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Abstract. This paper presents a transformational approach to the derivation of 
implementations from model-oriented specifications of abstract data types. 

The purpose of this research is to reduce the number of formal proofs required 
in model refinement, which hinder software development. It is shown to be 
applicable to the transformation of models written in META-IV (the specification 
language of VDM) towards their refinement into, for example, Pascal or relational 
DBMSs. The approach includes the automatic synthesis of  retrieve functions 
between models, and data-type invariants. 

The underlying algebraic semantics is the so.called final semantics "/~ la 
Wand": a specification "is" a model (heterogeneous algebra) which is the final 
object (up to isomorphism) in the category of all its implementations. 

The transformational calculus approached in this paper follows from exploring 
the properties of finite, recursively defined sets. 

This work extends the well-known strategy of program transformation to 
model transformation, adding to previous work on a transformational style for 
operation-decomposition in META-IV. The model-calculus is also useful for 
improving model-oriented specifications. 

I. Introduction 

It is widely accepted nowadays that the industrial production of reliable software, 
at low cost, should be based on technologies which, at least, discuss such a 
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reliability formally, i.e. based on mathematically written specifications. Such 
technologies involve the additional notion of refnement (or reification [Jon86]), 
i.e. any systematic process of building implementations from formal specifications. 

Much research in this area has concentrated on devising languages and tools 
for formal specification. Well.known techniques for algebraic specification 
[GOT78, Gull78, BaW82] make it possible to define algebraic structures from 
which programs are developed, in the form of hierarchies of abstract data types. 
These correspond to algebras whose functionality (syntax) is fixed by a 
heterogeneous signature (E), and whose theory (semantics) is a quotient Wr./--, 
where W~ denotes the ~-word algebra (i.e. the "'language" generated by ~). There 
are two standard ways of finitely presenting such a quotient. 

In property-oriented specification, -- is the smallest E-congruence induced 
by a finite collection of E-equations [GOT78]. In model.oriented specification 
[Jon86], semantics are given by describing a model, i.e. a E-algebra M, and -- 
is then the kernel congruence relation induced by the unique homomorphism 
from W~ to M [BaW82]. 

This paper focuses on model-refinement (reification) technology, i.e. on 
specification refinement in the model-oriented specification style. 

An approach aiming at developing a refication calculus for software engineer- 
ing is presented. When compared with the historical development of the scientific 
bases for other engineering areas (e.g. mechanical and civil engineering etc.), the 
introduction of algebraic reification-calculi in software engineering appears to be 
a natural evolution, which may be (roughly) sketched as follows: 

Until the 1960s: intuition and craft. 
1970s: Ad hoc (informal) methods. 
1980s: formal methods. 
1990s: formal calculi. 

Formal calculi are intended to scale up the scope of formal methods. 
The reification-calculus put forward in this paper is specification-dialect 

independent. However, acquaintance with the VDM method and the META-IV 
notation [Jon80, Jon86] will help in understanding the examples. The approach 
was first presented in [Oli87] and further developed in [Oli88a]. Both these 
references resort to basic category theory [Mac71] following [MaA86] and 
[Wan79], which should be read as contextual research. To improve readability 
in this paper, the category-theoretical notions are replaced by set-theoretical ones. 

1.1. Overview of Open Problems 

Formal specifications should be as abstract as possible, in the sense that they 
should record the essence of problems and ignore irrelevant details. By contrast, 
implementations are usually full of machine-dependences which explore a con- 
crete machine-architecture for run-time efficiency. Refinement fills in the abstrac- 
tion gap between specifications and implementations, by providing correctness 
arguments proving that the latter satisfy the former. In this sense, refinement is 
the "kernel" phase of software development using formal methods. 

The standard techniques for data refinement assume that the software engineer 
has sufficient intuition to "guess" (efficient) low-level model.implementations. 
This is unlikely, in general. Moreover, two kinds of phenomenon occur wherever 
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model-refinement is in progress: either one is led to more redundant data- 
representations, or one has to filter invalid data-representations (or both). 

In real.life software design, it is sometimes cumbersome to record formally 
the relationship between data-models, and prove facts (adequacy, invariant- 
preservation etc. [Jon80]) about them. Unfortunately, it may take a considerable 
effort to prove facts which are intuitively obvious. 

For example, consider the following toy-example, a META-IV syntax for a 
very simple bank accounting system: 

m 

B A M S  = A c c N r  -.~ Status 

Status :: H :  AccHolder  - set 
A :  A m o u n t  

A m o u n t  = NatO 

where the following data-type invariant should hold, 

def 

inv - B A M S ( t r )  = Vn ~ dora o': H(cr (n ) )  ~ 

enforcing that every account has, at least, one account-holder. 
A VDM practitioner may take a while to formally discuss the correctness of 

the following (obvious!) relational-model implementation, where BAMS is model- 
led in terms of two binary relations (vulg. "tables"): 

B A M S 1  :: HT: R o w l  - set /*table of account-holders*/ 
A T :  R o w 2 -  set /*table of amounts*/ 

R o w  1 :: K : A c c N r  H : AccHolder 

Row2  :: K : A c c N r  A :  A m o u n t  

subject to the following data-type invariant, 

clef 

i n v -  B A M S  I ( m k  - B A M S  I ( ht, a t ))  = dora(at)  = dom(  ht ) ^ 

dep K A  ( at ) 

where 

(1) 

dora : ( A B )  - set .~, A - set 
d,r (2) 

dora(p)  ={a e A [ 3 b  ~ B : (a ,  b) e p} 

is a generic (domain)  relational-operator, and predicate d e p K A : ( R o w 2 - s e t ) - - >  
Bool: 

def 

d e p K A ( p )  =Vr,  s ~ p : (K(r)  = K ( s ) ~ A ( r )  = A ( s ) )  

expresses a K ~ A functional  dependence. 
When toy-examples are scaled-up to real examples, formal proofs are either 

discarded (and the method no longer acceptable as formal), or they become a 
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serious bottleneck in development. Moreover, no definite answers have been 
given to questions such as: 

How can we define an invariant as being "correct", "too strong", or "sufficient"? 
What is the "least" abstraction (retrieve) function [Jon80,Jon86] between two 
models? 
How can we keep data redundancy and validity easily under control? 
Can we equationally derive low-level data-models from high.level data-models? 

1.2. Main Objectives 

Former work [O1i85] on alternative techniques in the area referred to above, is 
strengthened in this paper by presenting a basis for transformational calculi for 
the derivation of implementations of abstract data types. This adds to the well- 
known strategy of program transformation [BUD77, Dar82, BaW82] insofar as 
whole data-models are synthesised by transformations. 

In [Oli85] only the functional-part of specification-models is subject to trans- 
formations. It follows the strategy of developing operations on the concrete level 
from those on the abstract level by means of the abstraction function, cf. 
[BUD77, Dar82, HJS87]. A target of this paper is to show how retrieve-maps can 
themselves be obtained by transformations enabled by a simple calculus of 
data-models based on set-theory. 

The basic idea is that data-redundancy is an ordering on data-models compat- 
ible with data-model building operators. This ordering is, in turn, relaxed to a 
super-redundancy ordering whereby data validity is taken into account. A model 
can be refined up to any of its super-redundant relatives. Since these orderings 
are preserved by all data-constructors, refinement may proceed in a structural, 
stepwise manner, according to an algebra of model-transformations. 

The remainder of the paper is structured as follows: Section 2 presents the 
underlying formalisms and overall strategy, illustrated by a simple example. The 
basic laws and theorems of the calculus are presented in Section 3. Section 4 
gives examples of calculated reification, illustrating the inference of retrieve-maps 
and data-type invariants. Finally, Sections 5 and 6 draw conclusions and address 
technical issues for future work. 

2. Formal Basis 

2.1. Notation Background 

The algebraic semantics underlying the formalisms below is the so-called final 
semantics [Wan79]:' a specification is given by a model, i.e. a many-sorted 
2-algebra M which is the final object (up to isomorphism) in the class of all its 
implementations (="more redundant" models). This approach to abstract data 
type semantics is detailed below by presenting some standard definitions from 
the literature, cf. e.g. [GOT78, Wan79, BaW82]. 

' Or terminal semantics, opposed to the standard initial interpretation, cf. [GOT78] for instance. 
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Given a set f l  of  function symbols, and a set S of  sorts ("types"),  a signature 
Z is a syntactical assignment Y: 12--> (S* x S) of  a functionality to each function 
symbol; as usual, we will write o ' : s t . . ,  s,--, s or s~. . .  Sn--*"s as shorthands of  
Y~(o') = ( ( s ~ , . . . ,  s,), s). Let Sets denote the class of  all finite sets whose morphisms 
are set-theoretical functions. Let these be denoted by f :  X -> Y or X _>r y, where 
X and Y are sets. 

A E-algebra a~ is a semantic assignment described by a functor 

s~ : Z-* Sets 

that is, ~ = (a/n,  ~s )  where a/s maps sorts to corresponding carrier-sets, s~ a 
maps operator-symbols to set-theoretical functions, and 

sen(or) : ~ s ( S , )  x . . .  • a / s ( s , ) - '  ~ ts(s)  (3) 

holds. Subscripts fl  and S may be omitted wherever they are clear from the 
context, e.g. by writing 

~(~ , ) :  a/(s~) • . . .  x a / ( s , ) - ,  a / (s)  

instead of  formula (3). 
A particular E-algebra is the one whose carrier-set for each sort s E S contains 

all the "'words" (terms, or morphisms) that describe objects of  that sort: 
clef 

Wx(s) = C(s)  u { o r ( h , . . . ,  tn)[ Or: Sl. . . Sn "~ S ^ V1 -< i-< n: fi~ Wx(sl)} 

where C ( s ) =  dec {or E 12]E(or) = ( ( ) ,  s)} is the set of all "constants" of type s. 
Given two algebras a/, ~ :Z-> Sets, ~ is said to be an implementation of 

iff there is one and only one epimorphism (abstraction map) from ~3 to sO. In 
category-theoretical terminology, ~t is said to be the final algebra in the category 
K~ of  all its implementations [Wan79]. In set.theoretical terminology, one has 
s/__.~ in the complete lattice of  all Z-algebras [BaW82]. 

Finally, a semantic congruence - is induced by a / i n t o  Wx such that, for all 
terms t, t 'E Wx, t -= t ' / f f a / ( t )  = ~d(t'). This approach to presenting such a con- 
gruence covers, implicitly, model-oriented (or constructive) specification such as 
in VDM [JonS0, Jon86], Z [Hay87, Spi89] or "me too" [Hen84]. 

2.2. Overall Strategy 

The standard way of refining a model M: Z-~ Sets would lead us to: 

Conjecture an implementation-model ~:Z--> Sets; 

Relate ~ to a / v i a  a retrieve function; 
Finally, to use such a function in arguing that ~ is a valid realisation of  s/. 

The strategy put forward in this paper is different: one resorts to Sets actually 
to derive ~ from a/. That is to say, " 'a / is  transformed into ~ " ,  using a calculus 
which implicitly guarantees the correctness of  such a derivation. This is based 
upon the definitions and theorems given in the sequel. 

Definition 1 (Redundancy Ordering in Sets). X ~ Y (read "X is less redundant 
than Y") is the cardinality ordering on Sets, that is, the ordering defined by: 

def 

X <~ Y = B Y - ' ,  X : a is surjective (4) 

Epimorphism a will be referred to as being a (not unique, in general) "retrieve 
m a p " f r o m  Y to X.  [] 
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For example, it can be stated that, for a finite set X, 

~'(x)~x* (5) 
(9~(X) denotes the set of  all finite subsets of X)  since 3e lems:  X* -, ~ ( X ) ,  where 

e lems(a  . . . . .  b) = {a, . . . .  b} 

which is a well-known surjective function. 
Note that ~< is reflexive and transitive, and that <~-antisymmetry induces 

set-theoretical-isomorphism, i.e. for all X, Y and Z in Sets, the following facts 
hold: 

x<~x (6) 
X ~ Y ^ Y ~ Z  =g, X ~ Z  �9 (7) 

X < Y ^ Y ~ X  ~ X =-Y  (8) 

Definition 2 (Morphism Refinement). Let X -> ~ Y, X'--> ~ X and Y'--> ~ Y be mor- 
phisms in Sets. Let a and fl be epimorphisms ( ~ X <~ X '  ^ Y <~ Y'). Then any 
morphism X'-~, ~' Y '  satisfying the equation 

/3 o @'=  4) o a (9) 

is said to be an (a, [3)-refinement of  ~, cf. Fig. 1. 
I f  Y = Y '  then ~b' is uniquely determined, 

~ ' = ~ o a  

and is said to be the a-refinement o f  dp. [:3 

Morphism-refinements may be regarded as algorithmic "implementations" 
induced by the introduction of  data-redundancy. For example, let X = ~(A) ,  
X ' =  A*, Y = Y' = No, a = e lems and ~ = card, in Definition 2. Then 

t~' = card o elems 

is the a-refinement of  ~b, and may be regarded as an "'implementation" of  card, 
at A*-levr 

Theorem 1 (Refinement Theorem). Let ,d : ~,--> Sets be a specification model. Any  
functor ~ :~,-* Sets obtained from gt by object-transformation into "'more redun- 
dant"  objects (Definition 1) and adoption o f  corresponding " morphism refinements" 
(Definition 2), is a valid realization of  M, i.e. ~ 3  in the complete lattice of  all 
~-models [ BaW82]. 

Proof: Let s --~ ~ r be a ~-morphism, i.e. a ~-term denoting an abstract transaction 
from s-objects into r-objects (including primitive or derived ~-operators) whose 
semantics are specified by the Sets morphism ~b = ~t(tr). Since ~ is obtained 
from ~t by object-transformation into more-redundant objects, we have: 

M(s) ~ ~ ( s )  A ~t(r) ~< ~ ( r )  

X * '" Y 

X' ~ Y '  

Fig. i. Morphism refinement 
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Let ~(s)---) h. ~ ( s )  and ~ ( r ) - ) ~ - ~ ( r )  be retrieve-maps which record such a 
relationship. 4) '=  ~(cr) may be regarded as the "unknown" of  our constructive 
proof. Let 4,' be a (h,, h,)-refinement of tb, i.e. 

h, o ~b'= ~b o hs 

that is 

h,(~0r)(x)) = ~t(~)(hs(x)) 
Since hs and h, are surjeetions, this clause means that h : ~  ~ ~ ( h  ={hs}.~s) is 
a E-epimorphism. Thus ~ _ = ~  in the complete lattice of all ~-algebras, that is, 
algebra ~ is an implementation of ~t. [] 

This theorem is illustrated by the commutative diagram of Fig. 2, for all 
E-operators tr: s ~ r, which means: 

f l  o ~(o-)-- ~t(cr) o a (10) 
One may say that the function mapping s to a, r to/3, and so on (for all E-objects 
and ~:-morphisms) is a natural transformation from ~ to ~t [Oti88a]. Note 
however, that this natural transformation is not explicitly derived; instead, 
retrieve-maps are found out first, and the ~-morphisms derived next so that the 
former become a natural transformation. 

A simple illustration of  Theorem 1 follows. 

t r  

. ~ ( s i  ~ �9 . ~ ( r )  

Fig. 2. Refinement diagram 

2.3. An E x a m p l e  

Let Es~,~LL be the syntax of  a SPELLing module, with sorts to (word), 8 (diction- 
ary) and �9 (truth values), involving an operation Ok:  w x 8--> 1". In terms of 
semantics, O k  is intended to test whether a given word is correctly spelled 
according to a given finite dictionary. Let Words be the spelling vocabulary (i.e. 
a set of  words), and 

~ ( t o  ) = Words 

M(8) = ~(Words) 

M(~') = {0, 1} 

M ( O k )  = A(w, d ) .  w E d 

be the specification-model M for SPELL. Let 

(to) = Words 

~3(8) = Words* 

~(~-) = { 0 , 1 }  
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Let us apply Theorem 1 to the inference of ~(Ok) .  We have 

= [ id, elems] 

fl = id 

adopting an FP-like [Bac78] notation for product-maps; id = 1A (for every set 
A) is a "polymorphic" identity operator. Clearly, for every sort s ~ ESeELL, 

cf. equations (5) and (6). According to equation (10), ff~(Ok) is any solution to 
the equation: 

id o ~ (Ok) ~ (A (w, d ) .  w ~ d) o [ id, elems] 

Since id o f = f  for all f we have 

~(Ok)  ~ (h(w, d ) .  w ~ d) o (A(x, y ) .  (x, etems y)) 

-= A (x, y ) .  x ~ elems y 

as expected. 
The properties of the ({0, 1}; v, 0) monoid and the "fold/unfold" method 

[BUD77, Dar82] can be used to obtain algorithmic solutions for ~(Ok)  (cf. 
[Oii88a] for details), for instance: 

~ ( Ok ) -- belongs 

belongs (x, y) =- beloop (x, y, O) 

clef 
beloop (x, y, b) = if  (y = ()) v b then b 

else beloop(x, tl y, (x = hd y)) 

which "'is" the (expected) while-loop: 

{boot found -- 0; 

list p ; 

{ p = y ;  

while ((p! = ( ))&& notfound) 
{p = tl(p); 
found = (x= = ha(p))}; 

} 
} 

encoded above in an ad hoc, "C-like" procedural notation. 
Reference [Oti85] presents further examples of transformational operation- 

refinement in VDM, based on rule (10). A rather elaborate of these examples is 
the synthesis (towards Pascal) of a procedural realisation of the apply operation 
on abstract mappings, implied by the reification of these in terms of binary trees 
(el. [FieS0]). However, this kind of transformational operation.refinement is 
strongly dependent on a known, formal relationship between the high-level and 
the low-level VDM-models- that is to say, a retrieve-map such as elems above. 
How does one "compute" such a relationship? 
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The remainder of this paper shows how retrieve-maps can themselves be 
obtained by transformations performed at Sets, level. In the SPELL-example, this 
amounts to showing how to transform ~r into ~(8) .  In the example of Section 
1.1, instead of "guessing" the BAMSl-reification for BAMS, BAMS1 should be 
actually "derived" from BAMS. A Sets, transformational calculus will be presen- 
ted in the sequel which complements the technique described in [O1i85]. 

3. Introduction to the Sets Calculus 

It is well-known that Sets has a "cartesian closed" structure, i.e. it admits 
finite-products (A • B) and finite exponentiations (A B) for all finite Sets-objects 
A and B: 

def  

A x B  ={<a ,b ) laeA^bzB}  
def  

A 8 = i f ) f :  A }  

The empty set ~ is said to be the initial object 0 of Sets. Any singleton set 

{0}~{1}-------...--{x} (11) 

can be abstracted by thefinaISets-object 1. 2 Furthermore, Sets admits co-products 
(A+B):  

clef 

A+ B =({1}xa)u({2}xB) 
and solutions to most domain equations of the form 

X - ~ ( X )  

for functors ~: involving such operations) From exploring such a structure, we 
obtain useful laws for the transformations we want to perform at Sets-level 
[MaA86]. The first set of laws, 

A x B = B x A  (12) 

A x ( B x  C ) ~ ( A x  B)x  C (13) 

A x l ~ A  (14) 

A + B ~ B + A  (15) 

A + ( B +  C) ~- (A+ B) + C (16) 

A+O=A (17) 

A x 0 = 0  (18) 

A x ( B + C ) - - ' - ( A x B ) + ( A x  C) (19) 

z See [MaA86] for technical details about the concept of an initial/final object, which will not be 
developed further in the sequel. 
3 In general, X ~ .~(X) does not always have solutions in Sets if exponentiation is allowed. A well 
known conter-example, due to Scott and Strachey, is X -- A + X x [MaA86] give a thorough discussion 
of this problem, which leads beyond sets to domains. However, functors ~ ( X )  involving X in the 
exponent are unusual in data-type specification, and are of theoretical interest only. As pointed out 
by [MaA86], one may stay with Sets in data-type definition, resorting to domains only in program 
specification. 
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establishes that Sets/= may be regarded as a commutative semiring under x 
and +.  Concerning exponentiation, one has: 

A l m A  

(A  x B)  c --" A c x B c 

A B• ~ (AC) B 

1A~1 
A B+c ~ A  B x A  c 

A~ 1 

The Sets.object 2 

2 ~ 1 + 1  

(20) 

(21) 
(22) 

(23) 

(24) 

(25) 

is our canonical denotation of Boot= {TRUE, FALSE} .  Clearly, 2 3  BooL At a 
lower level, other useful facts hold in Sets, for example: 

2 A - ~ (A)  (26) 

A r ~ B = O  ~ A w B - = - A + B  (27) 

A B-'-A x x A  B-x  ~ X c _ B  (28) 

A" --- A x A n-t  ( 2 9 )  

n # m  ~ A " c ~ A m = O  (30) 

Law (29) is mere instantiation of law (28), since n - 1 c n (n denotes the initial 
segment of N whose cardinality is n). 

The Sets-relation hierarchy depicted in Fig. 34 is based on the following facts, 
for all A, B in Sets: 

A = B  ~ A = B  (31) 

A - B  ~ A < B  (32) 

A c _ B  ~ A < B  (33) 

The following corollary establishes an obvious connection between Theorem 
1 and the isomorphism laws (12) to (29). 

Corollary 1 (Object Isomorphism). Theorem 1 holds for object-transformations 
within Sets.isomorphism. 

uI 
/ 

VI ~ Yl -\ 
lit 

\ \ l l  
Fig, 3. A hierarchy of  relations on Sets 

4 The meaning of  relation --~ will be explained later on, in Section 4.1. 
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Proof: fact (32). [] 

By the following theorem, Sets may be regarded as a g-ordered algebra. 

Theorem 2 ( ~  -Monotonicity of Sets Operators). The operators x ,  exponentiation 
and + are monotone w.r.t, the redundancy-ordering of  Definition 1, i.e. given 
Sets-objects A, B, X, Y such that A ~ X and B ~ Y, then facts 

A •  Y (34) 

A + B ~ X +  Y (35) 

A a ~ X v (36) 

hold. 

Proof (Outline): Let X --o~A and Y - - ~  B be the retrieve-maps corresponding 
to A ~ X and B ~ Y. Then 

Equation (34)- the product-morphism [a,/3], 
def 

[or, fl]((x, y)) =(a (x) ,  fl(y)) 

is the retrieve-map between X x Y and A x B. 
Equation (35)- the coproduet-morphism a0)/3, 

def 
a ~ t3(x  ) = is - X ( x ) - ~  ~ ( x )  

is - Y(x)  ~ fl(x) 

(where the " i s - "  predicates are the canonical projections associated to the 
arguments of a disjoint-union, of. [Jon80]) is the retrieve-map between X +  Y 
and A + B. 
Equation (36) - the retrieve-map y between X v and A B is such that, for each 
U ~ X  v 

a o f = y ( f )  of l  D 

The following theorem extends <~-monotonicity towards recursively defined 
data domains. 

Theorem 3 (~-Monotonicity of Sets-Reeursion). Let ~; and (g be two functors in 
Sets built by composition of  the <~.monotone operators of  Theorem 2. I f  

~:(X) ~< ~(X)  (37) 

for any X, then the solution to domain equation 

x -~ ~ ( x )  (38) 

is a <~-refinement of  the solution to 

X --- S~(X) (39) 

Proof: We will prove that any fixpoint solution X,s to equation (38) is a ~<- 
refinement o f / ~ : ,  the least fixpoint solution to equation (39). Firstly, if X~ is a 
solution of 9, then ~(X~)-~X,~, i.e. ~(X,~) ~<X,~ of. equation (32). Then 

,~(X~) ~ X,~ (40) 
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by equation (37) and <~-transitivity (equation (8)). Since ~ involves only 
monotone operators, ~ is also monotone [Man74]. Then we may regard equation 
(40) as the antecedent of  a fixpoint induction argument [Man74], whose con- 
sequent is, 

t z ~  X~ 

completing the proof. D 

By Theorems 2 and 3, the components of each data domain of a Sets expression 
can be refined in isolation. This allows for the stepwise introduction of redundancy 
in formal models of software, towards implementation levels. 

Finally, the ~<-ordering is extended to models in the obvious way. Given a 
mode M whose syntax involves a sb~ s, and a set X such that M(s) ~ X, we will 
write 

to denote the model obtained from ~ by replacing X for M(s) and adopting the 
corresponding morphism-refinements. Clearly, M[X/s]~_sg in the lattice of all 
�9 (ef. Theorem 1). 

3.1. Sets-Objects Useful in Specifications 

Constructive (model-oriented) specification makes extensive use of Sets- 
constructs. Table 1 shows how some finite object constructions in Sets are written 
in the META-IV, Z and me too notations. 

The definitions of A* and A ~  B are as follows: 
cO 

A*---- k_] A n (41) 
l , )~O  

A ~  B ~  [_j B x (42) 
X ~ _ A  

The Sets-denotation for META-IV omission is explained as follows, 

[A]=AI{NIL} 

~ A u { N I L }  

= A + I  

from equations (11) and (27) (since NILf~A is assumed). Note that it may be 
convenient to think of mappings in terms of total functions, by introducing an 

Table I. S e t s  versus model-oriented specification notations 

S e t s  META.IV Z me too Descrption 

2 A A - s e t  PA set(A) Finite sets 
A *  A - l ist  seq A seq(A) Finite lists 

m 

A ~  B A---} B A-P B if(A, B) Finite mappings 
A • B A B A x B tup(A, B) Tuples 
A + B A f B Unions 
A + 1 [A] Omissions 
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undefined value .L, i.e. B in A ~  B is extended to Bu{.l_}~ B +  1, and one may 
write: 

A ~  B ~ (B+ 1) A (43) 

4. Examples of Calculated Reification 

This section illustrates the purpose of the transformational calculus introduced 
in the previous sections, with a few examples. A small extension to the calculus 
will be shown to be necessary in order to accommodate reasoning about data-type 
invariants. 

We begin with a simple example of object transformation geared towards a 
final encoding into Pascal. It shows how to refine the META-IV domain A -  list 
(i.e. A* in Sets, cf. Table 1 and equation (41)) into its usual "linked-list" 
representation: 

A*~  U A ~ 

n=0 

~ - I + A + A 2 +  . . .  (44) 

--- 1 + N (45) 

introducing a variable 

N = A + A 2 +  . . .  

and resorting to laws (16), (30), (27), (25), (20), (35) and (32). Now, 

N = A x  I + A x A + A x A 2 +  . . .  

- ~ A x ( I +  A +  A2+ . . . )  

A x A* (46) 

resorting to laws (20), (29), (25) and an infinitary version of (19). Step (46) was 
obtained by "folding" through step (44). In summary, 

A* --- L (47) 

where L = 1 + N 

N = A x L  

o r  

A * ~ - I + A x A *  

cf. steps (45) and (46). An alternative reading of this reasoning is: A* is an initial 
solution to the equation 

L - = I + A x L  

cf. [MaA86]. 
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Finally, the transliteration of (47) into META-IV notation is: 

L = [ N ]  

N :: C : A  

P : L  

which leads to the following Pascal code: 

L = ~ ;  
N = record 

C: A; 
P: L 

end; 

The next example shows how to transform binary relations into abstract 
mappings, and vice-versa. This is one of a set of results which prove useful in 
model-refinement towards relational database systems. For each relation in the 
META-IV domain 

m dcf 

A ~ B -- (A  B)  - set 

we want to obtain a mapping in A ~ ' ~  (B  - set). In Sets, one writes 2 A• instead 
of A ~"1 B. Moreover, 

2A•215 

~ ( 2 s )  '~ (48) 

el. taws (12) and (22). Let 2~ = 2 S - { A b . F A L S E } ,  where A b . F A L S E  denotes the 
everywhere F A L S E  predicate on B, i.e, the predicate which induces the empty 
set O on B. Therefore, 

2+ ~-- ~(s)-{O} 

From facts (26), (27) and (11) one draws: 

2 a = 2B+ u {Ab .FALSE}  

---_2+~+1 

whereby equation (48) - combined with law (43) - rewrites to: 

2a •  

A ~ 2~ (49) 

Equation (49) is an abstract-mapping-level counterpart of equation (22), whose 
isomorphism can be established by the following bijection (written in META-IV 
notation): 

m m 

collect: ( A  ~ B)  -> ( A  --~ (B  - set))  

def  

collect(p) = [a ~-~ {x  ~ B I apx} l (a ,  b} ~ p] (50) 

and its inverse discoltect. 
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Note that A ~  2+ 8 is less general a data-domain than A ~  2 s -  which is our 
m 

target, cf. A --, (B - set) - since it does not allow for empty images in mappings. 
As a matter of fact, 

2A• A'> 2 a (51) 

since - extended to A ~  2 B - collect is no longer surjective, and discollect is no 
longer injective. This means that the data domain A ~  2 ~ can he accepted as a 
refinement of A ~- 2+ a provided that such a restriction is taken into account. This 
leads to the notion of a data-type invariant, which is discussed in the next section. 

4.1. Data-type Invariants 

Data-type invariants are Boolean-valued morphisms (predicates) in Sets which 
are required wherever the mathematical definition of a class of data is too generic, 
and has to be restricted by a validity predicate (cf. i n v -  B A M S  in the example 
of Section 1.I). Data-refinement decisions may lead to adequate low-level data- 
domains which, however, may contain invalid data-representatives. In such cases, 
data-type invariants are not intrinsic to data-domain specification; they are 
consequences of data-refinement. In this context, the redundancy ordering (~) 
turns out to be too strong, and has to be extended to a "super-redundancy" 
ordering, defined by 

d e f  

X <  Y =3Sc_  Y : X  <~S (52) 

X -- Y may be regarded as meaning that there is a partial surjection from Y to X. 
The subset S _  Y in equation (52) is our formal basis for data-type invariant 

definition and inference: one will say that an invariant, inv - S, has been induced 
upon the refinement of X into Y. Predicate i n v -  S is easy to define: it simply is 
the characteristic function of S in Y, i.e. 

~TR UE if y e S 
inv - S (y)  = [ F A L S E  if y e Y -  S 

Note that ~< is a special case of -<, i.e. 
X ~ Y  ~ X - < Y  

(make S = Y in equation (52)), the induced invariant being the everywhere TRUE 
predicate on Y, and thus omitted in practice. In general, data-type invariants 
imply partial morphisms, which become total if restricted to valid data. 

The following illustration of -<-reasoning is targetted at proving a law, 

A ~ ( B x C) -< (A ,--> B) x (A ~ C ) (53) 

which is another example of specification-transformation useful in refining 
towards relational data-models (see example in Section 4.2 later on). This distribu- 
tive law is the counterpart of law (21), at ,-*-level. Our constructive proof will 
encompass the inference of the associated low-level data-type invariant. We know 
that: 

A,-, (B x C) -- L3 ( B x C )  K 
K~_A 

|....J ( B K ) x ( C  K) 
K~_A 

= { ( f , g ) [ f ~ B  K ^ g ~  C K ^ K c _ A }  

= {(f, g ) [ f e  A ~  B ^ g e A'--, C ^ dora f =  dora g} 
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Cir. Table 1 and law (21). Thus, there is S c (A'-* B ) x ( A ~  C) such that: 

A ~ ( B x C ) ~ S  

and such that i n v - S  is: 

d e f  

inv - S( ( f ,  g)) =dorn f = dora g (54) 

Therefore, 

A ~  (B • C) -< ( A ~  B) x (A ~ C) 

holds. The corresponding retrieve-map is: 

retr((f,  g ) ) = f R  g (55) 

where M denotes the following "pairing" operator on mappings obeying (54): 

d e f  

f R g = [a ~-~ ( f (a) ,  g(a ))[a e domf]  (56) 

[] 
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Another basic result useful in relational-database transformations is: 

A ~  B-<2 A• (57) 

which records the well-known fact that every mapping "is" a relation. Of course, 
not all relations are functions. This suggests that the associated invariant should 
express a functional-dependence. In fact, 

A'--> B ~ { p ~ _ A x  BlV(a, b) , (a ' ,  b ' ) e p : ( a = a ' ~ b = b ' ) }  (58) 

= { p E 2 a •  

~ 2  AXB 

where a predicate f dp (p ) ,  introduced as an abreviation of the universal quantifier 
of equation (58), defines the induced invariant over 2 a• This is written in 
META-IV as follows: 

m 

f dp  : (A  ~ B)  --> Bool 

d e f  

f d p ( p  ) =V(a, b), (a' ,  b ' ) e  p : ( a -- a'=C,b = b') (59) 

A valid retrieve-map for this -<-relationship is: 

m /'a 

m k f  : (A  ~-> B)  ~ ( A  -~  B)  

clef  

m k f ( p )  = [ a ~-> b l a e dora (p)  ^ b ~ B A apb] (60) 

which is well-defined for every relation p satisfying (59) (dora is the operator 
defined above by equation (2)). [] 
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4.2. Systematic Inference of Retrieve Functions and Data-type Invariants 

Similarly to the redundancy ordering (~), the super-redundancy ordering (~-) 
introduced in Section 4.1 is reflexive and transitive, 

X . ~  X 

X ~ Y ^ Y ~ - Z  ~ X ~ _ Z  

and compatible with Sets-operators, i.e.: 

A x B ~ - - X x  Y (61) 

A + B ~ - - X +  Y (62) 

AB ~--X v (63) 

for A--~ X and B ~ Y (the retrieve-maps and data-invariants being obtained in 
a way similar to Theorem 2). This means that both data-type invariants and 
retrieve-maps can be inferred in a stepwise, structural manner. For a chain of 
n~-s teps ,  involving n retrieve-maps retr~ ( i=  1 . . . .  , n) and n invariants inv~ 
(i = 1 , . . . ,  n), the overall retrieve-map is obtained by: 

retr = (DT=1 retri (64) 

and the overall invariant is obtained by: 

inv = hx. A invi(((Dj~i+ln retrj)(x)) (65) 
i=1 

In summary, the systematic inference of retrieve-maps (between models) is 
achieved by structural composition of morphisms implicit in the Sets-rules presen- 
ted above. Wherever ------reasoning is involved, data-type invariants are synthesised 
in a similar way, together with retrieve-maps. This is illustrated in the following, 
final example. 

We want to transform B A M S  into BAMS1  (cf. Section 1.1) and infer the 
corresponding retrieve-map and induced data-type invariant. The Sets-notation 
for the META-IV syntax of B A M S  is, 

B A M S  = AccNr ~ ( 2 A+ecl-h'lder x Amount)  

where ..+")AccH~ instead of 2 AccH~ takes inv - B A M S  into account. Using laws 
(53), (49) and (57), B A M S  is subject to transformational reasoning, 

B A M S  = A c c N r  ~ ( 2A+ cd4~ • Amount)  

~--(AccNr~ 2 A'H~ x ( A c c N r ~  Amount)  

~- (2 AccNr• x ( A c c N r ~  Amount)  

"r (2 AccNrxAc'H~ X (2 A' 'NrxA . . . .  t) 

= BAMS1  

which has led to BAMS1  in an easy way. The first --~-step induces an invariant: 
def 

inv~((f, g)) =dora f =  dora g 

matching with the retrieve-map: 
def 

retrl ((f, g)) -- [a ~-~ ( f (a ) ,  g(a))[ a ~ domf]  
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cf. equations (55) and (56). The subsequent ----step induces the retrieve-map: 
def 

retr~ = [collect, id] 

cf. equations (34) and (50). The last ----step induces invariant (59) on the second 
argument: 

def 

invs( (p, tr>) = fdp(  cr ) 

and the retrieve-map: 
def 

retr3 = [ id, m k f  ] 

of. equation (60). The overall retrieve-map is obtained by chained morphism. 
composition, cf. rule (64): 

retr, o retr 2 o retr3 = retrl o retr2 o [ id, mk f ]  

= retrl o [collect, id] o [id, m k f ]  

= retrn o [collect, m k f ]  

= ~ o [collect, mk f ]  

= A(p, o-). let f =  collect(p) 

in [a~-~(f( a) ,  mkf(o ' ) (a))[  a ~domf]  

The overall data-type invariant is obtained using rule (65). Writing inv((p, cr)) 
as a shorthand for inv - B A M S I ( m k  - B A M S I ( p ,  o')), one has: 

inv((p, tr)) = invl(retr2(retra(p, o'))) ^ 

inv2( retra(p, or)) ^ 

inva(p, o') 

= invl(retr2(p, mkf ( t r ) ) )  A 

T R U E ^  

f dp( o') 

= invl(collect(p),  mkf(o,))  A 

f dp(cr) 

= (dos collect(p) = d o s  mkf(tr) ) ^ 

f ap(cr) 
= (dos(p) = dos(g)) ̂ f@(o ' )  

that is, the same invariant as postulated by equation (1). The last step above 
relies on two simple facts relating the relation-domain operator (equation (2)) 
and the META-IV dos  mapping-operator: 

dos collect(p) = d o m ( p  ) 

dos m k f ( p  ) = d o s ( p )  

Note in passing that we were saved from writing explicit proofs for two 
standard VDM verification-steps about retrieve-maps, adequacy and totality over 
valid data, which are implicitly guaranteed by the whole transformational process. 
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5. Conclusions 

The main motivation for the work described in this paper has been the need for 
"'proof discharge" strategies in formal methods for software design. It is suggested 
that the transformational paradigm [BaW82, Dar82] should be extended to the 
refinement of model-oriented specifications, and shown how program transforma- 
tion leads to model transformation in a natural way. A set-theoretical basis for 
a comprehensive reification calculus handling data-structure transformation is 
presented, whereby efficiency is gradually induced into algorithms, in a controlled 
way. 

Such a transformational calculus is applicable to methodologies such as VDM, 
matching with a transformation-style formerly proposed, at operation-level, in 
[Oli85]. Following its rules in a structured way, 

Retrieve-maps and lower-level data-type invariants are systematically synthesised. 
Data-type invariants are deduced by formal reasoning instead of being stated in 
an ad hoc way; this means that there is little danger of over-strengthening them, 
in which case proofs may become over-complicated. 
Standard proofs about retrieve-maps such as adequacy and totality over valid 
data are not required because they are implicitly guaranteed by the method. 

It should be stressed that a formal notion of "model redundancy" (and 
associated calculus) is useful at specification-level itself. In fact, it enables the 
software engineer to decide upon "better models" for his/her specifications. For 
instance, suppose that two domains A or B seem adequate as the semantic domain 
M(s) for some syntactic domain s (in a software model J ) ,  and that A_< B. Then 
M[A/s] -  the model obtained by making z~(s)= A -  will be a "better" model 
than ~t[B/s]-mutatis mutandis ~t(s)=B. The latter model would require 
spurious data-type invariants and would involve too complex morphism 
specifications. In this context, -<-reasoning proceeds in reverse order: given a 
rule L-<R, an instance of R is replaced by the corresponding instance of L, 
obtaining more abstract data-domains while removing unnecessary data-type 
invariants. 

A "laboratory" version of our model-algebra has been successfully applied 
to a sizeable case-study [MRJ88] for industry. Real examples such as this are 
relevant because theoretical results need feedback from practice. For example, 
new transformation rules were found out throughout the exercise reported in 
[MRJ88]. Reference [Oli89a] shows how the calculus can be applied to the 
transformation of VDM-specification models into object-oriented modules. 

6. Future Work 

This is work under progress and requires further research in several respects: 

1. The calculus described in this paper is still in its infancy. Further laws and 
results are required before it becomes a pratical tool for imperative software 
development. For example, [Oli88b] refers to current research on laws for 
recursion removal from data-structures, by introduction of pointers, keys 
or names typical of imperative programming (including database design 
and object-oriented programming), for instance, the law 

A - ~ ( A )  -< K x K ~ , ~ ' ( K )  
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which makes "pointers" (K) to "heaps" (K ~ ~:(K)) explicit. Such laws induce 
fairly elaborate invariams and retrieve functions, because of the danger of 
nontermination and/or  pointer undefinedness. 

The exercise reported in [MRJ88] suggests that normal.form theory can per- 
haps be regarded as a sub-calculus of the reification calculus. This should be 
investigated. A limitation of the calculus developed so far is that all transforma- 
tions are "context-free", in that they do not take invariants into account. For 
instance, in the B A M S l - r e f i n e m e n t  of the B A M S - s y n t a x  (cf. Section 1.1), the 
specifier might wish to save space in the amounts-table by removing all entries 
whose amount is 0: 

R o w 2  :: K : A c c N r  A : ( A m o u n t -  {0}) 

leading to a weaker version of formula (1): 
def 

inv - B A M S I ( m k  - B A M S I ( h t ,  at))  = dora(at)  ~ dom(  ht) A (66) 

dep K A  ( at  ) 

cf. [Oli88a]. The "invariant-sensitivC' rule required by the transformation of 1 
into 66 is the following: let S be the subset S_c ( A ~  B)x  ( A ~  C) induced by 
invariant (54), and let R be the subset RG(A'-->B)x(A'->(C-{c})), where 
c E C, induced by 

def 

inv- R((f, g)) = dom f_c dora g 

Then S ~  R with 
def 

retr((f,  g))  = (f,  gL.J [ a ~-> e I a ~ dora f - d o r a  g]) 

"Invariant-sensitive'" transformations such as above seem to be common in VDM, 
and should be studied in detail. 

2. At operation-level, the pre-/post-condition style of specification (which is 
able to express non-deterministic behaviour) is dealt with by regarding 
such conditions as Boolean-valued morphisms. For instance, if 

post - O P  : ~ A  Y~ -> Bool 

is a post-condition on a class of 2-states, accepting arguments in a class 
A, and retrx and retrA are (respectively) the retrieve-maps implicit in two 
given refinement decisions, 2 ~ fl and A ~< B, then the implied reification 
of 0 1 ,  

post - OP1 : f l B I l  ~ Bool 

is any solution to the equation 

p o s t -  O P l  ( ~o, b, r ') ~ post - OP(  retr:~( ~o ), retr A ( b ), retr~(~o') ) 

However, it may be preferable to redefine the very notions of signature 
and model in order to accommodate "procedural" formal specifications, 
cf. e.g. [NIP86, Fia89, O1i89b]. [NiP86] generalises the model-theoretic 
basis for data types from algebras to multi-algebras, introducing the notion 
of a nondeterministic data type and providing it with a basis for correctness 
of implementations. The relationship between abstract and concrete data 
is recorded in terms of relations rather than functions. At data-domain 
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functions. At data-domain level, the calculus presented in this paper is 
applicable to this wider notion of an implementation. However, special 
attention should be paid to the implications of generalizing homomorph- 
isms to behavioural simulations. [O1i89b] resorts to CCS [Mi189] to incor- 
porate behaviour in VDM-modules, approaching the expressive power of 
object-oriented specification. [Fia 89] develops modal logic framework for 
algebraic, object-oriented specification. 

. The rudimentary category-theoretical foundations of the original approach 
[Oli88a] should be better exploited. We believe that a more thorough 
supported on category theory (following [MaA86], for instance) may 
significantly improve it. In particular, the formalisms dependent on Sets 
should be generalised to other cartesian.closed categories with co-products. 
Sets is perhaps too restricted a category for formal specification of impera- 
tive software models. Alternative, object-oriented approaches to formal 
specification are being investigated, cf. e.g. FOOPS [GoM87]. Reference 
[SFS87] describes a categorical approach to object-oriented specification. 

. Past work on dataflow program semantics [Oli84] showed the advantage 
of variableless, function-level notations (such as FP [Bac78]) in program 
transformation, because of their compactness and associated algebra of 
programs. The present research has increased our interest on such notations, 
because of their strong connections with the "morphism-language" of 
category theory (see also the f -NDP notation of [Va187]). 

5. The relationship between this approach and Hoare [Hoa87]'s categorical 
setting for data refinement should be investigated. 

The introduction of algebraic reification-calculi in software engineering 
appears to be a natural evolution, when compared with the historical development 
of the scientific bases for other engineering areas (e.g. civil and mechanical 
engineering etc.) which, some centuries ago, started omitting complicated 
geometrical proofs in favour of algebraic reasoning. The reader is left with the 
following quotation by a Portuguese mathematician of the 16th century, when 
classic algebra was emerging and started being applied to practical problems: 

"Quien sabe por Algebra, sabe scientificamente." Pedro Nunes (1502- 
1578), in libro de algebra, 1567, fol. 270v. 
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