
Formal Aspects of Computing (1990) 2:1-23
�9 1990 BCS Formal Aspects

of Computing

A Reification Calculus for Model-Oriented
Software Specification
J. N. Oliveira
Grupo de C. Coraputa~o, Universidade do Minho/INESC, Rua D. Pedro V, 88-3, 4700 Braga,
Portugal

Keywords: Software engineering; Formal methods; Algebraic specification;
Transformational design

Abstract. This paper presents a transformational approach to the derivation of
implementations from model-oriented specifications of abstract data types.

The purpose of this research is to reduce the number of formal proofs required
in model refinement, which hinder software development. It is shown to be
applicable to the transformation of models written in META-IV (the specification
language of VDM) towards their refinement into, for example, Pascal or relational
DBMSs. The approach includes the automatic synthesis of retrieve functions
between models, and data-type invariants.

The underlying algebraic semantics is the so.called final semantics "/~ la
Wand": a specification "is" a model (heterogeneous algebra) which is the final
object (up to isomorphism) in the category of all its implementations.

The transformational calculus approached in this paper follows from exploring
the properties of finite, recursively defined sets.

This work extends the well-known strategy of program transformation to
model transformation, adding to previous work on a transformational style for
operation-decomposition in META-IV. The model-calculus is also useful for
improving model-oriented specifications.

I. Introduction

It is widely accepted nowadays that the industrial production of reliable software,
at low cost, should be based on technologies which, at least, discuss such a

Correspondence and offprint requests to: J. N. Oliveira, Grupo de C. Computaqfio, Universidade do
Minho/INESC, Rua D. Pedro V, 88-3, 4700 Braga, Portugal.

2 J .N. Oliveira

reliability formally, i.e. based on mathematically written specifications. Such
technologies involve the additional notion of refnement (or reification [Jon86]),
i.e. any systematic process of building implementations from formal specifications.

Much research in this area has concentrated on devising languages and tools
for formal specification. Well.known techniques for algebraic specification
[GOT78, Gull78, BaW82] make it possible to define algebraic structures from
which programs are developed, in the form of hierarchies of abstract data types.
These correspond to algebras whose functionality (syntax) is fixed by a
heterogeneous signature (E), and whose theory (semantics) is a quotient Wr./--,
where W~ denotes the ~-word algebra (i.e. the "'language" generated by ~). There
are two standard ways of finitely presenting such a quotient.

In property-oriented specification, -- is the smallest E-congruence induced
by a finite collection of E-equations [GOT78]. In model.oriented specification
[Jon86], semantics are given by describing a model, i.e. a E-algebra M, and --
is then the kernel congruence relation induced by the unique homomorphism
from W~ to M [BaW82].

This paper focuses on model-refinement (reification) technology, i.e. on
specification refinement in the model-oriented specification style.

An approach aiming at developing a refication calculus for software engineer-
ing is presented. When compared with the historical development of the scientific
bases for other engineering areas (e.g. mechanical and civil engineering etc.), the
introduction of algebraic reification-calculi in software engineering appears to be
a natural evolution, which may be (roughly) sketched as follows:

Until the 1960s: intuition and craft.
1970s: Ad hoc (informal) methods.
1980s: formal methods.
1990s: formal calculi.

Formal calculi are intended to scale up the scope of formal methods.
The reification-calculus put forward in this paper is specification-dialect

independent. However, acquaintance with the VDM method and the META-IV
notation [Jon80, Jon86] will help in understanding the examples. The approach
was first presented in [Oli87] and further developed in [Oli88a]. Both these
references resort to basic category theory [Mac71] following [MaA86] and
[Wan79], which should be read as contextual research. To improve readability
in this paper, the category-theoretical notions are replaced by set-theoretical ones.

1.1. Overview of Open Problems

Formal specifications should be as abstract as possible, in the sense that they
should record the essence of problems and ignore irrelevant details. By contrast,
implementations are usually full of machine-dependences which explore a con-
crete machine-architecture for run-time efficiency. Refinement fills in the abstrac-
tion gap between specifications and implementations, by providing correctness
arguments proving that the latter satisfy the former. In this sense, refinement is
the "kernel" phase of software development using formal methods.

The standard techniques for data refinement assume that the software engineer
has sufficient intuition to "guess" (efficient) low-level model.implementations.
This is unlikely, in general. Moreover, two kinds of phenomenon occur wherever

A Reification Calculus 3

model-refinement is in progress: either one is led to more redundant data-
representations, or one has to filter invalid data-representations (or both).

In real.life software design, it is sometimes cumbersome to record formally
the relationship between data-models, and prove facts (adequacy, invariant-
preservation etc. [Jon80]) about them. Unfortunately, it may take a considerable
effort to prove facts which are intuitively obvious.

For example, consider the following toy-example, a META-IV syntax for a
very simple bank accounting system:

m

B A M S = A c c N r -.~ Status

Status :: H : AccHolder - set
A : A m o u n t

A m o u n t = NatO

where the following data-type invariant should hold,

def

inv - B A M S (t r) = Vn ~ dora o': H(cr (n)) ~

enforcing that every account has, at least, one account-holder.
A VDM practitioner may take a while to formally discuss the correctness of

the following (obvious!) relational-model implementation, where BAMS is model-
led in terms of two binary relations (vulg. "tables"):

B A M S 1 :: HT: R o w l - set /*table of account-holders*/
A T : R o w 2 - set /*table of amounts*/

R o w 1 :: K : A c c N r H : AccHolder

Row2 :: K : A c c N r A : A m o u n t

subject to the following data-type invariant,

clef

i n v - B A M S I (m k - B A M S I (ht, a t)) = dora(at) = dom(ht) ^

dep K A (at)

where

(1)

dora : (A B) - set .~, A - set
d,r (2)

dora(p) ={a e A [3 b ~ B : (a , b) e p}

is a generic (domain) relational-operator, and predicate d e p K A : (R o w 2 - s e t) - - >
Bool:

def

d e p K A (p) =Vr, s ~ p : (K(r) = K (s) ~ A (r) = A (s))

expresses a K ~ A functional dependence.
When toy-examples are scaled-up to real examples, formal proofs are either

discarded (and the method no longer acceptable as formal), or they become a

4 J.N. Oliveira

serious bottleneck in development. Moreover, no definite answers have been
given to questions such as:

How can we define an invariant as being "correct", "too strong", or "sufficient"?
What is the "least" abstraction (retrieve) function [Jon80,Jon86] between two
models?
How can we keep data redundancy and validity easily under control?
Can we equationally derive low-level data-models from high.level data-models?

1.2. Main Objectives

Former work [O1i85] on alternative techniques in the area referred to above, is
strengthened in this paper by presenting a basis for transformational calculi for
the derivation of implementations of abstract data types. This adds to the well-
known strategy of program transformation [BUD77, Dar82, BaW82] insofar as
whole data-models are synthesised by transformations.

In [Oli85] only the functional-part of specification-models is subject to trans-
formations. It follows the strategy of developing operations on the concrete level
from those on the abstract level by means of the abstraction function, cf.
[BUD77, Dar82, HJS87]. A target of this paper is to show how retrieve-maps can
themselves be obtained by transformations enabled by a simple calculus of
data-models based on set-theory.

The basic idea is that data-redundancy is an ordering on data-models compat-
ible with data-model building operators. This ordering is, in turn, relaxed to a
super-redundancy ordering whereby data validity is taken into account. A model
can be refined up to any of its super-redundant relatives. Since these orderings
are preserved by all data-constructors, refinement may proceed in a structural,
stepwise manner, according to an algebra of model-transformations.

The remainder of the paper is structured as follows: Section 2 presents the
underlying formalisms and overall strategy, illustrated by a simple example. The
basic laws and theorems of the calculus are presented in Section 3. Section 4
gives examples of calculated reification, illustrating the inference of retrieve-maps
and data-type invariants. Finally, Sections 5 and 6 draw conclusions and address
technical issues for future work.

2. Formal Basis

2.1. Notation Background

The algebraic semantics underlying the formalisms below is the so-called final
semantics [Wan79]:' a specification is given by a model, i.e. a many-sorted
2-algebra M which is the final object (up to isomorphism) in the class of all its
implementations (="more redundant" models). This approach to abstract data
type semantics is detailed below by presenting some standard definitions from
the literature, cf. e.g. [GOT78, Wan79, BaW82].

' Or terminal semantics, opposed to the standard initial interpretation, cf. [GOT78] for instance.

A Reification Calculus 5

Given a set f l of function symbols, and a set S of sorts ("types"), a signature
Z is a syntactical assignment Y: 12--> (S* x S) of a functionality to each function
symbol; as usual, we will write o ' : s t . . , s,--, s or s~. . . Sn--*"s as shorthands of
Y~(o') = ((s ~ , . . . , s,), s). Let Sets denote the class of all finite sets whose morphisms
are set-theoretical functions. Let these be denoted by f : X -> Y or X _>r y, where
X and Y are sets.

A E-algebra a~ is a semantic assignment described by a functor

s~ : Z-* Sets

that is, ~ = (a/n, ~s) where a/s maps sorts to corresponding carrier-sets, s~ a
maps operator-symbols to set-theoretical functions, and

sen(or) : ~ s (S ,) x . . . • a / s (s ,) - ' ~ ts(s) (3)

holds. Subscripts fl and S may be omitted wherever they are clear from the
context, e.g. by writing

~(~ ,) : a/(s~) • . . . x a / (s ,) - , a / (s)

instead of formula (3).
A particular E-algebra is the one whose carrier-set for each sort s E S contains

all the "'words" (terms, or morphisms) that describe objects of that sort:
clef

Wx(s) = C(s) u { o r (h , . . . , tn)[Or: Sl. . . Sn "~ S ^ V1 -< i-< n: fi~ Wx(sl)}

where C (s) = dec {or E 12]E(or) = (() , s)} is the set of all "constants" of type s.
Given two algebras a/, ~ :Z-> Sets, ~ is said to be an implementation of

iff there is one and only one epimorphism (abstraction map) from ~3 to sO. In
category-theoretical terminology, ~t is said to be the final algebra in the category
K~ of all its implementations [Wan79]. In set.theoretical terminology, one has
s/__.~ in the complete lattice of all Z-algebras [BaW82].

Finally, a semantic congruence - is induced by a / i n t o Wx such that, for all
terms t, t 'E Wx, t -= t ' / f f a / (t) = ~d(t'). This approach to presenting such a con-
gruence covers, implicitly, model-oriented (or constructive) specification such as
in VDM [JonS0, Jon86], Z [Hay87, Spi89] or "me too" [Hen84].

2.2. Overall Strategy

The standard way of refining a model M: Z-~ Sets would lead us to:

Conjecture an implementation-model ~:Z--> Sets;

Relate ~ to a / v i a a retrieve function;
Finally, to use such a function in arguing that ~ is a valid realisation of s/.

The strategy put forward in this paper is different: one resorts to Sets actually
to derive ~ from a/. That is to say, " 'a / is transformed into ~ " , using a calculus
which implicitly guarantees the correctness of such a derivation. This is based
upon the definitions and theorems given in the sequel.

Definition 1 (Redundancy Ordering in Sets). X ~ Y (read "X is less redundant
than Y") is the cardinality ordering on Sets, that is, the ordering defined by:

def

X <~ Y = B Y - ' , X : a is surjective (4)

Epimorphism a will be referred to as being a (not unique, in general) "retrieve
m a p " f r o m Y to X. []

6 J.N. Oliveira

For example, it can be stated that, for a finite set X,

~'(x)~x* (5)
(9~(X) denotes the set of all finite subsets of X) since 3e lems: X* -, ~ (X) , where

e lems(a b) = {a, b}

which is a well-known surjective function.
Note that ~< is reflexive and transitive, and that <~-antisymmetry induces

set-theoretical-isomorphism, i.e. for all X, Y and Z in Sets, the following facts
hold:

x<~x (6)
X ~ Y ^ Y ~ Z =g, X ~ Z �9 (7)

X < Y ^ Y ~ X ~ X =-Y (8)

Definition 2 (Morphism Refinement). Let X -> ~ Y, X'--> ~ X and Y'--> ~ Y be mor-
phisms in Sets. Let a and fl be epimorphisms (~ X <~ X ' ^ Y <~ Y'). Then any
morphism X'-~, ~' Y ' satisfying the equation

/3 o @'= 4) o a (9)

is said to be an (a, [3)-refinement of ~, cf. Fig. 1.
I f Y = Y ' then ~b' is uniquely determined,

~ ' = ~ o a

and is said to be the a-refinement o f dp. [:3

Morphism-refinements may be regarded as algorithmic "implementations"
induced by the introduction of data-redundancy. For example, let X = ~(A) ,
X ' = A*, Y = Y' = No, a = e lems and ~ = card, in Definition 2. Then

t~' = card o elems

is the a-refinement of ~b, and may be regarded as an "'implementation" of card,
at A*-levr

Theorem 1 (Refinement Theorem). Let ,d : ~,--> Sets be a specification model. Any
functor ~ :~,-* Sets obtained from gt by object-transformation into "'more redun-
dant" objects (Definition 1) and adoption o f corresponding " morphism refinements"
(Definition 2), is a valid realization of M, i.e. ~ 3 in the complete lattice of all
~-models [BaW82].

Proof: Let s --~ ~ r be a ~-morphism, i.e. a ~-term denoting an abstract transaction
from s-objects into r-objects (including primitive or derived ~-operators) whose
semantics are specified by the Sets morphism ~b = ~t(tr). Since ~ is obtained
from ~t by object-transformation into more-redundant objects, we have:

M(s) ~ ~ (s) A ~t(r) ~< ~ (r)

X * '" Y

X' ~ Y '

Fig. i. Morphism refinement

A Reifieation Calculus 7

Let ~(s)---) h. ~ (s) and ~ (r) -) ~ - ~ (r) be retrieve-maps which record such a
relationship. 4) '= ~(cr) may be regarded as the "unknown" of our constructive
proof. Let 4,' be a (h,, h,)-refinement of tb, i.e.

h, o ~b'= ~b o hs

that is

h,(~0r)(x)) = ~t(~)(hs(x))
Since hs and h, are surjeetions, this clause means that h : ~ ~ ~ (h ={hs}.~s) is
a E-epimorphism. Thus ~ _ = ~ in the complete lattice of all ~-algebras, that is,
algebra ~ is an implementation of ~t. []

This theorem is illustrated by the commutative diagram of Fig. 2, for all
E-operators tr: s ~ r, which means:

f l o ~(o-)-- ~t(cr) o a (10)
One may say that the function mapping s to a, r to/3, and so on (for all E-objects
and ~:-morphisms) is a natural transformation from ~ to ~t [Oti88a]. Note
however, that this natural transformation is not explicitly derived; instead,
retrieve-maps are found out first, and the ~-morphisms derived next so that the
former become a natural transformation.

A simple illustration of Theorem 1 follows.

t r

. ~ (s i ~ �9 . ~ (r)

Fig. 2. Refinement diagram

2.3. An E x a m p l e

Let Es~,~LL be the syntax of a SPELLing module, with sorts to (word), 8 (diction-
ary) and �9 (truth values), involving an operation Ok: w x 8--> 1". In terms of
semantics, O k is intended to test whether a given word is correctly spelled
according to a given finite dictionary. Let Words be the spelling vocabulary (i.e.
a set of words), and

~ (t o) = Words

M(8) = ~(Words)

M(~') = {0, 1}

M (O k) = A(w, d) . w E d

be the specification-model M for SPELL. Let

(to) = Words

~3(8) = Words*

~(~-) = { 0 , 1 }

8 J, N. Oliveira

Let us apply Theorem 1 to the inference of ~(Ok) . We have

= [id, elems]

fl = id

adopting an FP-like [Bac78] notation for product-maps; id = 1A (for every set
A) is a "polymorphic" identity operator. Clearly, for every sort s ~ ESeELL,

cf. equations (5) and (6). According to equation (10), ff~(Ok) is any solution to
the equation:

id o ~ (Ok) ~ (A (w, d) . w ~ d) o [id, elems]

Since id o f = f for all f we have

~(Ok) ~ (h(w, d) . w ~ d) o (A(x, y) . (x, etems y))

-= A (x, y) . x ~ elems y

as expected.
The properties of the ({0, 1}; v, 0) monoid and the "fold/unfold" method

[BUD77, Dar82] can be used to obtain algorithmic solutions for ~(Ok) (cf.
[Oii88a] for details), for instance:

~ (Ok) -- belongs

belongs (x, y) =- beloop (x, y, O)

clef
beloop (x, y, b) = if (y = ()) v b then b

else beloop(x, tl y, (x = hd y))

which "'is" the (expected) while-loop:

{boot found -- 0;

list p ;

{ p = y ;

while ((p! = ())&& notfound)
{p = tl(p);
found = (x= = ha(p))};

}
}

encoded above in an ad hoc, "C-like" procedural notation.
Reference [Oti85] presents further examples of transformational operation-

refinement in VDM, based on rule (10). A rather elaborate of these examples is
the synthesis (towards Pascal) of a procedural realisation of the apply operation
on abstract mappings, implied by the reification of these in terms of binary trees
(el. [FieS0]). However, this kind of transformational operation.refinement is
strongly dependent on a known, formal relationship between the high-level and
the low-level VDM-models- that is to say, a retrieve-map such as elems above.
How does one "compute" such a relationship?

A Reification Calculus 9

The remainder of this paper shows how retrieve-maps can themselves be
obtained by transformations performed at Sets, level. In the SPELL-example, this
amounts to showing how to transform ~r into ~(8) . In the example of Section
1.1, instead of "guessing" the BAMSl-reification for BAMS, BAMS1 should be
actually "derived" from BAMS. A Sets, transformational calculus will be presen-
ted in the sequel which complements the technique described in [O1i85].

3. Introduction to the Sets Calculus

It is well-known that Sets has a "cartesian closed" structure, i.e. it admits
finite-products (A • B) and finite exponentiations (A B) for all finite Sets-objects
A and B:

def

A x B ={<a ,b) laeA^bzB}
def

A 8 = i f) f : A }

The empty set ~ is said to be the initial object 0 of Sets. Any singleton set

{0}~{1}-------...--{x} (11)

can be abstracted by thefinaISets-object 1. 2 Furthermore, Sets admits co-products
(A+B):

clef

A+ B =({1}xa)u({2}xB)
and solutions to most domain equations of the form

X - ~ (X)

for functors ~: involving such operations) From exploring such a structure, we
obtain useful laws for the transformations we want to perform at Sets-level
[MaA86]. The first set of laws,

A x B = B x A (12)

A x (B x C) ~ (A x B)x C (13)

A x l ~ A (14)

A + B ~ B + A (15)

A + (B + C) ~- (A+ B) + C (16)

A+O=A (17)

A x 0 = 0 (18)

A x (B + C) - - ' - (A x B) + (A x C) (19)

z See [MaA86] for technical details about the concept of an initial/final object, which will not be
developed further in the sequel.
3 In general, X ~ .~(X) does not always have solutions in Sets if exponentiation is allowed. A well
known conter-example, due to Scott and Strachey, is X -- A + X x [MaA86] give a thorough discussion
of this problem, which leads beyond sets to domains. However, functors ~ (X) involving X in the
exponent are unusual in data-type specification, and are of theoretical interest only. As pointed out
by [MaA86], one may stay with Sets in data-type definition, resorting to domains only in program
specification.

10 J . N . Oliveira

establishes that Sets/= may be regarded as a commutative semiring under x
and +. Concerning exponentiation, one has:

A l m A

(A x B) c --" A c x B c

A B• ~ (AC) B

1A~1
A B+c ~ A B x A c

A~ 1

The Sets.object 2

2 ~ 1 + 1

(20)

(21)
(22)

(23)

(24)

(25)

is our canonical denotation of Boot= {TRUE, FALSE} . Clearly, 2 3 BooL At a
lower level, other useful facts hold in Sets, for example:

2 A - ~ (A) (26)

A r ~ B = O ~ A w B - = - A + B (27)

A B-'-A x x A B-x ~ X c _ B (28)

A" --- A x A n-t (2 9)

n # m ~ A " c ~ A m = O (30)

Law (29) is mere instantiation of law (28), since n - 1 c n (n denotes the initial
segment of N whose cardinality is n).

The Sets-relation hierarchy depicted in Fig. 34 is based on the following facts,
for all A, B in Sets:

A = B ~ A = B (31)

A - B ~ A < B (32)

A c _ B ~ A < B (33)

The following corollary establishes an obvious connection between Theorem
1 and the isomorphism laws (12) to (29).

Corollary 1 (Object Isomorphism). Theorem 1 holds for object-transformations
within Sets.isomorphism.

uI
/

VI ~ Yl -\
lit

\ \ l l
Fig, 3. A hierarchy of relations on Sets

4 The meaning of relation --~ will be explained later on, in Section 4.1.

A Reification Calculus 11

Proof: fact (32). []

By the following theorem, Sets may be regarded as a g-ordered algebra.

Theorem 2 (~ -Monotonicity of Sets Operators). The operators x , exponentiation
and + are monotone w.r.t, the redundancy-ordering of Definition 1, i.e. given
Sets-objects A, B, X, Y such that A ~ X and B ~ Y, then facts

A • Y (34)

A + B ~ X + Y (35)

A a ~ X v (36)

hold.

Proof (Outline): Let X --o~A and Y - - ~ B be the retrieve-maps corresponding
to A ~ X and B ~ Y. Then

Equation (34)- the product-morphism [a,/3],
def

[or, fl]((x, y)) =(a (x) , fl(y))

is the retrieve-map between X x Y and A x B.
Equation (35)- the coproduet-morphism a0)/3,

def
a ~ t3(x) = is - X (x) - ~ ~ (x)

is - Y(x) ~ fl(x)

(where the " i s - " predicates are the canonical projections associated to the
arguments of a disjoint-union, of. [Jon80]) is the retrieve-map between X + Y
and A + B.
Equation (36) - the retrieve-map y between X v and A B is such that, for each
U ~ X v

a o f = y (f) of l D

The following theorem extends <~-monotonicity towards recursively defined
data domains.

Theorem 3 (~-Monotonicity of Sets-Reeursion). Let ~; and (g be two functors in
Sets built by composition of the <~.monotone operators of Theorem 2. I f

~:(X) ~< ~(X) (37)

for any X, then the solution to domain equation

x -~ ~ (x) (38)

is a <~-refinement of the solution to

X --- S~(X) (39)

Proof: We will prove that any fixpoint solution X,s to equation (38) is a ~<-
refinement o f / ~ : , the least fixpoint solution to equation (39). Firstly, if X~ is a
solution of 9, then ~(X~)-~X,~, i.e. ~(X,~) ~<X,~ of. equation (32). Then

,~(X~) ~ X,~ (40)

12 J .N. Oliveira

by equation (37) and <~-transitivity (equation (8)). Since ~ involves only
monotone operators, ~ is also monotone [Man74]. Then we may regard equation
(40) as the antecedent of a fixpoint induction argument [Man74], whose con-
sequent is,

t z ~ X~

completing the proof. D

By Theorems 2 and 3, the components of each data domain of a Sets expression
can be refined in isolation. This allows for the stepwise introduction of redundancy
in formal models of software, towards implementation levels.

Finally, the ~<-ordering is extended to models in the obvious way. Given a
mode M whose syntax involves a sb~ s, and a set X such that M(s) ~ X, we will
write

to denote the model obtained from ~ by replacing X for M(s) and adopting the
corresponding morphism-refinements. Clearly, M[X/s]~_sg in the lattice of all
�9 (ef. Theorem 1).

3.1. Sets-Objects Useful in Specifications

Constructive (model-oriented) specification makes extensive use of Sets-
constructs. Table 1 shows how some finite object constructions in Sets are written
in the META-IV, Z and me too notations.

The definitions of A* and A ~ B are as follows:
cO

A*---- k_] A n (41)
l ,)~O

A ~ B ~ [_j B x (42)
X ~ _ A

The Sets-denotation for META-IV omission is explained as follows,

[A]=AI{NIL}

~ A u { N I L }

= A + I

from equations (11) and (27) (since NILf~A is assumed). Note that it may be
convenient to think of mappings in terms of total functions, by introducing an

Table I. S e t s versus model-oriented specification notations

S e t s META.IV Z me too Descrption

2 A A - s e t PA set(A) Finite sets
A * A - l ist seq A seq(A) Finite lists

m

A ~ B A---} B A-P B if(A, B) Finite mappings
A • B A B A x B tup(A, B) Tuples
A + B A f B Unions
A + 1 [A] Omissions

A Reification Calculus 13

undefined value .L, i.e. B in A ~ B is extended to Bu{.l_}~ B + 1, and one may
write:

A ~ B ~ (B+ 1) A (43)

4. Examples of Calculated Reification

This section illustrates the purpose of the transformational calculus introduced
in the previous sections, with a few examples. A small extension to the calculus
will be shown to be necessary in order to accommodate reasoning about data-type
invariants.

We begin with a simple example of object transformation geared towards a
final encoding into Pascal. It shows how to refine the META-IV domain A - list
(i.e. A* in Sets, cf. Table 1 and equation (41)) into its usual "linked-list"
representation:

A*~ U A ~

n=0

~ - I + A + A 2 + . . . (44)

--- 1 + N (45)

introducing a variable

N = A + A 2 + . . .

and resorting to laws (16), (30), (27), (25), (20), (35) and (32). Now,

N = A x I + A x A + A x A 2 + . . .

- ~ A x (I + A + A2+ . . .)

A x A* (46)

resorting to laws (20), (29), (25) and an infinitary version of (19). Step (46) was
obtained by "folding" through step (44). In summary,

A* --- L (47)

where L = 1 + N

N = A x L

o r

A * ~ - I + A x A *

cf. steps (45) and (46). An alternative reading of this reasoning is: A* is an initial
solution to the equation

L - = I + A x L

cf. [MaA86].

14 J . N . O l i v e i r a

Finally, the transliteration of (47) into META-IV notation is:

L = [N]

N :: C : A

P : L

which leads to the following Pascal code:

L = ~ ;
N = record

C: A;
P: L

end;

The next example shows how to transform binary relations into abstract
mappings, and vice-versa. This is one of a set of results which prove useful in
model-refinement towards relational database systems. For each relation in the
META-IV domain

m dcf

A ~ B -- (A B) - set

we want to obtain a mapping in A ~ ' ~ (B - set). In Sets, one writes 2 A• instead
of A ~"1 B. Moreover,

2A•215

~ (2 s) '~ (48)

el. taws (12) and (22). Let 2~ = 2 S - { A b . F A L S E } , where A b . F A L S E denotes the
everywhere F A L S E predicate on B, i.e, the predicate which induces the empty
set O on B. Therefore,

2+ ~-- ~(s)-{O}

From facts (26), (27) and (11) one draws:

2 a = 2B+ u {Ab .FALSE}

---_2+~+1

whereby equation (48) - combined with law (43) - rewrites to:

2a •

A ~ 2~ (49)

Equation (49) is an abstract-mapping-level counterpart of equation (22), whose
isomorphism can be established by the following bijection (written in META-IV
notation):

m m

collect: (A ~ B) -> (A --~ (B - set))

def

collect(p) = [a ~-~ {x ~ B I apx} l (a , b} ~ p] (50)

and its inverse discoltect.

A Reification Calculus 15

Note that A ~ 2+ 8 is less general a data-domain than A ~ 2 s - which is our
m

target, cf. A --, (B - set) - since it does not allow for empty images in mappings.
As a matter of fact,

2A• A'> 2 a (51)

since - extended to A ~ 2 B - collect is no longer surjective, and discollect is no
longer injective. This means that the data domain A ~ 2 ~ can he accepted as a
refinement of A ~- 2+ a provided that such a restriction is taken into account. This
leads to the notion of a data-type invariant, which is discussed in the next section.

4.1. Data-type Invariants

Data-type invariants are Boolean-valued morphisms (predicates) in Sets which
are required wherever the mathematical definition of a class of data is too generic,
and has to be restricted by a validity predicate (cf. i n v - B A M S in the example
of Section 1.I). Data-refinement decisions may lead to adequate low-level data-
domains which, however, may contain invalid data-representatives. In such cases,
data-type invariants are not intrinsic to data-domain specification; they are
consequences of data-refinement. In this context, the redundancy ordering (~)
turns out to be too strong, and has to be extended to a "super-redundancy"
ordering, defined by

d e f

X < Y =3Sc_ Y : X <~S (52)

X -- Y may be regarded as meaning that there is a partial surjection from Y to X.
The subset S _ Y in equation (52) is our formal basis for data-type invariant

definition and inference: one will say that an invariant, inv - S, has been induced
upon the refinement of X into Y. Predicate i n v - S is easy to define: it simply is
the characteristic function of S in Y, i.e.

~TR UE if y e S
inv - S (y) = [F A L S E if y e Y - S

Note that ~< is a special case of -<, i.e.
X ~ Y ~ X - < Y

(make S = Y in equation (52)), the induced invariant being the everywhere TRUE
predicate on Y, and thus omitted in practice. In general, data-type invariants
imply partial morphisms, which become total if restricted to valid data.

The following illustration of -<-reasoning is targetted at proving a law,

A ~ (B x C) -< (A ,--> B) x (A ~ C) (53)

which is another example of specification-transformation useful in refining
towards relational data-models (see example in Section 4.2 later on). This distribu-
tive law is the counterpart of law (21), at ,-*-level. Our constructive proof will
encompass the inference of the associated low-level data-type invariant. We know
that:

A,-, (B x C) -- L3 (B x C) K
K~_A

|....J (B K) x (C K)
K~_A

= { (f , g) [f ~ B K ^ g ~ C K ^ K c _ A }

= {(f, g) [f e A ~ B ^ g e A'--, C ^ dora f = dora g}

16

Cir. Table 1 and law (21). Thus, there is S c (A'-* B) x (A ~ C) such that:

A ~ (B x C) ~ S

and such that i n v - S is:

d e f

inv - S((f , g)) =dorn f = dora g (54)

Therefore,

A ~ (B • C) -< (A ~ B) x (A ~ C)

holds. The corresponding retrieve-map is:

retr((f, g)) = f R g (55)

where M denotes the following "pairing" operator on mappings obeying (54):

d e f

f R g = [a ~-~ (f (a) , g(a))[a e domf] (56)

[]

J. N. Oliveira

Another basic result useful in relational-database transformations is:

A ~ B-<2 A• (57)

which records the well-known fact that every mapping "is" a relation. Of course,
not all relations are functions. This suggests that the associated invariant should
express a functional-dependence. In fact,

A'--> B ~ { p ~ _ A x BlV(a, b) , (a ' , b ') e p : (a = a ' ~ b = b ') } (58)

= { p E 2 a •

~ 2 AXB

where a predicate f dp (p) , introduced as an abreviation of the universal quantifier
of equation (58), defines the induced invariant over 2 a• This is written in
META-IV as follows:

m

f dp : (A ~ B) --> Bool

d e f

f d p (p) =V(a, b), (a' , b ') e p : (a -- a'=C,b = b') (59)

A valid retrieve-map for this -<-relationship is:

m /'a

m k f : (A ~-> B) ~ (A -~ B)

clef

m k f (p) = [a ~-> b l a e dora (p) ^ b ~ B A apb] (60)

which is well-defined for every relation p satisfying (59) (dora is the operator
defined above by equation (2)). []

A Reifieation Calculus 17

4.2. Systematic Inference of Retrieve Functions and Data-type Invariants

Similarly to the redundancy ordering (~), the super-redundancy ordering (~-)
introduced in Section 4.1 is reflexive and transitive,

X . ~ X

X ~ Y ^ Y ~ - Z ~ X ~ _ Z

and compatible with Sets-operators, i.e.:

A x B ~ - - X x Y (61)

A + B ~ - - X + Y (62)

AB ~--X v (63)

for A--~ X and B ~ Y (the retrieve-maps and data-invariants being obtained in
a way similar to Theorem 2). This means that both data-type invariants and
retrieve-maps can be inferred in a stepwise, structural manner. For a chain of
n~-s teps , involving n retrieve-maps retr~ (i= 1 , n) and n invariants inv~
(i = 1 , . . . , n), the overall retrieve-map is obtained by:

retr = (DT=1 retri (64)

and the overall invariant is obtained by:

inv = hx. A invi(((Dj~i+ln retrj)(x)) (65)
i=1

In summary, the systematic inference of retrieve-maps (between models) is
achieved by structural composition of morphisms implicit in the Sets-rules presen-
ted above. Wherever ------reasoning is involved, data-type invariants are synthesised
in a similar way, together with retrieve-maps. This is illustrated in the following,
final example.

We want to transform B A M S into BAMS1 (cf. Section 1.1) and infer the
corresponding retrieve-map and induced data-type invariant. The Sets-notation
for the META-IV syntax of B A M S is,

B A M S = AccNr ~ (2 A+ecl-h'lder x Amount)

where ..+")AccH~ instead of 2 AccH~ takes inv - B A M S into account. Using laws
(53), (49) and (57), B A M S is subject to transformational reasoning,

B A M S = A c c N r ~ (2A+ cd4~ • Amount)

~--(AccNr~ 2 A'H~ x (A c c N r ~ Amount)

~- (2 AccNr• x (A c c N r ~ Amount)

"r (2 AccNrxAc'H~ X (2 A' 'NrxA t)

= BAMS1

which has led to BAMS1 in an easy way. The first --~-step induces an invariant:
def

inv~((f, g)) =dora f = dora g

matching with the retrieve-map:
def

retrl ((f, g)) -- [a ~-~ (f (a) , g(a))[a ~ domf]

18 J . N . Oliveira

cf. equations (55) and (56). The subsequent ----step induces the retrieve-map:
def

retr~ = [collect, id]

cf. equations (34) and (50). The last ----step induces invariant (59) on the second
argument:

def

invs((p, tr>) = fdp(cr)

and the retrieve-map:
def

retr3 = [id, m k f]

of. equation (60). The overall retrieve-map is obtained by chained morphism.
composition, cf. rule (64):

retr, o retr 2 o retr3 = retrl o retr2 o [id, mk f]

= retrl o [collect, id] o [id, m k f]

= retrn o [collect, m k f]

= ~ o [collect, mk f]

= A(p, o-). let f = collect(p)

in [a~-~(f(a) , mkf(o ') (a))[a ~domf]

The overall data-type invariant is obtained using rule (65). Writing inv((p, cr))
as a shorthand for inv - B A M S I (m k - B A M S I (p , o')), one has:

inv((p, tr)) = invl(retr2(retra(p, o'))) ^

inv2(retra(p, or)) ^

inva(p, o')

= invl(retr2(p, mkf (t r))) A

T R U E ^

f dp(o')

= invl(collect(p), mkf(o,)) A

f dp(cr)

= (dos collect(p) = d o s mkf(tr)) ^

f ap(cr)
= (dos(p) = dos(g)) ̂ f@(o ')

that is, the same invariant as postulated by equation (1). The last step above
relies on two simple facts relating the relation-domain operator (equation (2))
and the META-IV dos mapping-operator:

dos collect(p) = d o m (p)

dos m k f (p) = d o s (p)

Note in passing that we were saved from writing explicit proofs for two
standard VDM verification-steps about retrieve-maps, adequacy and totality over
valid data, which are implicitly guaranteed by the whole transformational process.

A Reification Calculus 19

5. Conclusions

The main motivation for the work described in this paper has been the need for
"'proof discharge" strategies in formal methods for software design. It is suggested
that the transformational paradigm [BaW82, Dar82] should be extended to the
refinement of model-oriented specifications, and shown how program transforma-
tion leads to model transformation in a natural way. A set-theoretical basis for
a comprehensive reification calculus handling data-structure transformation is
presented, whereby efficiency is gradually induced into algorithms, in a controlled
way.

Such a transformational calculus is applicable to methodologies such as VDM,
matching with a transformation-style formerly proposed, at operation-level, in
[Oli85]. Following its rules in a structured way,

Retrieve-maps and lower-level data-type invariants are systematically synthesised.
Data-type invariants are deduced by formal reasoning instead of being stated in
an ad hoc way; this means that there is little danger of over-strengthening them,
in which case proofs may become over-complicated.
Standard proofs about retrieve-maps such as adequacy and totality over valid
data are not required because they are implicitly guaranteed by the method.

It should be stressed that a formal notion of "model redundancy" (and
associated calculus) is useful at specification-level itself. In fact, it enables the
software engineer to decide upon "better models" for his/her specifications. For
instance, suppose that two domains A or B seem adequate as the semantic domain
M(s) for some syntactic domain s (in a software model J) , and that A_< B. Then
M[A/s] - the model obtained by making z~(s)= A - will be a "better" model
than ~t[B/s]-mutatis mutandis ~t(s)=B. The latter model would require
spurious data-type invariants and would involve too complex morphism
specifications. In this context, -<-reasoning proceeds in reverse order: given a
rule L-<R, an instance of R is replaced by the corresponding instance of L,
obtaining more abstract data-domains while removing unnecessary data-type
invariants.

A "laboratory" version of our model-algebra has been successfully applied
to a sizeable case-study [MRJ88] for industry. Real examples such as this are
relevant because theoretical results need feedback from practice. For example,
new transformation rules were found out throughout the exercise reported in
[MRJ88]. Reference [Oli89a] shows how the calculus can be applied to the
transformation of VDM-specification models into object-oriented modules.

6. Future Work

This is work under progress and requires further research in several respects:

1. The calculus described in this paper is still in its infancy. Further laws and
results are required before it becomes a pratical tool for imperative software
development. For example, [Oli88b] refers to current research on laws for
recursion removal from data-structures, by introduction of pointers, keys
or names typical of imperative programming (including database design
and object-oriented programming), for instance, the law

A - ~ (A) -< K x K ~ , ~ ' (K)

20 J.N. Oliveira

which makes "pointers" (K) to "heaps" (K ~ ~:(K)) explicit. Such laws induce
fairly elaborate invariams and retrieve functions, because of the danger of
nontermination and/or pointer undefinedness.

The exercise reported in [MRJ88] suggests that normal.form theory can per-
haps be regarded as a sub-calculus of the reification calculus. This should be
investigated. A limitation of the calculus developed so far is that all transforma-
tions are "context-free", in that they do not take invariants into account. For
instance, in the B A M S l - r e f i n e m e n t of the B A M S - s y n t a x (cf. Section 1.1), the
specifier might wish to save space in the amounts-table by removing all entries
whose amount is 0:

R o w 2 :: K : A c c N r A : (A m o u n t - {0})

leading to a weaker version of formula (1):
def

inv - B A M S I (m k - B A M S I (h t , at)) = dora(at) ~ dom(ht) A (66)

dep K A (at)

cf. [Oli88a]. The "invariant-sensitivC' rule required by the transformation of 1
into 66 is the following: let S be the subset S_c (A ~ B)x (A ~ C) induced by
invariant (54), and let R be the subset RG(A'-->B)x(A'->(C-{c})), where
c E C, induced by

def

inv- R((f, g)) = dom f_c dora g

Then S ~ R with
def

retr((f, g)) = (f, gL.J [a ~-> e I a ~ dora f - d o r a g])

"Invariant-sensitive'" transformations such as above seem to be common in VDM,
and should be studied in detail.

2. At operation-level, the pre-/post-condition style of specification (which is
able to express non-deterministic behaviour) is dealt with by regarding
such conditions as Boolean-valued morphisms. For instance, if

post - O P : ~ A Y~ -> Bool

is a post-condition on a class of 2-states, accepting arguments in a class
A, and retrx and retrA are (respectively) the retrieve-maps implicit in two
given refinement decisions, 2 ~ fl and A ~< B, then the implied reification
of 0 1 ,

post - OP1 : f l B I l ~ Bool

is any solution to the equation

p o s t - O P l (~o, b, r ') ~ post - OP(retr:~(~o), retr A (b), retr~(~o'))

However, it may be preferable to redefine the very notions of signature
and model in order to accommodate "procedural" formal specifications,
cf. e.g. [NIP86, Fia89, O1i89b]. [NiP86] generalises the model-theoretic
basis for data types from algebras to multi-algebras, introducing the notion
of a nondeterministic data type and providing it with a basis for correctness
of implementations. The relationship between abstract and concrete data
is recorded in terms of relations rather than functions. At data-domain

A Reification Calculus 21

functions. At data-domain level, the calculus presented in this paper is
applicable to this wider notion of an implementation. However, special
attention should be paid to the implications of generalizing homomorph-
isms to behavioural simulations. [O1i89b] resorts to CCS [Mi189] to incor-
porate behaviour in VDM-modules, approaching the expressive power of
object-oriented specification. [Fia 89] develops modal logic framework for
algebraic, object-oriented specification.

. The rudimentary category-theoretical foundations of the original approach
[Oli88a] should be better exploited. We believe that a more thorough
supported on category theory (following [MaA86], for instance) may
significantly improve it. In particular, the formalisms dependent on Sets
should be generalised to other cartesian.closed categories with co-products.
Sets is perhaps too restricted a category for formal specification of impera-
tive software models. Alternative, object-oriented approaches to formal
specification are being investigated, cf. e.g. FOOPS [GoM87]. Reference
[SFS87] describes a categorical approach to object-oriented specification.

. Past work on dataflow program semantics [Oli84] showed the advantage
of variableless, function-level notations (such as FP [Bac78]) in program
transformation, because of their compactness and associated algebra of
programs. The present research has increased our interest on such notations,
because of their strong connections with the "morphism-language" of
category theory (see also the f -NDP notation of [Va187]).

5. The relationship between this approach and Hoare [Hoa87]'s categorical
setting for data refinement should be investigated.

The introduction of algebraic reification-calculi in software engineering
appears to be a natural evolution, when compared with the historical development
of the scientific bases for other engineering areas (e.g. civil and mechanical
engineering etc.) which, some centuries ago, started omitting complicated
geometrical proofs in favour of algebraic reasoning. The reader is left with the
following quotation by a Portuguese mathematician of the 16th century, when
classic algebra was emerging and started being applied to practical problems:

"Quien sabe por Algebra, sabe scientificamente." Pedro Nunes (1502-
1578), in libro de algebra, 1567, fol. 270v.

Acknowledgements
The author is indebted to the referees for detailed and helpful comments which
improved the paper's presentation and technical contents. In particular, the
invariant-sensitive kind of transformation was pointed out by one of the referees.

Special thanks go to Prof. Cliff Jones for his comments and interest in this
paper.

This research was partially supported by JNICT, under PMCT-contract
Nr.87.64.

22

References

J. N. Oliveira

[Bac78]

[BaW82]

[BuD77]

[Dar82]

[Fia89]

[Fi80]

[GoM87]

[GOT78]

[Gull78]

[Hay87]

[Hen84]

[Hoa87]

[HJS87]

[Jon80]

[Joa86]

[Mac71]

[MaA86]

[Man74]
[MilS9]

[MRJS8]

[Nip86]

[O1i85]

[Oli87]

[Oli88a]

[OligSb]

[Oli89a]

[Oli89b]

[SFS87]

Backus, J.: Can Programming Be Liberated from the yon Neumann Style? A Functional
Style and Its Algebra of Programs. CACM, 21(8), 613-641 (1978).
Bauer, F. L. and Wgssner, H.: Algorithmic Language and Program Development. Springer-
Veflag, 1982.
Burstall, R. M. and Daflington J.: A Transformation System for Developing Recursive
Programs. JACM, 24(1), 44-67 (1977).
Dariington, J.: Program Transformation. Functional Programming and Its Applications:
An Advanced Course, Newcastle University, Cambridge University Press, 1982.
Fiadeiro, J. L.: C~ilculo de Objectos e Eventos. Ph.D. dissertation, IST-University of
Lisbon, Portugal, 1989 (in Portuguese).
Fielding, E.: The Specification of Abstract Mappings and Their Implementation as
B+-Trees. PRG-18, Oxford University, September 1980.
Goguen, J. and Meseguer, J.: Unifying Functional, Object-oriented and Relational Program-
ming with Logical Semantics. SRI International, 1987.
Goguen, J., Thatcher, J. W. and Wagner, E. G.: InitialAlgebra Approach to the Specification,
Correctness and Implementation of Algebraic Data Types. Current Trends in Programming
Technology, Vol. IV, Prentice-Hall, 1978.
Guttag, J. V. and Horning, J. J.: The Algebraic Specification of Abstract Data Types.
Acta Informatica, 10, 27-52 (1978).
Hayes, I. (Ed.): Specification Case Studies. Series in Computer Science, C. A. R. Hoare
(ed.), Prentice-Hall International, 1987.
Henderson, P.: me too: A Languare for Software Specification and Model-Building-
Preliminary Report. University of Stifling, December 1984.
Hoary, C. A. R.: Data Refinement in a Categorical Setting. PRG, Oxford University,
June 1987.
Hoare, C. A. R., Jifeng, He and Sanders, J. W.: Prespecification in Data Refinement.
Information Processing Letters, 25, 71-76 (1987).
Jones, C. B.: Software Development - a Rigorous Approach. Series in Computer Science,
C. A. R. Hoare (ed.), Prentice-Hall International, 1980.
Jones, C. B.: Systematic Software Development Using VDM. Series in Computer Science,
C. A. R. Hoare (ed.), Prentice-Hall International, 1986.
MacLane, S.: Categories for the Working Mathematician. Springer-Verlag, New-York,
1971.
Manes, E. G. and Arbib, M. A.: Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science, D. Giles (ed.), Springer-Veriag, 1986.
Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York, 1974.
Milner, R.: Communication and Concurrency. Series in Computer Science, C. A. R. Hoare
(ed.), Prentice-Hall International, 1989.
Moreira, C., Reis, A., Jesus, R. and Barros, A.: Especifica~;~o Formal de um Sistema
para Conservat6rias de Registo Predial. U. Minho, Technical Report CCES-OP3:R1/88,
May 1988 (in Portuguese).
Nipkow, T.: Nondeterministic Data Types: Models and Implementations. Acta Infor-
matica, 22, 629-661 (1986).
Oliveira, J. N.: The Transformational Paradigm as a Means of Smoothing Abrupt Software
Design Steps. U. Minho, Technical Report CCES-JNO:R2/85, December 1985.
Oliveira, J. N.: Refinamento Transformacional de Especifica~6es (Terminals). Proc. XII
Iberian "Jornadas" on Mathematics, May 1987, Braga, Portugal (in Portuguese).
Oliveira, J. N.: Transformational Refinement of Formal (Model-oriented) Specifications.
Internal Report CCES-JNO:R1/87, University of Minho, Braga, Portugal (updated: June
1988).
Oliveira, J. N.: SETS- Uma Linguagem de Especifica~:~o Quase Centenaria. CCES
Seminar (1988/89 series), University of Minho, July 1988 (in Portuguese).
Oliveira, J. N.: Transforming Specifications: Between the Model-oriented and the Object-
oriented Style. CCES, U. Minho, Technical Report (in preparation).
Oliveira, J. N.: Algebraic Specification in a CCS-Extension to Modular-VDM. Invited
communication, Section C4 (Computing Science Foundations), 1989 National Meeting
of the Portuguese Mathematical Society, Oporto, 3 April 1989.
Sernadas, A., Fiadeiro, J., Sernadas, C. and Ehrich, H.-D.: Abstract Object Types: A
Temporal Perspective. Colloquium on Temporal Logic and Specification, A. Pnueli, H.
Barringer and Banieqbal, B. (eds), Springer-Verlag.

A Reification Calculus 23

[Spi89] Spivey, J. M.: The Z Notation - A Reference Manual. Series in Computer Science, C. A.
R. Hoare (r Prentice-Hall International, 1989.

[Val87] Valen~a, J. M.: Formal Programming: an Algebraic Approach- Part 1: An Algebra of
Functions and a Semantics for Imperative Languages. Invited paper, Proc. XII Iberian
"'Jornadas" on Mathematics, May 1987, Braga, Portugal.

[Wan79] Wand, M.: Final Algebraic Semantics and Data Type Extensions. JCSS, 19, 27-44 (1979).

Received February 1989
Accepted in a revised form in October 1989 by C. B. Jones

