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COVERING T H E  PLANE BY CONVEX DISCS 

By 

G. FEJES T6TH (Budapest) 

In the 'thirties German location theorists, W. Christaller, A. L6sch and others 
(see [12]), proposed the following problem. On a uniformly populated domain we 
want to distribute a great but given number of producers, each of which supplies 
those points of the plane with a certain kind of goods which lie nearer to it than to 
any other producer. The transportation cost is supposed to be an increasing func- 
tion of the distance. Find the arrangement of the producers which yields the minimum 
of the total cost of transportation. 

It has been conjectured that the best arrangement is given by the vertices of 
an equilateral triangular lattice. The correctness of this conjecture immediately 
follows from the following theorem of L. FEJES TdT~ [7], who came essentially to 
the same problem independently from the authors mentioned above by purely geo- 
metrical considerations. 

THEOREM l. Let F be the part o f  a convex hexagon H covered by a finite number 
o f  congruent circles o f  total area T. Then 

F<F, 

where ff  is the part o f  a regular hexagon o f  area H covered by a concentric circle 
o f  area T. 

Here and in what follows we denote the area of a domain X simply by X or 
sometimes, to avoid confusion, by iX/. By a hexagon we mean a polygon with at 
most six sides. 

We start with a simple new proof  of Theorem 1 which will enable us to give 
far-reaching generalizations. 

Let A and B be two convex domains. The quantity M - B I  + IB'--A] is called 
area deviation of  A and B. Here X'--Y denotes the set of  those points of  X which 
are not contained in Y. In what fbllows a central part will play the weighted area 
deviation, shortly the deviation of  B f rom A, defined by 

a(A,B) = p I A  "-- BI  + qI B "-- A (, 

where p and q are fixed positive numbers such that p + q = 1. (Note that for p ~ q 
the deviation is not symmetric in A and B.) 

Let A be a strictly convex domain. It is easily seen that the n-gon having the 
minimal deviation from A has the property that each side is divided by the boundary 
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o f  A in three segments in the ratio p : 2q : p. It  follows that  if  A is a circle then the 
n-gon o f  least deviation is regular and concentric with A. 

Let a n be the min imum of  the deviation o f  an n-gon f rom a circle o f  unit area. 
We claim that  the sequence a3, a ~ , . . ,  is convex:  

a~-i  + an+l > 2a~, n = 4, 5 , . . . .  

Let  C be a unit circle (of  radius 1) centered at O. Let P be an n-gon of  minimal 
deviation f rom C. Let L and M be an endpoint  and the midpoint  o f  a side o f  P, 
respectively. Let the boundary  of  C intersect the segment L M  in N (Fig. 1). We 

/ 

Fig. 1 

V 

have L N  : N M  = p : q, whence 

t a n ~  = q t a n q )  
and 

an = - -  p & -  s i n ~ c o s c  0 + q s i n ~ c o s c ~ -  ~ + c~ = - - ( e - q q 0 ) = - - e - q ,  
7C rC 

where q~ = 4; L O M  = 7~/n and ~ = ~ N O M .  To show the convexity o f  an, we refer 
to the fact [8] that  i f f(x)  is a convex function o f x  > 0 then so is the function x f ( 1 / x ) .  

Thus it suffices to show that  the function ~ = e(~) defined for 0 __< ~0 < re/3 by 
tan c~ = q tan q~ is convex. But this can be verified simply by an elementary comput-  

ation. 
After  these preliminaries the p r o o f  of  Theorem 1 will make no difficulties. We 

may suppose that  T Ties between the area o f  the incircle and circumcircle o f  H. 
For  otherwise the theorem is trivial. Again we may  suppose that  the circles/s . . . . .  Km 
considered in Theorem 1 are o f  unit area. Let D i be the Dirichlet cell o f  K~ with 
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respect to H, i.e. the set of those points of  H whose power with respect to Ki is less 
than the power with respect to any other circle. We may assume that Di > 0. 
D~ is a convex polygon of number of sides, say, si. As a simple consequence of Euler's 
formula, we have 

sl + . . .  + Sm<=6m. 
m 

Since F = U (Ki f') Di), we have, on the one hand, 
i = 1  

I F [  = ~ (IX,- - Ki'--Di]), 
i=1  

on the other hand, 

Hence 

I F l =  ~ ( I D i  - Di-'Kil). 
i=1  

F =  pF + qF= p ~ K i + q ~ D i - ~ a(Ki, Di). 
i = 1  i=1  i = i  

Thus, in view of a(Ki,Di) >= as~ and the convexity of  the sequence az, a 4 , . . . ,  

f = pT  + q H -  ~ a(Ki, Di) < pT + q H -  ~ a~<=pT + q H -  ma~. 
i=1  i = 1  

Note that ma 6 is the minimum of the deviation of a hexagon from the circle 
U of area T mentioned in the theorem. Thus, for a certain regular hexagon F we have 
a(U, V) = ma6. Since, by supposition, T lies between the area of  the incircle and cir- 
cumcircle of H, we can choose p and q so that F -= ft.  Now 

pT + q H -  mao = pU + q H -  [ p ( U -  ff) + q ( H -  ff)] = f .  

This completes the proof  of  Theorem 1. 
Our following theorem states that Theorem 1 continues to hold for circles with 

not too different areas. 

We define a function w(x) for x > 0 as follows. For  ~/~/2rc < x < ~/12/rc 
we choose the weights p and q so that the quotient of  the areas of a circle and the 
hexagon having the least deviation from this circle should be 1Ix. In this case we 
define w(x) by 

w(x) - as - a7 
a 5 - a s 

For  x < x / ~ / 2 n  and x > x / ~ / n  let w(x) be zero. In ( x / ~ / 2 n ,  ~ /~ /n )  w(x) can 
be represented by 

7"C 7~ 
w(x) = 6 arctan q tan ~- - 7 arctan q tan ~- 

7C 7"C 
5 arctan q tan ~- - 6 arctan q tan ~- 
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where 

i 
Observe that for any x > 0 we have 

2n 27r 
7 sin ~ - -  - 6 sin 

w(x) < ~ 0;6275. 
2re 2~ 

6 sin 6 - -  - 5 sin ~--- 

THEOREM 2. Theorem 1 holds, instead of  congruent circles, for circles such that 
the quotient of  the areas of  any two is at least w(H/T). 

This theorem contains earlier results of B6R6CZrOZ (see [7], p. 194) and B•rND [3] 

which concern the limiting cases T/H = rc/x/-i-2 (packing) and T/H = 2rc/~f~ (co- 
vering). 

In order to prove Theorem 2 we may suppose that n/~f~2 < T/H < 2n/V/~ .  
Let the circles considered in the theorem be K1 . . . . .  K m. Then, using the notations 
of  the proof  of  Theorem 1, we have 

F = p T  + q H -  ~ a(Ki, D i ) < p T  + q H -  ~ Kia,~. 
i = 1  i = 1  

We choose p and q so that the quotient of the areas of  a circle and the hexagon 
having the least deviation from this circle should be T/H. 

Suppose that for some i we have s t > 6. Then, by sl + . . .  + s m < 6m, there 
is a j  such that sj < 6. Therefore, in view of the supposition K//K i > w(H/T) and the 
convexity of  the sequence a 3, a 4 , . . . ,  we have 

Kj (asj _ asj+l) > _ ast, 
g i i  ~ as i  - 1 

i.e. 
Kia, i + K~as, >= Kias,-~ + K~as,+~. 

Replace, in the sum ~ Kia,~, s i by si - 1 and sj by sj + 1, and repeat this process 

until no s~ is greater than 6. Finally, replace all s /s  less than 6 by 6. Then, by a 3 > 
> a 4 > . . .  and the above inequality, we have, for the original s~'s, 

~ Kia~ >= a6 ~ Ki = Ta6. 
i = 1  i = l  

Consequently 
F < pT  + qH - Ta6. 

But, by the choice o f p  and q, the right side equals ft. 
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In what follows we shall give a generalization of Theorem 2, considering, instead 
of circles, affine images of  an arbitrary convex disc. We say that  two convex discs 
A and B cross each other if neither A ' - B  nor B ' - A  is connected. 

THEOREM 3. Let K be a convex disc of  unit area. Consider a finite number of  
affine images of  K of  equal area not crossing each other. Let F be the part of  a convex 
hexagon H covered by the discs. In order to give an upper bound for F, we define f(h) 
as the maximum of  the area of  that part of  K which can be covered by a hexagon of  
area h. Then 

F > T F(H/T),  

where F(h) is the least concave function not less than f(h). 

I f  K has central symmetry and F(H/T)=f(H/T) ,  then our bound can be arbitrari- 
ly approximated by a great number of  congruent discs arranged in a conveniently 
chosen lattice. However, it is likely that there are centro-symmetric K 's  such that 
f(h) is not concave. But even in this case the above bound cannot be replaced by a 
smaller one. We shall see later that if for a centro-symmetric K F(H/T) > f (H/T)  
then the bound can be arbitrarily approximated by a great number of congruent 
discs one part  of  which is arranged in one lattice, the rest in another. 

Theorem 3 contains important  known results about  packing and covering a 
hexagon by convex discs (see e. g. [1, 2, 4, 7, 9, 10, 13]). 

In  order to formulate the more general Theorem 4 we introduce the analogue 
of the function w(x), considered above in connection With a circle, for an arbitrary 
convex disc. 

Let K be a convex disc of  unit area. Let u be the greatest number such that 
f(u) = u. Let U be the smallest number such that f (U)  = 1. We claim that, with 
the possible exception of h = U, F(h) has a derivative. 

To see this we may assume that h < U. Consider a hexagon of  area h covering 
a part  of  K of area f(h). This hexagon has a side of  length, say, s having a part  of  
length qs in the interior of  K for some q > 0. Small parallel displacements of this 
side show that 

lira f ( h  + k) - f (h)  <-<_ q and lim f ( h  + k) - f (h)  > q . 
k~+o k k~-O k 

This proves the assertion. 
Let a(K,P~) be the deviation of a convex n-gon Pn f rom K for some fixed values 

of  p and q. Let 
an = rain a(K, P , ) ,  

Pn 

where Pn ranges over all convex n-gons. For  x C (u,U) we take the deviations a i 
with the weight q = F'(x) and define w(x) by 

a 6 - a 7 
w ( x )  - 

a 5  - a6 
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with the convention that in the case when a6 - a7 = a5 - a6 = 0 we write w(x) = O. 
For  x (E (u, U) let w(x) be 0. 

TH~OgEM 4. Theorem 3 continues to hold i f  we consider, instead o f  discs o f  equal 
area, discs o f  area such that the quotient o f  any two is not less than w(H/T). 

The proof  rests on the following 

LEMMA. Let a n be "the minimum of  the deviation o f  a variable n-gon from a given 
convex disc for any prescribed values o f  p and q. Then 

a,+l 47 a , - i  > 2an, n = 4, 5 , . . . .  

In the case when p = q the lemma has been proved by EGGLESTOVr [5]. The 
general case can be settled by similar methods. We intend to give a detailed p roof  
in another paper. Note that t h e / e m m a  implies w(x) < 1. 

Using this lemma, the proof  of Theorem 4 is similar to that of  Theorem 2, 
except the construction of the "Dirichlet cells". 

Let K1 . . . .  , K,~ be convex discs no two of which cross each other. Assume 
that each disc has an inner point common with H which is not contained in any other 
disc. This means that no disc can be removed without diminishing the part  F of  H 
covered by the discs. Then one can construct to each K i a convex polygon D i of  
number of  sides, say, s i such that 

1. each D i is contained in H, 
2. no two Di's have inner points in common, 

m 

3. F =  U (D~OK;),  
i = 1  

4. sl + . . . + Sm < 6m. 
The construction of the polygons Di proceeds as follows. First we replace each 

Ki by K i f'l H. Then we reduce the discs to disjoint convex discs without diminishing 
the part  F of  H covered by the original discs. Finally we blow up the reduced discs 
as far as possible under the condition that they remain convex, disjoint and con- 
tained in H. As to the details we refer to [1, 10, 11]. 

Applying this construction to the discs considered in Theorem 4, we have 

F <= p T  + qH - ~ a(K~, Di). 
i = 1  

Obviously, we may suppose that u < HIT < U. Choosing q = F'(H/T),  we obtain, 
in the same way as in the proof  of  Theorem 2, 

F <__ p T  + qH - Ta6. 

Let g be the graph of the function F(h). Let t be the tangent of 9 of slope q. 
Let (hl, f(h~)) be a point of  t. Then, for any h > 0, we have 

f (h )  <=f(hO + q(h - hi). 
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Therefore, if a is the deviation (weighted with p and q) of  a hexagon of area h f rom 
K, then 

a > p + qh - f ( h )  > p + q h l -  f ( h l ) .  

I t  follows that a hexagon of area h~ covering a part  of  K of area f (h l )  has a least 
possible deviation from K, i.e. 

Thus 
as = P + qhl - f ( h l ) .  

F < = T  p + q ~ - - a 6  <- T h l ) + q  - h i  = T F  . 

This completes the proof  of  Theorem 4. 
Let H be a fixed convex hexagon, K an arbitrarily given centro-symmetric 

convex disc and T a positive number. We claim that there are congruent, homothetic 
replicas of  K of total area T such that the area F of the part  of H covered by them 
is arbitrarily close to TF(H/T) .  To see this, we refer to the fact [6] that to any centro- 
symmetric K and any p and q there is a centro-symmetric hexagon having a minimal 
deviation f rom K. 

~ t 

l I I 
t I [ 
I I I 
i I i 
I 1 k 

, i i : 

t z I 
I I I 

i I I 
I I ; 
I I 1 

u h~ H/T ,h~ U 

Fig. 2 

h 

Supposing again that K = 1, there are two centro-symmetric hexagons h~ and 
he such that (Fig. 2) 0 < hi < H I T  < h 2 and, for q = F' (H/T) ,  

as = a(K, hi) = p + qh i - f (h i ) ,  i = 1, 2. 

The hexagons hi and h 2 may coincide. Suitably chosen translates of h i form a tessel- 
lation. Respective translates of  K form a lattice A t of  density 1/h i. 
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Divide H, say by a straight line, in two pa r t s / / 1  and H 2 so that  

hi ~ . ~ =  T. 

Let pAi be a lattice arising f rom A i by a similitude o f  rat ion #. Consider those discs 
o f  pA t which are contained in H i. Provided that # is very small, the total area o f  
these discs is approximately Hi~hi. On the other hand, the area o f  the par t  covered 
by these discs is approximately  f ( h 3 H i / h  i. Thus we have constructed congruent  
and homothet ic  copies o f  K contained in H whose total area is arbitrarily close to 
T and which cover a par t  o f  H of  area arbitrarily close to 

H1 //2 
f ( h l )  ~ + f (h2)  h ~  

But a simple computa t ion  shows that  the last sum equals TF(H/T) .  

(Received 20 December 1971) 
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