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The Paradox of Two Bottles in Quantum Mechanics 
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A class of  retrospective measurements analogous to the "delayed choice 
experiments" of Wheeler and Greenberger is considered. A new argument shows 
that the reduction of  the wave packet must affect the past states of the system. As 
a side product, our argument implies that the axiom about the reduction of the 
wave packet in relativistic space-time cannot be consistently introduced. 

1. INTRODUCTION 

With few exceptions, (1-3) the axiom about the reduction of the wave packet 
in quantum mechanics has been formulated in abstract terms, devoid of 
space-time aspects. (4-7/ In attempts at including the reduction postulate 
into relativistic theory, the main complication was the Einstein- 
Podolsky-Rosen paradox (EPR). (8'9) In recurrent discussions of EPR, 
interest has been focused on correlations and distant consequences of a 
local measurement. (1°-13) The consistency of quantum theory could be 
saved by proving that EPR does not allow one to transmit information at 
distance. (see, e.g., Ref. 14). Yet, some fundamental questions persisted 
(e.g., Refs. 15-22). A quite new challenge was Wheeler's idea of the 
"delayed choice experiment ''(23 25) in which the reduction is retrospective. 
i.e., affects the past states of a system. Below, we shall discuss more situa- 
tions of the same kind. Our point of departure is a transformed version of 
the "delayed choice experiment" described by Greenberger (24) (see also 
Greenberger and Ya Sin(Z5)). However, we focus attention on its different 
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aspects, which apparently evaded attention in the previous papers. We 
think our arguments show a fundamental flaw in the reduction axiom, at 
least in its present-day form. 

2. ONE PARTICLE IN TWO BOTTLES 

We shall stick to the orthodox idea that the reduction is an instan- 
taneous act that concerns the wave function of a microparticle all over the 
space (otherwise, it would make little sense to attribute the meaning of the 
localization probability to the square of the wave function 0+(x)  O(x)). 
Thus, given a wave packet composed of several space-separated com- 
ponents, the certainty that the particle is actually in one of them reduces 
simultaneously the other components to nonexistence. We shall, moreover, 
adopt the doctrine that the particle presence in one of the wave packet 
components can be verified indirectly, e.g., by checking its absence in the 
other components (Dicke(26/). In relativistic theory, the instantaneous 
character of the reduction means that the "collapse phenomenon" affects 
the particle state all over a certain three-dimensional space-like hyperplane 
in the four-dimensional space-time (if not, all the discussions concerning 
the EPR paradox would be pointless.) Until now, it is also believed that 
the reduction concerns only the state of a micro-object after the measure- 
ment and does not alter its past; however, this is precisely the point which 
we would like to discuss. To do this, we shall consider a somewhat 
exagerated but not impossible physical situation (generically, a kind of 
grotesquely distorted version of Greenberger's experiment(24~). 

Imagine a micro-object (e.g., an atom) in a container composed of two 
bottles. Suppose that at the begining (i.e., below a certain space-like hyper- 
plane denoted by Z'past) the bottles are joined by their necks and the wave 
packet of the micro-object is spilled smoothly all over their common inte- 
rior. Then a double partition is introduced. Next the bottles are neatly 
sealed and separated (so that the micro-object could not escape) and 
then transported carefully (lest the coherence be affected) to two widely 
separated places, for instance, two corners of our Galaxy (I don't dare to 
imagine a technology, but such a coherent transport is not fundamentally 
impossible; cf. recent works on the Berry phase(~7)). There, the bottles 
remain sealed for a long time, the wave packet of the micro-object being 
divided into two distant, coherent parts: ~ = ~A + q~S" Many epochs later, 
an experimenter in one of the Galaxy corners opens one of the bottles 
(e.g., the bottle A) and finds that it is empty. How does this affect the wave 
function of the micro-object? 

According to the orthodox philosophy, the answer to our question is 
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simple. Once one of the bottles is opened, the whole wave packet becomes 
reduced. Finding the bottle A empty is strictly equivalent to finding the 
particle at the other end of the Galaxy, and hence, the whole state is 
similtaneously reduced to the distant component q)8. (Conversly, were the 
micro-object found in the open bottle, the distant component would 
simultaneously disappear.) As happens in EPR arrangement, this conclu- 
sion does not involve any faster-than-light transmission of a message. 
However, we would like to turn our attention to a different circumstance. 

The concept of simultaneity in the Minkowski space-time is not 
unique. If the absence of the micro-object in the bottle A has been verified 
by an inertial observer, it means that the wave packet has been reduced (to 
its component @~) on a certain spacetike hyperplane X1 (see Fig. 1). 
Denoting by A 1 and B1 the intersections of ZI with the world tubes A and 
B, this is equivalent to saying that the micro-objects was found absent on 
the intersection A~ while present on B1. The consequences do not end here, 
however. Once its absence on A~ has been verified, the micro-object has to 
stay absent on all tube intersections above A1 (the repeatability of the 
measurement!). Moreover, it seems obvious that the absence of the 
microsystem cannot depend on the Lorentz transformations. Thus, should 

< 
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Fig. L Retrospective reduction: The certainty that the 
particle was absent on the intersection A1 of the world tube 
A permits one to show that it had been present with 
probabilities 0 and 1 on the sequence of intersections A~, 
A2,... and Bz, B2,..., respectively. 
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another (moving) observer look into the same bottle (above $1), he must 
also find it empty with the probability 1. This immediately implies that the 
packet has been reduced not only on Z'I but on a much wider family of 
spacelike hyperplanes, all of which intersect the tube A above' A 1 . Let S'1 
be one of them; suppose it intersects the tube A above A I and B below B~. 
As the absence of the micro-object is certain on the intersection 
A'j = A c~ Z'], its presence is, henceforth, proved on B' 1 = B ~  Z" 1 (and on the 
whole B tube above B'~). By choosing, in turn, a hyperplane Z" 2 intersecting 
B above B'I but A below A~, we cannot refrain from concluding that the 
state of the micro-object has been reduced on $2 as well: The object is now 
certainly present on B2, and so, certainly absent on A2. 2 By iterating the 
argument, one comes to the conclusion that the reduction must affect not 
only the state on £'~ but the whole past of the micro-object: thus, the 
micro-object was truly in the bottle B from the very beginning, i.e., from the 
moment  of the separation o n  ~V'past. The component  0A of its wave packet 
has never existed, although the check was not yet done. 

In a way, this conclusion is logical. Since the bottles were sealed, one 
is tempted to believe that the presence of the micro-object in the bottle B 
at the moment  of the final test means that it has always been there. As in 
EPR, the "retrospective reduction" does not imply the transmission of a 
message into the past. (Indeed, in order to check whether the components 
~gA and Oe conserved the ability to interfere, the observer on the spacelike 
Spast would have to open the bottles, henceforth spoiling the reduction 
process to be performed on S~). 

On the other hand, our conclusion is difficult to accept! An idea of a 
superposed state (wave packet) in which all components exist and all alter- 
natives are potentially present until the very end is very deeply incrusted 
in the philosophy of quantum theory. Suppose a theoretical physicist living 
in our space-time somewhere around the spacelike hyperplane Xpas~ presen- 
ces the preparation of the micro-object state. He checks carefully all the 
conditions assuring that the micro-object wave function indeed fills the 
common interior of the joined bottles. He then checks the act of splitting 
and shipping the bottles, and he sees that, in agreement with all known 
criteria of laboratory art, the coherence between both components of the 
wave packet was never spoiled. As is well known, the state of a micro- 
object is uniquely defined by the preparation (and the preparation cannot 

2 At this moment one might formally object that the indirect reduction mechanism of Dicke 
type (26) cannot be iterated. However, the argument seems rather weak. Indeed, if the wave 
packet of our micro-object were reduced on £''1:0'1 = 0'~B, but not on 2"2: ~'2= ~'2~ + ~'2B, 
then the microobject would be present in the bottle B with certainty in the eyes of one 
inertial observer (associated with 2"]), but only with probability 1/2, shortly afterwards, 
in the eyes of another observer, which seems rather unphysical. 
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include the reduction act on Z1 which is still epochs away). Is'nt our 
theoretician entitled to infer that the micro-object in the two bottles is in 
a pure state 0 = 0A + ~ ?  Moreover, he might be very easily right! The 
future cannot be predicted. Should the experimenter on Z1 fail to be born 
or forget to open the bottle, the state of the micro-object actually would 
conserve coherence, and so it would remain superposed over all the future 
spacelike sections! We thus arrive at a certain "blind spot" of quantum 
theory: No state (neither pure nor mixed) can be assigned to the micro- 
object in the pair of bottles on the basis of the preparation procedure 
alone, without knowing a distant future. This might seem an exceptional 
situation, due to artificially prepared circumstances, but we think it is not. 
Indeed, we shall show that all the elements of the two-bottle paradox exist 
as well in the traditional EPR arrangement. 

3. TWO-BOTTLE ASPECT IN THE EPR EXPERIMENT 

Let us consider again the polarization variant of the EPR experiment 
described in Ref. 9. Suppose a source emits two photons of correlated 
(opposite) polarizations in two opposite spatial directions, so that the 
polarization state of the photon pair defined as (9'11) 

1 
~ = - ~  ( I T ) I ~ ) - I ~ Z >  IT)) (1) 

,/2 

To simplify considerations, we shall neglect the wavelike propagation 
of the photons and assign to them two null world tubes A and B in 
Minkowski space-time (see Fig. 2), as if they were two classical particles 
endowed with quantum polarizations. This picture is justified if the 
photons propagate in a wave guide or optical fiber in the form of finite field 
pulses3 28) (It neither seems incorrect in empty space-time if the photons are 
not exactly monochromatic and their emission time is finite. The photon 
wave function is then between two finite wave fronts expanding with 
velocity c, and the part arriving at the polarization analyzers is additionally 
limited in the angular space, thus marking two null tubes in the Minkowski 
space-time). 

Suppose now that far from the source, in a distant future, the polariza- 
tion of the left photon is measured on the intersection A1 of the tube A 
with a spacelike hyperplane X1 (where 221 is the simultaneity hyperplane of 
the inertial observer holding the polarization analyzer). Assume the 
polarization of the left A photon is found to be I1" ). Then the simultaneous 
polarization of the right B photon is decided into I--' ) (on the intersection 
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Fig. 2. The retrospective reduction of the photon polarizations in 
the Bohm-Aharomov variant of the EPR experiment. 

B1). Now remember that the photon polarization is Lorentz invariant (for 
the class of Lorentz frames moving parallel to the photon propagation). 
Hence, the polarizations of both photons turn out to be defined for a wider 
class of observers: They become fixed on any spacelike hyperplane intersec- 
ting the A tube above A~ or the Btube above B1. By choosing now a 
sequence of hyperplanes Xj and _r}, as indicated on Fig. 2 (analogous to 
the system of hyperplanes of Fig. 1), and using only the argument that, 
whenever the polarization of a left photon becomes certain on a spacelike 
hyperplane, the polarization of its right-hand counterpart becomes certain 
too, one can show by induction that the polarization state of the photon 
pair has been reduced on the sequence of the hyperplanes X 1, 22'1, X2, 
X~,..., reaching arbitrarily deep into the past. 3 If so, the state of the photon 
pair has also been reduced immediately after the emission act, long before 
the measurement was performed. Should a source emitting an ensemble of 
many photons be activated on the ~£'past plane, it might create only a mixed 
ensemble of the photon pairs, even if all known conditions assuring the 

3 The conterargument might again be attempted that the reduction mechanism does not 
permit iterations; but this argument fails for the same reason as in Sec. 2, i.e., due to the 
impossibility of a consistent construction of a wave packet below Xt. 
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coherence were carefully observed! This conclusion curiously coincides 
with the hypothesis that the collapse of the wave packet is caused by the 
very separation of the quantum system, (29 32) but it is hardly acceptable 
otherwise. Indeed, should the observer on X1 fail to perform the measure- 
ment, the state of the photon pair would still be coherent! Once again, we 
are in a blind spot of the doctrine; no quantum state, either pure or mixed, 
can be assigned to the photon pair without the prior knowledge of the 
future! One of the important pillars of quantum philosophy is thus shaken: 
the conviction that the system preparation defines the system state. 

The above conclusion is only a part of the trouble. Imagine, in turn, 
that two polarization measurements are performed on X~: one on the left 
side, which ask the left A photon to choose between the polarization states 
I]') and t-~ ), and the other, on the right side, which ask the B photon to 
choose between the states I \  ) and I/~ ). This kind of measurement is 
sometimes discussed as one for which the definition of the reduced end 
state presents an ambiguity. This seems not to be the case, not at least if 
the state of the photon pair after both measurements is considered. One 
just has to remember that the polarization observable is not protected by 
any conservation law and can be perturbed during the act of measurement 
(an example is the simple transition of a photon through a Nicol prism). 
The two-sided polarization check on XI, when the polarization directions 
measured on both sides are incompatible, is precisely one of the tests which 
do not conserve the total polarization of the system. The end state obtained 
after the measurement, however, is no mystery: It is one of the four reduced 
states [T) [ /~ ) ,  L T ) I ~ ) ,  [ ~ ) l / ~ ) ,  and I - - * ) l ~ ) ,  with probabilities 

1 2, 1 ½ l ( ~ l / ' ) l  2, ½ l ( ~ ] ~ ) l  2, ~l(1"l.~)l and 5 1 ( ~ [ " a ) [  2, respectively 
(some wider aspects of the joint probability distribution were recently 
discussed in Refs. 33 and 34). The difficulty starts when one tries to 
reconstruct both photon states below the hyperplane _r~, applying con- 
sistently the reduction axiom. To fix the attention, suppose the two-sided 
measurement has detected the polarization ~ of the A photon and /" of the 
Bphoton.  Then consider again the situation on the sequence of hyper- 
planes Z:j, Z'}. For the inertial observer of the hyperplane X'  1 the only 
measurement already done is that for the left photon: Henceforth, the state 
of the photon pair on X'~ should be reduced to I]') [ ~ ), and so the state 
of the right photon becomes I ~ ) everywhere in the B tube above the sec- 
tion B; and below B 1. By repeating the argument as before, we conclude 
that the polarizations of both left and right photons are reduced to l q" ) and 
[~  ) on the sequence of the left and right intersections A 1, A2,..- and B1, 
B2 .... retreating arbitrarily deep into the past. This result contains already 
a germ of desaster, due to its obvious asymmetry. In fact, by constructing 
an analogous sequence of hyperplanes starting from the B tube instead of 
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the A tube, one can infer that the polarizations of both photons have been 
reduced to 1 \ ) and [ ~/)  on another sequence of intersections of A and B 
tubes. These two implications cannot hold simultaneously. Indeed, an open 
contradiction is obtained by noticing that nothing forbids the intersections 
B I and A2 to be space separated. If so, there can exist a bundle of spacelike 
hyperplanes {Z'~(} intersecting the B tube above B 1, such that the inter- 
sections A j = A c ~ N ; ;  cover A2 completely (see Fig. 3). By virtue of the 
polarization test performed on B 1 , the polarization state of the left photon 
on any intersection A;( has to be ]~, ). However, by tracing the reduction 
acts subsequently on the hyperplanes 27'i and -r 2 (i.e., along the way 
A1 ~ B 2 ~  A2), we have already shown that the polarization state on the 
intersection A2 has to be 1"~ ). Due to the invariance of the photon polariza- 
tion with respect to the Lorentz transformations mapping 27 2 on ~Vj(, both 
statements cannot be simultaneously true. Thus the orthodox reduction 
postulate leads to a self-contradiction in Minkowski space-time. 

Observation t. It seems that the above inconsistency admits no sim- 
ple solution in the spirit of the "semantic diplomacy" of the Copenhagen 
schooU 6) Indeed, in the arrangement of Fig. 3, all the external macroscopic 
conditions around the system, both in the past and in the future (i.e., the 
system preparation on ~past and the kind of the measurement to be perfor- 
med on )2~), are carefully fixed. Yet, the system state between "~past and 2;~ 
eludes any definition consistent with the rules of quantum mechanics. (In 

ft) I-9 

Fig. 3. The inconsistency of the reduction postulate in the 
Minkowski space-time. On the segment of the world tube A 
covered by the hyperplanes r~,  the polarization of the left 
photon has to be [ ~, ) with probability 1, but simultaneously 
it has to be I~) with probability t. 
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alternative terms: The manual (35~ exists, but no quantum state can be con- 
structed.) Not even the confidential information about the future output of 
the polarization measurement on S 1 can help: we still continue without the 
possibility of assigning to the photon pair in between •past and 221 any 
polarization state, either mixed or pure, either straight or obligue! 

Observation 2. A deeper option in answering the puzzle is that one 
cannot, anyway, assign a quantum state (pure or mixed) to a single quan- 
tum system (in this case, to a single photon pair), since the states are 
meaningful only for statistical ensembles. (36) Let us therefore recall that the 
only reason why the reduction postulate was accepted is that it permits us 
to explain the stability and repeatability properties of each single result of 
measurement (including the simultaneous observability of the same macro- 
scopic effect in the eyes of many independent observers; see discussions by 
A. Shimony, (37~ p. 767 and H. Primas, (38) Chap. 3.5, p. 123). These facts can 
be explained only if one assumes that each single quantum system jumps to 
one of the possible eigenstates of the measured quantity. Should this state- 
ment be dropped or weakened, the whole explanation is nullified. Thus, the 
reduction postulate leads to an absurdity precisely in the only case which 
might be of physical interest! 

4. CONCLUSIONS 

There are two possible conclusions to be derived from our paradox. In 
the first place, one might infer that the very concept of the quantum 
mechanical state vector (or density matrix) is an element of a rather incom- 
plete "predictive game," much more fragmentary than originally sup- 
posed. (6) There may be situations where the macroscopic conditions 
around the system (i.e., the system preparation and the type of measure- 
ment to be performed) are specified, and yet, the game of constructing the 
"quantum state" is frustrated! While such a solution cannot be a priori 
rejected, the good applicability of the orthodox theory does not seem to 
point in this direction. 

We thus suspect that the whole quid pro quo lies rather in the reduc- 
tion axiom. Without dismissing too quickly some less naive versions, we 
think, however, that our paradox might be a final coup de grace for that 
idea. What truly happens during the measurement most probably is a loss 
of coherence between the superposition components, rather than the disap- 
pearance of some of them. (39 43) The assumed "collapse" of the wave packet 
might be a sufficient but not necessary condition to explain the persistence 
of the visible macroscopic effects. The problem of an alternative explana- 
tion might be one of our best hints leading beyond the present-day 
quantum theory. 
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