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Super Spline Spaces of Smoothness r and 
Degree d _> 3r + 2 

Adel Kh. Ibrahim and Larry L. Schumaker 

Abstract. The problem of computing the dimension of spaces of splines whose 
elements are piecewise polynomials of degree d with r continuous derivatives 
globally has attracted a great deal of attention recently. We contribute to this 
theory by obtaining dimension formulae for certain spaces of super sphnes, 
including the case where varying amounts of additional smoothness is enforced at 
each vertex. We also explicitly construct minimally supported bases for the spaces. 
The main tool is the Bernstein-B6zier method. 

1. Introduction 

Given a triangulation A of a set fi  in I~ 2, and given integers 0 < r < d, the space of 
splines of degree d and smoothness r on A is defined as 

~,~(A) = {s ~ C'(f~): s restricted to each triangle belongs to Pa}, 

where Pd is the space of polynomials of total degree d. Clearly, 6e~(A) is a linear 
space. The problems of computing the dimension of this space and constructing 
minimally supported bases for it are difficult, in general (see [1]- [15]  and the 
references therein). 

This paper is based on several recent contributions to this problem area. 
Dimension formulae and local bases for the spaces 6a~(A) were obtained for 
d > 4r + I  by Alfeld, Piper, and Schumaker [4], [6], using Bernstein-B6zier 
methods. These results were recently extended to d > 3r + 2 by Dong [10]. Chui 
and Lai [8] pointed out that certain subspaces with double smoothness at each of 
the interior vertices are of special importance, and they gave dimension formulae 
and minimally supported bases for their spaces, which they called super splines. 
These results were extended to a wider class of super splines for d > 4r + 1 by 
Schumaker [15-1, where the connection with finite elements was also explored. 
Super splines were studied in a different way by Chui and He [71, and are used by 
Chui and Lai [9] to prove results on the approximation power of spline spaces. 

The purpose of this paper is to investigate general spaces of super splines. We 
require only that d > 3r + 2, and deal not only with the usual kinds of super spline 
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spaces, but also with more general ones for which the amount of extra smoothness 
varies from vertex to vertex. The paper is organized as follows. In Section 2 we 
define the spaces of interest, and present our main results. In Section 3 we develop 
some Bernstein-B6zier tools, while in Section 4 we establish dimension formulae 
and construct explicit minimally supported bases for our spaces in the special case 
where the amount of additional vertex smoothness is the same for each vertex. In 
Section 5 we do the same for the general case. Finally, Section 6 is devoted to 
remarks. 

2. The Main Results 

We begin by defining the super spline spaces of interest. 

Definition 2.1. Suppose that A is an arbitrary regular triangulation of a set [2, and 
that the vertices of the triangulation are denoted by v t . . . .  , Vv. Suppose d and r 
are nonnegative integers such that d > 3r + 2. Finally, suppose Pi are integers 
satisfying 

(2.1) r < p, < d, i = 1 . . . .  , V, 

and let 

(2.2) 0 = (Pl , . . . ,  Pv). 

We define the space of super splines by 

(2.3) SP~'~ = {s ~ Se~(A): s e C~ i = 1 . . . . .  V}, 

where, in general, if v is a vertex of the triangulation A, 

(2.4) Ck(v) = {s: s has derivatives up to order k at v}. 

The super splines considered in i15] correspond to the ease where p~ = p, for all 
i = 1 , . . . ,  V where r < p < d. For consistency with the notation used there, in this 
case we write 

(2.5) 6e]'P(A) = {s ~ 6e~(A): s E Ca(v,), i = 1 . . . . .  V}. 

To present formulae for the dimension of super spline spaces, we need to 
introduce some additional notation (see [3]-[6"1, [14], and [15]). Let 

v.= 
E t = 

E B - -  

V =  
E =  
N =  

It is well known that 

number of interior vertices of A, 
number of boundary vertices of A, 
number of interior edges of A, 
number of boundary edges of A, 
total number of vertices of A, 
total number of edges of A, 
number of triangles of A. 

(2.6) EB= Vs, N =  VB + 2V~- 2, and Et= VB + 3V~-- 3. 
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We also introduce 

(2.7) S = number of singular vertices of A, 

where a singular vertex v is a vertex which is formed by two lines which cross at v. 
For each i = 1 . . . . .  V, let Ei denote the number of interior edges attached to vi, and 
let e~ denote the number of these with different slopes. Throughout this paper we 
assume that the vertices are numbered so that the first V~ of them are the interior 
vertices. 

Finally, we recall some additional terminology which is by now standard (see 
[3]-[6],  [141 and [15]). A cell is a subtriangulation of A which consists of a set of 
triangles sharing one common interior vertex (see [3 ] - [61  and [11]). We say that 
the spline space ~ .P(A)  has a minimally supported basis provided that it has a basis 
of splines, each one with support on a cell. 

The first of the following theorems gives dimension formulae for the spaces in 
(2.5) where the order of extra smoothness is the same at each vertex; i.e., p~ = p for 
all i = 1 . . . . .  E The formulae depend on the size of p. 

Theorem 2.2. 
then 

Let A be an arbitrary regular triangulation, l f  2r < p and d >_ 2p + 1, 

(2.8) dim(~,p(A)) = (p  4-22)V 4- I ( d  2 - 3 r -  1) _3(P- -22r ) l  N 

(r 4- 1)(2d - 4p 4- r - 2) 
4- E. 

2 

l f  d > 3r 4- 2 and r 4- [_(r 4- 1)/2_] < p < 2r with d > 2p 4- 1, then 

(2.9) dim(SP '~ 'P(A) )=(P+2)V+I(d-3r -2  2 1 ) - 3 (  2 r - p 2  +l/AN)] 

( r + l ) ( 2 d  4 p + r - 2 )  E +  S, 
-~ 2 2 

where S is the number of singular vertices of A (see (2.7)). Finally, if d > 3r + 2 and 
r < p < IA where 

(2.10) I t = r + ~ - - ~ ,  

then 

(2.11) 

(r + t)(2d - 4/~ + r - 2) 
+ 2 E+tr,  
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where 

Vt d 

(2.12) tr = 2 2 (r + j + 1 - je,) +. 
i=1  j = p - - r +  1 

In all three cases, oq'~'P(A) has a minimally supported basis. 

Discussion. Ths first statement is contained in Theorem 2.1 of 1,15]. The remain- 
ing statements are extensions of Theorem 2.5 of 115] which deals with similar super 
spline spaces (but under the assumption that d > 4r + 1), and of the results of r l0]  
which deal with the usual spline spaces for d > 3r + 2. We delay the proof of (2.9) 
and (2.11) until Section 4 (see Theorems 4.2 and 4.4). 

The formulae in Theorem 2.2 can be rewritten as a single formulae which holds 
in all three cases, as follows: 

Corollary 2.3. In each of  the three cases o f  Theorem 2.2, 

(d 2 - 2rd - r 2 + d + r - 2p 2 + 4rp - 2p) lib 
(2.13) dim(Se~,P(A)) = 2 

(2d 2 - 6rd - 3r 2 + 3r - 5p 2 + 12rp - 3p) 
+ v, 

2 

( - 2d 2 + 6rd + 3r 2 - 3r + 6p z - 12rp + 6p + 2) 
+ + o .  

2 

Proof. Using the Euler relations given in (2.6), straightforward algebraic manipu- 
lation of the formulae in Theorem 2.2 lead to formula (2.13). �9 

In order to state results for the more general super spline spaces defined in (2.3), 
we need some additional notation. Suppose that {ei}~_- 1 is the set of edges of A. The 
following theorem, which contains Theorem 2.2 as a special case, is the main 
dimension result of this paper. 

Theorem 2.4. Given d > 3r + 2 and r < Pi, i = 1 . . . . .  V, let 

(2.14) k~ = max(pi, It), i = 1 . . . .  , V, 

where It is the integer defined in (2.10). Suppose 

(2.15) k~ + k~ < d for  all 

where 

(i,j) e ~ ,  

jV" = {(i,j): vi and vj are neiohbors ). 



Super Spline Spaces 405 

Then 

(2.16) dim(6e~'e(A)) 

+i=,t.,k, - r+l )_(p i - r+2  1 ) _ ( 2 r - k , + 2  1)-(k'-2r)lE'2 

: + , )+ + ,r 

(r + 1,(2d + r -  2) [ V ~] ] 
+ 2 E - ( r + l )  2 ~ k , +  k~E, 

i f V I + I  i=1 

Vt d 

+ 2 2 (r+l+j--je,)+. 
i=1 j =p i - - r+  1 

Moreover, there exists a basis of minimally supported splines. 

Discussion. Formula (2.16) reduces to those in Theorem 2.2 in the special case 
where Pi = P, all i = 1 . . . . .  E We prove a more explicit version of this theorem in 
Theorem 5.2 below. II 

Example 2.5. Consider S~'~ where A is the triangulation shown in Fig. 3, and 
0 = (3, 2, 2, 2, 2, 4, 2, 2). 

Discussion. Using formulae (2.16), we calculate the dimension of this space to be 
149. An explicit determining set of B6zier ordinates (as described in Theorem 5.2) is 
given in the figure. 

3. Preliminaries and Tools 

Our analysis of the super spline spaces introduced in Section 1 follows the 
Bernstein-B6zier approach pioneered in I'6]. In this section we review the necessary 
notation, and prove several preliminary results. 

Suppose the triangles of A are denoted by T ttj . . . . .  T tin, and that the vertices of 
T t0 are denoted by v~t~e), l] ~2{o, .,It] in counterclockwise order. In each triangle T t*l vi3(l) 

we consider the set o f (  d +  2)  2 points 

~Eal] := fn[z] r ~ ;,,g] t-Ok = ~' ,1{o ~- ~v,2{0 + kv[~o)/d, i + j + k = d}. 
Now associated with the triangulation A, let 

N 
(3.1) ~ - ~'~"= U ~n. 

I----I 
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Note that points on the common edge between two triangles are included in ~ j u s t  
once, although they belong to two triangles. It is convenient to have the concept of 
distance of a point from a vertex or from an edge. The points ;ntz] ~l ~--d-i,S.~-SlS=O are 
said to be at a distance i from the [q vertex v~z~ ~. Similarly, the points sptq ~d-~ "t d - j - i , j , ~ S j = o  
are said to be at a distance i from the edge whose endpoints are v['~t~ and ,,ul ui2(I ) �9 

If v is a vertex of A, we introduce the ring of order p around v 

(3.2) Rp(v) = {points which are distance p from v}. 

We also need the disk of  order p around the vertex v defined by 

p 

(3.3) D,(v) = U Rj(v). 
jffiO 

Now given a spline s e Y'~ we denote the restriction of s to the triangle T [q by 
s 0]. This is a polynomial of degree d which can be written in the Bernstein-Brzier 
form 

(3.4) sV](0= ~ ,.tq d! .iaS.~ k 
"Ok iV f l  k l  - "  " ' 

i + j + k f d  �9 " �9 

where (~, r,  T) is the barycentric coordinate of the point ~ with respect to the 
triangle T ill. 

Each s e 6a~ is uniquely determined by the coefficients of its polynomial 
pieces (3.4). Each of these coefficients can be identified with a domain point in the 
set ~ .  Indeed, it will be useful to define a linear functional defined on fr~ 
associated with each domain point P e ~ as follows: 

(3.5) 2ps = the coefficient of s associated with the domain point P. 

For splines s which are continuous, if P is a domain point on an interior edge of A, 
then the associated coefficients of the two polynomial pieces of s which join along 
that edge must agree. This ensures that 2p is well defined. The set {(P, 2eS)}e~ ~, is 
called the Bdzier net (see [31-[6]). If F is a set of domain points, then we write 

Ar = {~,e: P ~ F}. 

As in [31-[61, our approach to establishing the dimension of spline spaces is to 
use B6zier nets as a tool to obtain upper and lower bounds. Suppose if' ~ 6e~ is 
a linear space of splines. First, to get an upper bound on the dimension of 6e, 
suppose F ~ ~ contains L points, and that Ar = {2ele,~, is the corresponding set 
of linear funetionals. In addition, suppose that Ar has the property that it is a 
determining set for Se in the sense that 

(3.6) s ~ Y '  and 2 s = 0  for all 2 ~ A r  implies s=-0.  

Then, as shown in [61, it follows that dim (6~ < L. 
For a lower bound, we use the approach of [5]. Suppose now that F is such that 

{Br}p~r are splines in Y' satisfying 

(3.7) ;tpB~ = ~ee, all P, Q e F. 
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Then dim(A*~'P(A)) _> L. Clearly, if we can use the same set F for both the upper 
and lower bounds, then dim(A*) = L, and {Be}err is a basis for ,9' and A r is a dual 
basis. 

As in [3]-[6] ,  [10], and [15], in order to construct an appropriate set F, we are 
going to divide the set of all domain points ~ into subsets such that the 
corresponding linear functionals in two disjoint subsets are linearly independent 
from each other. Suppose D ~ ~ is a typical such subset. Then the idea is to choose 

~_ D with as small a cardinality as possible such that, for any spline s e ~ ,  the set 
of values {,Lps}e~ determines {~eS}eezj. In this case, we say that ~ determines A* on 
D. I f ~  has a minimal number of points in it, we call it a minimal determining set for 
A* on D. 

The exact way in which the set of B6zier ordinates is divided up will be different 
for each of the cases of Theorem 2.2, as well as for Theorem 2.4. In general, the 
subsets D of interest will be disks, triangles, and certain polygons formed from disks 
and triangles. In the remainder of this section we present several lemmas which deal 
with the process of choosing a minimal determining set ~ associated with a given D. 

Our first lemma shows how to find a minimal determining set for A*~'P(A) in the 
case where D is a disk around a boundary vertex. 

Lemma 3.1. Let r <_ p <_ p < d, and let v be a boundary vertex of  A with E interior 
edges attached. Let D = De(v ) be the disk of  radius p around the vertex v. Suppose the 
triangles with vertices at v are numbered counterclockwise as TI l l , . . . ,  T [e+lJ. 
Finally, let ~ denote the following set of  domain points: 

1. All domain points in T [1] n De(v ). 
2. For each 1 = 2  . . . . .  E + I, the domain points in the last p - r  rows of  

T in n De(v ) adjoining T p- 1j, and outside of  Rp(v). 

Then ~ is a minimal determining set for ~,~'P(A) on D with 

(3.8) 

Proof. 

#.@=(p+2) --r+ 1)_ (p--r + 

This lemma can be established in the same way as Lemma 2.3 in [ lYl .1  

Lemma 3.2. Let r < p < p < d and fet v be an interior vertex of  A with E edges 
attached, where e of  them have different slopes. Let D = Dp(v) be the disk of  radius p 
around v. Then there exists a subset ~ of  D with 

(3.9) #.~=(p+2) [(p-r+l) (p-r+l)] 
2 + 2 - 2 E 

p - r  

+ ~. (r + j  + 1 --je)+ 
j f f ip - -r+ 1 

such that ~ determines A"~'P(A) on D. 

Our next lemma deals with finding a minimal determining set for A*~'P(A) in the 
case where D is a disk around an interior vertex. 
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I/3 4 

TI"I 

I 2 = .o l l  = P i s  "=" 9 W 2  

Fig. 1. Two triangles sharing a nondegenerate edge. 

Proof.  The  s ta tement  abou t  the cardinali ty can be establ ished a long the same 
lines as the p roo f  of  T h e o r e m  2,2 in [14]. An explicit min imal  de terming set can be 
constructed using the methods  of [14]. In  general, there m a y  be m a n y  choices 
which work. [ ]  

In  the remainder  of  this section we deal with sets of  d o m a i n  points  which lie 
within a dis tance of at  mos t  r f rom an  interior edge of  the t r iangulat ion.  In  order  to 
simplify nota t ion,  for the t ime being, we work  with just  one pa i r  o f  triangles T tt~ and 
Tl~! Suppose  these triangles have vertices wl ,w2,  wa, w4 as in Fig. I. Then  
associated with the c o m m o n  edge w~ wa, we define 

(3.10) E = {P a T t q w  Tt"]: distance ( P , ~ )  _< r}. 

L e m m a  3.3. Let r < j < d, and suppose that the points in Rj(wl) c~ ~, are numbered 
I] [u] as ~ . . . . . . .  ~, so that ~_i and ~i are the points in T t and T , respectively, which are 

distance i f  tom the edge. Given s ~ 5a~(A), let c i = 2~,s, i = - r  . . . . .  r. Suppose that, 
for some r + 1 >_ 2q, 

(3.11) 2 p S = 0  foral l  P e D j _ I ( w l ) r ~ Y ,  

and 

(3.12) ci = c - i  = 0, i = r - q + 1 . . . . .  r. 

Then either of  thefollowina two conditions 

(3.13) ci = 0, i = 0 , . . . ,  r - 2q, 
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or 

(3.14) c_~ = 0, i = 0 . . . .  , r - 2q, 

implies 

(3.15) c~ = 0, f o r  all i = - r  . . . . .  r. 

Proof.  The  C '  smoothness  condit ions imply that  (3.13) and  (3.14) are equivalent.  
Now suppose  that  (3.13)-(3.14) hold, and  tha t  the barycentr ic  coordinates  of  the 
vertex w,  with respect  to the triangle T ttJ are (~, fl, y); i.e., w 4 = ~wt  + [3w2 + ywa.  
We assume tha t  the vertices are located such that  ~ # 0. The  analysis of  the case 
where ~ = 0 is similar. In  addition, we restrict our  a t ten t ion  to the ease where 
r + 1 < 2q. The  ease where r + 1 = 2q is complete ly  analogous.  

Under  the a s sumpt ion  that  2es  = 0 for all P ~ D~_ x(wl) c~ E, the C z smoothness  
condit ions across the edge ~ for ! = r . . . . .  r - 2q + 1 can be writ ten as 

M r = 0  

with r = (c,_ q . . . . .  c,_ 2~ + t, c_ t,_ 2~ + x~ . . . . .  c_ t , -  q~)r, and  

where 

(3.16) B = 

r 
( r _ 2 q + l ) ~ 2 q - l f f  -2a+t 

r - q + 1 '~7a3,_2~+1 
r -- 2q + 1,] 

�9 .. ( r  r ~q[3"-~ 
- q /  

�9 .. ( r r q q l ) , f f - '  

O is a q x q zero matr ix ,  I is a q x q identity matr ix,  and  C is a certain q x q matr ix.  
Factor ing powers  of  ~ and fl out  o f  B and  removing c o m m o n  factorials from the 
rows, we see tha t  the de terminant  of  B is a nonzero  cons tant  mult iple  of  

G = det 

1 
q~ 

(2q-  1)! 

1 1 
( q -  1)1 11 

1 1 

Since this de te rminan t  corresponds  to  performing in terpola t ion  of  the values 
p(1), p'(1) . . . . .  ptq-l~(1) using polynomials  which are l inear combina t ions  of  
x~/q! . . . . .  x 2~- t / (2q - 1)!, it immediate ly  follows that  the de te rminan t  of  G and 
thus of  M is nonzero,  and  (3.15) follows. �9 
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We now need some additional notation. Suppose the triangle T tq has the three 
vertices w~ = v~x(~ ~, w z = v~z(t ~, wa = v~a(~) as in Fig. 1. Then associated with T t~ we 
define 

(3.17) At~] = sot,] ~,. ~, k X d - - i , l - j ,  j J jmi-- r ,  i~p,~t(i)+ 1"  

This is the set of domain points in T t;; ~ ~ which are within a distance r to the edge 
w; w2 but outside Da,,,)(w~), where g is the strip defined in (3.10). We call A t~ the 
cap associated with the vertex v~x(~ ) of T t~. A typical such cap is illustrated in Fig. 1. 
For later use, we note that 

(3.18) # A t ~ ; = ( 2 r - - p , ~ ( , ) +  1) 
2 

Clearly, we can define similar caps At~ ] and At~ ] associated with the vertices 
w~ = v~t~ ) and w a = v~ar I of T [~]. 

Before stating our next lemma, we need to introduce another useful concept. 
Consider a neighboring pair of triangles as in Fig. I and 2. We say (see [3]) that the 
edge w~ w a ~s degenerate with respect to the vertex w~ provided that the edges w i w z 
and w~ wa are collinear (see Fig. 2). An analogous definition applies with respect to 
the vertex wa. 

Lemma 3.4. Suppose that T tq and T t"l are a pair of  neighboring triangles as in Fig. l 
with vertices w~ = c~x(t), wz = v~2(z}, w3 = v i 3 ( / ) ,  W4. In addition, suppose that the edge 
w~ w a is not degenerate with respect to either w~ or wa, and that It < P~tz), Pi3(l) with 

"03 4 

"t~ 2 

e , e e e e * Q "  
e o e e e e e o , Q  
. . . .  i i  i D 

. . . . .  ~ m ~  ~ ~ ~ " ~ . "  ~ w s  

- i "  ' : :  ; -  

!ii :: itiii::  
. ~ . . .  �9 �9 A A A  ~ �9 o /  
~ e o e e e e a o s  �9 
o e e e e o e e u e  
o e e e e e e o e e  

Q i e l o o e o a o  
~ . o e e ~ e e e  
~ 4 e e e e e e  

J d ~ ,  r = 6  

Fig. 2. Two triangles sharing a degenerate edge. 
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P~(t) + P~3(t) < d. Let 

(3.19) A = A~ ~ w At~ "~ w A ~ w  Atf. 

Then there exists a subset ~ of  ~ c~ T t~l with 

(3.20) ~ = [ z \ 0 % , , , , , ( w 0  ~ D~,~,,,(w~))] 

such that ~ ~ A determines 5a,~(A) on ~ and 

(r + l)(2d - 2Pi1(:) - 2pia(t) + r - 2] 
(3.21) # ( g  ~ A) = 

2 

Proof. We divide the analysis into three cases. To simplify notation, we drop the l 
when referring to i1(/), i2(/), and i3(/). 

Case 1 (2r < P~x < Pi3)- 
choose 

In this case the set A in (3.19) is empty, and we simply 

o a = ~ c~ T t~. 

It is easy to check that (3.21) holds. 

Case 2 ~ <_ P~x < 2r <_ Pi3). We apply Lemma 3.3 to choose a total of r -I- 1 
points on each of the rings Rp,,+1(wx) . . . . .  R~,(wa). For each such ring we can 
include the points which lie in Ata ~] c~ o~- and A tq c~ ~ .  To get r we add all of the 
points in [Z\(O2,(wl) u Dp,~(wz))] c~ T tzl. 

Case3( l~<pix  <Pia <2r) .  We use Lemma 3.3, starting with the ring 
Rp, + l(w0. We then do one ring at a time until we reach the ring R4_m,(Wx). Next 
we do the ring Rp,3+l(W3) , then ring R~_p,~+l(Wt) , and continue in this way 
alternating between rings about w~ and w 3 until all the points in ~- are accounted 
for. As before, (3.21) holds. �9 

The situation is slightly different when wl w3 is a degenerate edge. 

Lemma 3.5. Suppose that T tq and T tu3 are a pair of  triangles as in Lemma 3.4 such 
that the edge Wl w3 is degenerate with respect to the vertex wl (see Fi 9. 2). Let ~ be 
the set defined in (3.20), and suppose that It < Pixto, Pi3(l) with Pil(t) + P~a(t) < d. Then 
there exists g ~_ ~ ta T ttl such that ~ u A determines ~ ( A )  on ~ ,  where 

(3.22) A = Atl]'l ,-,.~3 u '  ~[l] At3 u] 

and 

(r + 1)(2d - 2pu(t ) - 2pi2(l) + r - 2) 
(3.23) # (g u A) = 

2 

Proof. The proof is based on applying Lemma 3.3 to each of the rings R,~Wl) for 
i = Pil(~)- r + 1 . . . . .  d -  Pi3(~)- 1. To simplify notation, we drop the l when 
referring to i1(/), i2(/), and i3(/). We distinguish two cases. 
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Case I (d > Pil + 2r). For  i = Pil - -  r d -  1 . . . . .  r, the points in Di(wt) u A~ 1 deter- 
mine all points in ~ on the ring R,(wt). For  i = r + 1 . . . . .  Pil, Lemma 3.3 asserts 
that we can choose r + i - P i t  points in R,(w~)c~ T pl. For  each i =  p~ + 
1 , . . . ,  d - 2r - 1, we may choose the r + 1 points in R~(w~) r~ Ttll. Finally, for 
i = d - 2r . . . . .  d - P~3 - 1 Lemma 3.3 allows us to choose 2d - 3r - 1 - 2i points 
on each ring (in addition to the points in the two sets At3 "l and At~l). The total 
number  of points chosen is then 

2 + 2  2 + ~ ( r + i - - p l t )  
i f r + l  

d - p o -  1 

+ ( r + l ) ( d - 2 r - p i t - 1 ) +  ~ ( 2 d - 3 r - l - 2 0 ,  
i f d - 2 r  

which is easily seen to be the number  in (3.23). 

Case 2 (d < Pit + 2r). For  i = Pil - -  r + 1 . . . .  , r, the points in D m l ( w t )  u All tl 
determine all points in R,~wt)c~ ~ .  For  i =  r + 1 . . . . .  d -  2 r -  1, Lemma 3.3 
requires that  we choose r + i - Pit points. For  each i = d - 2r . . . . .  P~x, we may 
choose 2d - 3r - Pix - 2 - i points in Ri(wt) n T pl. Finally, for i = Pil + 
1 . . . . .  d - Pi3 - 1 Lemma 3.3 says that  we can choose 2d - 3r - 1 - 2i points on 
each ring in addition to the points in the two sets At3 "] and Ag ~ The total number  of 
points is then 

2 + 2  2 + ~ ( r + i - p i t )  
i f r + l  

Pll d - p ~ 3 -  1 

+ ~ ( 2 d - 3 r - p l t - 2 - i ) +  ~ ( 2 d - 3 r - l - 2 i ) ,  
i = d - 2 r  iffiptt + 1 

which is easily seen to be the number  in (3.23). �9 

4. Proof of Theorem 2.2 

In this section we establish Theorem 2.2. Our  approach is based on the idea 
introduced in [6"] of dividing the set of domain points ~ into subsets, and then 
choosing minimal determining sets for each of them. 

First we assume that/~ <__ p < 2r and d > 2p + 1 and prove formula (2.9). As in 
Section 3, let Tt t ] , . . . ,  T t~l be the triangles of  A. We begin by dealing with certain 
disks surrounding each of the vertices. For  each vertex v~ in & let 

(4.1) ~ i  = Dp(v~) c~ T p'], 

where T p'3 is some triangle with vertex at vi. Clearly, ~ is a minimal determining 
set for Dp(vi), and 

# ~ , = ( p + 2 ) . 2  
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We next choose certain of the caps defined in (3.17). Let v~ be a typical vertex, 
and let fit be the union of the caps A D~, where T t~l is a triangle with vertex at vz. If v~ 
is a boundary vertex, let ~ = ff~. Ifv~ is a nonsingular interior vertex, we take ~r to 
be the set ff~ minus the union of those caps A t jl such that the first edge of T t~l 
(where the edges are ordered in counterclockwise order) is degenerate with respect 
to v~. Finally, if vz is a singular interior vertex, let ~r = Art Jl, where T t~l is any 
triangle with vertex at oz. Clearly, we have 

(4.2) #~r = ( 2 r - p  + 1) 
2 [Ez - E~ + ~l], 

where E z is the number of interior edges attached to v z, E~ is the number of 
degenerate edges attached to o~, and 

(4.3) ~, = ~1̂  ifvt is a boundary vertex or a singular interior vertex, 
(o otherwise. 

Next we deal with the points in the middle of each triangle. Let 

(4.4) c~ = C~ ..= {(iw~ + jw~ + kwa)/d: i > r,j > r, k > r}, 

where w~, w~, w 3 are the vertices of T t~l. The set c~ is the set of Brzier points lying in 
the triangle T v~ which are at least r rows away from the boundary. Clearly, ~t is a 
minimal determining set for Ct with 

(4.5) # ~ t = ( d - 3 r - 1 )  
2 

A typical set ~ is shown in Fig. 1 (where d = 21, r = 6, and p = g = 9). 
We now consider domain points in strips near the edges e~ . . . . .  tn of A. Fix 

1 < i < E. If e~ is an interior edge, we suppose that e~ = w--'~, where T vl and T t"~ 
are the two triangles sharing the edge. We denote the vertices of these triangles as in 
Fig. 1. If e~ is a boundary edge, we suppose that ei = w~ Wa, where w~, w2, Wa are the 
vertices of a triangle T v]. Let Y~ be the set ofdomain points whose distance from the 
edge is at most r (see. (3.10). Finally, set 

(4.6) 

It is easy to check that 

:'~ = ~:~\[D~(wl) u D~(wffl .  

(r + 1)(2d - 4p + r - 2) # ~ =  
2 

We now identify minimal determining subsets for each of the ~'~. If ei is a 
boundary edge associated with triangle T tzl, set 

(4.7) ~di sUl, , att~ 

where the sets A~ l and A~ ] are defined as in (3.17). Then 8i = ~ ' i \ ~  is such that 
r w ~ is a determining set for ~z-. 

If e~ is an interior edge, we may use Lemmas 3.4 and 3.5. In particular, if e~ is 
nondegenerate, we take ~ to be the set constructed in Lemma 3.4 such that 8 i w ~ 
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determines  s on  ~-i, where  

(4.8) ad, =..tatz~,.., - -3 '  alto u Art "1 u Ag'J. 

A typical  set 8 i  is shown in Fig. 1 (which cor responds  to the case where  d = 21, 
r = 6, p = / ,  = 9). 

I f  e~ is a degenerate  edge, say with respect  to wl,  we define ~ to be the set 
cons t ruc ted  in L e m m a  3.5 such tha t  81 u qz' t determines s on ~ t ,  where 

(4.9) q/i = A~ ~ u A v] u A t'l. 

A typical  set 8 ,  for this case is shown in Fig. 2 (which cor responds  to the case where 
d=21,  r = 6 ,  p = p = 9 ) .  

In  all cases we have 

(r + 1)(2d - 4p + r --  2) 
# (o", u q~3 = # #', = 

2 

We  are now ready to describe the comple te  min imal  de termining set for Ae~'P(A). 

L e m m a  4.1. Let  

V N V E 

(4.10) F= U d,u U cr U ~,u U ~',. 
| : 1  1 ~ 1  i : 1  i : 1  

Then I" is a determining set for ,.9'~'~ and its cardinality is given by the number in 
(2.9). 

Proof .  The  set F is i l lustrated for d = 8, r = 1, 19 = t~ = 2 in Fig. 3. First  we show 
tha t  F is a determining set for  A~ 'p(A). Suppose  s ~ Ae) 'p(A). Clearly,  s is complete ly  

I) 3 

1)7 t~5 

d = 8 ,  r = 2  ve  

0 = (3,2,2,2,2,4,2,2).  

Fig. 3. The mimmal determining set for Example 2.5. 
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determined on the disks Dp(v~), i = 1 . . . .  , V, as well as in the sets cg~, l = 1 . . . . .  N. In 
addition, we claim that s is determined on all of the caps. Indeed, ifvi is a boundary 
vertex, then all the B~zier points in the caps near this vertex are included in F. Now 
if v~ is a singular interior vertex, then in one of the triangles with vertex at v~, say 
T t~';, all of the points in the cap nearest the vertex are included in the first set in 
(4.10). By the C' continuity conditions, s is determined on the caps nearest v~ in the 
other three triangles with vertex at v~. Finally, if vi is a nonsingular vertex, then s is 
determined on those caps which are not included in F by using the C" continuity 
conditions across degenerate edges. We have established that s is determined on all 
of the caps in all of the triangles. Now in view of Lemmas 3.4 and 3.5, s is also 
determined on the sets , ~ ,  i = 1 . . . .  , E, by the points in the last term of (4.10). This 
completes the proof that the set F determines s. 

We now compute the cardinality of F. Clearly, 

(4.11, # F = ( P 2 2 ) V + ( 2 r - p + l  ) 2 E2E, - + vB + s ]  

+ ( d - 3 r - 1 ) 2  N + [ ( r + l X 2 d 2 4 p + r - 2 ) - -  2 ( 2 r - p + l ) 1 2  Es 

[ ( . r + l ) ( 2 d - 4 p + r - 2 )  ( 2 r - - p + l ) ] E D  
+ 2 --3 2 

+ -240 2 [ . ( r + a ) ( 2 d -  + r -- 2) 4(2r -- p + l)]E~D, 

where E~ is the number of degenerate interior edges and E~ D is the number of 
nondegenerate interior edges. Now since 2El + Vs = 3N, it follows that (4.11) 
reduces to (2.9). �9 

We now have the ingredients to establish formula (2.9) in Theorem 2.2 and at the 
same time to present an explicit basis of minimally supported splines. 

Theorem 4.2. Suppose r + [(r + 1)/2_1 < p < 2r with d > 2p + 1. Then, for each 
P in the set F described in Lemma 4.1, there exists a spline Bp e 6a~'P(A) satisfyin# 

(4.12) 2QBe = ~ee, all Q e F. 

The set of splines {Be}err is a basis for the space 9'~'P(A), and the set of linear 
functionals {2p}e~r form a dual basis. Moreover, each of the splines B e has local 
support. In particular: 

1. I f  P is in one of the sets ~i or ~ ,  then Be has support on a cell. 
2. I f  P is one of the sets d~i, then Be has support on the union of a pair of 

neighboring triangles. 
3. I f  P is in one of the sets cg~, then B e has support on the single triangle T t'l. 

Proof. Suppose P e ~ i  for some L To define Bp, we need only give the value of the 
coefficients of each of its polynomial pieces. We set the coefficient corresponding to 
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P equal to one, and set all coefficients corresponding to Q ~ F with Q ~ P equal to 
zero. Now it is easy to see (see the analogous arguments in [4] and [5]) that the 
other coefficients can be chosen to satisfy all smoothness conditions in such a way 
that all coefficients outside of the disk Do(v~) are zero. It follows that Bp has support 
on the disk. Similar arguments can be used to show that the other basis splines 
have the stated supports. 

Clearly, these splines are linearly independent because of condition (4.12). This 
implies dim 6:~'~(A) > L, where L is the number in (2.9). On the other hand, since 
as shown in Lemma 4.1, F is a determining set for 6:['P(A), if follows (see Lemma 
3.3 of [11]) that dim Sa~.o(A) _< L, and we conclude that dim ~ 'P (A)  = L. The 
remaining statements are now obvious. �9 

The remainder of this section is devoted to proving formula (2.1 I) in Theorem 
2.2. In this case we work with the disks 

(4.13) D~(vl), i=  1 . . . . .  V, 

where/~ is defined in (2.10). For  fixed 1 <__ i < V, if vi is a boundary vertex, then by 
Lemma 3.1, we can choose a set ~ l  - D~(vi) with 

# ~ , = ( / ~ + 2 ) 2  + k ,  #~ (  - r  + l ) - ( P - r  + ! ) ]  2 

which determines s e ~ ' P ( A )  on D~(vi), where E~ is the number of interior edges 
attached to v~. Similarly, if v~ is an interior vertex, then, by l_~mma 3.2, we can 
choose a set ~ i  - D~(v~) with 

2 + 2 -- 2 Ei + ~_, (r + j + 1 - jei) + 
j = p - r + l  

which determines s e 5/'~'P(A) on D~,(v~), where we recall that Ei is the number of 
edges attached to v~, and e~ is the number of those with different slopes. 

To deal with domain points in a strip near an edge, we introduce the following 
analog of (4.6): 

(4.14) ~'i = Zi\(D~(wt) w D,(w3)), 

where we use the same notation as before. When ei is a boundary edge associated 
with triangle T t~, we take 

(4.15) o//~ = A~I u A~ l, 

where the sets A~ l and A~ ] are defined as in (3.17). Note  that in this case 

(4.16) #Attq = .#At~_  ( 2 r - #  + 1)  
~- 3 - 2 " 

Clearly, the set 8~ = ~'~\~,/i is such that 6'~ u q/~ is a determining set for ~ .  
For  interior edges we may use Lemmas 3.4 and 3.5. If ~ is nondegenerate, we 

take 8t as constructed in Lemma 3.4 such that the set g~ u ~d~ determines SP~.P(A) 
on ~'~ where ~ is defined as in (4.8). If e~ is a degenerate edge, say with respect to 
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wt, then we define d'i to be the set constructed in Lemma 3.5 such that ~'~ u q/~ 
determines 5a~'P(A) on oji where qz'~ is defined as in (4.9). We note that in all cases 

(r + 1)(2d - 4# + r - 2) 
#(oai w q/i) = #~'~ = 2 

Finally, we choose point sets ~r for i = 1 . . . .  , V and ~ for I = 1,.. . ,  N exactly as 
was done above in the proof of formula (2.9) of Theorem 2.2. 

Lemma 4.3. Let 

g ?-." V E 

(4.17/ F =  U'~f,w U • ,u  U D i u  U •e- 
1--1 I = 1  i=l  i = 1  

Then F is a determining set for 5e~'P(A), and its cardinality is given by the number in 
(2.11). 

Proof. 

proof of Lcmma 4.1. Clearly, 

(4.18) # F = ( 2 r - - ~  + I)r2Et-E~ 

The proof that F is a determining set for 5a~'P(A) proceeds exactly as in the 

+ VB+ S ] + (  d - 3 r - 2  1) N +  

2 

V1 ~ - r  

+ ~ ~ (r + j  + 1 --je,)+ 
[ = 1  j = p - r + l  

+[(r+ l)(2d-4/~ + r-2)_ 2(2r-/~ + I)] 
2 2 EB 

+[(r+ l ) ( 2 d - 4 1 ~ + r - 2 ) - 4 ( 2 r - p + l ) ]  2 

where, as before, E D is the number of degenerate interior edges and E~ D is the 
number of nondegenerate interior edges. Now using 2E~ + V a = 3N and the fact 
that the number a in (2.11) is equal to 

" "  (" '+ ' /  ~. ~ (r + j + 1 -- je,) + + S. 
i = 1  j = p - r + l  2 

it follows that (4.18) reduces to (2.11). [] 

We can now establish the third case in Theorem 2.2 by presenting a basis  of 
minimally supported splines for the space of super splines in (2.5). 
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Theorem 4.4. Suppose r < p < I~ with d ~ 3r + 2, where p is the integer defined in 
(2.10). Then, for each P in the set F described in Lemma 4.3, there exists a spline 
B e ~ .5~'/P(A) satisfying (4.12). The set of splines {Bv}~,~r is a basis for the space 
6~'~'P(A), and the set of linear functionals { 2 e} p~r form a dual basis. Moreover, each oJ 
the splines Be has local support. In particular: 

1. I f  P is in one of the sets ~ or ~r then Be has support on a cell. 
2. I f  P is in one of the sets ~ ,  then B e has support on the union of a pair oJ 

neighboring triangles. 
3. I f  P is in one of the sets ~ ,  then B e has support on the single triangle Ttil. 

Proof. The proof of the existence of splines satisfying (4.12) and with the stated 
supports proceeds exactly as in Theorem 4.2. Clearly, these splines are linearly 
independent because of condition (4.12). This implies dim oq'~'P(A) > L, where L is 
the number in (2.11). On the other hand, since, as shown in Lemma 4.3, F is a 
determining set for 6a~'P(A), it follows (see Lemma 3.3 of [11]) that dim ~2P(A) < 
L, and we conclude that dim ~ . P ( A ) =  L. The remaining statements are now 
obvious. �9 

5. Proof of Theorem 2.4 

In this section we establish Theorem 2.4 on the dimension of the spline space 
Se~'~ defined in (2.3), and give a local basis for it. Our approach is similar to the 
proofs of Theorem 2.2 presented in Section 4. We need to describe a set of domain 
points which determine 6a~ 'e(A). 

First, we consider determining s ~ ~ '  ~ on disks centered at the vertices of A. 
Here we use disks of radius k~, where, as in (2.14), ki = max(pi, #). For fixed 
1 < i < V, if v~ is a boundary vertex, then, by Lemma 3.1, we can choose a sel 
~ _c Dk,(vi ) with 

which determines s ~ Y2~ on/)k,(v~), where E~ is the number of interior edges 
attached to v~. 

Similarly, if v~ is an interior vertex, then, by Lemma 3.2, we can choose a set 
~ i  C Dk,(Vi ) with 

# ~ , = ( p , + 2 ) + 2  I ( k ,  2 - r + l ) - ( P ' - - r + 2  1 ) ;  E/ 

kl --r 
+ ~ (r + j + 1 - jet) + 

j = p i - r +  1 

which determines s ~ 6a~'~ on Dk,(vi), where we recall that e~ is the number ot 
edges attached to v~, with different slopes. 



Super Spline Spaces 419 

We also need to choose certain cap sets. Let vt be a typical vertex, and let ~z be 
the union of the sets G~--= At~Ja\Dk,(v3, where At1Jl is the cap defined in (3.17), and 
where T [J~ is a triangle with vertex at vl. If vz is a boundary vertex, let a'~ = fat. If v~ 
is a nonsingular interior vertex, we take d~ to be the set ~ minus the union of those 
Gj corresponding to triangles T t Jl whose first edge (where the edges are ordered in 
counterclockwise order) is degenerate with respect to or. Finally, if v~ is a singular 
interior vertex, let ~ ,  = G j, where T O~ is any triangle with vertex at v v Clearly, we 
have 

( 2 r -  k, + 1) 
(5.1) # d ,  = 2 [ e ,  - F. D, + ~,]. 

where, as before, Ez is the number of interior edges attached to v~, E~ is the number 
of degenerate edges attached to vz, and cSl is defined in (4.3). 

Next we turn to the triangles. For given 1 < l < N, let T [~J denote the/th triangle, 
and let C~ be the set defined in (4.4). Suppose the vertices of the triangle are 
W I = 1311(ll, W 2 = f3i2(1), W 3 ~--- Oi3(l ) as in Fig. 1. We define 

~t = Ct\(Ok,, , ,(wl) u O~,2,,,(w2) u Dk,~,,,(w3)). 

Note that 

Next, we consider domain points in strips near the edges of A. Fix 1 < i < E. If ei 
is an interior edge, we suppose that ~ = WlW3, where Ttn and T tuJ are the two 
triangles sharing the edge. We denote the vertices of these triangles as in Fig. 1. Ife~ 
is a boundary edge, we suppose that g~ = i~w3, where wt, w2, w 3 are the vertices of 
a triangle T v~. Let Xi be the set of domain points whose distance from the edge is at 
most r (see (3.10)). Finally, let 

(5.3) #-~ = E~\(Ot,,,,,(wl) u Dk,,,,,(w3) ). 

We now identify minimal determining subsets for each of the #-~. If ~ is a 
boundary edge, let 

(5.4) q/~ = A t"l u A[3 ~1. 

Then the set ~ = #'~\q/~ is such that 6~ ~ ad~ is a determining set for ~ i .  We have 

(r + 1)(2d - 2kite) - 2k~3(o + r - 2) #oa~ = 
2 

If e~ is an interior edge, we may use Lemmas 3.4 and 3.5. In particular, if ,~ is 
nondegenerate, we take g~ to be the set constructed in Lemma 3.4 such that d~ ~ q/~ 
determines s on . ~ ,  where 

'ei = A vJ1 u A vJ3 u At~ "J v A[ uJ. 
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In this ease 

(r + 1)(2d - 2k, I(o - 2ki3(o + r - 2) 

# g i  = 2 

2 + 2 " 

If e~ is a degenerate edge, say with respect to wl,  we define gi  to be the set 
const ructed in Lemma 3.5 such that  6~i u q~ determines s on . ~ ,  where 

q/i = A~ ] u At~ 1 u Ata "1. 

In this case 

(r + 1)(2d - 2kiltz ) - 2ki3(o + r -- 2) 

2 

L e m m a  5.1. Let  

V N V E 

(5.5) r = U ~',,-' U ~,,-, U ~,,-, U 0% 
1--1 I=1 i = l  i = 1  

Then r is a determining set for : ] ' e (A) ,  and its cardinality is given by the number in 
(2.16). 

Proof,  The  p roof  that  F is a determining set for 5~]'e(A) follows along the same 
lines as in Lemmas  4.1 and 4.3. Clearly, 

(5.6) 

+ ~r [ ( r  + 1)(2d - 2kilu)2 - 2ki3(z) + r - 2) 

-C ')C +')] 
+ S "  [ ( r  + 1X2d - 2kil(I) - 2ki3o) + r - 2) 

l-,~o L 2 
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E (r + 1)(2d - 2kil(o - 2ki3(o + r - 2) 
! .  o 2 

- 2 ( 2 r -  k"(" + 1) - 2  2(2r - k'3(" + 1 ) 1 2  

"[( ) ' I 
+ ~ Pi + 2 ki 2 

,ffil 2 + E (r + 1 +j  -jei)+ + E 
j f f iP t - r+  1 i=Vx+ 1 

+ ~  2 - 2 

where E~, E~, and 6l are defined as in Section 4 (see (4.3)), and where 

8 ~ = {/: T pJ has WlW3 as a boundary edge of A}, 

~ = {1: T t~l has an interior edge w 1 w3 which is degenerate with respect to Vix(o}, 
8 ND = {l: T tq has an interior edge Wl w3 which is nondegenerate with respect 

to vii(o}. 

Now since the number of triangles attached to an interior vertex vl is E~, while the 
number attached to a boundary vertex vi is Ei + I, it follows that 

r ( k , _ 2 r )  v ( k , - 2 r )  
= - E  2 E ' -  E 2 " 

i = 1  i f f i V l + l  

Moreover, 

+ + [(k,l(,) + k,a(o)] = 2 ~ k, + ~ k,E,. 
I ! r  | r  D i f V l + l  i = l  

Next'we~176176176176 2 r - k i + c o m b i n e d  to obtain 2 1) can be 

i=1 2 2 2 ' i=Vt+  l i= l 

where v 1 .... , Vs are the indices of the singular vertices. Finally, it is easy to see that 

v, k,-, S ( 2 r _  ko, + l )  
E E ( r + l + j - - j e , ) + +  E 2 =a, 

i f f i l  j f f ip~--r+l  i = 1  

where a is the expression defined in (2.12). Now combining all these facts, we find 
that the cardinality of F is the number in (2.16). �9 

W e  now establish Theorem 2.4 and at the same time present a basis of minimally 
supported splints for the space of super splines in (2.3). 
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Theorem 5.2. Suppose the hypotheses of Theorem 2.4 hold. Then, for each P in the 
set F described in Lemma 5.1, there exists a spline Bp E ~ '~  satisfying 

(5.7) 2QBe = ~pQ, all Q e F. 

The set of splines {Be}e~ r is a basis for the space Sr176 and the set of linear 
functionals {2e}i,~r form a dual basis. Moreover, each of the splines Be has local 
support. In particular. 

1. I f  P is in one of the sets ~i  or ~i ,  then B e has support on a cell. 
2. I f  P is in one of the sets 8~, then Be has support on the union of a pair of 

neighboring triangles. 
3. l f  P is in one of the sets ~ ,  then Bp has support on the single triangle Ttn. 

ProoL The proof is completely analogous to the proof of Theorems 4.2 and 4.4. 

6. Remarks 

1. Since 6a~(A) = S~"(A), Theorem 2.2 subsumes the result of Dong [10]. Our 
proof differs from his, however, in that the analysis in [10] is based on using disks 
of radius r + Lr/2], while we have used disks of radius r + L(r + 1)/2 ]. 

2. The super spline spaces considered in [8] correspond to p = 2r, while those 
considered in 19] use p = r + [(d - 2r - 1)/2]. 

3. In [5], dimension results were given for triangulations with holes. In this 
paper we have restricted ourselves to the case of triangulations without holes, but it 
is not difficult to extend our results to such triangulations. 

4. The results in [10] were established for triangulations which may include 
subtriangulations which are joined together only at a single vertex. The results here 
can also be extended to such triangulations. 

5. It is easy to see that the arguments given here fail when d < 3r + 2. The 
problem of finding formulae for the dimension of spline spaces with d < 3r + 2 
remains open (except for the one interesting and difficult special case of S~(A) 
treated in [3]). 

Acknowledgment. The research of Larry L. Schumaker was supported in part by 
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