ON HERMITE-FEJÉR INTERPOLATION SEQUENCES

By

G. FREUD (Budapest)

Let $w(x) \in \mathcal{L}$ be a non-negative weight function with support in $[-1, 1]$, $\int_{0}^{1} w(x)dx > 0$. We consider the orthogonal polynomials $\{p_n(w; x)\}$ belonging to ⁻¹ this weight; let the roots of $p_n(w; x)$ be

 $1 > x_{1n} > x_{2n} > ... > x_{nn} > -1$.

For an arbitrary $f \in C[-1, 1]$ we construct the uniquely defined polynomial in x, $\mathcal{X}_n(w; f; x)$, of degree at most $2n - 1$, satisfying

(1)
$$
\mathcal{H}_n(w; f; x_{kn}) = f(x_{kn}), \qquad \mathcal{H}'_n(w; f; x_{kn}) = 0 \qquad (k = 1, 2, ..., n).
$$

The sequence (1) of interpolatory polynomials was introduced and investigated first by L. FEJER $[1]$, $[2]$, and called by him "step parabolas". They form the most important case of the Hermite-Fejér interpolation sequences. The general case is obtained if we prescribe the values $\mathcal{X}'_n(w; f; x_{kn})$ in some other preassigned way (see L. FeJER [4], [5], [6]). In his first papers L. FEJER treated the case $w_0(x) \equiv 1$, i.e. if $x_{k,n}$ are the roots of the Legendre polynomials. For this case L. FEJER proved that for an arbitrary $f \in C[-1, 1]$ the sequence $\mathcal{H}_n(w_0; f; x)$ tends to $f(x)$ uniformly in every closed part of $(-1, 1)$, but near the end point ± 1 he observed a remarkable anomaly: the sequences $\{\mathcal{H}_n(w; f; 1)\}\$ and $\{\mathcal{H}_n(w; f; -1)\}\$ tend to $\frac{1}{2} \int_0^1 f(x)dx$ which -I is – in general – different from $f(1)$ resp. $f(-1)$.

In his later paper L. FEJER [3] proved that for $w_1(x) = (1 - x^2)^{-1/2}$, i.e. for the zeros of the Chebychev polynomials of the first kind, $\mathcal{X}_n(w_1; f; x)$ tends uniformly in $x \in [-1, 1]$ to $f(x)$ for every $f \in C[-1, 1]$. Following the investigations of L. FEJÉR, G. SZEGŐ [8] gave a complete treatment for the zeros of Jacobi polynomials $P_n^{(\alpha,\beta)}$, orthogonal to $w_{\alpha,\beta}(x) = (1-x)^{\alpha}(1+x)^{\beta}$ $(\alpha > -1, \beta > -1)$. He proved that $\mathcal{H}_n(w_{\alpha,\beta}; f; x) \to f(x)$ uniformly in $[-1, 1]$ for every $f \in C[-1, 1]$ if and only if α < 0 and β < 0; for $\alpha \ge 0$ there is no uniform convergence in the neighbourhood of $x = 1$, and for $\beta \ge 0$ in the neighbourhood of $x = -1$, resp., though there is uniform convergence inside of $[-1, 1]$. (See also Szegő [9], § 14.6.) In the present paper we are going to prove a more general negative result. Our method is an extension of the idea of L. FEJER $[1]$, and furnishes an alternative proof of G. SZEG6's results concerning non-uniformity of convergence.

176 G. FREUD

THEOREM. For a fixed but arbitrary $\xi \in [-1, 1]$ let $W_{\xi}(x) = (x - \xi)w(x)$ be of *bounded variation in* $[-1, 1]$; *then there exists an* $f \in C[-1, 1]$ *so that* $\mathcal{X}_n(w; f; x)$ *does not converge uniformly to f(x) in* $[-1, 1]$ *for* $n \rightarrow \infty$.

REMARKS. a) Taking $\xi = -1$, we see that $\mathcal{H}_n(w_{\alpha,\beta}; f)$ is not uniformly converging if $\alpha \geq 0$, $\beta > -1$ and taking $\xi = 1$, we see that it is not uniformly converging if $\alpha > -1$, $\beta \ge 0$ and at least one f; this is SzEG6's result.

b) The author proved in his paper [7], that if $w(x)$ is positive in $[-1, 1]$ and satisfies there uniformly the Dini-Lipschitz condition

$$
w(x_2) - w(x_1) = o\left(\log^{-1} \frac{1}{|x_2 - x_1|}\right),\,
$$

then $\mathcal{K}_n(w; f; x)$ converges to an arbitrary $f \in C[-1, 1]$ uniformly in every closed part of $(-1, 1)$. Our present Theorem shows that this is no more valid uniformly for the closed interval $[-1, 1]$. (At least if w is of bounded variation.)

PROOF OF THE THEOREM. By (1), $\mathcal{K}'_n(w; f; x)$ vanishes at all zeros of $p_n(w; x)$, so that

(2)
$$
\mathscr{X}'_n(w; f; x) = p_n(w; x) r_{n-2}(x).
$$

Since \mathcal{K}'_n is a polynomial of degree at most $2n - 2$, r_{n-2} is a polynomial of degree at most $n - 2$. Now $p_n(w; x)$ is orthogonal to every polynomial of degree at most $n-1$, so that

(3)
$$
\int_{-1}^{1} \mathcal{H}'_n(w; f; x) W_{\xi}(x) dx = \int_{-1}^{1} p_n(w; x) r_{n-2}(x) (x - \xi) w(x) dx = 0.
$$

As a consequence of (3) we have

(4)
$$
\mathcal{K}_n(w; f; 1)W_{\xi}(1) - \mathcal{K}_n(w; f; -1)W_{\xi}(-1) = \int_{-1}^{1} \mathcal{K}_n(w; f; x)dW_{\xi}(x).
$$

This relation is a generalization of L. FEJER's [2] equation

(5)
$$
\mathcal{H}_n(w_0; f; 1) = \frac{1}{2} \int_{-1}^1 \mathcal{H}_n(w_0; f; x) dx.
$$

In fact, taking $\xi = -1$, $w(x) = w_0(x) \equiv 1$, (5) turns out to be a special case of (4).

Concluding our proof, we distinguish the two cases when

(6)
$$
||\mathcal{K}_n(w; f; x)|| \leq K||f||
$$

holds with some constant K independent of n^1 and the case when (6) does not hold.

¹ Here $|| \cdot ||$ denotes the usual supremum norm of $C[-1, 1]$.

Acta Mathematica Acaderniae Scientiarum Hungaricae 23, 1972

In the second case the existence of a not uniformly converging sequence $\{\mathcal{H}_n(w; f)\}\$ follows from H. LEBESGUE's well known theorem. Let us now assume that (6) holds. In this case we obtain that for every $f \in C[-1, 1]$ satisfying

(7)
$$
\lim_{n\to\infty}||f-\mathcal{K}_n(w;f)||=0
$$

we have

(8)
$$
f(1)W_{\xi}(1) - f(-1)W_{\xi}(-1) = \int_{-1}^{1} f(x)dW_{\xi}(x)
$$

as a consequence of (4) , i.e. (8) is a necessary condition for (7) .

Now (8) is not satisfied for every $f \in C[-1, 1]$, unless $W_x(x) \equiv 0$, i.e. $w(x) \equiv 0$, 1 and this case is excluded by $\langle w(x)dx > 0$. So there exist functions $f \in C[-1, 1]$ -1 not satisfying (8) and consequently, not satisfying (7). Q.e.d.

We call the reader's attention to the following open

PROBLEM. Are there any weight functions $w(x)$ of bounded variation, for which (7) holds for all functions $f \in C[-1, 1]$ satisfying (8) for $\zeta = 1$ and $\zeta = -1$?

Even the special case $w(x) = w_0(x) \equiv 1$ seems to be not settled. We formulate this case (on behalf of its interest) separately. Let the $x_{k,n}$ be the zeros of the *n*-th Legendre polynomial $P_n(x)$. Is it true that the step parabolas defined by (1) converge uniformly in x to $f \in C[-1, 1]$, provided that

$$
f(1) = f(-1) = \frac{1}{2} \int_{-1}^{1} f(x) dx ?
$$

(Received 8 February 1971)

MTA MATEMATIKAI KUTATÓ INTÉZETE BUDAPEST, V., REÁLTANODA U. 13-15

References³

- [1] L. Ferén, Interpolátióról, *Mat. és Term. Tud. Értesítő*, 34 (1916), pp. 209-22 (Hungarian).
- [2] L. FEJgR, Uber Interpolation, *G6ttinger Nachrichten,* 1916, pp. 66--91.
- [3] L. FEJÉR, Über Weierstrassche Approximation, besonders durch Hermitesche Interpolation, *Math. Annalen,* 102 (1930), pp. 707-725.

² It is easy to see that if (8) holds for $\zeta = 1$ and $\zeta = -1$, it holds for every value of ζ . ³ The quoted papers of L. FEJÉR are reprinted in LEOPOLD FEJÉR, *Gesammelte Arbeiten*, Vol. II. Akadémiai Kiadó, Budapest 1970.

178 G. FREUD: ON HERMITE-FEJÉR INTERPOLATION SEQUENCES

- [4] L. FEJÉR, Die Abschätzung eines Polynoms in einem Intervalle, wenn Schranken für seine Werte und ersten Ableitungswerte in einzelnen Punkten des Intervalles gegeben sind, und ihre Anwendung auf die Konvergenzfrage Hermitescher Interpolationsreihen, *Math. Zeitschrift*, 32 (1930), pp. 426-457.
- [5] L. FEJER, Lagrangesche Interpolation und die zugeh6rigen konjugierten Punkte, *Math. Annalen,* **106** (1932), pp. 1–55.
- [6] L. FEJÉR, Beste Approximierbarkeit einer gegebenen Funktion durch ein Polynom gegebenen Grades, wenn das Polynom sonst beliebig oder wenn es noch einer interpolatorischen Beschränkung unterworfen ist, *Math. Nachrichten*, 4 (1950/51), pp. 328-342.
- [7] G. FREUD, ~ber die Konvergenz des Hermite-Fej6rschen Interpolationsverfahrens, *Acta Math. Acad. Sci. Hung.*, 5 (1954), pp. 109-128.
- [8] G. SzeGő, Über gewisse Interpolationspolynome, die zu den Jacobischen und Laguerreschen Abszissen gehören, *Math. Zeitschr.*, 35 (1932), pp. 579–602.
- [9J G.SzEG6, *OrthogonalPolynomials,* Amer. Math. Soc. Colloquium Publications, XXIII, second edition (New York, 1959).