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Abstract. This paper argues that partial order semantics can be used profitably 
in the proofs of some nontrivial results in Petri net theory. We show that most 
of Commoner's and Hack's structure theory of free choice nets can be phrased 
and proved in terms of partial order behaviour. The new proofs are 
considerably shorter (and, arguably, more lucid) than the old ones; they also 
generalise the results from (safe) free choice nets to (bounded) extended free 
choice nets. 

1. Introduction 

Partial orders are increasingly found useful to describe the behaviour of 
concurrent systems ~eF88, Pra86]. However, partial orders have not yet been 
found of much use in proving behavioural properties of concurrent systems; 
rather, the prevalent way of proving such properties is still by means of 
arbitrarily interleaved execution sequences. 

This paper argues that for a particular concurrent systems model-  Petri 
nets - partial orders may very well be used for proofs. We intend to show that 
some proofs can be shortened by an order of magnitude. To make this point 
some of the more intricate results in Petri net theory have been selected: 
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Commoner 's  and Hack's results on free choice nets, e.g. the liveness results, 
the duality results and the coverability results [Hat72, Com72]. We will give 
short proofs of these results, at the same time generalising them and 
eliminating some errors in previous publications (see, e.g., [Hat74, D6p83]). 
Furthermore some new results are presented. 

At first sight partial order semantics seem to be more complicated than 
interleaved sequential semantics. In fact, some expense to define notations 
relating to partially ordered processes is necessary. Furthermore it is known 
that, in some sense, partial order semantics and arbitrary interleaving 
semantics are equivalent (see e.g. [BED87]). Hence the claims made above 
might be surprising. 

The following example may help motivating the potential profitability of 
using partial orders in behavioural analysis and proofs. Consider a system 
consisting of a producer, a consumer and a potentially unbounded buffer. 
Further, consider the problem of proving its unboundedness. 

Each sequential run of this system determines a sequence of states of the 
buffer. Each such state can be described as an integer which is equal to the 
number of items currently inside the buffer. For instance, strict alternation of 
producing an item and consuming an item yields a state sequence 010101 . . . .  
while for other sequential runs the numbers may grow arbitrarily. Reasoning 
about the behaviour of the buffer therefore requires the study of all such 
sequential runs. 

A partial order behaviour of the same system takes only the actual 
dependencies into account. In particular, the existence of some item inside the 
buffer depends on its having been produced by the producer and, in turn 
causes its eventual consumption (if it is ever consumed). Since there are no 
assumptions about any additional dependencies between producer and con- 
sumer, different items inside the buffer are not ordered. Hence they can all 
coexist. This directly leads to the desired result without the need to consider an 
exploding number of sequential runs. 

More formally and more generally we can prove, using the same method, 
that a sys tem-  given as a Petri n e t -  which is live, bounded and connected is 
also strongly connected. Hence, since the producer/consumer system is not 
strongly connected, it is not bounded. 

The paper is organised as follows. In Section 2 we define the necessary 
basic notions consistently by means of partial orders, and we give the proof of 
some elementary results using partial orders. In Section 3 we prove 
Commoner 's  liveness criterion using a basic technical lemma on partial orders. 
In Section 4 we turn to the coverability of extended free "choice systems by 
certain strnetures, originally due to Hack. A result concerning interrelations 
between certain structures and system runs is presented, which has nice 
consequences for the analysis of mutual dependencies between system events. 
We show in Section 5 how our proof method can be applied to generalise 
Hack's duality result on special free choice nets. As a consequence we get the 
coverability by structures dual to the ones mentioned above. Section 6 presents 
a result conjectured by Thiagarajan and Merceron [LuM84]. Setion 7 gives 
conclusions. 

Recently, there has been considerable renewed interest in the theory of 
free choice nets (see for example [ThV84, BET87, EsS89]). We do not claim 
novelty for most of the results in the present paper, but we do claim some 
originality for the orgam'sation and the style of their proofs. 
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2. Basic Concepts and General Results 

2.1. Elementary Definitions 

Definition 2.1. Nets. A net is a triple N = (S, T, F)  with S n T = O and 
F ~_ ((S x T) U (T x S)). S is the set of places, T is the set of transitions and F 
is the intercounection relation between them. N is finite iff IS U TI ~ N = 
{0,1, 2,...}. 

For x r S U T, the pre-set "x is defined as "x = {y r S O T [ (Y, x) r F} and 
the post-set x" is defined as x" -- {y r S O T I (x, y)  r F}. 

For X ~_ S U T, "X = UxEx "x and X"  = UxexX' .  
We will require T ~_ dora(F) n cod(F), i.e., for all transitions t neither the 

pre-set nor the post-set is empty. (This is no severe restriction; every transition 
t with empty pre-set or empty post-set can be provided with an appropriately 
marked side # a c e  s with " s = s ' =  {t} without altering essential system 
properties.) 

N is weakly connected (or just connected) iff (S O T ) x  (S U T ) =  (F U 
F- l )  *, N is strongly connective iff (S O T) x (S U T) = F* (where p* denotes 
the reflexive and transitive closure of a relation p). 

For each set of transitions T~ ~_ T the net 

N1 = ('T~ U T;, T~, F n ((S x T 0 U (T~ x S))) 

is called the subnet generated by T~. 

Nets are used as models of concurrent systems in the following way: places 
represent local states, transitions represent actions, and a transition t has the 
set "t of inputs and the set t ~ of outputs. The states of a system are described 
by markings: 

Definition 2.2. Markings. A marking of a net N = (S, T, F)  is defined as a 
function M: S--* N. 

For s ~ S, M(s) denotes the number of tokens on s. 
For X _ S we define M ( X )  = ~,exM(s) .  
X is called unmarked at M iff M ( X )  = O. 
A marked net X--(S,  T, F, M0) is a net N - - ( S ,  T, F)  with an initial 

marking Mo. We transfer the properties of N to X. Thus X will be called finite 
(weakly connected, etc.) iff N is finite (weakly connected, etc.). 

The (partial order) behaviour of systems is described by processes [GoR83]. 
Processes are based on a special class of nets called occurrence nets: 

Definition 2.3. Occurrence nets. An occurrence net N = ( B ,  E, K) is an 
acyclic net without branched places, i.e., K + n (K- l )  + = O (acyclicity) and Vb 
B: I 'bl--<lA Ib ' ] -<l  (no branching of places), where p+ denotes the 
irreflexive transitive closure of a relation p. Elements of E are called events and 
elements of B are called conditions; K is called causal dependency relation. 

A subset c G (B U E) of an occurrence net N = (B, E, K) is called a co-set 
of N iff any two elements in c are unordered (taking < = K + as the ordering), 
i.e., K+ O (c x c) = O. 

A cut c ~_ (B U E)  is a maximal co-set. A cut c is called B-cut iff c _ B. 
For an element x ~ (B O E) of an occurrence net N = (B, E, K), ~x denotes 

the set of elements {y E B U E [ (Y, x) e K*}, i.e., the set of elements below x, 
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and Tx denotes the set of elements {y e B LIE [ (x, y) E K*}, i.e., the set of 
elements above x. 

For X c_ B t.l E, ,~X = I.]x~x ~x and TX = [-Jx~x ]'x. The set min(X) is 
defined as (x r  N X = O}. Similarly, the set max(X) is defined as 
{x Xlx'nX=O}. 

The sets rain(N) and max(N) are defined as min(B t.J E) and max(B LI E), 
respectively. 

Definition 2.4. Processes. A process :r=(N, p)=(B,  E, K, p) of a marked 
net Y~ = (S, T, F, 1t4o) consists of an occurrence net N = (B, E, K) together with 
a labelling p: B U E--* S t.I T which satisfy appropriate properties such that ~r 
can be interpreted as a concurrent run of Y. We distinguish initial processes 
which start with the initial marking Mo and general processes which may start 
with any successor marking of M0, to be defined below. If a marking M of 
(S, T, F) and a B-cut c of N satisfy Vs e S: M(s)= lp - l ( s )A cl then g is 
denoted by Mc and is said to correspond to c (where p-l(s) denotes the set of 
elements of B which are mapped to s by p).  To be an initial process of ~, ~r 
must satisfy the following properties: 

O) p(B)~_ S, p(E)=_ T (conditions represent the appearances of tokens on 
places while events represent the occurrences of transitions). 

(ii) Vx ~ B U E: I~xl e N (this implies that rain(N) is a cut). 
(iii) Ve e E: 

p(~ = "p(e), Ip('e)l = t 'p(e)l and p(e') = (p(e)) ~ Ip(e')l = I(p(e)) ' l  
(transition environments are respected). 

(iv) Mmin(N) = Mo (i.e., rain(N) corresponds to the initial marking Mo. Notice 
that because of our requirement that T c dora(F)f3 cod(F) for all nets, 
min(N) is a B-cut. If N is finite, max(N) is a B-cut, too). 

We shall say that a transition (a place, respectively) x ~ S 13 T occurs in ~r iff 
there is y ~ B t3 E with p(y) = x. 

For each finite initial process ~r = (N, p) of Z, Mm=(~o is called a successor 
marking of Mo. The set of all successor markings of ?do is called the set of  
reachable markings and is denoted by [M0). 3r is a process of Y iff ~r is an initial 
process of (S, T, F, M) for some M ~ [Mo). 

Two processes :rl = (N1, Pl) and :r2 = (N2, P2) of Z are concatenable ff :r~ is 
finite and Mmax(NI)= Mmin(~)- Then zt~ and :r2 can be concatenated in the 
obvious way (by identifying elements of max(N0 and rain(N2) which are 
mapped to the same place), resulting in a process ~r= ~rdr2. (Actually, 
concatenation is not unique, so that a set of processes may result from the 
concatenation of :r~ and :r2; however, we shall always be interested in an 
arbitrary member of this set, since all members behave similarly with respect 
to the properties we will be considering. Hence pretending uniqueness, we are 
allowed to write zr = ~rl:r2.) 

A finite process :r with min(:r):/= max(zr) and Mmi,(~)= Mm~xr is called a 
reproduction process. 

We transfer properties of N to a process ~r = (N, p),  i.e., :r is finite iif N is 
finite etc. and we write min(:r) (max(~r)) instead of min(N) (max(N), 
respectively). 
Property 2.4(iii) codes the transition rule of Petri nets in terms of processes. 
For the consistency of the notions defined in 2.4 with the notions usually 
employed in Petri nets, see [BED87]. 
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From 2.4(iii) it follows immediately that (x, y)  E K* implies (p(x), p (y) )  
F* (K, F and p being defined as above). 

A transition t is enabled by a marking M (denoted by M[t )) iff all places of 
"t are marked by M. The connection of this notion to processes is as follows: if 
c is a B-cut which contains ~ for an event e, then Mc enables p(e). 

Next we define two behaviourai properties of systems. Botmdedness 
implies a restriction on (the number of tokens on) places. Liveness implies the 
absence of partial deadlocks. 

Definition 2.5. Boundedness, liveness. A place s ~S  of  a marked net ~ = 
(S, T, F, Mo) is n-bounded (for n ~ N) iff VM ~ [M0): M(s) <- n; s is bounded iff 
there is a number n ~ N such that s is n-bounded. 

~: is n-bounded iff all s ~ S are n-bounded. ~: is bounded iff all s ~ S are 
bounded. Z is safe iff all s r S are 1-bounded. 

Y. is live iff for all M ~[Mo) there is a process : x = ( B , E ,  K , p )  of ~ with 
Mmi,(,,i = M such that p(E)  = T, i.e., all transitions of T occur in ~. 

Basic assumptions: From now on, whenever we speak of a net (S, T, F)  or a 
marked net (S, T, F, M0), we will assume that S U T is a finite set, that 
(S, T, F)  is (weakly) connected, and that, as already required for transitions, 
for all places neither the p rese t  nor the post-set is empty, i.e., S ~_ dom(F) O 
cod(F). This implies in particular that there are no isolated places, i.e., places 
s with "s = O = s ' .  

These assumptions are not required to hold for processes (B, E, K, p). 

Definition 2.6. Reverse-dual net. If N = (S, T, F)  is a net then the reverse- 
dual of N is defined as the net N -a = (T, S, F-a). 

It can easily be verified that N -a is in fact a net. Our assumptions and 
restrictions on nets amount to weak connectedness and the equality S U T = 
dora(F) = cod(F). They are respected by N if and only if the same is true for 
N-d. 

2.2. General Results 

An important property of processes is that each finite B-cut c corresponds to a 
reachable marking. Here we only sketch the proof; it can be found, for 
instance, in [BeF88]. 

Lemma 2.7. Let ~r = (B, E, K, p)  be a process of  a marked net Z. 
O) I f  co ~_ B is a finite co-set o f  ~z then Co can be extended to a finite B-cut c ~ Co 

ofyc. 
(ii) I f  c is a finite B-cut o f  ~ then Mc is a reachable marking o f  Z. 

Proof. (i) Let Co c B be a finite co-set of ~r. Define d = J,('Co). Then max(d ~ 
is a co-set containing Co. Define c = max(min(~) O d ' ) .  Then c is a finite B-cut 
containing co. 

(ii) Define B'  = B O J,c, E '  = E n ~c', K' = K n ((B' x E') U (E' x B')) 
and p '  = PjB'UE'. 

It is easy to verify, using property 2.4(iv), that ~r' = (B', E',  K', p ')  is a 
finite process of Y. with min(:z ')= min(~r) and max(~')----c. The proposition 
follows since M,~n(=) is a reachable marking and the process leading to Mmin0~) 
can be concatenated with ~z'. 



128 E. Best and J. Desel 

Corollary 2.8. Let E = (S, T, F, Mo) be a bounded finite marked net. Then no 
process ;r of  T, contains an infinite B-cut. 

Proof. Suppose there is a process of X containing an infinite B-cut c. Any 
finite subset of c can be covered by a reachable marking according to lemma 
2.7. Since c contains arbitarily large finite subsets but the set S is finite, the 
result follows. 

The following lemmata state that a bounded system which has the ability to 
run forever has to be repetitive, in the sense that there are reproduction 
processes. In the case of liveness there are, furthermore,  reproduction 
processes which use the entire system. 

L e m m a  2.9. Let ~, = (S, T, F, Mo) be a live and bounded marked net. Then 
there exists a reproduction process ~t = (B, E, K, p) o f  ~, with p(E)  = T. 

Proof. Since X is live there is an infinite sequence (~i = (Bi, El, Ki, p~)) 
(i = 0, 1, 2 . . . .  ) of finite processes of X such that Vi �9 N: Mm~(,,,) = Mmin(~+0 A 
pi(E,) = T. 

Since Y~ is bounded there is only a finite number of markings, say m, 
reachable in Z. So l{Mmin(xo), M~n(,,0 . . . . .  Mmin(~,,)}l-<m and we can find 
indices i and j with i < j  such that Mmin(,~,) = Mmin(ni). Then ~ = art- �9 �9 :rj-1 is a 
reproduction process of X. 

Lemma 2.10. Let Y, = (S, T, F, Mo) be a bounded marked net and let ~ = 
(B, E, K, p) be an infinite process o f  X. Then there is a reproduction process 

= (B, E, K, p)  of~, with p(F,) ~_p(E). 

Proof. ~ can be decomposed as an infinite sequence (~i---(Bi, El, Ki, Pi)), 
i = 0, 1, 2 , . . .  of finite processes of X such that Vi �9 N: Mmax(nD --- Mrain(~,+0 and 

= rto~tl~2- �9 �9 

The proof then proceeds as in I_~mma 2.9. 

The last result of this subsection states that live and bounded marked nets are 
strongly connected. We split the proof and formulate a lemma first, which will 
also be used later in a different context. It states that the part of a marked net used 
by a reproduction process is a collection of strongly connected components. 

Lenuna 2.11. Let ~r' = (B', E', K', p ')  be a reproduction process o f  a bounded 
market net Z = (S, T, F, Mo). Let (S', T', F') be the subnet of  N generated by 
p(E').  Then F '-1 c_ F'*. 

Proof. Two cases can be distinguished: 

(i) (t, s)  �9 F '-1 N (T'  x S'). Let ~r = (B, E, K, p )  = ~':t '~r �9 �9 be an infinite 
concatenation of :t ' .  Then t occurs infinitely often in :t. For every 
e ~ p - l ( t )  there is a condition b �9 "eNp-~(s).  Since ~: is bounded, 
contains no infinite B-cut (Corollary 2.8), whence we can find bl, 
b2e ~  with (bl,  b2) �9  K*. As conditions are not branched 
we get with b~ = {el}:p(el) = t and (el, b2) �9 K*. Thus, (p(e O, p(b2)) = 
(t, s) ~ F'*. 

(ii) (s, t) �9 F ' - I  N (S' x T').  Analogously. 

Theorem 2.12. Let ~ = (N, Mo) with N = (S, T, F) be a live and bounded 
marked net. Then N is strongly connected. 
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Proof. By Lemma 2.9 there is a reproduction process ~ = (B, E, K, p)  of 
with p(E)  = T. Lemma 2.11 can be applied with S = S', T = T' and F = F'. 
Hence F -I  _=F* and thus ( F U  F - l )  * =  F*. This achieves the proof, since by 
our basic assumption, N is weakly connected. 

2.3. Invariants 

Definition 2.13. T-invariants, S-invariants. Let N =  (S, T, F) be a net. A 
mapping J: T--* N is called a semipositive T-invariant (or just T-invariant) iff 
J(T) ~ {0} and 

Vs ~ S: ~ J( t )= ~ J(t). 
t~ ' s  tEs* 

The set Tj = { te  T ] J (T)  >0} is called the support of J. 
A T-invariant J is minimal iff its support is minimal (there is no T-invariant 

whose support is a proper subset of T~) and furthermore J : ~ k - J '  for all 
T-invariants J '  and integers k > 1. 

A (semipositive) S-invariant I :S- -~N of N is a T-invariant of  the net 
N -d -- (T, S, F-l) .  Minimality, support etc. of ! are defined as above. 

Later we will need to transfer properties of minimal T-invariants to general 
(semipositive) T-invariants. It is well known (see, for example, [MeRg0]) that 
T-invariants can be composed additively from minimal ones: 

Lemma 2.14. Let N = (S, T, F) be a net and let J: T--> N be a T-invariant of  
N. Then there exist minimal T-invariants J1, J2, . . . .  Jk and ~1, ~2 . . . .  , ~k 
Q § such that 

k 

Vt ~ T: J(t) = ~_~ k, . Ji(t) 
i=1  

where Q § denotes the set o f  nonnegative rational numbers. 

Lemma 2.15. Let :x =(N,  p) be a reproduction process o f  a marked net 
Z = (S, T, F, Mo). Then J: T-->N with J( t )= Ip-l(t)[ for all t e T is a T- 
invariant. 

Proof. Obvious since :r takes as many tokens from each place as it puts there. 

3. Free Choice Systems and Liveness 

For the class of free choice systems liveness, as well as liveness together with 
safeness, can be characterized by means of structural properties of the 
underlying nets [Com72, Hac72]. So for these systems, behavioural properties 
can be proved or disproved without investigating all reachable markings or all 
processes. The free choice property is structural, i.e., a property of the 
underlying net. A net is free choice if a certain substructure does not appear in 
it; in a free choice net there is never an arc from a forward branched place (s 
with Is'l > 1) to a backward branched transition (t with I~ > 1). Throughout 
what follows we will define and use the class of extended free choice nets 
which properly includes the class of free choice nets and shares many of its 
properties. 
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Delinifion 3.1. A net N = (S, T, F) is called extended free choice net (EFC 
ne0 iff Vsl,  s2 ~ S: s~ Ns~ ~O: :>s~ =s~. 

A marked net X = (N, Me) is called EFC system iff N is an EFC net. 

The (extended) free choice property ensures that for any pair of transitions in 
the post-set of a place, every marking enables one of them if and only if it 
enables the other one. Liveness of free choice systems can be charactefised 
structurally by means of the dt-property, to be defined next. 

Defmition 3.2. Let X = (S, T, F, M0) be a marked net with N = (S, T, F). 

(i) A set D _~S is called d-set (for 'deadlock') iff *D c D ~ 

(ii) A set Q _ S is called t-set (for 'trap') iff Q* ~_ *Q. 
(iii) Y~ satisfies the tit-property (short for deadlock/trap property) iff every 

nonempty d-set D contains a t-set Q which is marked at ?do, i.e., satisfies 
Me(Q) * O. 

Since the union of d-sets (t-sets) is again a d-set (t-set, respectively), any set of  
places contains a unique maximal d-set and a unique maximal t-set. 

Before giving the proofs of the main results we will state a lemma which 
unifies a recurring argument in those proofs. 

Definition 3.3. Let N = (S, T, F) be a net and X _~ S a set of places. An 
allocation of X is a function at: X--~ Twith Ys ~X:  at(s) r  ~ An allocation at 
of X is cycle-free iff there is no nonempty set of places X '  ~_ X such that 
x '  =_ (at(x ' )) ' .  

Since, by our general assumptions, s ' 4 ~ O  for all places s, for each set of 
places X there is at least one allocation of X. 

Lemma 3.4. Let X = (S, T, F, Me) be a live EFC system. Let X =_ S, X 4~ 0 and 
let at: X - - ,  T be an allocation. Define Y = at(X). 

(a) There exists a process ~ = (B, E, K, p)  o f  X with the following properties: 
Mini,e,,) = Me (i.e., ~ is an initial process); 
p - I ( X ' \ Y )  = O (i.e., tokens on places o f  X are only removed by transitions 
oy Y); 
]p-l(y)]  ~ N (i.e., at least one transition o f  Y occurs infinitely often). 

(b) If, additionally, X is bounded and Y* ~_ X, then there is a process ~ --- x ~ b  
o f  Z such that with :G = (Ba, Ea, Ka, pa) and ~b = (Bb, Eb, Kb, Pb) the 
following holds: 
Mmi~(~.) = M0; 
pa(E.) n X" = O; 
pb(gb) = Y; 
Eb is infinite. 

Proof. (a) Inductively define a sequence of processes as follows: 

"= 0, 2, 4 , . . .  :~r. is a minimal process with M0 = M=i,(~) and Mmin(~j)= 
]~ax(~_0 for j > ~), such that Mm~(,O enables a transition t ~ Y. Such a process 
exists by the  liveness of X. By the minimality of ~r i, no t ~ Y occurs in ~r l, and 
by the EFC property, no t ~ X ~  occurs in ~r s either. 
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j = 1, 3, 5 , . . .  : :rj is a maximal process with Mmin(u. ) -- Mmax(x. 1) such that only 
transitions of Y occur m :rj; m case ~j m mfimte, the construcUon stops and 
~r = :ro~t" �9 �9 :rj satisfies the requirements. 

Because each ~j (j  = 1, 3, 5 , . . . )  contains at least one event, ~r --- Jto~rt:t2~3... 
is an infinite process which satisfies the requirements. 

(b) Define a sequence ~ro, ~1, :r2 . . . .  of processes as in (a) and let 
~r = ( B ,  E ,  K ,  p )  = ~ro~l:r2.  �9 �9 

F o r j  = 2, 4, 6 , . . .  there is a condition b in ~tj withp(b) e " Y a n d p ( ' b ) ~  Y 
by the defining rules. 

We show that the set B' = {b e B ]p(b) r "Y A p( 'b)  ~ Y} is a co-set. 
First, Y~ c X  implies (p-~(Y))" c p - l ( X ) .  Since no transition t e X ' \ Y  

occurs in ~, w e  also have (p-l(x))-;~_p-l(Y). Hence T p - I ( Y ) c p - l ( X ) U  
p-~(D.  

Let b, b' e B',  b ,  b'. Then Tb _~ {b} U Tp-l(Y) = {b} Up-~(X) Up-I(Y). 
Since b ' ~ p - l ( Y )  we get b '  ~ ~'b. Similarly, b ~ T b ' , a n d  thus B '  is a co-set. 

Since Xis  bounded there is no infinite co-set in ~ (Corollary 2.8) and hence 
there is an odd j such that #j is infinite. 

Let :t  = ~a#b such that ~ta is a maximal process with po(E~) N Y = O. Since 
Ea _ E1 U- �9 �9 U Ej-1, E~ is finite and Eb is infinite. 

With ~p- l (y)c_p-X(X)Up- l (y)  and (min(#b)) ~ ~_p-l(y) we finally get 
pb(Eb) = Y. 

We turn to Commoner 's  criterion which characteriscs liveness in EFC systems 
[Com72]. 

Lemma 3.5. Let N = (S, T, F) be a net, X ~_ S any set of places and Q ~_ X the 
maximal t-set in X. Then there exist~ a cycle-free allocation tr of X \ Q  with 
tr(XkQ) ~ Tk'Q. 

Proof. By induction on IXI (we have IQI -< IXI-< ISl). 
Base: IQI = IXl. 
Then a~ = O satisfies the requirements. 
Step: IQI < IXl < ISl. 
Define the sets of places 

x~ -- {s e x I -~(s" _ "x)} 
Xl = XkX~. 

Because of Q ~ X and by the maximality of Q, X is not a t-set and hence, 
X~ ~ O and X1 ~ X. By the definition of X~, Q ~ Xx. 

For every s e X~, choose tr'(s) e s ~ arbitrarily such that (o:'(s)) ~ N X = ~ .  
Since [XI[ < [XI, the induction hypothesis can be applied to X~, yielding a 

cycle-free allocation ~' :  XI \Q--> T with ~'(XI \Q ) ~_ T\  ~ Q. 
Put cr = a~' O ~ ' .  Because (tr(X~)) ~ ~_ SkX ~ SLX~, tr is cycle-free and 

satisfies tr(X\Q ) ~ T\~ Q. 

Theorem 3.6. Let ~, = (S, T, F, Mo) be an EFC system. Then ~, is live iff ~, 
satisfies the dt-property. 

Proof. In order to prove ( ~ ) ,  suppose Z is not live. Then there is a transition 
t and a reachable marking M such that no successor marking of M enables t. 
Using the EFC property it is easy to see that no transition t '  e (~ ~ is enabled 
by a successor marking of M. Hence there must be a place s e ~ and a 
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successor marking M' of M such that for all successor markings M" of M', 
M"(s) =0. Thus all transitions t' e ~ are also dead at M'. The repetition of this 
argument leads to a nonempty d-set D which is unmarked at some successor 
marking of M0. D cannot have contained a t-set which is marked at M0. 

In order to prove ( ~ ) ,  let X be live. Let D be a nonempty d-set and Q the 
maximal t-set in D. 

By Lemma 3.5 there is a cycle-free allocation ~ : , (D\Q)-*  T with ~ (D\  
Q) c_ T\ 'Q. Define ~ = o~(D\Q). By Lemma 3.4(a) (with X = D\Q). there is 
an infinite process at = (B, E, K, p)  such that no transitions of (D\Q) \T  occur 
in at and lp-l(T)[ ~ N. For each transition t e ~" with Ip-l(t)[ r N we can find a 
place s e ~ N (D\Q) with [p-t(s)[ ~ N and a transition t' e "s with tp-l(t ')] 
N, We have t '  e D ~ since D is a d-set, and hence either t' e ~ o r  t' e Q~ In the 
first case we continue as above, eventually reaching a transition t" e Q" Np(E) 
s i n c e ,  is cycle-free and T is finite. 

It follows that Q is marked once during at, i.e., p(B)N Q q: 0 .  
�9 �9 �9 ~ �9 - �9 - I  \ ~ - I  T an With Qc_ D _ D  =(D\Q) UQ , p ((D Q) )c_p ( ) d ~'tl 

" Q = O  we get p-l~:Q)~_p-l(Q.).  Hence for each condition b ep- l (Q),  
either b e rain(at) or ( b )  N p- l (Q) ~ 0 .  Thus, arguing backward from one of 
the conditions in p-~(Q), it follows that Q is marked at Me. 

Corollary 3.7. An EFC net N is lively markable iff each nonempty d-set of N 
contains a t-set. 

Proof. ( ~ )  is obvious. For ( ~ )  consider a marking without unmarked 
places. 

4. T-Component Coverings and T-luvariants 

In this section and in the next, we turn to the two main results of Hack 
[Hac72]; we show that live and bounded EFC systems can be covered by 
certain structures. 

D e n n i l i o n  4 . 1 .  N1 -- ($1, 7"1, FO is called a T-component of N -- (S, T, F) iff 
VseSl : l~  and, in addition, NI is the subnet of N generated by 
71 _~ T. N is covered by T-components iff for each x e S U T there is a 
T-component N1 -- ($1, T1, F1) of N such that x e $1 O T1. 

The following general lemma states that if a reproduction process of a bounded 
system uses, for any place s, never more than one transition t e s ' ,  then the 
same holds for transitions t r "s. 

Lemma 4.2. Let X = (S, T, F, Me) be a bounded marked net and let at = 
(B, E, K, p) be a reproduction process of X. If  Vs E S: [s~ t')p(E)[ <<- I then 
Vs e S: ]~ Np(E)[-< 1. 

Proof. Let T'  denote p(E). ~ = T '~ since at is a reproduction process. Let 
S' denote T '~ and let F '  denote F tq ( ( S ' x  T ' )O  ( T ' x  S')). Assume Vs e 
S: Is" N T'[ < 1, i.e. Vs e S': Is" N T'[ = 1 and Vs e S\S': Is ~ A T'l = O. 

Let s be an arbitrary place of S'. Then Is" N T'l = 1 and ['s N T'[ > 1. at is a 
reproduction process, whence Et~-~ lp- l ( t ) l  -- Z,~s" Ip-1(t)l.  Hence for t e ~ N 
T' and t' e s ~  T'  (the unique element) we get the inequality ]p-l(t)[--< 
ip-l(r)l. Thus (t, t ') e F  '2 implies Ip-l(t)l-< Ip-l(t ')l ;  by induction, (t, t ')  e 
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F'* implies ]p-l(t)[<-[p-l(t')[. On the other hand, (t, t ' ) ~ ( F ' )  2 implies 
(t', t)E (F')* by Lcmma 2.11. Thus Ip-l(t)[ = [p-l(t ')] and no transition of 
"s\{t} occurs in m Hence we get I's CI T'] = 1. 

By the definition of S' we get I 's N T'I = 0 for all s ~ SLS'. 

Theorem 4.3. Let X = (S, T, F, Mo) be a live and bounded EFC system and let 
J be a minimal T-invariant of  ~. Then Tj generates a strongly connected 
T-component. Moreover, J is a realisable. 

Proof. "T1 = TJ since J is a T-invariant. Let $1 denote TJ. 
Let a~:Sj---~ TI be an allocation of S~ such that Vs e S~: Is" N a~(Sj)l = 1. Such 

a mapping a~ exists , b ecau se -by  the EFC p r o p e r t y - s ~  implies 
s" = s "  and we can choose ~ such that a@) = a~(s'). 

By Lemma 3.4(b) (with X = S~), there is an infinite process ~r of X such 
that only transitions of a~(S~) occur in :r. 

Since X is bounded, by Lemma 2.10, there is a reproduction process :r' of 
in which only transitions of a~(Sj) occur and hence, by Lemma 2.15, a 

T-invariant J '  with T~, = o~(Sj). Since J is minimal we get Tr = T~ = m(Sz) as 
well as J =J' ,  and J is realisable. 

By the definition of ~ we get Vs e $1: Is" N TjI = L 
Since by the definition of Sj we have Vs ~ S\Sj: ]'s N TA = Is~ Tjl = O, 

with Lemma 4.2 we get Vs e Sj: I's N T A = Is" N TA = 1. 
Hence T~ generates a T-component. It is connected because J is minimal. 

Hence by Lemma 2.11 it is strongly connected. 

Corollary 4.4. A live and bounded EFC system is covered by strongly 
connected T-components. 

Proof. By Lemma 2.9, a live and bounded system has a reproduction process 
which uses all transitions of the system. By Lemma 2.15 there is a T-invariant J 
such that T~ is the set of all transitions, and by Lemma 2.14 there is a set of 
minimal T-invariants such that the union of the supports is the set of all 
transitions. By Theorem 4.3 each support of such a minimal T-invariant 
generates a strongly connected T-component. 

The other part of Theorem 4.3 states that each minimal T-invariant is 
realisable. This result has consequences on the analysis of transition depend- 
encies: the finiteness of the weighted synchronic distance between two sets of 
transitions can be decided by means of the existence of a solution of an 
inhomogeneous linear equation system IGOR82, Des88]. 

Corollary 4.5. Each connected T-component of  a live and bounded EFC 
system is strongly connected. 

Proof. Apply Theorem 4.3 and Lemma 2.11. 

5. S-Component Coverings and Boundedness 

We have shown in the previous sections how T-invariants and T-components 
are related to repetitive behaviour and reproduction processes of systems. The 
dual concept of T-components are S-components. They are related to safeness 
and boundedness. 
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Definition 5.1. N1 is an S-component of N iff N I  d is a T-component of N -d. N 
is covered by S-components iff N -d  is covered by T-components. 

Since each occurrence o f a  transition of an S-component removes exactly one 
token and adds exactly one token to that S-component the sum of all tokens 
always remains constant. Hence the places belonging to an S-component are 
bounded irregardless of the initial marking. Thus a system which is covered by 
S-components is bounded. 

In general the opposite direction does not hold true; there are bounded 
systems which are not covered by S-components. However, in the case of live 
and bounded EFC systems we will show that boundedness implies the 
existence of a covering by suitably marked S-components which are, moreover, 
strongly connected. 

First we show that some properties of an EFC system can be carried over to 
the reverse-dual system. Since the reverse-dual net of N -d is N again, not only 
the S-invariants of N are the T-invariants of N -d but also the T-invariants of N 
are the S-invariants of  N - (  The same holds for S- and T-components. 

The nets we consider are covered by strongly connected T-components, 
hence their reverse-dual counterparts are covered by strongly connected 
S-components and are bounded for each initial marking. Furthermore, the 
EFC property carries over to the reverse-dual net; each violation of the EFC 
property for N is also a violation of the EFC property for N -d. 

We will show next that given a live and bounded EFC system Z = (N, M), 
the reverse-dual net N -d can be provided with an appropriate marking M' 
such that the dt-property holds for (N -d, M') .  

Theorem 5.2. Let T, = (S, T, F, Mo) be a live and bounded EFC system. Let 
U c T with U ~ c_ "U. Then N has a T-invariant J such that Tj c_ U. 

Proof. Let X = U ~ and ac: X---> T such that Y = or(X) _ U. 
By Lemma 3.4(b) there is a process ~b = (Bb, Eb, Fb, pb) such that 

pb(Eb) = Y =- U and Eb is infinite. 
By Lemma 2.10 there is a reproduction process ~ = ( B ,  E, F , p )  with 
___ p (E) ___ u 

Hence, with Lemma 2.15,/~(/~) is the support of a T-invariant of N. 

From this theorem two corollaries can be deduced. Given an EFC net N which 
is lively and boundedly markable it is shown in Corollary 5.3 that the net N -a 
can be marked lively and boundedly as well. 

Hence Theorem 5.2 can be applied to (N  -d, M')  as well, where M' is an 
appropriate live and bounded marking. Since (N-a)  - d=  N this yields addi- 
tional properties of N as shown in Corollary 5.4. 

Corollary 5.3, Let N be an EFC net which is lively and boundedly markable. 
Then: 

(i) Each nonempty d-set o f  N -a contains a set which is the support o f  an 
S-invariant o f  N -a. 

(ii) Each minimal nonempty d-set o f  N -d is a t-set and the support o f  an 
S-invariant o f  N -d. 

(iii) N -a is lively and boundedly markable. 
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Proof. 

(i) d-sets of  N -d are sets of transitions U of N with U ~ c_ ~ U. T-invariants of  
N are S-invariants of N -a. 

(ii) The support of an S-invariant is a d-set and a t-set by definition. 
(iii) Apply (ii) and Corollary 3.7 for liveness. By Coronary 4.4, N -d is covered 

by S-components and thus bounded for any initial marking. 

Co~ilaty 5.4. Let N be an EFC net which is lively and boundedly markable. 
Then: 

(i) There is an S-invariant of  N which maps all places of N to positive 
nonzero integers. 

(ii) Each minimal S-invariant of  N induces a strongly connected S-component. 
(iii) N is covered by strongly connected S-components. 
(iv) Each connected S-component of N is strongly connected. 

Finally we show that in live and bounded EFC systems, the maximum number 
of tokens on a place is given by the minimum marking of S-components 
through that place. 

Theorem 5,5, Let ~ = (S, T, F, Mo) be a live and bounded EFC system. Let 
s ES. Then: 

max{M(s) IM ~ [M0)} 

= min{M(S') ! (S', r ' ,  F') is an S-component with s 6 S ' )  

Proof. (-<) is obvious, since M(S')=Mo(S') for any M e  [Mo) and any 
S-component (S', r ' ,  F') of Y. 

To prove ( -> ), let s ~ S and let m be the maximum number of tokens on s, 
i.e., m = max(M(s) I M e[Mo) }. 

By boundedness such a number m e N exists and, by liveness, m > 0. 
Let M ~ [Mo) be any marking with M(s) = m. 
We define a marking M ~ M by 

[M(x) ifx--/:s 
l(,l(x) = [M(x) - m  i fx  =s 

for all x ~ S. Then s = (S, T, F,^~) is not live since otherwise, there is a finite 
process ~r of s with Mmin(,0 = M and Mm~(,o(s) > 0 and hence, there is also a 

�9 r ' " fimte, p ocess, rc of ~: with Mnan.(.~,) = M and Mm,~()~. (s) > m contradicting the 
maxqmal~ty property of m (rr' ks hke ~r but has m additional conditions which 
are all mapped to s). 

From Theorem 3.6 ( ~ )  it follows that there exists a nonempty d-set D of 
s (and hence of Y) such that for every trap Q contained in D, M(Q) = O. 

We can assume without loss of generality that D is minimal. 
By Corollary 5.300, D is itself a t-set. Hence ~ ( D )  = 0 and, since Z is live, 

M ( D ) > 0 .  
By the definition of ~/, M(D) --m. The required result now follows from 

Corollary 5.300 and Corollary 5.4(ii). 

Corollary 5.6. A live EFC system is n-bounded iff it is covered by strongly 
connected S-components which carry less or equal to n tokens. 
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Summarising the previous results leads to the final corollary of this section: 

Corollary 5.7. An EFC net is lively and boundedly markable iff it is covered by 
strongly connected S-components, covered by strongly connected T- 
components, and every nonempty d-set contains a nonempty set which is both a 
d-set and a t-set. 

6. Relationship Between S-Components and 
T-Components 

We prove a result which clarifies, to some extent, the relationship between 
S-components and T-components in a live and bounded EFC system. It 
identifies a circumstance in which every 0-token)  S-component has a 
nonempty intersection with every T-component. 

Definition 6.1. A marked net Y has a frozen token iff there exists an infinite 
process Jr = (B, E, K, p)  of Z and an element b e B with b" = O. 

Theorem 6.2. A live EFC system has no frozen tokens iff it is safe and every 
T-component has a nonempty intersection with every S-component. 

Proof. ( ~ ) .  We assume Y = (S, T, F, M0) to be live and without frozen 
tokens. In order to prove that Z is safe, assume the contrary. Then there is a 
place so ~ S and a marking M e [M0) with M(so) --- 2. By Theorem 3.6 and the 
liveness of Y, Z' = (S, T, F, M')  is live, where M'(so) = M(so) - 1 and M'(s) = 
M(s) for all s e S\{s0}. Hence there is an infinite process st' = (B', E, K',  p ' )  
of Y'. Then ar = (B, E, F ' ,  p),  where :r is obtained from at' by adding an 
isolated condition bo with p(bo) = So, is an infinite process of (S, T, F, M), and 
hence also of Y, with b~ = 0 ,  contradicting the assumption that Z has no 
frozen tokens. 

In order to prove that every T-component has a nonempty intersection with 
every S-component, we consider an arbitrary T-component. By Theorem 4.3, 
this T-component corresponds to a realisable T-invariant and thus generates an 
infinite process. Because of the lack of frozen tokens, this process moves all 
tokens of the net and hence uses places of all marked S-components. Since ~ is 
live all its S-components are marked. 

( ~ ) .  We assume Y = ( S ,  T, F, Mo) to be safe and such that every 
T-component has a nonempty intersection with every S-component. 

Each reproduction process of ~ corresponds to a T-invariant, each 
T-invariant is a sum of minimal T-invariants and each minimal T-invariant 
induces, by Theorem 4.3, a T-component. These T-components intersect with 
all S-components. Since Y~ is safe, it is covered by a set of S-components which 
carry exactly one token each (by Corollary 5.6). Hence each reproduction 
process sr moves all tokens of Y~, i.e., has no isolated conditions. 

To prove that Z has no frozen tokens, let :r be an infinite process of Z and 
let Qri), i = 1, 2 , . . .  be an infinite sequence of finite processes such that 
Vi~ N:Mmax(n,)---Mmln(~r,+l). Since Z is safe there are at most m = 2 's~ markings 

I t I reachable in Z. Hence we can decompose :r to :r = ~ro:rl:r2.. such that 
F t I :rl, ~ra, :r5 . . . .  are reproduction processes. All of these reproduction processes 

use all tokens. Hence ~r has no condition b with b ~ = O. 
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7. Conclusion 

By means of partial order semantics we have proved some properties of 
(bounded) extended free choice nets, most of which have already been known 
for the smaller class of (safe) free choice nets. In particular we have 
generalised the liveness criterion and the coverability properties to live and 
bounded marked EFC nets. New results are: minimal T-invariants of such nets 
are realisable and induce T-components; mini_real bounds for places can be 
calculated by means of the token counts of the S-components and the existence 
of frozen tokens can be characterised by intersections of S-components and 
T-components. Furthermore Hack's duality result has been generalised. 

The proofs of these results are considerably shorter than the ones of 
comparable results to be found in the literature. We believe that this is not 
least due to the use of partial order process semantics for nets. The advantages 
of this semantics include the following: 

Some general results about processes (e.g. Corollary 2.8, but also Lemma 4.2) 
are available which are more versatile than corresponding results on 
sequences. 
It is no longer necessary to keep arguments about switching concurrent 
transitions around in interleaved semantics. 
Using the same formalism- n e t s - f o r  systems and their behaviour leads to 
easy correspondences between properties (see again Corollary 2.8). This 
advantages becomes most apparent when arguing about the interconnection 
relations F and K (see, for instance, Lemma 2.11). 

We think that in structure theory of nets as well as in other areas, partial 
order semantics can be used even more profitably. It is obvious, for example, 
that each path of a process is mapped onto a path of the system net. For live 
free-choice nets the opposite holds as well because for each path of the system 
net there exists a process containing a path which is mapped to the path 
mentioned first. It is much harder to formulate this property, which is related 
to the autonomy of conflicts in free-choice nets, in terms of execution 
sequences. 

We are presently working on some open questions in structure theory, e.g. 
the characterisations of home states or the correspondence between bipolar 
schemata and free-choice nets without frozen tokens. Since processes did a 
good job in shortening other proofs they might be a suitable tool for new 
results as well. 
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