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We discuss the profound inJTuenee which the Wigner distribution function has 
had in man), areas of physics during its fifty years of existence. 

1. INTRODUCTION 

Among the many great achievements in theoretical physics associated with 
the name of Eugene Paul Wigner, one must surely include his seminal work 
on distribution functions. His initial paper on this subject (1) appeared in 
1932 when he was thirty years old and thus perhaps it is appropriate that we 
celebrate the 50th anniversary of this paper in conjunction with Eugene 
Wigner's own 80th birthday. 

This paper was written shortly after Wigner arrived in the U.S. in 1930 
and, to my knowledge, (2) it is the first paper which he published in English 
and also his first paper in the American Physical Review. It bears the rather 
innocuous title "On the Quantum Correction for Thermodynamic 
Equilibrium," which belies the profound influence it has had on many 
aspects of physics. The notable feature is the range of its impact: from the 
insight it has provided to investigators of fundamental problems in 
theoretical physics to its usefulness as a calculational tool in such diverse 
areas as statistical mechanics, condensed-matter, gravitational-wave 
detection, optics, nuclear physics, and communication theory. Since the 
present author is currently participating in the preparation of a detailed 
review (3) on the Wigner distribution function (WDF) and the many 
ramifications associated with it, our present approach will simply be 
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confined to a "broad-brush" attempt to identify some of the major 
benchmarks associated with progress in this area over the last fifty years. 
Thus, in particular, we will not discuss the plethora of applications nor the 
fascinating connection between the WDF and distribution functions in 
quantum optics, which--among other things--will be discussed at length in 
our forthcoming review. 

In Section 2, we will discuss the Wigner distribution function and its 
properties as well as mentioning extensions which treat spin, statistics, and 
relativity. Section 3 will be concerned with some of the many other 
distribution functions which the WDF has essentially spawned. In Section 4 
we consider the relevance of the WDF to some fundamental questions in 
quantum mechanics, such as the relationship between classical and quantum 
mechanics, and whether or not the "correct" relativistic equation for 
elementary particles should be inherently nonlocal. Finally we point out that 
some basic questions which have been considered by other techniques are 
more naturally treated--and with a concomitant increase in physical 
insight--by WDF techniques. By way of example, we consider the so-called 
two-photon coherent states. Another example is concerned with a new inter- 
pretation which was proposed for the scalar product in Hilbert space, with 
an attendant suggestion of a generalized notion of measurement. 

2. THE WIGNER DISTRIBUTION FUNCTION (WDF) 

It is widely accepted that one of the most powerful and elegant 
approaches to classical mechanics is via the concept of phase-space. Thus, 
for example, a particle may be described by a classical phase-space 
distribution function Pcl(q,P) where q and p denote its position and 
momentum, respectively (restricting our discussion to one dimension since 
generalization to three dimensions is straightforward). Since Pc~(q, P) is the 
probability that a particle simultaneously has position q and a momentum p, 
it follows that the average of any function of q and p, A(q, p) say, may be 
written 

;2 ( A ) =  dq dpA(q,p)P,t(q,p) (1) 

In quantum mechanics, by contrast, the uncertainty principle states that 
we cannot simultaneously know the position and momentum of a particle. 
Instead, one deals with a wave-function v(q), and its Fourier transform O(p), 
where [v/(q)[2 gives the probability of finding the particle at position q and 
[0(p)[  2 gives the probability that the particle has momentum p. In 1927, soon 
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after the introduction of quantum mechanics, it was realized by both Landau 
and von Neumann that an even more fundamental quantity than the wave- 
function is the density matrix fi (we will designate all operators by ^). By use 
of/3 one can write the average of a function of the position and momentum 
operators, ~{(c~, ~6) say, as 

(.4) = Tr(Afi) (2) 

Part of Wigner's great contribution was to shown that (A) could also be 
written in a form analogous to the classical expression given in Eq. (1). 
Specifically 

*00 ~00 

(.3) = t dq j dp A(q, p) P(q, p) (3) 
- - 0 0  - - 0 0  

where P is the Wigner distribution function (WDF) and is given by 

P(q, p) = (Tch) -~ foo -oo dy(q - Ytfi Iq + Y) e2'PY/h (4) 

if the system is in a mixed state represented by a density matrix fi, and by 

f 
oo  

P(q, p) = (Trh) -I  dy qJ*(q + y) ly(q - y) e zipy/h 
- - 0 0  

(5) 

if the system is in a pure state gt(q). Also, A(q, p) is a classical function 
which is derived from the operator A(c~, 13) by a precisely defined correspon- 
dence rule. 

Thus we have the remarkable result, given by Eq. (3), that the quantum 
(ensemble) expectation value can be replaced by a classical phase-space 
integration. In the classical limit, P(q, p) is the phase-space distribution 
function which gives the probability that the coordinates and momenta have 
the values q and p. In general, P(q, p) depends on h and may assume 
negative values, (1"4) which accounts for the frequent description of this 
quantity as a quasi-classical distribution function. Its usefulness stems from 
the fact that it provides a framework for an exact reformation of 
nonrelativistic quantum mechanics in terms of  classical concepts. 

Among the many appealing features of the Wigner distribution function 
(WDF) is that, as distinct from the Schr6dinger equation, the limit h-~ 0 
leads to classical mechanics and the development of various results in 
powers of h is a relatively straightforward procedure. In the words of 
Balescu,(5)"... the identity of structure between classical and quantum 
mechanics, when expressed in terms of Wigner functions, is an extremely 
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remarkable feature. It will help us, particularly in nonequilibrium theory, in 
constructing a quite general and unified formalism, which can be translated 
at will into classical or quantum mechanics by simply inserting the 
corresponding definitions of the symbols." 

For example, if one wishes to consider the statistical mechanics of a gas 
of particles the basic starting point is the calculation of the partition 
function. In the case of quantum statistics this involves a complicated sum 
over all the states. However, if one makes use of the WDF then the sum of 
states may be transformed into an integral in phase-space, which 
considerably simplifies the problem. However, this integral is more difficult 
to evaluate than the corresponding classical one (h = 0), so one usually 
proceeds by carrying out an expansion in powers of h, the so-called 
Wigner<l)-Kirkwood (6) expansion. 

Wigner ~'4) presented a specific form for P(p, q), while recognizing that 
other possibilities exist, depending on the conditions which are imposed on 
P. The P chosen by Wigner has the following properties: (4'~'8) 

(a) it is a Hermitian, that is bilinear, form of the wave-function q~. 
Hence it is real for all q and p. The Hermitian operator is, of course a 
function of q and p, 

(b) if integrated over p, it gives the proper probabilities for the 
different values of q, and similarly with p ~ q, 

(c) that the correspondence between P and the wave function ~ is a 
Galilei invariant, i.e., invariant with respect to displacements and 
nonrelativistic transitions, to moving coordinate systems, 

(d) it is invariant with respect to time reflections, 

(e) the transition probability between two states qJ and 0 is given, in 
terms of the corresponding distribution functions, Po and Po say, as follows: 

f ~t(x)*~(x)dx 2=27rh f f  Po(q,p)Po(q,p)dqdp (6) 

(f) in the force-free case the equation of motion is the classical one. 
Also it is clear from Eq. (6) that P has to be able to assume negative values. 

We turn now to a consideration of the manifestations of Bose and 
Fermi statistics on the WDF. The initial work in this area was carried out by 
Uhlenbeck and Gropper, ~9) who calculated the partition function, and then 
the equation of state, of a nonideal Bose-Einstein or Fermi-Dirac gas. Their 
results were later verified by Kirkwood. ~6~ A very clear treatment of 
exchange effects has recently been presented by Alastuey and Jancovici, <~°) 
with special emphasis on two-dimensional condensed-matter systems. 
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Perhaps the most elegant method of taking statistics into account is 
with the use of second quantization. This approach was pioneered by 
Stratonovich and Klimontovich, (1~) and an explicit expression for the WDF 
in second quantized form was written down by Brittin and Chappell. (~2"13) 

Stratonovich tl~) also considered distribution functions in the space of 
orientations of the spin, dealing first with spin ½ and then the case of 
arbitrary spin. 

For a relativistic generalization of the WDF we refer to the work of 
Cooper and Sharp t~4) in their discussion of the determination of the 
hydrodynamic and transport properties of a pion field produced in a high- 
energy collison, Carruthers and Zachariasen ~5) in their relativistic quantum 
transport approach to multiparticle production, and also the work of 
Batescu, ~6) Van Weert, ~7) and Hakim. ~8) It has been considered anew by 
de Groot et at. ~9) in their extensive exposition of relativistic kinetic theory. 

3. OTHER DISTRIBUTION F U N C T I O N S  

Moyal ~2°) has shown that Wigner's method of going from quantum to 
classical concepts is the inverse of Weyl's rule (21) for obtaining operators 
from classical quantities viz. 

e Ci/h)~q+Tp~ ~ e u / h ) ( ~ + ~  (7) 

Since the latter association is only one of many such associations (z2~ it 
became clear that corresponding to each is a distribution function. Some 
investigators were and are particularly interested in distribution functions 
which are everywhere nonnegative (z3) on the premise that such functions are 
more closely parallel to their classieal counterparts. However, there are 
others who feel that such nonnegative characteristics should not be the 
primary goal, particularly as other desirable properties are lost in the 
process. 

Perhaps the most widely known of such so-called positive distribution 
functions (more strictly, nonegative functions) are introduced by Husimi (z4) 
and recently considered anew by Cartwright. (zS) Husimi obtained a 
nonnegative distribution function, Ps say, by smoothing the WDF with a 
Gaussian, for which Aq Ap is no smaller than the h/2 of the minimum uncer- 
tainty wave-packet. However, it has been shown (8'26) that Ps does not 
possess property ( f )  referred to in Section 2. In other words, the time depen- 
dence of P , ,  in contrast to that of P, contains a correction term of h 2 which 
as we remarked in Ref. 8--would also appear in the time derivative of the 
classical distribution function if this were "smoothed." 
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As we already remarked, Wigner in his initial paper recognized that 
there are a virtual infinity of choices for a distribution function but he made 
a choice which was guided by the desired properties outlined above. For 
various reasons--some of which will be discussed b e l o w - o t h e r  investigators 
prefer some alternative properties and thus other distribution functions. 
However, all viable choices lead to the same observational results and from 
the point of view of computational simplicity the WDF is clearly to be 
preferred, except for some problems in quantum optics for which a more 
natural choice is the P distribution. (~7'28) 

4. RELATION TO SOME F U N D A M E N T A L  QUESTIONS IN 
QUANTUM MECHANICS 

Since the WDF formalism is equivalent to quantum mechanics one 
expects that it should throw additional light on the relationship between 
classical and quantum mechanics. This is in fact turning out to be the case. 

For example, Berry ~29) has demonstrated that the WDF provides an 
attractive way to link the classical and quantum descriptions of integrable 
states. His work on one-dimensional tori was extended to two dimensions by 
Ozorio de Almeida and Hannay, (3°) who also pointed out that the local 
behavior of the semiclassical Wigner function is governed by Thom's 
catastrophe theory.~31"32) 

Furthermore, Berry and Balazs (33~ have considered the evolution of 
semiclassical quantum states in phase-space by using the WKB expression 
for the wave-function to construct an approximation for Wigner's function in 
phase-space. Their approach is similar to that of Heller (34) who developed a 
new approach to semiclassical dynamics. 

The question of the semiclassical approximation of the WDF was taken 
up again by Balazs, (35) who pointed out that, whereas Wigner's pq space 
(which he refers to as W space) becomes the classical phase space when 
h ~ 0, in general the W space has a different invariance structure than phase- 
space. In particular, it admits an affine metric so that linear combinations of 
p and q are constant under linear transformations in the W space. In the 
h ~ 0 limit these transformations are replaced by canonical transformations. 

In a different vein, Wigner's work has motivated others to study 
the--"very  suggestive connection between quantum mechanics and some 
kind of phase-space similar to that of classical physics. ''r~6~ For example, 
Bohm and Wiley t36) were anxious to avoid the possibility of negative 
probabilities in phase-space, and they proceeded by expressing the laws of 
classical and quantum mechanics in terms of different algebras operating on 
the same phase space but, as they stress, "this phase-space is not derived 
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from classical physics." As a result, they deduced that in this phase-space 
the quantum mechanical motion is inherently nonlocal. They also remark 
that there is a close relationship between their viewpoint and the Prigogine 
group, ~37~ the difference being that the latter group proceed by extending 
from the classical to the quantum domain whereas Bohm and Wiley start 
from quantum theory and then develop classical theory as a limiting case. 

Another generalization of  classical phase-space has been proposed by 
Prugove6ki (38) and developed in detail by him and his coworkers/39) This is 
the so-called fuzzy or stochastic phase-space, which consists of  stochastic 
points, i.e., points which are not sharp but instead are spread out to an extent 
that is in keeping with the uncertainty principle. As a result one can obtain a 
positive distribution function, a particular example (39) being the Husimi 
function. ~24) 

In addition, Prugove6ki (4°) extended the concept of  stochastic phase- 
space to the realm of  relativistic quantum mechanics in a manner that is in 
conformity with the results of  Newton alid Wigner ~41) concerning the 
localizability of  relativistic particles, viz. that even free relativistic particles 
cannot be localized in arbitrarily small regions. He also showed that a 
nonloeal type of dynamics could be formulated and covariant models of  
extended spin 0 and ½ particles were constructed which were free of  some 
well-known problems associated with the relativistic quantum mechanics of  
point particles. 

However, it should be emphasized that the use of  stochastic phase-space 
has not led to any new observable results. This is not altogether surprising 
since the W D F  is the essential starting point. Another unsatisfactory aspects 
is the arbitrariness associated with smoothing. Thus, as we've already noted, 
one can obtain a positive distribution function by smoothing with a Gaussian 
with an infinity of  possibly variances, (25) the only restriction being that 
Vq Vp>~ h/2. The smoothing function associated with the choice of  the 
equality sign is identical to the Glauber coherent state, (27) whereas, if the 
inequality sign is used, then the operative function is the two-photon 
coherent states (TCP) introduced by Stoler ~42~ and Yuen 143'44~ and 
considered in detail by them and many others. (45-4v~ 2 

2 Yuen originally referred to these states as "generalized coherent states" (Ref. 43) but later 
(Ref. 44) adopted the name "two-photon coherent states," when he realized that the former 
nomenclature was associated with the generalized states introduced by Titulaer and Glauber 
[Phys. Rev. 145, 1041 (1966)I. The latter satisfy the full coherence conditions of Glauber 
but are not minimum--uncertainty states. Yuen's states are not coherent and, in general, are 
not minimum uncertainty states. Actually Stoler (Ref. 42) appears to have been the first to 
consider such states and he noticed that the unitary transformation which generates these 
states from the coherent states also effects a scale transformation of q and p by reciprocal 
scale factors. This accounts for the name "squeeze states" which has been used to describe 
these states by "quantum nondemolition" investigators (Ref. 47). 
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Finally, before leaving the realm of basic questions, we wouid like to 
point out that that many investigations using other techniques can often be 
treated more naturally, and with more physical insight, by the use of WDF 
techniques. In others cases it is often a useful complementary tool. For 
example, let us consider the TCP. The starting point is Gtauber's coherent 
state l a), which are eigenstates of the annihilation operator d. Yuen then 
carried out a Bogoliubov-Valatin transformation: 

~=lud + vd + (8) 

with I/~l 2 -  Iv[2= 1 to ensure that [6, 6 + ] = 1. The eigenstates of 6 are the 
two-photon coherent states. Making use of a theorem of von Neumann, ~48) 
led Yuen to remark that the linear canonical transformation given by Eq. (8) 
can be represented as a unitary transformation viz. b =  UdU +. What we 
wish to remark here is that the same results may be obtained in Wigner 
phase-space language by simply carrying out phase-space canonical 
transformations. ~46) Thus, for example, the WDF for the TCP can be 
immediately obtained from the WDF for the Glauber coherent states [Eq. (4) 
of Ref. 8] by letting 

q' ~ qb =-- Aq'  + Bp' 

p ' -~  pb----Cq' + Dp'  

(9a) 

(9b) 

with the coefficients chosen so that AD - BC = 1 and also so that qb, Pb are 
related to the complex eigenvalues of /7 in the same way that q ' , p '  are 
related to the complex eigenvalues of d. 

As a final example, we refer to some recent work which we carried 
out, (49) in which we demonstrated that the new interpretation given by 
Aharonov, Albert, and Au ~°) to the scalar product of two states in Hilbert 
space--with an attendant suggestion of a generalized notion of 
measurement--is essentially equivalent to Wigner's phase-space represen- 
tation of quantum mechanics. 

To summarize, we have presented a sm6rgdsbord of topics dealing with 
the WDF which should give a flavor of its pervasive influence in the realm 
of theoretical physics. Since I feel that its greatest impact is probably in the 
future, I hope that I will be able to write about this subject twenty years 
hence and join with Eugene Wigner in the celebration of his hundredth 
birthday. For now, I would like to acknowledge my debt to him for teaching 
me about distribution functions, among other topics, and conclude by 
saying: Happy Eightieth Birthday, Eugene. 
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