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Abstract. Erd6s and Turhn established in 1"4] a qualitative result on the 
distribution of the zeros of a monic polynomial, the norm of which is known on 
[ -1 ,  I]. We extend this result to a polynomial bounded on a system E of Jordan 
curves and ares. If all zeros of the polynomial are real, the estimates are 
independent of the number of components of E for any regular compact subset E 
of R. As applications, estimates for the distribution of the zeros of the polynomials 
of best uniform approximation and for the extremal points of the optimal error 
curve (generalizations of Kadec's theorem) are given. 

1. Introduction 

The theorems of  ErdSs and  Tur /m to  which we refer in the title concern  the 
distribution of  zeros of  polynomials  bounded  on the interval I - [ -  1, 1] o r  the 
unit disk D = {z: Izl < I}. More  precisely, let p e I I .  be a monic  polynomial ,  where 
I I .  denotes the set of  all algebraic polynomials  o f  degree at mos t  n. We associate 
with p the zero-count ing measure 

number  of  zeros of  p in A 
(1.1) zv(A) .'= , 

n 

where A is any point  set in C and the zeros are counted with their multiplicities. 
I f  all zeros o f p  are in the interval I -  1, 1"1, then ErdSs and Turhn  [4]  proved,  for 

any subinterval I'a, b.1 of  f -  1, 1.1, tha t  

(1.2) I z v ( [ a , b ] ) - f l - ~ [  < 8 
n - log 

where �9 = cos fl, b = cos ~, 0 < ~ < fl < n, and 

(1.3) 

3 

P - - 2  ~ m a x  [p (x ) l .  
xe[--1, 1] 
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If the polynomial p is bounded on the unit disk D such that 

1 
= max [p(z) l, (1.4) P x/~o 

I z l < l  

where a o is the constant term of p(z),  p ( z ) =  z " +  . . .  + a o, a o • O, then the 
number of zeros of p in the sectors 

~.,p -~ {rel~': r >__ O, 0 <_ o~ <_ ~o < # < 2~z} 

can be estimated as 

(1.5) [ % ( ~ . a ) ~ 1  < 1 6 ~ P  

[5]. 
It is interesting that (1.2) can be obtained from (1.5): Let 

G(z) = loglz + ~ - -  1] 

denote the Green function for C \ [ -  1, 1], where ~ - 1 is the branch which is 
asymptotically z near infinity. For  any point z ~ C, let us define the projection 
~(z) ~ I - -  1, 1] such that z and r~(z) lie on the same orthogonal trajectory (which is a 
hyperbola) of the family of level lines of G(z), 

F~-'= {z e C: G(z) = log a}, a :> 1. 

The level lines F .  are ellipses with f o e i +  1 and - 1 and sum of semiaxes or. Using 
the Joukowski transformation 

(1.6) z = co + , 

which maps the exterior of the unit disk of the co-plane to C \ [ -  1, 1"1, we obtain 

---~ + . 

For - 1 < a < b < 1, let us define 

S..~ = {z e C: z(z) e [a, b]}. 

Then So,~ is the point set between the two hyperbolas through a and b. 
If p is a monic polynomial of degree n with P defined by (1.3), then any zero of p 

in S.,~ is mapped by the inverse of the Joukowski transformation to a point in g~,~ 
or ~_., _p, where a = cos/~ and b = cos ~. Furthermore, each zero ofp  in [ -  1, 1] is 
mapped on two points of the unit cirele using the continuous extensions of the 
inverse from above and below. 

No w we consider 
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where ~ ~ II2,, ~(co) = co 2' + ... + 1. Then two zeros 

1 
co~ and 

(.D v 

of ~(co) correspond to each zero z, ofp(z) and the number of zeros ofp in $o,b is the 
same as the number of zeros in ~.~. Hence, (1.5) leads to 

(1.7) [ r -- T I = 21 r - - ~  I < 32r 

where r is the zero-counting measure of ~. Therefore, (1.7) is a generalization of 
(1.2) for the case that the zeros of p are allowed to be outside of [ -  1, 1]. On the 
other hand, the constant 32 is worse than 8/log 3 in (1.2). Ganelius [7], [8] proved 
(1.5) by Fourier series methods and improved the constant 16 to 2.619 .. . .  Up to 
the constant, the estimate in (1.5) is sharp, but the optimal constant seems to be 
unknown. 

The crucial key to generalizing the Erdrs-Turha estimates can be found in a 
potential theoretical interpretation of (1.2), (1.5), and (1.7). For this, we need to 
introduce some terminology from potential theory. 

Throughout this paper let E be a compact point set in C with connected 
complement fl -- C\E.  We assume that E is regular, i.e., fl has a Green function 
G(z) with pole at infinity and boundary value 0. Hence, if cap(E) denotes the 
logarithmic capacity of E, then cap(E) > 0. Let p =/~z be the unique unit measure 
supported on E which minimizes the energy integral 

I[v],=ffloglzl _cldV(Odv(z) 
over all unit measures v supported on E. Then /~e is called the equilibrium 
distribution for E and the logarithmic potential 

U"(z):= flog iz d ,(O 
is the conductor potential of E. The potential U"(z) is related to the Green function 
G(z) by 

U~'(z) = - G(z) - log cap(E) for all z ~ 

(see [14, p. 82]). 
Let p be a monic polynomial of degree n and let zp be its zero-counting measure. 

We investigate the distribution of the zeros ofp if the Chebyshev norm 11 p I1~ on E is 
known. More precisely, if, for some constant M, 

Ip(z)l -< M(cap(E))* for all z ~ E, 

then M > 1 and, taking the logarithm, we obtain 

(1.8) l l og lp (z ) l - logcap(E)_<  l l o g M  for z~E. 
n r/ 
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If U*(z) is the logarithmic potential of z = zp, then 

U'(z) = ~l~ Iz-~l r a~(O-- - ll~ 

and, since U"(z) < - l o g  cap(E) for all z e E (see [14, p. 60]), (1.8) can be written as 

(1.9) U~'(z) - U'(z) --- U~- '(z)  < ! log M for all z e E. 

In f~ the function U~(z) - U'(z) is subharmonic. Hence, the maximum principle 
yields (1.9) for all z e C. 

Let us now reformulate (1.5) and (1.7) in terms of 

.-= sup U"- '(z).  
z~C 

Keeping in mind that 

2~ ' 

(1.5) reads 

(1.1o) I(~ - ~• < 16~/~ + �89 u ' - , (o ) .  

In the situation of E = [ - 1 ,  1] we have 

- = - d t  = ~ 

~(S.,~)--~ x / l _ x  2 n 

and therefore (1.7) leads to 

(1.11) 1(3 - ~)(s..~)l _< 32J~ .  

An equality of type (1.11) was proved by SjSgren [131 to estimate I(~ - #XS)I on 
subarcs S of E ff E is a Hr lder  smooth Jordan curve and if all zeros of the 
polynomial p lie on E. 

Asymptotic results for the behavior of the zeros of a sequence (Pn) of monic 
polynomials are known if 

U,(z) - W,-(z) < ~n 

and lim,_.| = 0. Blatt, Saff, and Simkani [2] have shown that in this case Tp, is 
weakly converging to the equilibrium measure. 

The aim of this paper is to generalize estimates of type (1.10) and (1.11) to other 
situations, especially to the case when E is a system of Jordan curves and Jordan 
arcs. 
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2. The Main Results 

In the following we use 

(2.1) t := sup U~-'(z) 
z~C 

and z := ~p, p :=/~z. We denote by 

(2.2) F~ := {z �9 f~: G(z) = log a}, a > I, 

the level lines of the Green function G(z) and set, for a > 1, 

(2.3) E~ ,= {z �9 n: 0 < G(z) _< log #} u E. 

Every level line F ,  is analytic at each point z where grad G(z) # 0. Moreover, F,, 
consists of a finite number of Jordan curves which are mutually exterior except for 
a finite number of critical points, i.e., points where grad G(z) = 0 [15]. 

Let us now introduce the so-called Green lines (see [10]). These are orthogonal 
trajectories of the family of level lines. Hence, through every noncritical point there 
is a unique Green line. However, several Green lines may end in one critical point. 
As an example, i r e  = [ - 2 ,  - 1] u [1, 2], the imaginary axis consists of two Green 
lines ending in the critical point 0, and all points z = x + iy, x ~ 0, are on a Green 
line ending in E. 

For z �9 C, we define L(z) as the union of all Green lines with z as an 
accumulation point. Then, for a subset J of C, we set 

s: = o,o,,,ro(U " 
\=~1 / 

A function of a real variable belongs to class C ~+ (~ is a normegative integer) [fits 
uth derivative satisfies a HSlder condition with some positive exponent. A curve 
(arc) belongs to class C ~+ flit is rectifiable and its coordinates are C ffi+ functions of 
arc length. 

Theorem 1. Let F c E be a Jordan arc of  class C 2 + with positive distance to 
E \ F ,  c o > O fixed. Then there is a constant C > O, depending on E and Co, such that, 

for all subarcs J of  F and all a >>. 1 + Co~/~, 

(2.5) I(~ - O(s2(.O)l  < Cq'~, 

where t is defined by (2.1). 

We remark that Lemma I in Section 4 shows that S~(./) defines a neighborhood 
of each interior point of the Jordan arc J. 

Next we consider the situation that the component S of E is bounded by a 
Jordan curve F. Let F* be the interior of S. Then we fix a point z o �9 F* and proceed 
as above. Let Go(z) - Go(z, Zo) be the Green function of the region F* with pole at 
zo. For z E F, we define Lo(z) as the union of all Green lines of Go(z), which have z 
as an accumulation point. Let 

(2.6) F~ ,= {z �9 F*: 0 < Go(z ) <_ log Or} U F 
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(2.7) 

Then 

for a > 1, and define, for J c F, 

s :  (J) "= cl~ U,~eJ L~ c~ Fa" 

g (s.+(J) u sz(J)) 
a > l  

is just a sector in the plane for the special ease when E = F is the unit disk and J is a 
subarc of the unit circle, a situation considered by Erd6s and Tur/m in [5]. 

Theorem 2. Let S ~_ E be bounded by a Jordan curve F of class C 2+ with interior 
F* such that S has a positive distance to E \ S  and let z o ~ F* and c o > 0 be fixed. 
Then there exists a constant C > O, depending on E, z o and Co, such that 

42.8) 10~ - ~)(So+(J) u S~(J))[ _< C~/U~-~(Zo) + 2~ 

for all subarcs J o f f  and all a >__ 1 + Cox/W'"(zo) + 2e. 

The proof of these theorems will show that the constant C depends on the 
geometry of E. Hence, it seems to be interesting that in the special case E c R the 
constant C can be estimated as an absolute constant independent of E if all zeros of 
p are real. 

Theorem 3. Let E be a compact and regular subset of R and let p ~ H, be a monic 
polynomial with all zeros in R. Then, for all intervals I c R, 

42.9) I(# - T)(I)I < 8 x / ~  + 88 

Consequently, 

(2.10) I(~ - z)(l)l _< 8x/~. 

If not  all zeros of p are real, then our estimate will depend on the number of 
components of E. Let us therefore assume that 

(2.11) E = I t  u12  W " - U l k  = R 

is a finite union of compact, disjoint intervals. Since E is regular, each interval l j  
consists of more than a single point. Let 

(2.12) ~..= inf z and ft..= sup z. 
z e E  z e E  

Theorem 4. Let E be the union of k real compact intervals, let p ~ IIn be a monic 
polynomial, and let 6 > O. Then, for all intervals I ~ [~, fl], 

(2.13) IO~ -- O(S+(I))[ <- + 26 + 9. 
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holds for arbitrary a > 1 + n6V/~. Especially, 

(2.14) I(p - z ) (S~( / ) ) l  < 8kl/"x,/~ 

for any a >_ 1 + 3w/r~8/k 11". 

Remark 1. There is a simple way to prove 

(2.15) ~(t~\Er < loga  

for all a > 1. Fix a > 1 and define 

1 " 
h(z) ,= UZ-'(z) + n ,=~1 G(z, z0, 

where z 1 . . . . .  zm are the zeros ofp in f~kE, and G(z, z,) is the Green function for f/ 
with pole at z,. Since h(z) is subharmonic in C\E ,  the maximum principle yields 

1 '~ 1 ~  
h (~ )  = n ~ G(oo, z,) - - G(z,) < 8. 

v_~--l_-- - -  n v = l  

Thus, 

m 
- = ~ ( ~ \ E . )  < 
n log a" 

Remark. 2 Using the same method of proof and replacing the unbounded 
component of E by the Jordan region F* of Theorem 2 as well as the point at 
infinity by the point Zo ~ F*, we obtain, for a > 1, 

+ U ' - ~ ( Z o )  
(2.16) ~:(F*\Fo) < 

log ~r 

Remark 3. The proof of Theorem 4 shows that (2.14) can be replaced by 

(2.17) I~  - r 8,g/~ 

for all cr >_ 1 + 3 x / ~  if all critical points of G(z) are outside of the interior of 
E l  + 34~. 

3. Applications to Extremal Points and Zeros of 
Best Uniform Approximants 

Let f be a real-valued or complex-valued continuous function on E, which is 
analytic in the interior of E, and let us denote by p* the best uniform approxima- 
tion of f on E with respect to II n. If 

en = Ilf - p*lir '--- max If(x) - p*(x)l, 
x e E  

then Mergelyan's theorem yields limn-.oo e, = 0. 
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If E is a finite union of compact intervals and f is real-valued, then there exists a 
point set of n + 2 alternation points, 

(3.1) X~o "~ < x~ m < -.- < ,,{"~ 

in E such that e, = I ( f  - p*Xx~)l and the signs of ( f  - p*Xx~ ~) alternate. We 
denote by A,,(f, 1) the number of points of (3.1) in an interval 1 = R. 

Corollary 1. Let f be a real-valued continuous function on E = U~, = 1 I, .  Then 
there exists a constant C > 0 (independent of f )  and infinitely many n such that 

(3.2) IA,(f , / )  - ngE(I)l < Cx/n log n 

for any interval I ~ R. 

The above estimate generalizes a theorem of Kadec in [9] and sharpens a result 
of Fuchs [6], who proved (3.2) with the right-hand side replaced by Cn 2/3 for 
I c E ~ (resp. Cn "/5 for general I). 

The analogous result for a single interval was proved in [1]. 
In general, we only know that the extrcmal point set 

M , ( f )  := {z r E: l f ( z )  - p*(z)l -- l[ f - P* II r} 

has at least n + 2 points. Let us denote by ~r~+ 2(M,(f)) any (n + 2)-point subset S 
of M, ( f )  for which the Vandermonde expression 

(3.3) V(S) ,= [z - tl 
Z,t ~g 

is as large as possible. The points of ~ +  2(M.(f)) are called Fekete points of M.( f ) .  
If A.(f ,  K) denotes the number of points of.~,+ 2(M.(f) ) in a set K = C, then in 

[3] the following result was announced for a union of finitely many intervals. But 
the method of proof works well in the more general situation of Theorems 1 and 2. 

Coronary 2 [3]. Suppose that any component of E has a diameter > p where p > O. 
Let S ~_ E bounded by F have a positive distance to E \S .  Assume that F is a Jordan 
curve or a Jordan arc of class C 2 +. Then there is a constant C > 0 and infinitely 
many n such that 

(3.4) I ~ . ( f  ,.F) -- n#E(J)[ <_ C(n 2 log n) x/3 

for any subarc J ~ F. 

In [3] the verification of (3.4) was postponed, since the proof is based on 
Theorem L 

For the monic Chebycbev polynomial T~(z) on E of degree n, we denote by Z. (K)  
the number of zeros of T~(z) in K. 

Since we base the proof of the next corollary on upper bounds of IIT, lie due to 
Widom [16], we assume that the boundary of E is a finite union of disjoint Jordan 
arcs or curves of class C 2 +. 
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Corollary 3. Let the boundary of E be a finite union of disjoint Jordan arcs or curves 
of class C 2 +. Furthermore, assume that one of the components of E is a Jordan arc F. 
Then, for all tro > 1, there exists a constant C > 0 such that 

(3.5) IZ,(So+ (J)) - nlzr(S~+ (J))l < C , ~  

for all integers n, all subarcs J ofF,  and all tr >_ a o. 

We remark that, for E c R, Corollary 3 yields 

I Z . ( I )  - n/~E(I)l < Cx/~ 

for all compact intervals I = R, since all zeros of T,(z) are real. Moreover, these 
zeros interlace the extremal points of T,(z) and, therefore, an analogous estimate for 
the extremal points is obtained. 

Furthermore, a quantified version of a result of Blatt, Sail', and Simkani [2] for 
the zeros of the polynomials p* of best uniform approximation to f can be proved. 
As above, let zp: denote the unit measure associated with the zeros of p*. 

Corollary 4. Let the boundary of E be a finite union of disjoint Jordan arcs or curves 
of class C z+, and let F be a fixed component of this boundary. Assume that f is 
analytic in the interior ofF., continuous on E, and not infinitely often differentiable on 
the boundary of E. Then, for all a o > 1, there exists a constant C > 0 (dependent of  
f )  and infinitely many n such that, for any subarc J c F and tr > fro, 

(3.6) I(z~ - / ~ ) ( S ,  + (J))l < C fl0g 
n 

Xt n 

i f  F is a Jordan arc (resp. 

_ c l i n g _  . (3.7) I(z,~ /ze)(S~+(J) u S~(J))I < " q  n 

in the case of a Jordan curve F). For the special case E c R and f ~ C~(E) (ct is a 
nonnegative integer), there exist infinitely many n such that 

I(~,- -~)(s~+(J))l < 8 / (3  + 2~) log___~n. (3.8) 
n 

4. Proof of the Theorems 

For the proof of the results we need several lemmas. 

Lemma 1. Let S c_ E be a continuum which has positive distance to E \S .  I f  Mr 
denotes the component of E~ containing S, then there is a ~o > 1 such that 

(4.1) E c~ M s = S 

for all 1 < a < a o. 
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Proof. Let 

(4.2) M,= ~ MU.. 
n~N 

Thus S _q M __ E. We show that M is connected. Otherwise there are disjoint open 
sets UI, U2 with 

V t n M # O ,  
(4.3) U= c~ M # ~ ,  

McU uUj. 

Since each Mu,  is connected, we can pick z, e (C\ (UI  u [t2)) c~ M~I .. Every limit 
point z of the sequence (z,) is in ( C \ ( U  1 u [/2))c~ M. This contradicts M _  
(U, u UD. 

Since M is connected and S is a connected component of E, we get S --- M. Since 
all MI/, are compact sets and S has a positive distance to E \ S ,  there is a number 
n ~ N with M u ,  N E = S. Thus M,  ra E -- S for a <_ 1/n. �9 

Lemma 2. Let S c E be bounded by a Jordan curve F of class C 2 + with positive 
distance to E \ S .  Then G(z) and grad G(z) extend continuously to F with G(z) = 0 
and 

(4.4) Igrad G(z)l = ~ G(z) > 0 

for all z e F, where n denotes the outer normal on F. Moreover, the derivative 

d O  
(4.5) Tss N G(z) 

is continuous on F, where s denotes the arc length of  F. 

Lemma 2 is a special case of Lemma 4.1 of Widom [16]. We include a sketch of 
the proof because we use a formula for OG/Sn in the next lemma. 

Proof. Since all points of F are regular points for the Dirichlet problem, G(z) 
extends continuously to F with G(z) = 0. Concerning the continuity properties of 
grad G(z), the reflection principle yields (4.4) and (4.5) if F is the unit circle, Then 
the general case is reduced to the ease that F is the unit circle. Let t = q~(z) be a 
conformal mapping from the exterior of F to the exterior of the unit circle such that 
the point at infinity remains fixed. By a theorem of Warschawski and Kellogg (see 
[11]) we know that q~, (p', and q~" can be extended continuously to F with qr ~ 0 
for all z e F .  

Consider the Green function G*(z) of the region q~(f~) with pole at infinity. Then 

G(z) = G*(q~(z)) 

is the Green function for t2 with pole at infinity and 

grad G(z) = grad G*(q~(z))Dq~(z), 
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where Dgo(z) is the Jacobian matrix: 

Dcp(z) = ( ~ Re cp(z) 

~xx Im ~p(z) 

Now 

~yRe cp(z) ) 
~ y l m  ~p(z) " 

c~G 
(z) = Igrad G(z)l = (grad G*(~o(z)), u), 

where u is the vector 

Hence the vector 

u ] 

0 
u = Fn  o(z) 

has the direction of the normal to the unit circle at the point q,(z), i.e., u has the 
same direction as grab G*(cp(z)). Therefore, 

dG 
8---~-(z) = I grad G(z)l = I grad G*(q,(z))l I q,'(z)l # 0, 

where we have used [grad G*(cp(z))l ~ 0 from the special case. 
The continuity of (4.5) on F follows from the continuity of ~p"(z) and from the 

assumption that F is of class C 2 +. �9 

l .emma 3. Let S c E be bounded by a Jordan curve F of class C 2 + and let Go(z) be 
the Green function G(z, Zo) defined in the interior F* of S with pole in Zo. Then Go 
extends continuously to F with Go(z ) = 0 for z ~ F and 

Igrad Go(z)l = ~ Go(z) > 0 
ono 

for all z ~ F*\{Zo}, where n o denotes the inner normal on F. Moreover, 

d a 
- - - -  G o ( z )  
ds dno 

is continuous ofF,  where s denotes the arc length ofF. 

The proof follows the same line as the proof of Lemma 2 using the eonformal 
mapping ~0 which maps F* to the unit disk with q~(Zo) = 0. 
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Lemma 4. Let F be a Jordan arc of class C 2+ in E with endpoints a and b and 
positive distance to E\F.  Then the functions 

Ii2 aG 
h •  ~ n  (z) 

are continuous at the interior points o f f  where n+ and n_ denote the two normals at 
the point z directed into F2. Moreover, h • can be continuously extended to F with 
h • (z) > 0 for all z ~ F. Furthermore, if we set 

h§ 
q(z) = h _ ( z ) '  

then the function 

d 
(Iz - al Iz - bl) v2 ~ q(z) 

extends continuously to F where s denotes the arc length of F. 

ProoL For simplicity we assume that _ 1 are the endpoints of F. Then we cut the 

z-plane along F and define on C \ F  the function ~ -  1 as the branch which is 
asymptotically z near infinity. If we set 

t = + - 1 ,  

then the exterior of F corresponds to the exterior of a certain closed Jordan curve 
in the t-plane. This curve contains 0 in its interior. Moreover, 

z = r  = t + 

extends continuously to P as a function of t, and z traverses F twice, once in each 
direction, as t traverses ~ once. 

By Lemma 11 of Widom i16, p. 206"] ~ is a Jordan curve of class C 2 + if F is of 
class C 2 +. Let ~( t )  denote the Green function of q~(f~) with pole at infinity. Then 
G(z) = (3(q~(z)). By Lemma 2 Cr(t) and grad O(t) extend continuously to ~ and 
I grad ~( t )  l > 0 for all t ~ ~. 

Let us fix an interior point z of F and let us define 

(4.6) q~• lira qT(z + 0m• 
~--~0+ 

Then we obtain, as in the proof of Lemma 1, 

aG 
On• 

----. t Z (z) tgrad (3(~p• Iq~• )1, 

where 

qr = lira qr + ctn• 
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Then 

o r  

aG 
On• 
- -  (z) = Igrad ~J(~O • Iqo• Iz 2 - 11-1/2 

31 

h• = lgrad (~(q~• I~o• 

Hence, h• can be extended continuously to F with h• > 0 for all z ~ F. 
Now, 

)grad ~3(~o§ I~o+(z)l Z 
q ( z )  = 

Igrad ~3(q,_(z))l I~o-iz)l -- N '  

where Z and N denote the numerator and the denominator. Let tr denote the are 
length of ~', then 

d N(aZ/ds ) -  Z(dN/ds) 
a s  q ( z )  = N 2  , 

where 

dZ d 
d--~ -- I ~ + (z)) ~ l grad (3(q, § 

d 
+ Igrad ~J(q,+(z))l ~ l~,+(z)l 

--I~o+(z)l Iqr d Igrad ~J(t)l L=~,.(=, 

+ Igrad G(q~+(z))l ko'+(z)l, 

and, analogously, 

dN d I 
d--~- = I~o- (z) l I ~o" (z) l ~ I grad G(t) l + I grad G(~o_ (z))l I ~o'_ (z) l. 

t=~_(z) 

By Lemma 2 the derivative 

d I grad ~J(t) l 
do" 

is continuous on ~ and because of (4.6) the same is true for the functions 

d I grad ~J(t) ll z ~ F. 
de It = ~ * (z) 

Hence, 

]z 2 _ lit/2 d q(z) 

is continuous on F and the lemma is proved, m 
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L e m m a  5. For all 0 = 3o < rt  < ""  < ~,~ = 1 and tl > O, there is a funct ion 
~k ~ C2(R), ~k: R ~ [0, 1"1, and ~c o > 0 such that, f o r  all x < t o ,  

(i) ~b(c) = 1 f o r  x <_ x,  
(ii) ~ ( x )  = O f o r  x >__ 1 - -  r ,  

(iii) ~b<"~(x) = O for  n = 1, 2, x ~ [z ,  - x, z ,  + r ] ,  v = 0 . . . . .  m, 
(iv) I~b'(x)[ < (2 + t l )mfor  all x ~ R, 
(v) I~b"(x)l < (4 + ~l)m fo r  all x ~ R. 

Proof. Let • < -16 and 

0 f o r x  < x, 

- I for  x ~ l2x,  �89 - x],  
u~(x) : =  

+ 1  for x e [�89 + x, l - 2x],  

0 f o r x _ >  1 - - r ,  

and linear in between. Define 

4 ; / f  
(4.7) ~bx(x) ' =  (1 -- 4r)(1 --  2~) u~(t) dt dy. 

Then,  for r sufficiently small,  the funct ion $(x)  = S t (x )  satisfies (i)-(v) for m = I. 
Fo r  m > 1, let 6~ = ~:, - ~ _  t and 

for i = 1 . . . . .  m. Now,  define $ (x)  = 1 for x < 0, r = 0 for x > 1, and 

~,(x)  = 1 - ,1, + '/tOt ( x  - ~ _  x) 

for x e (zl-  i, zl) (x chosen as above).  Then  ~b satisfies (i), (ii), and  (iii) and 

t/i = 4 + ~ /  

Since ~ =  t 6, = 1, we get, f rom HSlders  inequality,  

I = 6 ,  _ m 6 ,  2 
v ~ l  * = 1  

and therefore (v) is true. Inequal i ty  (iv) can be p roved  analogously .  �9 

Firs t  we p rove  T h e o r e m  2. 

Proof  of Theorem 2. Let  us denote  by  

Fo . ,  = {z e F*:  Go(z) = log a} 

the level curves of Go.  By L e m m a s  1 and  2 there is a ao > 1 such tha t  

(4.8) M,, o c~ ( E \ S )  = f~  
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and 
a 

(4.9) On G(z) > 0 for all z ~ M , , o \ F * ,  

where n denotes the outer normal on Fo, z ~ F ,  (resp. on F). By Lemma 3 

0 
an--o Go(z) > 0 for all z e F,o, 

where n o denotes the inner normal on Fo.,, z e Fo.o. 

First we prove, for a = 1 + Co~/U'-~(Zo) + 2e, that there exists C > 0 depending 
on E, Zo, and co such that 

(4.10) (1~ -- *)(S+,(J) u S~(J)) < cx/u ' -*(Zo)  + 2e. 

We may assume a _< ao, since otherwise, for C = Co/(ao - I), the right-hand side of 
(4.10) exceeds 1. 

Let Jz be a closed subarc of J and let -/1 and ./3 be the two subarcs forming J \ J 2 .  
Fix 

; =  Cox/O'-~(Zo) + 2~ = ,~ - 1. 

Since we may assume/,(J) > 26, we can choose ./2 in such a way that 

(4.11) /*(J1) =/~(d3) = 6. 

Now we construct a test function 0 that is 1 on ,/2 and 0 on C\(S~+(J) w S~( J ) ) .  
We start by defining O on F. Let us first consider the case J # F. Then we fix a point 
t o ~ F \ J  and introduce Green's coordinates on 

V.~ = =  M , , o \ ( F *  u/-,(to)), 

i.e., we choose a harmonic conjugate ~0(z) of G(z) such that 

r  = e ~ + i~=l 

maps Voo onto 

Koo = {rei*: 1 < r _< tro, tpt < q~ < tp2 }. 

Let tp(J) = [~, ffl. Then, by (4.11), 

~o(J2) = [= + 2~3, fl -- 2n6]. 

1 d l O G  
2n ds ~o = 2-~ O--~ 

is the density function of #~ on F. 
By Lemma 5 we can define gl:  R ~ [0, 1], twice continuously differentiable, such 

that 

Note that 
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and 

g t l , ~  = 1, gtlRx~.r~ - -  0. 

Analogously, we define a harmonic conjugate ~0o of Go on 

U ,= F*\Lo(to), 

where Lo(to) is the Green line connecting Zo with t o. Thus we project any point 
z e U to a point no(Z) E F along the orthogonal trajectories to the family of level 
lines Fo.,,, i.e., q~o(Z) = q~o(rro(Z)). 

Furthermore, we set 

_/'e G~=~ 1) 
~1~" for z e Mo\F*, 

O2(z) "-=' / e  ~176  - 1\  
r ~ ) for z ~ F*, 

0 elsewhere 

where ~ 1 = ~' is the function of Lemma 5 for m = 1, r /=  1. Now we set 

gl(cp(z))g2(z),  Z e Vr 

g(z)..= g~(~O(~o(Z)))o~(z), z E u, ,  

0 elsewhere 

where 

and 

Uo ".= Fo\Lo(to) 

Vo '= M~\(F* u L(to)). 

In the case F = J we set g = 02- Then g is continuous on F and twice continuously 
differentiable on C \ F .  

We need to estimate IAgl. Let z e V,\F. Since �9 is analytic, we get, by a 
well-known identity, 

A,g(z)  = I~'(z)12A.,g(w), 

where w = q~(z). We use polar coordinates in K.o and get 

[ 0 2  1 0 1 0 2  I 
IAwg(w)l -- gx(~o) ~ r  2 g2(r) + r gt(~) ~r g2(r) + ~ g2(r) ~ 2  gt(~ o) 

Co 
-<7 

for some constant Co > 0 (we may assume 6 < 1). Thus 

r2(C3G'~2 Co 
(4.12) Iag(z)l < \ an J 6 --~ 

for z e Vo\F, where n denotes the outer normal on F,, z e F,. 
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Next we take z e U,. From Lemmas 2 and 3 we know that q~o is a C2-funetion of 
~0 on F\ t  o. Thus 

on F\ t  o with some constant C2 > 0. As above, we get 

(4.13) IAg(z)l _< \Ono) ,~ 

for all z ~ U, and some constant Ca > 0. 
Since Ag = 0 for all z e C\(V, u U,,), (4.12) and (4.13) show that IAgl is bounded 

on C\F .  
Next we prove the representation 

(4.14) g(z) ---- ~ Ag(O log [z -- (1 dx dy 

(~ = x + iy) which is well known for # ~ C2(R 2) with compact support. Since 
IAg(z)l is bounded on C \ F ,  both sides of (4.14) are continuous in z and we need 
only prove (4.14) for z r F. We take p > 0 so small that the circle Co(z ) of radius p 
around z does not intersect F and apply Green's formula to the region 

gp == C\(Bp(z) u F), 

where Bo(z ) is the interior of Cp(z). Since # has compact support and is continuous 
on F and since 

we get 

g(z )  = ~ g ( z )  = o 
3n ono 

foraU z ~ F, 

1 
J J  Ag(O log I ~ -- z[ dx dy 

2n 

= lim (~ -  f O g(0 log 1~-  z[ ds(O 
p-.o \ ~ dc~(=) on1 

- 2--'~ o(,) ~ log I~ - zla(O ds(~) 

( 1  f f  l f c g ( O d s ( O )  ' = o-.olim ~ log p A0(0 dx dy + ~np ,~=~ 
Bp(=) 

where n z denotes the inner normal on Cp(z). For p --, 0 the first term vanishes and 
the second term tends to g(z). 
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For later use we remark 

(4.15) f f + ( + )  dx + = O. 

This can be proved in the same way. 
We are now able to prove (4.10). First, 

(4.16) Oz - z)(s+(g) u S,,(J)) < g(d , - dz) + lt(J\J2) 

= fg(dtt - dr) + 26. 

Next, using (4.12)-(4.15) and (1.9) together with Fubini's theorem 

[ f g(a ' - d+) l = l f ( f f ao(O log lz - s dx #)(di' - I 

(u'-" + dxey 

V,~ 

Uo 

Changing coordinates with �9 we get 

1 ~ I ( U + - , + e )  j~_~r2(0G~2 CO f * ~ "  
--2~ \ O n ]  dx dy = ~ ~ r , (U ' - ~ + e )  dq~dr 

Vu 

Co r (U '-~ + e) ds dr. 

For all functions h superharmonic in D., we have 

l ~ r  " OG N h N ds < h(oo). 

Thus, since U '-~ is superharmonie in D., 

(4.17) --27t ~, On ] dx dy < ~ r dr < C~ -d 
VQ 

for some constant C3 > O. 
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Since 

37 

where 

But, by Remarks 1 and 2, 

I(/~ - z ) ( ( C \ E ~ )  u ( F * \ F . ) ) I  < 

Thus 

U'-qZo) + 28 
log a 

l(p - T)((C\E~) u (F*\F.))I < Q ~ / W - q Z o )  + 2e, 

( 1 i) Q = max 1, log(1 + Co 

The proof of Theorem 2 is now complete. 

fr ~gGo 
o., h ~ ds <_ h(zo) 

for superharmonic functions h in F*, we get analogously 

(4.18) ,,If (U'-U + c) C~.~ rz/aGo'~2\d~no ] d x d y <  C, U~-U(z~ 
+ 8 

for some constant (7,4 > 0. Combining (4.16), (4.17), and (4.18) we get (4.10). 
The proof of 

(It - Q(S+(J) w S[(J))  >_ Cx/U'=U(Zo) + 2~ 

follows the same line. This time we construct a test function O which is 1 on 
S, + (J) u S~" (J) and 0 on 

c\(s~+,~(Jo) • s?+ 2~(So)), 

where Jo is a subarc of F such that Jo\J consists of two subarcs "]1 and J2 with 
P(JI) = I~(Jz) = 6 if/~(F) - p(J) > 26. Otherwise ~ is 1 on '~+(F) w S$(F) and 0 on 
the set C\S~+ z~(F) w S'[+ 26(F). 

Then (4.16) is replaced by 

-(ia - r)(S~+(d) w S$(J)) < f y(dv - dl~) + 26 

= f -~(d~ - dr) + 26. 

The proof proceeds as above with g replaced by -~ .  
It remains to show (2.8) for 

a > 1 + Cox/U'-~(Zo) + 2e. 
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Proof of Theorem 1. The proof follows the same ideas as the proof of Theorem 2. 
By Lemmas 1 and 4 there is a Uo > 0 such that (4.8) and (4.9) hold. It is sufficient to 
prove (2.5) for subarcs J of F which contain one of the endpoints of F. As in the 

proof of Theorem 2, we show that, for o = 1 + Cow/~ there is a constant C > 0 
depending on E and Co such that 

(4.19) ~ - xXS+. (J)) < Cw/~8. 

We may assume that a < a o since otherwise (4.19) is satisfied with C = Co/(ao - 1). 
Let a and b be the endpoints of F and a ~ J. As above we define the simply 

connected set 

V. = M,, \(L(b) u F). 

On V. we choose a harmonic conjugate q~(z) of G(z). Then q~ can be extended 
continuously to F from either side of F. We call these extensions q~+ and q~_. Again 
q~ defines a projection n on V. to F along the orthogonal trajectories of the family of 
level lines F.. 

We now decompose J into two subares ./1 and J2 such that ./1 is compact, a e Jl, 
and 

t (JD = ' =  

(we may assume/~(J) > 6). Since #(J2) is the sum of the lengths of the intervals 
q~+(J2) and q~-(J2) we may suppose r > 6/2. Using Lemma 5, we define 
g l :R-- , [0 ,1]  such that gl(q~+(z))=i for all z e F  in a neighborhood of 
�9 /1, gl(~o+(z)) = 0 for all z e F in a neighborhood of F \ J  and 

d { 5 
(4.20) d--~+g I _<(n6) 2, 

The function g2 is defined by 

/ e  ~ - 1) 

g2(z),= $ 
0 

dq~+ <- ~"~" 

for z e M.,  

elsewhere 

(~b = ~1 from Lemma 5 for m = 1, t /=  1). Finally, we set 

g(z) ,= ~g_ l(q~ +(n(z)))g2(z)" z ~ M .  

to elsewhere. 

We need to estimate I Agl and proceed as in the proof of Theorem 2. We remark 
that 

_ dq,+ 

By Lemrna 4 

do.: COG~On+ 
dcp_ cOG~On_ 
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is bounded on F, just as 

(4.21) 

39 

Proof of Theorem 3. We set 

~:= inf E, / / ,=sup  E. 

Since all zeros of p are real, it suffices to prove 

(4.22) (# - z)(I) < 4q/-~ + 4e. 

for any interval I = ( -  ~ ,  b], where b < ft. We may assume that g(l) > 4 x / / ~ ,  
since otherwise (4.22) is obvious. 

Let b' e E such that/~([b', b]) = &x/~, where c5 < 4 x / ~  will be specified later. 
Then we consider the Green function G*(z) for C\E* with pole at infinity where E* 
is the point set 

E* , =  E u [b', b]. 

E* is again regular. 
/it. ([b', bl) is equal to the value at infinity of the function h*, harmonic in ~ \ E *  

with boundary value 1 on (b', b) c~ E and 0 on E*\[b', b]. Analogously, #e([b', b]) 
is the value at infinity of the function h, harmonic in ~ \ E  which is 1 on (b', b) n E 
and 0 on E\[b', b]. Since 

fib', b] c~ E) c Ib', b], 

it follows from the maximum principle for harmonic functions that h* >_ h in ~ \ E *  
and 

(4.23) #e.([b', b]) > #E([b', b]) = #([b', b]). 

The proof now follows the above ideas. Let q~(z) be a harmonic conjugate of G* 

dq/ds 

- 8G/an_' 

where q denotes the function in Lemma 4. Thus we deduce 

i  (z)j <: (aW C__.~I 
- \ a n . /  

for all z ~ M~,\F and some constant Ct > 0. 
Since Ag = 0 in a neighborhood of a and b, iAgl is again bounded on C \ F .  

Therefore the representation formula (4.16) holds. Following the proof of Theorem 
2 we get (4.19) and subsequently 

- + ( s ) )  --- 

Finally, Remarks 1 and 2 show that (2.5) is true for all a > 1 + Cox//~. �9 
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on C\[0c, ao). Then q~(z) extends continuously to [~, oo) from the upper half-plane. 
Moreover, (4.23) yields 

~(b') - ~(b) >__ 6 ~ .  

Fix r />  0. By Lemma 5 there is a function g~: R --, [0, I], twice continuously 
differentiable, and x > 0 such that gl(r  - 1 for r > q~(b') - ~c, g~(q~) = 0 for 
r < q~(b) + z, and 

[d2 I 4+r/  
~2a, -< .(~)2" 

Next, let 
/ eCC*(z) _ 

(~'t = ~' from Lemma 5 with m = I, ~/> 0 fixed). Then we set 

~gl(~p(z))gx(z) for Im(z) 2 0, 

g(z)'= ~gx(q~(z-))g2(z) for Im(z) < 0. 

Because of the symmetry of G(z), namely G(z) = G(z-), g is continuous on C. 
Since g has compact support and 

b.,~ g(z) = ~ g(z) = 0 for all z e [0~ fl], 

where n+ = i and n_ = -i, the representation formula (4.14) holds. 
Introducing Green coordinates (r, r again such that G(z) - r, we have 

r2[0G'~21 0292 + 1 c~g 2 1 02gI I 
I,~g(z)l: t , ~ )  I g' ~ 7 "  ~ + ~ g:~-~-~ I 

(~ )21  r--1 1 14+,7 
_<r~ 1 + - -  + ~ l ~ r  

2/aG'~ 2 8 + 2r/ 
< r t~n ) (6n)2, 

for all z ~ C \ [~ ,  oo), where we have used 

doe (r~ = f"  d292 dr. 
Or " J1 

Again the estimates start with 

(Ix -- z)(I) < ~ g(di~ - dz) + I~([b', b~). 

Proceeding as in the proof of Theorem 2 we obtain, with ~ ~ 0, 

" 4 (26n.v/~ + (6~)2s). o(~ - d~) <_ 
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Thus 

(~-~)(I)_< ~ ~ + 4 ~ .  

Choosing 6 = x / ~  (4.22) follows. Furthermore, for x/~ < ~, inequality (2.9) yields 

(2.10). But, for x/~ > ~, (2.10) is obvious. �9 

Proof of Theorem 4. First we prove 

(4.24) (!a - "c)(S+~ (I)) < -~ + 6 + 4e 

for any interval I = [~, b] where b </~ (~ and/~ as in the proof of Theorem 3). We 

may assume/~([-, b'l) > 6x /~ .  Define b' e E such that 

(4.25) /~([b', b-I) = 5x /~ .  

The arguments which follow depend only on G(z), i.e., the role of G*(z) in the 
proof of Theorem 3 is taken over by the function G(z) itself. 

For z e C \ [ a ,  oo], define a harmonic conjugate ~0 of G. We extend ~o contin- 
uously to [~, fl] from the upper half-plane and remark that ~o is constant on each 
interval Si,= [sup li, inf I~+ t]. Let m - 1 be the number of intervals S~ in (b', b), 

b' < Si+ x < Sj+ 2 < -." < Sj+,_ 1 < b. 
Then we set 

3o = ~o(b'), ~ = ~o(S~+1) . . . .  , ~ . _ 1  = ~0(S~+._~) ,  r. .  = ~0(b), 

and note that ~,~ - 3 o = 8rrv/~. For  this distribution r0 . . . . .  ~, and 17 > 0, Lemma 
5 yields a function g~: R ~ [0, 11 such that 

I d2 I 4 + T / m  4 + r /  
gl < ((~)2e k < ((5~)2e" 

Moreover, we set 

and 

/ e  G ( z ) -  I 

fg1(~o(z))g2(z) for Ira(z) > 0, 
g(z),= (g~(~~ for Ira(z) < 0. 

The same estimates as in the proof of Theorem 3 yield 

IAg(z)l < \c~nJ (rr02e for C \ [ a ,  oo). 

Proceeding as in that proof we get (4.24). 
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Of course, (4.24) holds for any interval of the form [c,/~] too. Furthermore, we 
deduce from Remark 1 with some calculations 

-1): 
z ( C \ E x + , . ~ )  -< (e ~6 4" e. 

Observing ( t -  p ) ( C ) =  0, we obtain (2.13). Now we insert 6 = 3 / ( v / ~ k  1/') in 
(2.13). This yields (2.14). II  

To prove (2.17) in Remark 3, we note that all components of E1 +3,/~ contain 
exactly one interval of E. We fix b' ~ E such that 

U([b', b] )  = 

If [b', b] ~ E we proceed as in the proof of Theorem 3 (resp, as in the proof  of 
Theorem 4 with k -- 1). If [-b', b ] r  E we have to modify g(z)  in a straightforward 
way. Le t / j  bc the interval with b' ~/~ and k t  

x = max z. 
zel,~ 

Then we define, for Im(z) > O, 

O(z)' f{Oo2(Z) elsewheref~ ~p(z)~ ~o(~), 

and extend O(z) to Ira(z) < 0 by O(z) = O(z-). 

5. Proof  of the Coronaries 

Proof of Corollary 1. The zeros of the polynomial p*+ t - P* e l'I, + 1 are all real 
and separate the alternation points. Let 

p*+~ - p*=  ~,.+~T.+I + q., 

where q. e I-l. and T. + x is the Chcbyshev polynomial of degree n + 1 on E. Then 

la,+xl II T,+x lie = IIf - (P*+ q,) - ( f  - P*+x)IIE- 

A result of Widom [16] shows that there exists a constant c > 0 such that 

II T.IIE < c(cap E)" (5.1) 

for all n. Hence, 

en - -  en + 1 
(5.2) la.+al > c(cap E)" + 1 

P,, + x " -  (P,,+ x - p.*)/a. + I we obtain and for the monic polynomial "-  * 

(5.3) liP.+1 lIE -< c e. + e.+l  (cap E) "§ 
en ~ e n  § 1 
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for integers n, where e. ~ e.+ v Since lim._.~o e. = 0, there exists a subsequence 
(nj)T= I such that 

e.+, < ( 1 -  l ' ~ e .  n2 ] for n = n ~ ,  j = l  . . . .  , 

and therefore, for such n, 

en  - -  en  + 1 1 

en + en+ 1 -- 2nZ" 

Then, by (5.3) there exists a constant y such that 

liP.+1 lie <- Y nz (cap E) "+ 1 

for n = nj. Then Theorem 1 together with e = O((log n)/n) yields 

for any interval I c R. Since the zeros ofp.§ 1 separate the alternation points, (3.2) 
is true. �9 

Proof of Corollary 2. The proof is based on estimate (3.9) in Blatt, Saff, and Totik 
[3], namely 

n + 2 1 3(n + 
log V ( . ~  + 2(M,,(f)))  >__ - T -  og II T, I1~ 2 2) log(n + 2). 

We may assume that cap(E) = 1. Since II T. lie > cap(E)", we get 

3(n + 
(5.4) log V( ,~+2(M, , ( f ) )  ) > 2) log(n + 2). 

2 

Dropping the index n, we set 

Z 1 :=-~+2(M.( f ) )  = {Zo . . . . .  z.+l}, 

n + l  

~o,(z),= 13 ( z -  zk), 
k=O 

and define Z j, ad inductively by 

z J , = z  j - I  ~ {z.+j}, 
~ , ( z )  ,= % _  ~(z)(z - z .  + ~), 

where coj_ 1(z)attains its maximum modulus M r on E at the point z.§ e E. By the 
construction we get, for the Vandermonde expression (3.3), 

(5.5) V(Z.i+ 1) = V(Z i )Mj .  

Let n > 4 and suppose, for some subarc J of F, 

#E(J)(n + 2) - ~ . ( f ,  J) > 2m, 
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where m is a positive integer. Then m _< n - 2 and, for 1 _<j < rn + 1, 

~ n + j +  I)>m+ ~ 1. 
z c Z J n J  

Hence Theorem 1 (resp. Theorem 2) implies that there is a constant c > 0 with 

( m )  2 1 m2 
log Mj  > - -  > 

n + j  + 1 - 2c2n 

for 1 < j < n - 1, and by (5.4) and (5.5) 

(5.6) log V(Z  ''+1) > ~. log Mj + log V(Z  1) 

m 3 3(n + 2) log(n + 2). 
> 2c2n 2 

On the other hand, we use an upper bound for V(Z  m + 1), namely a result of Siciak 
/'12"1. There exists a constant M > 0 such that, for all n, 

2 6 
n(n - 1)log K < log cap(E) + ~ log(Mn), 

where Vn is the Vandermonde expression for an n-point Fekete point set in E. This 
is true because each connected component of  E has a diameter greater than p with 
p > 0 fixed. 

Since log cap(E) = 0, (5.6) yields 

log V(Z re+x) < log V,+=+ 2 _< 3(n + m + 2) log[M(n + m + 2)"1. 

Hence, by (5.6), there exists a constant y > 0 such that 

m 3 < ~,n a log n. 

Thus 

lae(l)(n + 2) - An(f ,  I) <_ const(n 2 log n) 1/3 

and this is equivalent to the statement of Corollary 2. [] 

Proof  of  Corollary 3. The statement is an immediate consequence of the above- 
mentioned result of Widom (5.1) and Theorem 1. []  

Proof of Corollary 4. We may assume Ilflle = 1. Thus IIP*II < 2 for all n ~ N. Let 
an denote the highest coefficient of p* then, as in (5.2), 

1 e n _  t - -  e n  
lanl>- c (cap E) n" 
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Next, consider the monic polynomial p. ~= (I/a.)p*, whenever a. r 0. For  such n, 

2c 
(5.7) tiP.liE < e . - ,  _ e. (cap E)". 

Now we show that there exists a subsequence (hi) and a constant s > 0 such that 

1 
(5.8) e.~_ 1 - e.~ _> 

for all j ~ N. 
Let us assume that (5.8) is false and fix a real number s > 2. Then there exists an 

no E N such that 

1 
e . - i  - e.--< r~ 

for all n _ no and 

(5.9) 
( .  +j)* 

1 

- ( s  - 1 ) .  " - x  

for all n > no. Furthermore, the generalized Markov inequality yields a constant 
C > 0 with 

(5.10) Ilq~,lle_< Cn2[lq.lle forall  q. e H ,  

[12, Remark to Lemma 1 on p. 50]. 
Since s is arbitrary, it follows from (5.9) that all derivatives of p* converge 

uniformly on E. This implies that all derivatives of f exist on E, which contradicts 
our assumption. This proves (5.8). 

Let us first assume that F is a Jordan are. By (5.8) and (5.7) 

1] p. 11~ < 2end(cap E)% 

Thus (1.9) is replaced by 

U"-"-~(z) < % 

with 

(5.11) ~.J _< log 2c + s log .~ _< Co log n~ 
nj nj 

for some constant c o > 0. Inequality (3.6) now follows from Theorem 1. 
In the case of a Jordan curve we fix z o in the interior of F such that f(zo) ~ O. 
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Such a z o exists by assumption. Then 

U~_,,,j(Zo) = 1 log Ip,~(zo)l - log cap E 
nj 

_< 1 log  Ip.*~(zo)l - -  ~ log  I%1 - - l o g  cap  E 
n~ 

log nj 
< c I 

n~ 

as above and (3.8) follows from Theorem 2. 
In the special case E c R and f ~ C=(E), the above-defined real number s satisfies 

s < 2 + 20t. 

Otherwise, Markov's inequality together with (5.7) imply f ~ C=(E). Hence, (5.11) 
leads to 

log  nj 

n~ 

for a subsequence (n j). Therefore, the critical points of G(z) are outside of E 1 + a ~,/~,~ 
for j > Jo- Then Remark 3 yields the desired inequality (3.8). [] 
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