g ( t l ) ,  i = 1 . . . . .  n andfeG} .  

(1.4) 

I s(~) = (4,)~+-', 

I (s(~))~,~ = 4, 

where 
n - k  

0= E. ,a, , ,  
j = l  

j =  1 , . . . , n - k ,  

where dj is an appropriate multiple of ~[t~ . . . . .  tj+k], the divided difference of ~ at 
t j ,  . . . , t i+k.  Thus we have exchanged an infinite convex programming problem for 
a more tractable finite nonlinear programming problem. 

In Section 2, we develop the theory for the fundamental L p  problem, i < p < ~ :  
Given ~ L , [ 0 ,  1], ~b[, . . . , d / n E L q [ O  , 1] with ~ _> 0, find g _> 0 such that 

I (i) (g, ~b;) = (~, ~bi) , i = 1 . . . . .  n 

(1.5) (ii) Ilgll, = min {llfll,: (f, ~i) = (L ~i) 
f o r i  = 1 . . . . .  hand  f _  0}. 

In Section 3 we apply these results to best interpolation. Finally, in Section 4 we 
indicate some easy extensions and state our most general throrems. 

We close this introduction with some historical information. Favard [4] considered 
(1.1) for p = oo. Karlin [7] was the first to prove there is a perfect spline solution 
in this case. Then de Boor [1] interpreted and extended Favard's work for 1 < p <__ oo. 
Chui, Smith, and Ward [2] contributed to the p = 1 problem. The constrained inter- 
polation problem has been studied by several authors; we mention here only Copley 
and Schumaker [3] and Hornung [5]. In particular, Hornung [5] was able to characterize 
the solution to (1.3) when ~(k) > O, k = 2, and p = 2. He also obtained a partial 
characterization for k > 2, p = 2. Finally, our results were suggested by conversa- 
tions with and by the work of G. Iliev and W. Pollul [6]. In particular, they first 
formulated the solution as we have presented it here. In addition, they have treated 
the problem (1.3) with p = oo, k -- 2, proving that the problem of convex interpola- 
tion with minimal L,,-norm of the second derivative has a quadratic spline solution 
characterized by the existence of a core interval on which the second derivative is the 
positive part of a perfect spline and that all solutions agree on core intervals. 

To provide additional motivation for the contents of this paper, we consider the finite 
dimensional constrained optimization problem (here 1 < p < oo): 

min ~ [x i l l '  
i= l  

In Sections 3 and 4 we characterize the solution to this problem for 1 < p < ~ .  
For example, when ~(k) > 0 and fll = [0, 1] the solution is characterized by 



Constrained Lt, Approximation 95 

subject to Ax = b and x _> 0. We assume the data are compatible and there is a solu- 
tion x*. Then x* is characterized by the Kuhn-Tucker  conditions 

px,/, l + A r ~ _ / 3  = 0, 

where/3 _> 0 and/3rx * = 0. 

Thus for X* := - _1 X we have 
P 

x* = (AT X*)~+/Cl'-a~, 

where of  course (z)+(i) = z(i) i fz(i)  _> 0 and (z)+(i) = 0 otherwise. Thus the finite 
dimensional problem of  minimizing the p-norm of x subject to the conditions x _> 0 
and r,r 'x = bi, i = I . . . . .  k, has a solution x* of the form 

X ~ ~ -  o L j r l  , 

I=1 + 

where the % are determined from the interpolation conditions and p + q = pq. 
This paper attempts to extend these observations to the analogous setting in Lp. 

2. Approximation by Nonnegative Elements 

Let X be a measure space with a a-finite measure tz. For 1 < p < 0% Lp(#) will 
denote the Banach space of  p-th power integrable real-valued functions on X. It is 
well known that [Lp(/~)]* = Lq(I~), where q is the conjugate index to p satisfying 
p + q = pq. In this section we will develop an explicit characterizaton of  the solution 
to the following minimal norm problem. Fix p,  1 < p < 0% let 

(2.1) C = {g~Lp(Iz):g >- 0} 

and suppose {~bl},."=l are linearly independent functions in L0(tz ). Given deR" ,  set 

(2.2) D =  Ig~L,(/~): Ix g~bicl~=di' i = 1  . . . . .  n 1. 

Note that C and D are nonempty closed subsets of  Lp(#). If K := C f) D, we see that 
K is a closed convex subset of  Lp(/O and if K is not empty there is anfeK of  minimal 
Le(/z) norm. Furthermore, this f is implicitly characterized by the inequalities 

(2.3) ~ (g - f ) fp/q  d# >_ 0 for all g~K. 
d X 

As a rule, the characterization in (2.3) is not very helpful if one wants to ca lcu la te f  
For many problems Proposition 2.1 below provides a calculable solution to the fol- 

lowing problem: Find f e K  such that 

(2.4) Ilfllp = inf {llgllp: g~g}- 

Proposi t ion 2.1. Suppose that K is not empty and that the {~bi},"=l are linearly 
independent over {xr ~(x) > 0} for some ~ K .  Then there are real numbers 
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{ot*}~=l such that the solution, f, to (2.4) satisfies 

)q 
(2.5) f = ~ a~*~b i 

j=l  + " 

Furthermore, since feD the {a*}7=~ must satisfy the n interpolation conditions 

- -  l~i d r  = d~, i = 1 , . . . ,  (2.6) n.  
d x j=l  + 

Proof. Recall that for a real-valued function s we set 

~s(x), if s(x) >_ 0 
(s)+(x) := ~0, if s(x) < O. 

Similarly, (s)_ := ( - s ) +  and hence s = (s)+ - (s)_ decomposes s into its positive 
and negative parts. We first show that if coefficients {c~}7= ~ exist such that (2.6) holds, 
then the solution f to (2.4) satisfies (2.5). To this end, set s = r~= L %~bj and assume 
that for i = 1 . . . . .  n, 

Ix (s)V~fi dr = di. 

Then for any geK we have 

IX [ g -  (S)%-I](S)(~-l,p/q dlz= Ix 

(2.7) = Ix 

--Ix 

[g - (s)q+- q(s)+ d r  

Ig - (s)~+-q[s + (s)_] d r  = Ix 

g(s)_ dr >- O. 

[g - -  (s)q+-l]($)_ d# 

Thus we see that (s)q+ -t must be the unique element of minimal norm using (2.3). 
It follows that we need only show that (2.6) has a solution. This we do using an 

argument motivated by a duality principle. Consider the problem 

(2.8) i n f l l  x (~=~ otfl/j)q+ dtt: J=.~ o~/dj : 11. 

If this problem has a solution, it is a critical point of the Lagrangian 

(2.9) Ix (j=~l %~kj)~ dlx+h(1-  f~=l %dj) , 

and hence at a solution (&, ~) we have 

(2.10) 

)._l 

o = 1 - ~ ajdj. 
j=l  

i=  1 . . . .  ,n, 
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Now multiplying the first n equations by &l . . . .  , &n and summing yields 

~ = Ix q &j &j d# >_ O. 

If ~ > 0 then we see from (2.10) that 

when ~* = ~j(q/~)l/q-i. If ~ = 0 we would have 

and hence ~j'=, &i~J ~ 0 a.e. (#). But we also have 

which is not possible, since ~ _> 0. Thus ~ must be strictly positive. 
We see that if (2.8) has a solution, then from (2.11) we have an interpolant of the 

desired form and hence a solution for our minimal norm problem. It remains to prove 
that the infimum is attained in (2.8). Let {od}~*=~ be the coefficients of a minimizing 
sequence. If  {11 11 } has a bounded subsequence, then clearly (2.8) has a solution. 
Suppose I1 11 ,-* oo. Then dividing the objective function by I1 11  and the constraint 
by Iio/%,, we conclude that there exists an & := (&~ . . . .  , &n) such that 

max {Ic~jl:j = 1 , . . . ,  n} = 1, 

j = l  

and 

As before, we conclude that r~]= l&jC~j _< 0 a.e. (tt). Now we have hypothesized a ~ e K  
such that the {~kj} are linearly independent over the support of ~. Hence 

0 -  2 0 
j = l  X j = l  

This contradiction means that the coefficients of a minimizing sequence must be bounded 
and hence that the infimum in (2.8) is attained. �9 

Next, we characterize the solution to (2.4) without any linear independence hypothe- 
sis, provided that Lp(#) is separable, which we will assume for the duration. First let 
us begin with an observation concerning the supports of the functions in K. 
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Proposition 2.2. Let Lp(#) be separable and let K be nonempty and d :# O. Let 
{gn}~'=, be a dense subset of K and set 

:= 2-.g./llg.II / ~  2-./llg.ll- 
n = l  n = l  

Then ~ e K  and i f f l  := {x: ~(x) > 0} we have g = gxafor all geK.  

Proof. It is easy to verify that ~eK. Let g e K  and gnk-'g" Then 

Igl p <_ lim ( I g - g . , I  p dl~ = O. 
J ~c n~o j x  

Thus g = 0 a.e. (#) on the complement of fl and hence as an element of Lp(/z), 
g = gxa. We remark that in a measure theoretic sense, fl is the smallest set for which 
this is true. �9 

This brings us to the main theorem. 

Theorem 2.3. Let K be nonempty and separable. We assume that d :/: O. Let f be 
the element in K of minimal Le(tz) norm. Then f is characterized by f e D  and 

)- 
(2.12) f = %6j j= l + Xli, 

where 12 is as in Proposition 2.2. 

Proof. All the hard work has already been done in Proposition 2.2. We just note the 
minimal changes needed here. If there is an f e D  of the form (2.12), then for any g e K  
we have 

.-, (g - s ) s , "  d,, = {..,< (g - s )  d,, >_ 0, 
+ 

where the first equality follows from the definition of fl and the inequality follows just 
as in (2.7). Thus we need to prove that we can solve the equations 

o,+,7-' I if, d/x = d,, i = 1 n. 
fl j = l  + 

If the {~ki}~=l are linearly independent on fl then we go directly to the problem 
[see (2.8)] 

m i n l l  o (j=~ %~J)~: S=l~-] c~di = 11. 

On the other hand, if the {tki}P=, are linearly dependent on fl then we choose a 
maximal linearly independent subset that we will call {~i}7=,, m < n. Again con- 
sidering 
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we first obtain coefficients &j such that 

- 1  

I ~bid# =d, ,  . . . . .  m. i =  1 
0 j = l  + 

Using linear dependence one finally concludes 

I aj~j ~id~ d~, . . . . .  n, i 1 
0 j = l  + 

which of  course guarantees a solution of  type (2.12). �9 

We can refine this result as follows. Note first that if  {~bi}7= l are linearly indepen- 
dent on [2 then in fact in the argument above one may use X instead of  [2. Secondly, 
if the {~bi}7~l are dependent on [2 and if {~b/}m=l form a maximal independent subset 
as above,  then for r = m + 1 . . . . .  n set 

j = l  

where the/3~'s are chosen such that Sr(X ) = 0 for x~[2. Now let F be defined by 

r = f ' )  {x~X: st(x)= 0}. 
r = m +  1 

Note tfiat I ~ D [2, and a little thought shows that one may replace fl with I '  in Theorem 
2.3. We summarize these remarks in Corollary 2.4. 

Coro l la ry  2.4. Let f be the element in K of minimal Lp(#) norm. Then f has the 
representation 

where P = X if the {~i}7=~ are linearly independent over [2 and P is as above 
otherwise. 

We close this section by remarking that the introduction of  the characteristic func- 
tion is essential. This can be seen by considering the functions 

~/i(X) = ( 1 -  Ix-/I)+, i = 1, 2 

as elements of/-,2[0, 3] (Lebesgue measure),  and data vector tl = (1, 0); that is, 

D = : ~blg = 1, ~b2g. = 0 . 
0 0 
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It is easy to see that D f'l C = K ~ ~ and that the element of'minimal norm is 

f = 3~lX[O,l l .  

3. Constrained Spline Interpolation 

In this section we characterize the solution to the following problem: Given p, 
1 < p < ~ ,  n > k, 0 <_ tl < . . . < tn _< 1, and h e L ~ [ O ,  1] satisfying h <k) >_ 0, 
find s e L ~ [ O ,  1] such that s( t i ) ,  s <k) >- O, and 

(3.1) IIsr p = inf {llg, ,llp: g(t,) = h(t~), i = 1, . . . , n and g,k) > 0}. 

It is well documented [1] that this problem can be cast in terms of the k-th derivative 
using B-splines. Thus (3.1) is equivalent to 

I" 1 (3.2) min gllp: g - 0 and Mi,k = d~ for i = 1 . . . .  , n - k  , 

where M~.k is the B-spline that represents the divided difference functional 
f - - * f [ G  �9 �9 �9 , ti+t] in Ltp[0, 1] and d~ = h[t i  . . . . .  ti+k]. It is well- known that 
{Mi.k}7-1 k is a B-spline basis for the C k-2 order k splines supported on [tl, tn]. Of 
course, the solution f to (3.2) is just the k-th derivative, s <k), of the solution s to (3.1). 
Now applying the results of the previous section we conclude 

Theorem 3.1. T h e  u n i q u e  s o l u t i o n  s to  p r o b l e m  (3.1) i s  c h a r a c t e r i z e d  b y  (~)q--I 
I (i) sik>= %Mj,k Xr, \ j = l  + 

1 

(3.3) (ii) s ( k ) M i , t  = h [ t i ,  . . . , t i + k ] ,  i - -  1 . . . . .  n -  k ,  
0 

n - k  

(iii) P = [0, 1] I 1,.,) {(tj, tj+~); dj = 0}. 
j = l  

We remark that if p = 2 then q - 1 = 1 and we see that the solution s is a piece- 
wise polynomial of order 2k and continuity at least C k-  5. If all the di are positive then 
s ~ C  k. Of course, one could allow repeated interpolation as long as the k-th deriva- 
tive is not prescribed. This would only entail listing the knots according to their 
multiplicity; we leave this to the interested reader. 

4. Extensions and Refinements 

In this section, we state the most general theorems concerning constrained inter- 
polation as we have presented it here. We first define another cone. Returning to the 
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general setting of  Section 2, let X be the disjoint un~on of three measureable sets, say 

X =  fl~ U fk2 O f13. 

Let C be the cone of  functions nonnegative on fl~, nonpositive on f12, and uncon- 
strained on f13; that is, 

C := {gELp(l~): g(x) >_ 0 on fie and g(x) <_ 0 on f12}. 

As before, let {~bl}7= , C Lq(tZ), and let D be as in (2.2). We assume that K CI D ~: 0 
and, to avoid trivialities, that OCK N D. 

As in Proposition 2.2, let [2 be the smallest measurable set such that 

g = gxe 

for all g ~ K  (clearly fl 3 ~3). The analogue to Theorem 2.3 is now apparent. 

Theorem 4.1. Let K and [2 be as above. Suppose t h a t f i s  the element o f  minimal 
Lp(Ix) norm in K. Then f is characterized by 

(4.1) 

i (i) f = [(s)~-tXOl - 

(ii) s = otj~bs, 
j= l  

(iii) f e D .  

(s)q- mX~2]Xo + Is I q- i sgn (s)x%, 

The proof follows the same path used in Section 2, so we leave it to the reader to com- 
plete the argument. 

We close this section with an application to spline interpolation. Let heL~[O, 1], 
n > k, 0 _ tl < �9 �9 �9 < tn - 1. We want to find the s~L~[O, 1] that interpolates h 
at tl . . . . .  t,, satisfies the side conditions 

I i) s~(O >-- 0 for t e ~  

(4.2) ii) s(k)(t) < 0 for t~[} 2 

with [21 rl f12 = 0, and 

IIs( )ll p = inf {llg< )llp: g(ti) = h(ti), i = 1 . . . . .  n and g<k)X~ ' -g<*)Xo2 >- 0}. 

Of  course, we assume that h (k) satisfies (4.2) as well. This guarantees that the minimi- 
zation problem has a solution. Setting [23 = (f~l U [~2) c, we obtain 

Theorem 4.2. I f  h[ti . . . .  , ti§ ~ O for  i = 1 . . . . .  n -- k, then the solution, s, 
to the above minimum norm problem is characterized by 

(i) s (k) = (r)q+-]Xn, - (r)q--IXa2 + I rl q-I sgn ~ % ,  

(ii) r = 
n - k  

E %MJ.k' and 
j = l  

(iii) s(ti) = h ( t i )  , i = 1 . . . . .  n. 
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I f  h[ti . . . .  , ti+t] = O for  some i, then it might be necessary to introduce the set F 
as described in Theorem 4.1 and Corollary 2.4. 

This theorem is an immediate consequence of Theorem 4.1, provided we show that 
I" = [0, 1]. This is easy to verify, since the data h[ti . . . . .  ti+k] * 0 for i = 1, 
. . . , n - k .  
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