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Recurrent Iterated Function Systems 

Michae l  F. Barns ley ,  John  H. El ton,  and  Doug las  P. H a r d i n  

Abstract. Recurrent iterated function systems generalize iterated function sys- 
tems as introduced by Barnsley and Demko [BD] in that a Markov chain 
(typically with some zeros in the transition probability matrix) is used to drive 
a system of maps wj : K --> K,j  = 1, 2 , . . . ,  N, where K is a complete metric space. 
It is proved that under "average contractivity," a convergence and ergodic 
theorem obtains, which extends the results of Barnsley and Elton [BE]. It is also 
proved that a Collage Theorem is true, whifh generalizes the main result of 
Barnsley et al. [BEHL] and which broadens the class of images which can be 
encoded using iterated map techniques. The theory of fractal interpolation 
functions [B] is extended, and the fractal dimensions for certain attractors is 
derived, extending ttie technique of Hardin and Massopust [HM]. Applications 
to Julia set theory and to ,  he study of the boundary of I FS attractors are presented. 

1. Introduct ion 

Let X be  a comple t e  met r ic  space  with metr ic  d. Let w j : X - > X  be Lipschi tz  
maps ,  j = 1, 2 , . . . ,  N. Let  (P0) be an N x N row-s tochas t i c  matr ix .  Then  we call  
{X ,  wj, Po, i , j  = 1, 2 , . . . ,  N} a recurrent  i t e ra ted  func t ion  sys tem ( I F S ) - - w h e t h e r  
or  not  (P0) is t echnica l ly  " r ecu r r en t "  (i.e., i r reduc ib le ) .  The  focus o f  a recurrent  
IFS  is r a n d o m  walks in X o f  the  fo l lowing na ture :  speci fy  a s tar t ing po in t  Xo ~ X 
and  a s tar t ing code  i o c { 1 , 2  . . . . .  N}. Choose  a n u m b e r  i l e { 1 , 2 , . . . ,  N} with 
the  ( cond i t iona l )  p robab i l i t y  that  il = j  be ing  p~j,  and  then  define xl = w~,Xo. Then 
p ick  i2e {1, 2 , . . . ,  N},  with the p robab i l i t y  tha t  i 2 = j  being  Pi,j, and  go to the 

~- X cr po in t  x2 w~2xl = wi2wi~xo. Cont inue  in this  way  to genera te  an orbi t  { ,},=o. 
Our  conce rn  in this p a p e r  is with exis tence,  un iqueness ,  convergence  to, and  

charac te r i za t ion  of  l imi t  sets (a t t rac tors)  A c X ,  and  o f  a ssoc ia ted  invar iant  
( s ta t ionary)  measures  whose  suppor t  is A. A may  be desc r ibed  as fol lows:  x ~ A 
iff every n e i g h b o r h o o d  o f  x conta ins  inf ini tely m a n y  x , ' s ,  for  a lmos t  all orbits .  
The empi r i ca l  d i s t r ibu t ion  a long an orbi t  converges  to the s ta t ionary  measure ,  
for  a lmos t  all  orbits .  (The desc r ip t ion  given o f  A does  not  qui te  fo l low f rom the 
s ta tement  a b o u t  the s t a t ionary  measure ,  which  is o f  interest ;  see Sect ion 2.) 

It is also very impor t an t  to cons ide r  l imits  when  c o m p o s i n g  maps  in the  reverse 
o rde r  w i , ' "  w ~ x ,  which is exp lo i ted ,  and  connec t ions  with the  r a n d o m  walk  
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clarified, in Section 2. In the case of uniformly contractive maps this is especially 
useful and in Section 3 this point of view is exclusively used, in a more general 
setting, to give an elegant characterization of  the attractor as the unique, attractive 
fixed point of  a certain set map, using the Hausdortt  metric. (Actually, a more 
precise invariance result is obtained for an N-tuple of sets, based on the connec- 
tion structure of the chain-- that  is, which maps are allowed to follow which, i.e., 
which Po are not zero.) 

By having some entries in (Po) equal to zero, the allowable map sequences in 
the random walk are restricted, and this gives rise to limit sets with geometries 
not obtainable by earlier iterated function systems, which is one motivation for 
our work; see Section 5. 

Key references which underlie the present work are [BD], [H], [Bed], [D], 
[BEHL], [HM],  [BE], [E], and [BA]. The structure of this paper is as follows. 
In Section 2 we consider the existence, uniqueness, and convergence questions 
referred to above. In Section 3 we describe the College Theorem for recurrent 
IFS, and in so doing extend the concept of  recurrent IFS to multiple spaces and 
set maps. In Section 4 we compute the fractal dimension for various recurrent 
IFS attractors, using the Perron-Frobenius theorem for the connection matrix. 
In Section 5 we give examples, including combinatorial fractal functions, 
boundaries of  attractors of IFS, and Julia set applications. 

2. Ergodicity of the Random Walk 

Let (X, d) be a complete separable locally compact metric space. We consider 
a random walk (i.e., a discrete-time stochastic process) in X arising from itera- 
tively applying Lipschitz maps chosen according to a finite state-space Markov 
chain, as described in the Introduction. 

�9 N 
Let (Pu) be an irreducible N x N row-stochastic matrix, i.e., ~j=l P~ = 1 for all 

i, po>_O for all i , j ,  and for any i , j  there exist il, i 2 , . . . ,  i, with i, = i and i, = j  
such that Pi, i2Pi2i3"" "Pi,_,g~ >0.  Let ws, j =  1 , . . . ,  N, be Lipschitz maps on X. 

The random walk described informally in the Introduction can be formulated 
as follows: let io, il, . . .  be a Markov chain in {1, . . . ,  N}, with transition probabil- 
ity matrix (P~s); then our random walk is the process 

Zn = w i ,  Z . _ ,  = w~ " �9 �9 w ~ , Z o .  

Now (Z,)  is not a Markov procesz on X, but Zn = (Zn, in) is a Markov process 
on )~ = X • { 1 , . . . ,  N} with transition probability function 

N 

~((x ,  i), B)  = E PoI f~(wjx, J); 
j = l  

this is the probability of transfer from (x, i) into the Borel set J~ c ~ in one step 
of the process. 

Let (m~) be the unique stationary initial distribution for the Markov chain on 
{ 1 , . . . ,  N}; i.e., 

N 

Y'. mip~ = m s, j = 1 , . . . ,  iV. 
i=1 
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We show that if the maps are logarithmically contractive on the average after 
some number  of  iterations (see Theorem 2.1), then there is a unique initial 
distribution which makes the Markov process (Z~) stationary (this is also called 
the invariant measure),  and more importantly, for any  starting value (Xo, io), the 
empirical distribution of a trajectory Xo, wi, xo, w ,  wi, x o , . . ,  will converge with 
probabili ty one to the X-project ion tz of  the stationary initial distribution. 
Furthermore, if A is the support  of  t z, then x c A iff for any neighborhood of x, 
almost all trajectories visit the neighborhood infinitely often. This is perhaps 
surprising because from the convergence to /z  of  the empirical distribution along 
trajectories it follows that x ~  A ~ f o r  some neighborhood of x, the proportion 
of the number  of  visits to the neighborhood approaches 0 for almost all trajec- 
tories, whereas we are making the stronger assertion that some neighborhood of 
x will only be visited finitely many times, almost surely (a.s.). 

This average contractivity condition appeared in [BE] concerning the case 
when the sequence of maps is independent and identically distributed (i.i.d.) (in 
the present setup, this would mean Po =PJ, i =  1 , . . . ,  N ,  for each j ) ,  and was 
generalized in the case of  i.i.d, affine maps to infinitely many maps in [BA]. It 
is equivalent in those cases to a negative Lyapunov exponent condition, as pointed 
out in [BA], and this will be seen to be true here also. 

An important point in the proof  will be to run the Markov chain "backward 
in t ime"; let us explain. Consider the matrix 

=mj 
qq mi Pji, 

which is row stochastic, irreducible, and also satisfies ~=~ miqo = m~, as is easily 
checked. The q~j are called inverse  transition probabilities in Chapter  15 of [F]. 
The reason is as follows: consider the Markov chain (io, i~ , . . . )  above, with 
transition probabili ty matrix (Po) and initial distribution (m~). The probabili ty 
that (il, i 2 , . . . ,  in)= ( J l , . . . , j n )  is then 

N N 
Z m:oPJoj, P2,22"" "Pj,,_,2~= Z m m2--s' mj~ 

jo=l Jo=l Jo mj ~ qJ, Jo m1 ~ , qJ.2o-~ 

= mioq~oj._ ' � 9  qj~j,, 

which is the probability that a Markov chain with transition probabili ty matrix 
(qo) and initial distribution (m~) will have for its first n values ( j , , j~_~  �9 �9 . j~) .  

Let P be the probabili ty measure on ~ = {i = (io, i ~ , . . . ) }  corresponding to the 
" forward"  chain; that is, P is given on "thin cylinders" by P( io ,  i ~ , . . . ,  i~)= 

r n ~ p ~ , . . . p r  Let Q be the probability measure on f~ corresponding to the 
"backward"  chain; i.e., Q(io ,  il . . . .  , i~) = mr  �9 �9 �9 q~o_,r 

We show that under  our hypotheses, for the backward process, 
lim~_~ w ~ . . . w c x  = Y(i) exists and is independent  of  x for Q - - a l m o s t  all 
(a.a.) i. Note that this is very  di f ferent  from the iterative process w ~ . .  �9 w~,x we 
originally discussed, where i~, i2 , . . ,  are chosen according to P. This process 
does not  converge pointwise, but its trajectories distribute ergodically as the 
measure /x which is obtainable from the limit of  the backward process as 
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I~(B) = Q ( Y - ~ ( B ) ) .  This is simply because for all n, w ~ . . .  w~x has the same 
distribution under  P as does w ~ , . . ,  winx under Q. 

If all the maps wj are uniform contractions, then it is easy to see that 
lim,_~oo w~, �9 �9 �9 w~,x = Y(i) exists for all i (not just Q a.e.), and that Y is continuous 
with the product topology on 12, and range Y = A is a compact set in X which 
is exactly the support of ~z, called the attractor. This is discussed in detail in 
Section 3, where an invariance result ("Collage Theorem") is given for a special 
decomposition of A into compact subsets. But even in this uniformly contractive 
case, the trajectories of  the random walk (the forward process), w~,-., w~,x, 
converge only in the distribution sense (the points along the trajectory continue 
to dance about), and only with probability one. 

We hope this detailed discussion of running time backward and inverse prob- 
abilities will be helpful in clarifying the connection between the "symbolic 
dynamics" point of view w~wi2 . . ,  wi, x and the "ergodic" point of view 
w ~ , . . ,  w~x, and why the measures are the same; this matter had been a little 
unclear to the authors previously. 

Now for a precise statement and proof of the convergence and ergodic results. 
For a Lipschitz map w: X ~ X, define 

d(wx ,  wy) 
Ilwll = s u p  - -  

~ey d (x ,  y )  

Theorem 2.1. A s s u m e  that, f o r  some n, 

E p ( l o g l l  Wio. �9 �9 w  ll) < 0 

(see above for  the definition o f  P);  that is, 

Y ~ " "  Y~ m, ,p , l ,2""p, ._ , i  o l o g l l w , ,  �9 �9 �9 W,nll <0.  
i~ i n 

(This is equivalent to a negative Lyapunov exponent for  the process w~,, w~2, . . . ; 

see the proof) .  Then: 

(i) For Q a.a. i, wi, �9 �9 �9 wi x -~ Y(i), which does not depend on the choice o f  x c X. 
(ii) Def ine /2 (B)  = Q(i: (Y(i) ,  i~(i)) ~ B), the distribution o f  ( Y, i,) on f~. Then 

I~ is the unique stationary initial distribution for  the Markov  process Z ,  = 
(Z , ,  i,). Furthermore, i f  ~ is any probability measure on X satisfying 
r3(X x {i}) = mi, i = 1 , . . . ,  N,  then 2 ~  converges in distribution to i ~, where 
Z ~  represents the Markov  process with initial distribution ft. In particular, 
the random walk Z~  on X converges in distribution to the measure tz( B)  = 
~ ( B  x { 1 , . . . ,  N}). (The given condition on ff may  be expressed as requiring 
the marginal distribution o f  i~ to be (ms).) 

(iii) (Ergodic theorem). For every x, for  P a.a. i, 

~ I 1 ~, f ( w ~  wi, x)  ~ fd l~  
n k = l  

for  all f e C ( X ) ,  the bounded continuous funct ions on X.  In other words, 
starting at any x, the empirical distribution o f  a trajectory converges with 
probability one to I~. 
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(iv) I f  A is the support o f  l~, then x c A i f f  f o r  every neighborhood o f  x, almost  
all trajectories visit the neighborhood infinitely often (recall that the suppor t  
A o f ~  is def ined as fol lows: x c A iff  every neighborhood o f x  has positive 
i.t-measure; A is a closed set).  

Proof. (i) First note that  since the distr ibution of  (il �9 �9 �9 i,) under  P is the same 
as ( i , , . . . ,  i~) under  Q as poin ted  out above,  we have E 0 log[Iw~, �9 �9 �9 w~l I < 0  also. 
Since ( i l i 2 , . . . )  is a s ta t ionary ergodic process  under  P and Q, the p roo f  of  the 
Fur s t enbe rg -Kes ten  theorem given on p. 40 of  [Kr]  shows that  this is equivalent  
to 

l i m l l o g [ [ w ~ , . ' ' ' w i , ] [ = - a ,  Pa . s . ,  
n~oO n 

and to 

l im-l logl lw, ,  " ' "  w , . l l = - ~ ,  Qa .s . ,  
n ~ o o  n 

where a > 0 ( - a  is the Lyapunov  exponent) .  (The p roo f  in [Kr]  refers to l inear 
maps ,  but  there is no change in the p roo f  needed  for  our  case, or for  reversing 
the order.)  

For  the remainder  of  the p r o o f  of  (i), we bor row the more  elegant me thod  of  
[BA], ra ther  than  the earlier p r o o f  of  [BE]. Fix x. Now 

d(Wi l ' ' '  Wi,,X, Wi l ' ' '  Wi,,+lX)~ IIw,,"" w,ollC(x), 
where C ( x ) = m a x l < ~ < N  d(w,x ,  x ) .  For Q a.a. i, we may  choose no (depending  
on i) so that  n >- no::=> I1 wi, " �9 �9 w~. II < e - ~ / 2 .  Thus  

•,~176 1 d ( w q .  . . wix ,  w i , "  " wi,,+,x)<oo, 

so w ~ , . . ,  w~~ is Cauchy  and converges to say Y(i), for Q a .a . i .  Fur thermore ,  
d(w, ,  . . . wi x, w, . . . w, .y)  <_ I I w , ,  . . . w , , , l l  d ( x ,  y)->O Q a.s. ,so r d o e s  n o t d e p e n d  
on x. 

(ii) Let ~ be any probabi l i ty  measure  on ..Y satisfying ~ (X  x { i } ) =  m~, i =  
1, . . . ,  N. Then  if the Markov  process  is given initial distr ibution ~, i will have 
dis tr ibut ion P, since io will have marginal  distr ibution (m~). For  each j, let 

uj(B)  - g(B x {j}) 
; ( X  x { j } )  

(note ~ ( X  x {j}) = mj > 0 for  a l l  j ) .  This is the  condi t ional  distr ibution of  Zo given 
io=j.  Thus for  all f ~  C ( X ) ,  E f ( Z ~ ) = S S f ( w ~ , , . . .  wi,x, i ,)  d % ( x )  d P ( i ) =  
S ~ f ( w i , . . . w ~ x ,  i l )du~, ,+,(x)dQ(i) .  Now fix Xo. For  Q a.a. i, d ( w ~ , . . . w ~ ~  
wi, �9 �9 �9 w~,xo)~ 0 for  ever), x, so 

f f f(Wil " " w,,,x, i,) d~,~~ dQ(i) 

- f f f(wi, . . . w,~ ih d~,,~ dQ(i)~O. 
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But 

f f f(wi~'" �9 wi, xo, il) dui,,+,(x) dQ(i) 

= f f ( w i , ' " w i , x o ,  ii) d Q ( i ) ~ f f ( Y ,  i O d Q - ' - f f d t L  

This shows .2~ converges in distribution to ft. 
It remains to show that fi is a stationary initial distribution, and is unique. 
Let 13 be any stationary initial distribution. Then ~(X x {i}) = m~, i = 1 , . . . ,  N, 

since io must have marginal distribution (mi) in order that (i,) be stationary since 
the chain is irreducible. For f c  C(.-~), let Tf(:~)=Ef(2~),  where 2,; is the 
Markov process with Z~ = x; this is the usual Markov operator on C(X).  The 
adjoint T* restricted to Borel measures has the following interpretation: if 13 is 
the distribution of Z,0, then T*~ is the distribution of 21, and T*"~ is the 
distribution of ,~,. Thus from what was just shown, if ~ is a stationary initial 
distribution, ff = T*nff ~ w*/.7,, so ~ is the only possible stationary initial distribu- 
tion. Furthermore, if 17 is any distribution satisfying ff(X • {i}) = m~ for all i, then 
T*ff satisfies this condition also, since T*~(X x {i}) is just the marginal distribu- 
tion of i~, which is (mi) since lo was given the stationary initial distribution (m~). 

W* Thus choosing 17 to be, for example, 6~• we have T*"ff~ /z, and 
T*(T*"~)-~W*T*fi since T* is w * - w *  continuous; but T*(T*"~) = 

W* ~ T*"(T*~,) ~ t2 also, so T*fi =/z, so /~ is stationary. 
(iii) This is the only place where the assumption that X is separable and 

locally compact is needed. 
Now Z,~ is an ergodic stationary process since fi is the unique stationary initial 

distribution (see Lemma 1 of [E]). Now let f 6  C~(X), the continuous functions 
on X with compact support. By the classical pointwise ergodic theorem, with 
probability one, 

" f f d l z  
1 2 
Yl  k ~  1 

(we consider f to be defined on P~ by f (x ,  i )=f (x ) ) .  But d(Zff,  Z~)= 
d(w~,,. �9 . w~,Zo, w~, . �9 �9 w~x) <- II(w~~ " " w,,H d(Zo, x) ~ 0 with probability one, 

x x . x  where Zk is the Markov process with Zo = x and to distributed as (m~). Since f 
is uniformly continuous, we get 

! [ ida< 
n k = l  n k = l  3 

also, with probability one. Since C~(X) is separable, we can get this for all 
f ~  Co(X) simultaneously, with probability one. Finally, a simple argument using 
Urysohn's lemma extends this to C ( X )  (note (Z~) is tight since it converges in 
distribution). 

(iv) x 6 A ~ f o r  any neighborhood of x, almost all trajectories visit the neigh- 
borhood infinitely often follows immediately from (iii), which says that in fact 
that the proportion of visits is asymptotically positive. 
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Going in the other direction, assume x ~ A. Let Xo ~ X. We want to show that 
there is some neighborhood of x such that almost all trajectories starting at xo 
visit the neighborhood only finitely often. Since x o~ A ,  d ( x ,  A) = e > 0. For P a.a. 
i, there is no (depending on i) such that n > n o ~  II w,o �9 �9 �9 w, ,  II < ~/(4(d  (y, Xo)+ 1)), 
from the proof  of  (i). Also, for P a.a. i, P ( ( i t , . . . ,  i , ) ) >  0 for all n (that is, 
p , l ~ 2 p ~ 2 i 3 . . . p ~ , _ , ~ > O ) ,  so Q ( ( i , , . . . , i ~ ) ) > O  also. So fix i ~ ' . . i n  so that 
I Iw,o"  �9 �9 w,LII > e / ( 4 ( a ( X o ,  y) + 1)) and P ( ( i ~ , . . . ,  in)) > 0. Let y E A. Now Y ~ A 
Q a.s. by definition of  A, so for Q a.a. ( j , , j 2 , - . . )  we have 
l i m k _ ~ o o w ~ , ' ' ' w ~ l w j L ' ' ' w j ~ y ~ A .  Also from the definition of A, the set 
{lim wj~ �9 �9 �9 w ~ y :  i c J} is dense in A for any J with Q ( J )  = 1. Thus we may find 
j and k such that d(w j~  �9 �9 �9 wj~y ,  y) < 1 and d ( w ~ .  �9 �9 w~wj~ �9 �9 �9 wj~y,  A) < e/4.  Now 

d ( w i o "  " wilY,  A ) < _  d ( w i  ' ' '  w j ,  wi " " wi~wj, " " w~ky) 

+ d ( w ,  . . . w ,  w j  . . . w j ~ y , m ) < _ l l w , ,  . . .  wi,[I d ( y ,  wj  . . .  w j k y ) + e / a < e / 2 .  

Thus 

d(w~ ,  " " w~,xo,  A ) < - d ( w ,  " " w~,xo,  w~ " " . w , , y ) + d ( w ~ o .  . . w , , y , A )  

<-IIw,~ w,,l l  d ( x o , y ) + e / 2 < 3 e / 4 .  

Thus w ~ .  �9 �9 w ~ x o  is not in the ball of  radius e /4  centered at x. �9 

3. Point Set Topology: The Collage Theorem for Recurrent IFS 

3.1 .  H y p e r b o l i c  R e c u r r e n t  I F S  

We recall that a recurrent IFS is described in terms of a Markov chain which 
acts on a code space built from the symbols {1, 2 , . . . ,  N}. Such a process with 
N = 3 may be described by a directed graph: see, for example,  Fig. 1 where the 
numbers po _> 0, Y.j~ ~ Pu = 1, give the probabilities of  transfer among the symbols. 
We can image a particle moving from symbol to symbol following the discrete-time 

PI2 

PII P22 

Fig. 1 
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Fig. 2 

Markov process. The process is defined, strictly speaking, to be recurrent if there 
is a finite probability of  being able to move, on the directed graph, from any 
given symbol to any given symbol. A good source of information on Markov 
chains is Chapter  15 of  IF]. 

The central idea of  recurrent IFS theory is that such a Markov chain is used 
to drive the application of maps wi: K --> K, i = 1, 2 , . . . ,  N, where K, for the 
purposes of  this section, is a compact  metric space for simplicity. Such a process 
is symbolized in Fig. 2. (In distinction to what happens on the symbols, the fact 
that we have just applied map wl, for example,  does not mean we are in the 
same place as we were the last time map wl had been applied: the sequence of 
points {xn},~o contains many more than three values!) 

We are here concerned with the hyperbolic case, namely, 

d(wi(x),  w~(y)) <- sd(x, y), Vi, Vx, y c K, 

where d is the distance function on K and 0 -  s < 1. In this case, from Section 
2, we know that there exists a unique attractive invariant probability measure ~, 
which describes the random walk on K. Our focus in this section is on the 
structure of  the support of/~, which we call A c K, the attractor of  the recurrent 
IFS. This depends only on which p~ are nonzero, the connection structure of  the 
chain, and otherwise not on the values of  the p~/s. 

Note that IFS theory, as described in [BD], corresponds to Markov chains 
whose transition matrices have the special structure Po = P~ > O, i, j = 1, 2 , . . . ,  N, 
as symbolized in the directed graph shown in Fig. 3 which corresponds to N = 3. 

3.2. Hausdorff Distance 

Let (K, d) denote a compact  metric space K, with distance function d. Let H 
denote the set of all nonempty compact  subsets of  K. 

Definition 3.1. d(x, B)=miny~Bd(x ,y ) ,  VxE K, V B ~  H. Note that 

(*) B c C  ~ d ( x , C ) < - d ( x , B ) .  

Definition 3.2. d(A,  B) = maxx~A d(x, B), VA, B ~ H. Note that this "distance" 
is not symmetric. 
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Fig. 3 

Properties. 

(i) B c  C O d ( A ,  C)<_d(A, B), by (*). 
(ii) d(A u B, C) = d(A, C) v d(B, C), where x v y = max{x, y}, 

d ( A u  B, C) = max d(x, C) = m a x  d(x, C) v max d(x, C). 
x E A u B  x ~ A  x ~ B  

Definition 3.3. For all A, B ~ H, the Hausdorit distance is defined by 

h(A, B) = d(A, B) v d(B, A). 

Remark. (H, h) is a compact metric space [Dj]. 

Lemma 3.1. For all A, B, C, D ~ H, 

h(A u B, C u D) <- h(A, C) v h(B, D). 

Proof. 

d ( A u  B, C u  D ) = d ( A ,  C u  D)v  d(B, C u D )  

The same argument yields 

<- d(A, C) v d(B, D) 

<- h(A, C) v h(B, D). 

by (ii) 

by (i) 

d (C  u 19, A u B) <- d(C, A) v d(B, D) <~ h(A, C) v h(B, D). 

3.3. The Standard Collage Theorem [BEHL] 

Let {K, wj,j= 1 , 2 , . . . ,  N} be a 
Vx, y e K, and 0-< s < 1. Define 

by 

hyperbolic IFS, with 

W: H--> H 

N 

W(A) = U w)(A). 
j = l  

11 

d(w~x, wy)  <- sd(x, y), 
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Theorem 3.1. W: H ~ H is a contraction, with Lipschitz constant s, with respect 
to the Hausdorff metric; that is, 

h(W(A),  W(B))<-sh(A,B),  VA, B~H.  

Remark. If (K1, dl) and (K2, d2) are metric spaces, (H1, hi) and (/-/2, h2) are 
the corresponding spaces of compact nonempty subsets, and if 

wj :KI~K2  for j = I , 2 , . . . , N  

obeys 

then 

defined by 

obeys 

dE(WjX, wjy) <- sdl(x, y), Vx, y e K1, 

W: H~ ~ H2 

N 
W(A) = QJ wj(A) 

j = l  

h2(W(A), W(B)) <- Shl(A , B). 

We will need this extension of Theorem 3.1 later. 

Corollary 3.2. There is a unique set A c H such that W ( A ) = A. 

Remark. A is the attractor of the IFS. It is the support of any p-balanced 
measure associated with the IFS [BD]. 

Corollary 3.3 (Collage Theorem [BEHL]). I f  B e H obeys 

h(B, W(B)) <- e > O, 

then 

h(B, A) <-- e/(1 - s), 

where A denotes the attractor of the IFS. 

Proof of Theorem 3.1. For any A, B e H ,  

h( W(A), W ( B ) ) = h (  S wj(A), S wj(B)) 
j = l  j = l  

N 

<- V h(N(A),  wj(B)) (byLemma3.1) 
j= l  

N 
= V {d(wj(A), wj(B)) v d(wj(B), wj(A))} 

j = l  

N 

<-- V {sd(A, B) v sd(B, A)} 
j = l  

= sh(A, B). II 
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Proof of Corollary 3.3. By the contraction mapping theorem 

h(A, B) = h(B, lira W~ = lim h(B, W~ 
n --} oo n ..,~ oo 

where W~176 W(B) and we define inductively 

W~ = W(W~ n =0, 1 ,2 , . . . .  

But by the triangle inequality 

h(B, W~ < - ~ h(W~ W~ 
m=l 

= y. h ( W ~  W~162 
m=] 

<~ ~ sm-lh(B, W(B)) 
m=l 

~ ( 1 -  s ) - l h ( n ,  w ( n ) ) .  

3.4. The Collage Theorem for Recurrent IFS 

We actually make a generalization of the recurrent IFS structure to multiple 
spaces and set maps, suitable for the hyperbolic case where we are concerned 
with point-set topology issues. We are only concerned here with the connection 
structure of the chain. Let (Kj, dj) be compact metric spaces, j ~ {1, 2 . . . . .  N}. 
Let (Hi, hi) denote the associated metric spaces of nonempty compact subsets 
which use the Hausdorff metrics. Let there be defined maps W~j : ~ ~ Hi, V(i,j) 
/, where I is some set of pairs of indices with the property that for each 
i ~ { 1 , 2 , . . . , N }  there is a j ~ { 1 , 2  . . . . .  N} with ( i , j )~L That is, I ( i ) =  
{J I (i, j )  c I} # ~ for each i e { 1, 2 . . . .  , N}. Furthermore, let 

h,( Wu(A), Wij(B)) <- sqhj(A, B) 

for some number sij, V(i,j)~ I, VA, B e 14 i. By the remark following Theorem 
3.1 such maps can be built up from point maps taking Kj to Ki. 

The setup of  the Introduction, Section 2, and Subsection 3.1 can be put into 
this more general framework as follows: assume wi: K-~ K are Lipschitz maps, 
where K is compact metric, and (p~) is row stochastic. Define (Kj, dj) = (K, d) 
for each j, and define W~j(S) = {w~(x): x ~ S}, i,j = 1 . . . .  , N. Let I(i) = {j: pji > 0}. 
This embeds us in the more general setup which we now study. 

Let 

/4 = H1 x/42 x H 3 x .  ' �9 X HN, 

and endow H with the metric/~ defined by 

/~((A1, A2 . . . . .  AN), (B1, B: . . . . .  BN)) = max{hj(Aj, Bj)]j = 1, 2 , . . . ,  N}. 

Then it is readily demonstrated that (H,/~) is a compact metric space. 
We think o f / 4  as consisting of  a stack of clipped planes K~, K2 . . . .  , KN with 



14 

K 2 

Fig. 4 
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a point in H being the N-tuple of one image in each plane (see Fig. 4). Define 

w:  
by 

W ( A I , A 2 , . . . , A N ) = (  ~U Wlj(Aj), [...) wv(Aj) , . . . ,  I._.J wNj(Aj)). 
j 1) jcl(2) jEI(N) 

Example. Such a mapping with N = 2 might be symbolized 

w ( A t ) = (  (~ W 1 2 ) ( A 1 )  = ( W12(A2) 

\A2] W21 W2d\A2/  \ W2,(A,)u W22(A2)]" 

Theorem 3.4. W: 171-~ IYI obeys 
/~(W(A), W(B)) <- sly(A, B), VA, B c H, 

where s = max{s~, (i , j)  e I}. 

Proof. To keep the notation succinct we assume 

( W1, W,2~ 
W = \ W2, W2#" 

Then if A = (A~, A2) and B = (B~, B2) we have 

f~(W(A), W(B)) = f~(( W,I(A~) w W,2(A2), W2,(A,) w W22(A2)), 
( W,,(B,)u W,2(B2), W2,(B1) w W2a(B:))) 

= max{h~(Wu(AO u WI:(A:), Wn(B,) u W~2(B:)), 

h2(W21(Al) k.) W:2(A2), W21(B1) k.3 W22(B2))} 

~< max{hi(W~(A1), Wn(S~)) v hi(W~2(A2), W~2(B2)), 

h2( W:,(A,), W21(B1)) 
v h2(W2:(A2), W22(B2))} (by Lemma 3.1) 

<- max{sllhl(A~, B1) v s12hz(A2, B2), 

s21hl(Al, Bi) v s22ha(A2, B2)} 

<- sh,( A, , B,) v h:( A2, Bz) = sf~( ( A, , A2), (B,,  B2)) 

= sly(A, B). �9 
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Corollary 3.5. 

such that 

i.e., 

When s < 1 there is a unique element 

A = ( A , , A 2 , . . . , A N ) c  I71 

A,= [..] Wo(A j) for i =  l, 2, . . . , N, 
j c l ( i )  

W ( A )  = A. 

We call A the attractor o f  the recurrent IFS. 

Corollary 3.6 (Collage Theorem for recurrent IFS). 

g(B,  W ( B ) )  -< e > 0, 

then 

/~(B, A)--- e/(1 - s ) ,  

where A denotes the attractor of  the recurrent IFS. 

I f  B ~ I7I obeys 

Remark. Although it is an elementary consequence of  the contractivity of  W 
this result has far-reaching consequences for image compression and analysis, 
just as in the case of the Collage Theorem for standard IFS, see [BS] for 
example. 

To connect this with the original single space point map recurrent IFS, we have 

Corollary 3.7. Let ( K, w~, po, i , j  = 1 , . . . ,  N )  be a recurrent IFS with K compact 
and the wi's uniform contractions. Let A be the support o f  the unique stationary 
measure Iz o f  Section 2. Then there exist uniquecompact sets Ai c A, i=  1 , . . . ,  N 
with A = [._J~N= 1 Ai such that 

A,=  (.] wi(Aj), i = I , . . . , N .  
j:pji>0 

In terms of  the random walk, the A/s  may be characterized as follows: for all 
x, x c A~ iff for every neighborhood G of x, for almost all trajectories xo, w~,xo, 
w~2wi,xo,..., we have in = i and w~ �9 �9 �9 w~lxoE G for infinitely many n. In other 
words, to "see" A~, just look at the points along a trajectory which end in 
map w~. 

Remark. Even if we are only interested in A itself, the invariance relation above 
for the decomposition is important; it is used, for example, to determine the 
fractal dimension of A in Section 4. 
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4.  Frac ta l  D i m e n s i o n  

4.1. Standard Recurrent IFS 

Let S c  K be a subset of a compact metric space K with distance function d. 
Let N ( e )  denote the minimum number of balls of radius e needed to cover S. 
Then the fractal dimension of S is defined to be 

dim(S) = lim In N ( e )  
~-~0 In 1 / e  " 

Next let S = (81, S2, . . . ,  S s )  ~ H x H x . .  �9 x H = H s, where, as in Section 3, 
H is the nonempty compact sets in K. Then we define 

S 

dim(S) = l imIln k~--1Nk (e!~ ( k U _ 1 )  
~ o t  11, 1/e j = max{dim Sk} = dim Sk , 

where Nk(e) is the minimum number of balls needed to cover Sk. 
Let wi: K ~ K be Lipschitz maps which are uniform contractions, and (po) an 

irreducible, row-stochastic matrix. In this section we are interested in the 
dimension of the attractor, so it is only the connection structure of the chain that 
concerns us. Let the connection matrix C = (C o) be defined by C o --1 if pj~ > 0, 
0 otherwise; that is, map wi can follow map wj iff C~ = 1. We define the map 
W: H S ~  H N as in Section 3. This can be conveniently formulated in matrix 
notation as follows: let 

W = ( W,j) = ( C,jW,), 

where W~ is the set map W~(S)={w~(x): x~  S} associated with w~, and 

{ ~  if C u = l ,  
C~W~ = if C U =0.  

This matrix of set maps acts on H s as we would expect by analogy with ordinary 
matrix multiplication: if S =  ( $ 1 , . . . ,  Ss )  and R = ( R I , . . . ,  R s ) ~  H s, then 
WR = S means S~ = UjN=1 Wij(Rj) = Uj~tu) Wi(Rj), where I( i )  = {j: C U = 1}, as in 
Section 3. 

The attractor is the unique element A = ( A 1 , . . . ,  A s )  of H N satisfying W(A)  = 
A (Section 3). For example, for the connection diagram (Fig. 5) there corresponds 

;) ;') 

c<Z> 
Fig. 5 
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and the at tractor A = (A~, A2) satisfies the invariance relations 

A1 = W~(A~)w W~(A2), A2 = W2(AO. 

We call the attractor nonoverlapping when Aj c~ Ak = O for all j, k ~ l ( i )  such 
that j # k, i = 1, 2 , . . . ,  N. We call w: K ~ K a similitude ofcontractivity s if 

d ( wx, wy ) = sd ( x, y ) fo ra l lx ,  y. 

N o w  we are ready for our  first dimension result. 

Theorem 4.1. Let w~ : K ~ K be a similitude of  contractivity sg, 0 < s~ < 1, for 
i = 1 , . . . ,  N. Let C be an N • N irreducible connection matrix, and for each t >- O, 

�9 , t . . .  s ~ } . L e t A = ( A ~ , . .  AN) be the define a diagonal matrix S( t ) = dlag{sl, s2, , . ,  
attractor, whose existence follows by Corollary 3.5, and assume that A is nonoverlap- 
ping. Let d be the unique positive number such that 1 is an eigenvalue of  S( d ) C  of  
maximum modulus (see the Perron-Frobenius theorem below). Then dim(A) = d. 

Proof. We need the 

Perron-Frobenius Theorem [S]. Let M >- 0 be an irreducible square matrix. Then 
(a) p( M ) ,  the spectral radius o f  M, is an eigenvalue o f  M and has strictly positive 
eigenvector y (i.e., y i > 0  for  all i), and (b) p ( M )  increases if  any element of  M 
increases. 

Let sL = min{s,}, su = max{sl}. 
Since each ,4/ is  compact ,  there is some Co> 0 such that 

(**) d ( w i ( A j ) , w i ( A k ) ) > e o ,  V(j, k e I ( i )  a n d j # k ) ,  i = a , . . . , N .  

Let N~(e) be the min imum number  o f  e-balls needed to cover Ai for i = 1 . . . .  , N. 
From Ai = Uj~m)  w~(As) and (**) and the fact that  the maps are similitudes, we 
obtain the system of  functional  equations 

(*) N i ( e ) =  U Nile~s,)  for i =  1 , . . . ,  N, 
jEl(i) 

for 0 < e -< eoSL. 
Let x = ( x ~ , . . . ,  xN) be a strictly positive eigenvector o f  S ( d ) C  corresponding 

to the eigenvalue 1 ( P - F  theorem)�9 We show that there are positive constants C~ 
and C2 such that 

(***) Cle-dx~ <- Ni(e)  <<- C2e-axi 

for i =  1 , . . . ,  N, and 0 <  e-<e0.  Pick C 1 > 0  and C2 so that (***) holds for 
SL eo <- e <-Co. We proceed  by induction.  Assume (***) holds for s ~ sL eo <- e <-Co. 

n+l n < e/si  < eo and so Then suppose  s v  SLeo < - e <-Steo; then SuSLeo-- 

N,(e)= E j 
jEI(i) j~I(i) 
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since x is an eigenvector,  and in the same way, C~ S-dX~ ~-- Ni (e).  Thus by induct ion 
we have it for  0 < e -< Co. From this the theorem immedia te ly  follows. �9 

4.2. Recurrent Fractal Interpolation Functions 

Here we consider  a general izat ion of  the fractal  interpolat ion functions in t roduced 
in [B]. Let {:co, x l , . . . ,  xN} be a part i t ion o f [0 ,  1] (i.e., 0 =  Xo< xt < .  �9 �9 < x N  = 1) 
and y i e R  for  i = 0 ,  1, 2 , . . . ,  N. We construct  a "f racta l  func t ion"  which is 
cont inuous  and whose graph  contains the points  (xi, yi), i = 0, 1, 2 , . . . ,  N. For  
each i = 1, 2 , . . . ,  N let J~ denote  the interval [X~_l, xi] and choose J'i to be an 
interval [xl, xm] such that  

(*) x,-x~_~ < x m - x l .  

Let K = [0, 1 ] x R and define w~ : K ~ K to be an affine m a p  of  fo rm 

Ci/ k y /  \ e i /  

where we select ai, bi, c~, d~, e~ such that  Ic, I < 1 and such that  w~ takes (xl, y~) to 
(X,_l, Yi-l) and (xm, ym) to (x~, y,) (or (xt, Yt) to (x~, y~) and (x~, Ym) to (xi-1, y,- l )) .  
Note  that  ( * ) i m p l i e s  la,[ < 1. Ket  a = max{la~l}, b > max{lb~]}, and c- -max{Ic ,  I}. 
We define a metr ic  on K such that  each w~ is contract ive on K as follows: for 
(Xl, y~), (x2, Ya) ~ K define d(x~, Yl), (x2, y~,)) = ]Xl-  x21 + ((1 - a)/2b)]y~-Y21. It 
easily follows that  each w~ is strictly contract ive in this metr ic  with contract ion 
factor  s = max{ (1 + a ) / 2 ,  c} < 1. The  recurrent  structure is given by the connect ion  
matr ix  C = (Co) which is defined by C,j = 1 if Js c J'~ and C 0 = 0  otherwise.  Let 
I ( i )  = { j :  C,j--1}. We define the m a p  W: H N ~  H N a s  in Subsect ion 4.1: 

w =  (w0) = (cow,).  

Corol lary  3.5 implies that  there is a unique A = (A1, A2, �9 �9 �9 AN) ~ H N such that  
W ( A )  = A. It follows as in [B] that  G = [._J,~ As is the graph  of  a cont inuous  
funct ion on [0, 1]. We call such a funct ion a recurrent  fractal in terpola t ion 
funct ion (r.f.i.f.). This construct ion is i l lustrated in Fig. 6. Here ,  for  example ,  
J'~ = [x0, x2] = Jl w J2. The  connect ion  matr ix  C is ;lven by 

C =  

We now calculate the d imens ion  of 

-1 1 0 0 0 O" 

0 0 1 1 0 0 

1 1 0 0 0 0 

0 0 0 0 1 1 

0 0 1 1 0 0 

0 0 0 0 1 1 

G. 

Theorem 4.2. Let f be an r . f i . f  given by {w i : i  = 1 . . . .  , N }  with irreducible 
connection matrix C and graph G. Let  S(  d)  = diag{]cl] [al[d~l, . . . , ICNI laNI ~-1} and 
let D be unique value so that p ( C S ( D ) ) =  1. I f  p ( C S ( 1 ) ) >  1 and there is some 
k e ( 1 , . . . ,  N }  such that {(xi, y,): xi c J'g} is not collinear then d i m ( G )  = D, other- 

wise d i m ( G )  -- 1. 
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Wl 

(X1,Y1) (X2,Y2) 
I I 

W6 

(Xs,Ys', 

I (X3,y3) i 
I i 
I I 

(Xo,Yo) 

W2 ~ W5 

Fig. 6 

Proof.  As in [HM]  and [ B E H M ]  the main idea of  the p roof  is to derive functional 
inequalities for N ( e )  which can then be used to estimate the behavior  o f  N(e) 
as e decreases to zero. The details of  this p roo f  follow closely those o f  Theorem 
4 o f  [ B E H M ] .  

We first introduce a class o f  covers which allow us to relate covers o f  different 
sizes. 

Definition. For 0 <  e < 1, {rt}l%o is called an e-partition if 

(a) l"t ~ ( - e / 2 ,  1), 
(b) e / 2 <  ~l+1-T/< e 

for 1 = 1, 2 , . . . ,  m - 1. A cover rg o f  G will be called an e-column cover of G with 
associated e-part i t ion {rl}~=o if there are positive integers no . . . .  , n,, and real 
numbers  ~:0 . . . .  , ~,, such that 

~ = {[rl, %+e]x[~t+( j ; -1)e ,  ~;+jte]:j; = 1 , . . . ,  nk; I = 0 ,  1 , . . . ,  m}. 
m 

Note  that cg consists o f  5~=o n~ closed e x e squares arranged in m + 1 columns. 
Let j cg[ denote  the cardinali ty o f  ~g and define N*(e )  = min{] rg[: cr is an e-column 
cover o f  G} and let ?r be the min imum number  o f  e x e squares [a, a + e] x 
[b, b + e ] ,  a, b c R  which cover (3. Lemma 4.1 below shows that N * ( e )  can be 
used in the calculation o f  d im(G) .  
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Lemma 4.1. ?r  V 0 < e < l .  

Proof.  Clearly, X ( e ) - < N * ( e ) .  
We introduce a third class o f  covers: a cover ~ o f  G will be called an 

e-nonoverlapping cover of G if it consists o f  e • e squares with nonintersecting 
interiors o f  the form [ k e , ( k + l ) e ] x [ y , y + e ]  where k~{O, 1,...,[[1/e]]} and 
y c R .  

Clearly, X**(e )  -< 2X(e ) .  I f  ~ is a minimal e -nonover lapping  cover o f  G then, 
since G is the graph o f  a cont inuous  function,  cr is also an e -co lumn cover o f  
G. Then N * ( e )  <- N**(e)  -< 2N(e) .  �9 

Hencefor th  we only consider  e-column covers and we write 2f(e)  for N*(e) .  
Let A = ( A 1 , . . . ,  AN) be the attractor for W = (CoW~). Then G = [--J~l Ai and 
Ai is the por t ion of  G above Ji = [xi_~, xi]. Let N,(e) = min{ICl: C is an e-column 
cover of  G} for i =  1 , . . . ,  N. 

Lemma 4.2. There exist Pi, Qi > O, i = 1 , . . . ,  N, such that for 0 < e < 1. 

Proof. I f  c~ = 0 then A~ is a line segment and we may choose P~ and Qi propor-  
tional to the length o f  this line segment. 

Now suppose c~ ~ 0, then w~ is invertible. Let cr be a minimal e -co lumn cover 
o f  A~ and let R be a typical co lumn R in ~g~ which consists of  n e • e squares. 
Observe that w~-~(R) is a paral lelogram which can be covered by 

squares o f  sides e/lad as shown in Fig. 7. Since there are at most  21a~l/e+2 

I 
_!_ 

w i l  

J 

L 
c i 

b i 

Fig. 7 
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columns in ~r we can find an e/[ail-cover ~ of  Y~j~,( o Aj such that 
o 

Let ~j consist of  the squares m @ which meet Jj x R = [Xj_l, xj] x R. Then @j is 
an e/lail cover of  Aj and hence I~jl -> N~(e/la, I). Now if q = II( i)  I and M = 
maxx~to,ll If(x)l then we have 191->2,~,.)I~j1-2q(2M/e + 1) (for we double 
count at most two columns at each of the q -  1 points of  xj). Combining the 
above results yields 

Ni(e ,>-  ~ii ( [ ~ I - 2 ( L ~ + I ) (  ~ + 1 ) )  

Nj - - -  
J 0 e 

for 0 < e < 1. Here 

The upper  bound follows in a similar way except that now we apply w~ 
to a minimal e/la~[-column cover of  Aj for j e  I ( i )  to get an e-column cover 
of  A~. �9 

We proceed by induction on (**), however, to get the induction started we 
need the following lemma. 

Lemma 4.3. I f  A = p ( C S ( 1 ) ) >  I and there is some k ~ { 1 , . . . , N }  such that 
{(xj, yj): Xj ~ J'k} is not collinear, then lim,_.o e N d ( e ) = ~ f o r  i= 1, 2 , . . . ,  N. 

Proof. From the noncollinearity of  the interpolation points above J~ and the 
irreducibility of  the connection matrix C it follows that A~ is not a line segment 
for i ~ { 1 , . . . , N } .  Thus we can find points Pi(ai, fli), Qi(al ,  fl~), R(a",,fl '~), 
t~ < a l <  a,", on the graph of f which are not collinear and which are in the 
interior of  Ji x R. Let 

\ a , " -  a J  

as shown in Fig. 8. Let ~ = m i n { l a l ! - a ~ + l [ : i = l  . . . .  , N - l } > 0 .  Let v =  
(v~ . . . .  , vN) be a strictly positive eigenvector of  CS(1) with eigenvalue A such 
that v~ -< s~ for i = 1 , . . . ,  N. S ince f  is continuous we must have N~ (e)  >- s~/e >- v~/e. 
Let a = min{lakl: k = 1 , . . . ,  N}. It follows from A~ = [._Jj~(:) w~(Aj) that if e < Ba 
then 

Ni(e )  >-[ci sj e >- vj = - (CS(1 )v ) i  = - vi. 
\ j ~ l ( i )  / /  e j ~ l ( i )  E E 

An induction gives Ni(e  ) ::" An(v i l e )  which proves the lemma. �9 

Now back to (**). I f  A = p ( S ( 1 ) C ) >  1 then there is a unique D >  1 such that 
p ( S ( D ) C )  = 1. Let v be a strictly positive eigenvector of  S(1)C with eigenvalue 
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Qi  

Pi ~ R i  

(Xi_ 1, Yi_l ) 

a I 

o(Xi,V i) 

Ji-1 Ji Ji+l 

Fig. 8 

A and let w be a strictly positive eigenvector of S(D)C with eigenvalue 1. Choose 
P > 0 and Q > 0 so that Pvi >- Pi and Qv~ - Q~ for i = 1 , . . . ,  N. Then (**) becomes 

- P e  <- Ni(e)<- ~<,) e" 
jcl(i) j~ " 

We first consider the system of functional equalities associated with (***): 

gi(e)= ci j~ici g j +R for i = l , . . . , N  

which, we can verify, has the system of solutions 

R 
~i( R,  T, ~') = "zs-Dwi + 8-1/9i for i = 1 . . . .  , N, 

1 - A  

where y is an arbitrary constant and R will either equal Q or -P .  Pick 3'1 large 
enough so that 

N,(e)-< ~,(Q, 3q, e) 

for i = l , . . . , N  and a<-e<- I  where, as before, a=min{la~]: i = 1  . . . .  ,N} .  If 
a a -  < e -< a then a -  < ~/la, l-< 1 so by (***) 

for i = 1 , . . . ,  N and a a -  ~ e -- 1. It follows by induction that 

N~(e) < - g,~(Q, y~, e) 
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for a"a-< e-< 1, n = 1 , 2 , . . . ,  and since a < l  this must hold for 0 < e - <  1. Thus 

log q~i (Q, yl,  e 
i 1 

dim(G) -< lim - max{D, 1}. 
~ o  log( l /e )  

Assume now that the hypotheses of Lemma 4.3 are satisfied. Let e0 be small 
enough so that e N i ( e ) > ( R / ( 1 - A ) ) e - l v i  for e < e o  and all i = 1 , . . . ,  N. Then 
we can pick 3'2 > 0 such that 

N, (e )  >-~i(Q, 3'2, e) 

for aeo -< e -< eo. As for the upper bound, we use (***) to show that 

Ni (e )  >- r  3'2, e) 

for 0 < e < eo and hence 

dim G = max{D, 1} =/9. 

If  {(xj, yj): xj ~ J~} is collinear for all i = 1 , . . . ,  N, then G consists of a finite 
number of line segments so that dim G = 1. 

Since G is the graph of  function we must have dim G-> 1. In general we have 
dim G-<max{D, 1}. If  h -< 1 then D_< 1 so that dim G = 1. �9 

5. Examples: Julia Sets, Boundaries of IFS Attractors, 
Fractal Interpolation Functions, etc. 

5.1. A Julia Set Example  

Let T: ( 2 ~ C  be defined by T z = ( z - h )  z where h e R  is a parameter such that 
0.75 < A < 1.25, and where C = C u ~.  Let w+ and w_ denote two branches of the 
inverse of T, defined so that w+ lies in the upper half-plane union the positive 
real axis and w_ lies in the lower half-plane union the negative real axis; that is, 
i f z = A + F e  i~ with 0<- 0~<2zr a n d F > 0 ,  then 

w+z = ~ e ~~ and w_z = x/F e'~ 

Let 6 denote any sufficiently small neighborhood of the pair of points 
5 {h +�89177 +~}, which is the attractive two-cycle for the map T for 3<A <a, see 

[BGH], for example. Let K = C\~. Then {k, w+, w_} is an IFS. Although as it 
stands, with respect to the Euclidean metric in C, this IFS is not hyperbolic, it 
does possess a unique attractor; and, because the critical point of T does not lie 
on the attractor of the IFS, it is possible to treat the system essentially as though 
it were strictly contractive: that is, there exists a metric such that the Collage 
Theorem applies. 

The attractor for the IFS is the Julia set J for T. It looks something like Fig. 
9. J is characterized by J = w+(J) w w (J) ,  as promised by Corollary 2. Note that 
w+ applied to J yields the part of J which lies in the upper half-plane, w+ unwraps 
the set about zero, cut along the branch cut, so that it lies in the upper half-plane, 
then shifts it to the right by one bubble. The attractive two-cycle resides in the 
interior of  the two shaded bubbles. 
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Fig. 9 

Suppose we are interested in computing and studying not the whole of  J, but 
only the boundary of  the two-cycle. Then we need to consider the recurrent IFS 
whose diagram is shown in Fig. 10. This follows from Theorem 3.4 and its 
corollaries once we notice how the boundary of the two-cycle is mapped  into 
itself (Fig. 11). 

Another example of  this type concerns the attractive three-cycle which exists 
when A = 1.75 or thereabouts. When T admits an attractive real three-cycle, there 
exists a part  of  the Julia set JR = J c~ R, which contains cycles of all orders and 
is what is referred to by Li and Yorke [LiY] in their celebrated paper  "Period 
Three Implies Chaos." It is possible to consider the closure of  the analytic 
continuation of  this set of  cycles to all values of  A: JR is the attractor for the 
recurrent IFS (Fig. 12), see [BGH],  for example. Many examples involving 
interesting pieces of  Julia sets may be constructed. 

5.2. Boundaries of Attractors of IFS 

A current problem in standard IFS theory is how to calculate the fractat 
dimensions of  boundaries of  IFS attractors. Here we illustrate by means of an 
example that the recurrent theory provides a key to this problem. 

Let K c R 2 be a large bounded disk, and consider the IFS {K, Wl, w2, w3} 

Fig. 10 



Recurrent Iterated Function Systems 25 

~ ~  A = w+(C) 

t . . . . . . . . . .  . . . .  . . . .  . . . . . . . . . . .  

Fig. 11 

where each wi is a simili tude,  

/ c o s  0 , - s i n O i ~ ( x ' ~  (ai) 
wi(X~=si~sinOi cosOi /~y/  ~l- \ y /  bi ' 

0 < s~ < 1, 0 < 0~ < 2~r, a~, bl s R, i = 1, 2, 3, chosen as i l lustrated in Fig. 13. 

wl(A)=A, Wl(C)=B, w~(E)=F, 

w2( A ) = C, w2( C ) = D, w2(E) = B, 

w3( A ) = E, w3( C ) = F, w~( E ) = D. 

It is shown in [ B E H M ]  that  at tractors of  such IFS are connected.  Let S denote  
the attractor.  It  is " just  touch ing"  and self-similar.  

Remark. The fractal d imens ion  D of  S is the same as its Hausdor f f -Bes icovi tch  
d imens ion  and is given by solving s~~ ~  1. I f  s~ = s2 = $3 =1, then D = 
(log 3) / ( log  2) and S is a Sierpinski gasket. 

We are concerned  with the character izat ion and  fractal d imension  of  the outer  
bounda ry  oS of  S, namely  the bounda ry  of  the c o m p o n e n t  of  the complemen t  
o f  S which contains 0. When  sl = s2 = s3 = �89 and S is a Sierpinski gasket,  aS is 
just  a triangle. In general  it is more  complicated.  

The point  to realize abou t  outer  boundar ies  of  IFS attractors is w[l(OS)c S 
for  each i; that  is, all points  on the outer  bounda ry  " come  f r o m "  the outer  
bounda ry  under  the 1FS maps.  This suggests that  we may  somet imes  be able to 
find a combina tor ia l  IFS descr ipt ion of  the boundary ,  as we can in the present  case. 

Fig. 12 
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Fig. 13 

Let A B  denote the part of  ,9S connecting A to B (via points whose codes 
commence with 1), B C  denote the part of  aS connecting B to C (via points 
whose codes commence with 2), and so on. Let A C  denote A B  w BC, CE = CD 

DE, and E A  = E F  u FA. Then we observe that 

EQ = wl (EA)  u w3(AC) ,  

A C  = w~(AC) u w2(EA),  

CE = w2(AC)  u w3(EA). 

Let H 3 = H x H x H, where H is the collection of nonempty compact  sets in K. 
Then the recurrent IFS corresponding to aS can be represented by W: H 3--> H 3 

given by 

W =  

(w 
W2 W1 . 

W 3 W2 

OS is then the projection of  the attractor (which lies in three planes) onto one 
plane, as symbolized in Fig. 14. This produces the whole of  aS. Notice that the 
IFS is not recurrent, strictly speaking, when viewed as a process in one copy of 
K:  the process would then leak away via EC. However, the part of aS given by 
OS~ = A E  u A C  is recurrent in the sense of  Section 2; we can get from any section 
of OS~ to any other by following the maps w~, w2, and w3 in the right order. OS~ 

is the attractor for the recurrent IFS {K, w~, w2, w3} corresponding to a directed 
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~ ' E ' w3 

K ' 

Fig. 14 

graph of the form shown in Fig. 15. If w4 = wl, and if Po is the conditional 
probability of applying map j given that map i was applied at the previous step, 
then the transition matrix has the structure 

0 P23 P24 [p: 0 0]' 
0 P43 P44 

where the pig'S are nonzero. 
Clearly, the fractal dimension of OS is the same as that of 0S1, because OS is 

the union of oSI with two attine images of sections of OSa, such that the intersec- 
tions of these pieces are of fractal dimension zero. The fractal dimension of 0S1 
can be computed using the theory of Section 4. We give a sketch of the main 
argument here. Note that OSI is made of four pieces: 

E 

OS~= r ~  ,,. = a ~  c A B u B C u E F u F A .  

Fig. 15 
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Let N(e)  denote the minimum number  of  disks of  radius e > 0 required to cover 
oS~; and let NAB(e) (resp. NBc(e), NFe(e), Nt:a(g)) denote the minimum number 
of  disks of  radius e > 0 required to cover AB (resp. BC, FE, FA). Then approxi- 
mately 

NFA(e)  = NFA(e/SI)  + NFE(e/S1),  

Nt:e(e) = NAB(E/S3) + NBC(E/S3), 

NBc(e) ~-- NFA(e/s2)+ NFE(e/s2), 

NAB(e) ~-- NAn(~/sO + NBc(e /s l ) .  

I f  now we make the ansatz NAn(e) ~ aAne -~ NBc(e)~  aBce -~ and so on, then 
we find 

aFA = (aFa + aj:E)sl ~ 

aFE = (at:a+ anc )S D, 

abe = ( at:A + aFE )sz ~, 

aAB =- (aAB + aBc)s ~ 

The fractal dimension D is given by finding the unique solution 
(aFA, aFE, aAB, anc, D)  of  this set of  equations with all components positive. To 
say this another way, D is the unique positive number  such that the matrix 

i s~ o o11 ,  
0 s3 ~ 1 0 

0 0 s~ ~ 0 1 

has eigenvalue one corresponding to positive eigenvector 

(aFA, ale, aBc, aAB) +. 

Notice that if s~ = s2 = s3 = �89 then the solution is at:A = aF~ = anc= aAB = 1 and 
D = 1. We independently confirm this result by noting that the classical Sierpinski 
gasket has outer boundary equal to a triangle. 

5.3. Two Computer-Graphical Examples 

Example 1. The four images shown in Fig. 16 correspond to a single recurrent 
IFS on H 4 = H x H x H x H where K is a rectangle in the Euclidean plane, and 
H is the nonempty compact  subsets of  K. 

Example 2. T h e  "opposed-al ternate"  and "al ternate-opposed" fern images 
shown in Fig. 17 were constructed with the aid of  the recurrent IFS Collage 
Theorem. 
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I ~  ~ I ~ ~ .  #~. I I ~ _ ~ ~ ~ i  

f 

C ~.~ 
%.. 

Fig. 16 

..... ~ :~ i  ~ :~'~'. ~'~- 

~ . .~, J " , ~ . - ~ i  

�9 , . "  �9 

�9 ~ . ' .  

�9 "~'~.~,~.~-~': 

U % 
Fig. 17 
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W 1 1 ~ i  (X3 'Y3) i 

r ' , 
I I 
I I 

(Xo'Yo) 
w w 3 

Fig. 18 

5.4. Recurrent Fractal Interpolation Functions 

We work, for example,  in R 2. Each map is o f  the special form wi : R 2--> R 2, 

a i 0 x e i 

and nonl inear  generalizations o f  this structure, ai, bi, c~, ei, f~ are real constants. 
We choose lad < 1 and Icil < 1, as in [B]. A typical recurrent structure associated 
with a set o f  interpolat ion points (x~, yl), i = O, 1 , . . . ,  N, with xo < xl <"  �9 �9 < xN, 

Fig. 19 
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is symbolized in Fig. 18. 

wl ( xo, Yo) = ( Xo, Yo), 

wi(x2, Y2) = (xl, YI), 

w2(xo, Yo) = (x2, Y2), 

wz(x2, Yz) = (x3, Y3), 

Wa(X2, Y2) = (x4, Y4), 

w3(x4, Y4) = (xs, Ys), 

w4(x2, Y2) = (x1,  Yl), 

w4(x4, Y4) = (x2, Y2), 

W5(X6, Y6) "~" (X6, Y6), 

ws(x4, Y4) = (x4, Y4), 

w6(x4, Y4) = (x4, Y4) 

W6(X6, Y6) = (X3, Y3)" 

The corresponding directed graph is shown in Fig. 19. The attractor of such a 
recurrent IFS is the graph of a function which passes through the interpolation 
points. 
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