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Abstract. Erdds and Turan established in [4] a qualitative result on the
distribution of the zeros of a monic polynomial, the norm of which is known on
[—1, 1]. We extend this result to a polynomial bounded on a system E of Jordan
curves and arcs. If all zeros of the polynomial are real, the estimates are
independent of the number of components of E for any regular compact subset E
of R. As applications, estimates for the distribution of the zeros of the polynomials
of best uniform approximation and for the extremal points of the optimal error
curve (generalizations of Kadec’s theorem) are given.

1. Introduction

The theorems of Erdés and Turan to which we refer in the title concern the
distribution of zeros of polynomials bounded on the interval I = [—1, 1] or the
unit disk D = {z: |z| < 1}. More precisely, let p € IT, be a monic polynomial, where
IT, denotes the set of all algebraic polynomials of degree at most n. We associate
with p the zero-counting measure

number of zeros of p in 4

?

(1.1) T(A) =

n

where A is any point set in C and the zeros are counted with their multiplicities.

If all zeros of p are in the interval [ — 1, 1], then Erdés and Turéan [4] proved, for
any subinterval [a, b] of [—1, 1], that

8 og P
< ;
log3 n

wherea =cos f,b=cos e, 0 <a < f <, and

(1.3) P=2" max |p()

xe[—1,1]

(12) t([a, b]) — o

/9
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If the polynomial p is bounded on the unit disk D such that

1.4) P= 1 max |p(z)|,

\/;;|z|51

where ag is the constant term of p(z),p(z) =2z"+ -+ + ag,a, # 0, then the
number of zeros of p in the sectors

Sep={rd"r>00<a<o<p<2n}
can be estimated as

B—a

2n

og P
n

(1.5) <16

1"p(sa, ﬂ) -

[51-
It is interesting that (1.2) can be obtained from (1.5): Let

G(z) = log|z + /22 — 1}

denote the Green function for C\[—1, 1], where ,/z? — 1 is the branch which is
asymptotically z near infinity. For any point z € C, let us define the projection
n(z) € [ —1, 1] such that z and n(z) lie on the same orthogonal trajectory (which is a
hyperbola) of the family of level lines of G(z),

IN,={zeC:G(z)=logo}, o1

The level lines I, are ellipses with foci + 1 and —1 and sum of semiaxes ¢. Using
the Joukowski transformation

(1.6) = % <w + é),

which maps the exterior of the unit disk of the w-plane to C\[ 1, 1], we obtain

/o  |of
n(z) = i(l_ﬂl—i + ’a)

For —1 < a <b <1, let us define
S ={zeC:n(z)e[a, b]}.

Then S, , is the point set between the two hyperbolas through a and b.

If p is a monic polynomial of degree n with P defined by (1.3), then any zero of p
in S, , is mapped by the inverse of the Joukowski transformation to a point in §, ;
orS_, - s> where a = cos fand b = cos a. Furthermore, each zeroof pin [ —1, 1] is
mapped on two points of the unit circle using the continuous extensions of the
inverse from above and below.

Now we consider
1 1 1 .
g(w) = p(§ (w + 5)) = Hw),
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where § € I1,,, §(@) = @*" + --- + 1. Then two zeros

1
w, and —

w,

of g(w) correspond to each zero z, of p(z) and the number of zeros of pin §, , is the
same as the number of zeros in S, ;. Hence, (1.5) leads to

f—a
2

s32f°gp,
n

where 73 is the zero-counting measure of §. Therefore, (1.7) is a generalization of
(1.2) for the case that the zeros of p are allowed to be outside of [—1, 1]. On the
other hand, the constant 32 is worse than 8/log 3 in (1.2). Ganelius [7], [8] proved
(1.5) by Fourier series methods and improved the constant 16 to 2.619.... Up to
the constant, the estimate in (1.5) is sharp, but the optimal constant seems to be
unknown.

The crucial key to generalizing the Erdos-Turan estimates can be found in a
potential theoretical interpretation of (1.2), (1.5), and (1.7). For this, we need to
introduce some terminology from potential theory.

Throughout this paper let E be a compact point set in C with connected
complement Q = C\ E. We assume that E is regular, i.c., Q has a Green function
G(z) with pole at infinity and boundary value 0. Hence, if cap(E) denotes the
logarithmic capacity of E, then cap(E) > 0. Let 4 = g be the unique unit measure
supported on E which minimizes the energy integral

) oSon) =22 =20 - 22

103 = | [ log - n©) v

over all unit measures v supported on E. Then p; is called the equilibrium
distribution for E and the logarithmic potential

U= [log a0

is the conductor potential of E. The potential U*(z) is related to the Green function
G(z) by

UHz) = — G(z) —logcap(E) forall zeQ

(see [14, p. 82]).

Let p be a monic polynomial of degree n and let 7, be its zero-counting measure.
We investigate the distribution of the zeros of p if the Chebyshev norm | p||z on E is
known. More precisely, if, for some constant M,

1p(2)] < M(cap(E))" forall zeE,
then M > 1 and, taking the logarithm, we obtain

1 1
(1.8) - log|p(z)| — log cap(E) < " logM  for zeE.
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If U*(z) is the logarithmic potential of T = 1, then

U@) = [log - dr(©) = ~ L log )

and, since U¥(z) < —log cap(E) for all z € E (see [14, p. 607), (1.8) can be written as
1
(1.9) U¥2) - U(2)=U"""2) < - log M forall zeE.

In Q the function U*(z) — U%(z) is subharmonic. Hence, the maximum principle
yields (1.9) for all ze C.
Let us now reformulate (1.5) and (1.7) in terms of

g:=sup U*7(z),

zeC
Keeping in mind that

B

-
2z

u(gc,ﬁ) =

(1.5) reads

(1.10) I(t — uXS,.p) < 164/ + 3 U~#(0).

In the situation of E = [—1, 1] we have

#(Sa.o)=ljb dx IJ"’ B—u«

TJg l—xz n

and therefore (1.7) leads to

(L.11) (z — 1)(Sa,)! < 32./.

An equality of type (1.11) was proved by Sjogren [13] to estimate | (r — u)}S)| on
subarcs S of E if E is a Holder smooth Jordan curve and if all zeros of the
polynomial p lie on E.

Asymptotic results for the behavior of the zeros of a sequence (p,) of monic
polynomials are known if

U¥z) — U™n(z) < g,

and lim, , &, = 0. Blatt, Saff, and Simkani [2] have shown that in this case 7, is
weakly converging to the equilibrium measure.

The aim of this paper is to generalize estimates of type (1.10) and (1.11) to other
situations, especially to the case when E is a system of Jordan curves and Jordan
arcs.
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2. The Main Results

In the following we use
(2.1) g=sup U*"%(2)

zeC

and t:= 1, = yug. We denote by

2.2) I,={zeQ:G(z)=logs}, o>1,
the level lines of the Green function G(z) and set, for ¢ > 1,
2.3) E,={zeQ:0<G(z) <logs} UE.

Every level line I, is analytic at each point z where grad G(z) # 0. Moreover, I,
consists of a finite number of Jordan curves which are mutually exterior except for
a finite number of critical points, i.e., points where grad G(z) = 0 [15].

Let us now introduce the so-called Green lines (see [10]). These are orthogonal
trajectories of the family of level lines. Hence, through every noncritical point there
is a unique Green line. However, several Green lines may end in one critical point.
As an example, if E = [ -2, — 1] U [, 2], the imaginary axis consists of two Green
lines ending in the critical point 0, and all points z = x + iy, x # 0, are on a Green
line ending in E.

For zeC, we define L(z) as the union of all Green lines with z as an
accumulation point. Then, for a subset J of C, we set

24 SiW) = closure(U L(z)) NnE,.
zed
A function of a real variable belongs to class C** (« is a nonnegative integer) if its
ath derivative satisfies a Holder condition with some positive exponent. A curve

(arc) belongs to class C** if it is rectifiable and its coordinates are C** functions of
arc length.

Theorem 1. Let F < E be a Jordan arc of class C>* with positive distance to
ENF, cq > 0 fixed. Then there is a constant C > 0, depending on E and c,, such that,
Jor all subarcs J of Fand alle > 1 + co\/;:,

@.9) (e — XSO < C /e,
where ¢ is defined by (2.1).

We remark that Lemma 1 in Section 4 shows that S} (J) defines a neighborhood
of each interior point of the Jordan arc J.

Next we consider the situation that the component S of E is bounded by a
Jordan curve F. Let F* be the interior of S. Then we fix a point z, € F* and proceed
as above. Let Go(z) = Gz, z,) be the Green function of the region F* with pole at

2o. For z € F, we define Ly(z) as the union of all Green lines of G,(z), which have z
as an accumulation point. Let

2.6) F,={ze F*:0< Gy(z) <logo} UF
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for o > 1, and define, for J < F,

Q7 S, (J)= closure( U Lo(z)> NF,.

zeJ

Then
U 7D us; )

o221
is just a sector in the plane for the special case when E = F is the unit disk and J isa
subarc of the unit circle, a situation considered by Erdds and Turan in [5].

Theorem 2. Let S < E be bounded by a Jordan curve F of class C** with interior
F* such that S has a positive distance to E\S and let z5 € F* and cy > 0 be fixed.
Then there exists a constant C > 0, depending on E, z, and ¢, such that

(2.8) [ — XSS () U SN < C /U H(z) + 2¢
Jor all subarcs J of F and all 6 > 1 + ¢co /U™ #(2z¢) + 2e.

The proof of these theorems will show that the constant C depends on the
geometry of E. Hence, it seems to be interesting that in the special case E < R the
constant C can be estimated as an absolute constant independent of E if all zeros of
p are real.

Theorem 3. Let E be a compact and regular subset of R and let p € 11, be a monic
polynomial with all zeros in R. Then, for all intervals I < R,

29 (e~ YD) < 8,/2¢/m + 8¢
Consequently,
(2.10) I(u — DI < 8,/

If not all zeres of p are real, then our estimate will depend on the number of
components of E. Let us therefore assume that

2.11) E=IL,ul,u-—-ul,cR

is a finite union of compact, disjoint intervals. Since E is regular, each interval /;
consists of more than a single point. Let

(2.12) o= inf z and pP:=supz

zekE zeE

Theorem 4. Let E be the union of k real compact intervals, let p € I, be a monic
polynomial, and let & > 0. Then, for all intervals I < [a, f],

(2.13) (e ~ ST < (}Z—i + 26ﬁ>\/3 + 96
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holds for arbitrary o > 1 + né\/;. Especially,
(214) |G ~ XS} ()| < 8kM4 /e
foranyo>1+ 3\/;t—8/k”4.

Remark 1. There is a simple way to prove
&
. < —
2.15) Q\E,) < 1= o
for all ¢ > 1. Fix ¢ > 1 and define

h(z):=U*""(z) + -'1; i G(z, z,),
v=1

where z,,..., z,, are the zeros of p in Q\E, and G(z, z,) is the Green function for Q
with pole at z,. Since h(z) is subharmonic in C\ E, the maximum principle yields

1 1 &
h@) = ¥ G(@,2)=; ¥ Gy <

v=1

Thus,
m 4
—_—= < —.

Remark.2 Using the same method of proof and replacing the unbounded
component of E by the Jordan region F* of Theorem 2 as well as the point at
infinity by the point z, € F*, we obtain, for ¢ > 1,

e+ U%(z,)

2.16 *
216) FNF) S

Remark 3. The proof of Theorem 4 shows that (2.14) can be replaced by
2.17) (e — XSS )] < 8/e

for all ¢ = 1 + 3./=e¢ if all critical points of G(z) are outside of the interior of
E1+3J§E-

3. Applications to Extremal Points and Zeros of
Best Uniform Approximants

Let f be a real-valued or complex-valued continuous function on E, which is
analytic in the interior of E, and let us denote by p* the best uniform approxima-
tion of f on E with respect to IL,,. If

e, = || f — pallg==max | f(x) — pF(x)l,

xeE

then Mergelyan’s theorem yields lim,_, , e, = 0.
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If E is a finite union of compact intervals and f is real-valued, then there exists a
point set of n + 2 alternation points,

3.1) xP<xP <. <x?,,

in E such that e, = |(f — p*}x™)| and the signs of (f — p*)(x™) alternate. We
denote by 4,(f, I) the number of points of (3.1) in an interval I c R.

Corollary 1. Let f be a real-valued continuous function on E = Jt_, I,. Then
there exists a constant C > 0 (independent of f) and infinitely many n such that

G2 |4(f, ) — npg(D)] < Cy/nlogn

for any interval I < R.

The above estimate generalizes a theorem of Kadec in [9] and sharpens a result
of Fuchs [6], who proved (3.2) with the right-hand side replaced by Cn*? for
I < E° (resp. Cn*® for general I).

The analogous result for a single interval was proved in [1].

In general, we only know that the extremal point set

M(f)={z€E:\f@) — p*@) = | f — p¥li e}

has at least n + 2 points. Let us denote by %, ,(M,(f)) any (n + 2)-point subset S
of M,(f) for which the Vandermonde expression

1/2
(33) v(s) :=( 0 - r|)

2,teS;z#1¢

is as large as possible. The points of %, , ,(M,(f)) are called Fekete points of M,(f).

If 4,(f, K) denotes the number of points of Z, , (M, (f))ina set K = C, thenin
[3] the following result was announced for a union of finitely many intervals. But
the method of proof works well in the more general situation of Theorems 1 and 2.

Corollary 2 [3]. Suppose that any component of E has a diameter > p where p > 0.
Let S = E bounded by F have a positive distance to E\S. Assume that F is a Jordan
curve or a Jordan arc of class C**. Then there is a constant C > 0 and infinitely
many n such that

(G4 |4 — nugJ)| < C(n* Jog n)*?

for any subarc J < F.

In [3] the verification of (3.4) was postponed, since the proof is based on
Theorem 1.

For the monic Chebychev polynomial T,(z) on E of degree n, we denote by Z (K)
the number of zeros of T,(z) in K.

Since we base the proof of the next corollary on upper bounds of || T ||z due to
Widom [16], we assume that the boundary of E is a finite union of disjoint Jordan
arcs or curves of class C**.
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Corollary 3. Let the boundary of E be a finite union of disjoint Jordan arcs or curves
of class C**. Furthermore, assume that one of the components of E is a Jordan arc F.
Then, for all 6, > 1, there exists a constant C > 0 such that

(35 |1ZASSIN) — e SHINI < Cfn

for all integers n, all subarcs J of F, and all ¢ > o,.

We remark that, for E < R, Corollary 3 yields
|Z() — nug(D)] < Cy/n

for all compact intervals I < R, since all zeros of T,(z) are real. Moreover, these
zeros interlace the extremal points of T,(z) and, therefore, an analogous estimate for
the extremal points is obtained.

Furthermore, a quantified version of a result of Blatt, Saff, and Simkani [2] for
the zeros of the polynomials p¥ of best uniform approximation to f can be proved.
As above, let 1,, denote the unit measure associated with the zeros of p¥.

Corollary 4. Let the boundary of E be a finite union of disjoint Jordan arcs or curves
of class C**, and let F be a fixed component of this boundary. Assume that f is
analytic in the interior of E, continuous on E, and not infinitely often differentiable on
the boundary of E. Then, for all 6, > 1, there exists a constant C > 0 (dependent of
f) and infinitely many n such that, for any subarc J = F and ¢ > o,

(3.6) Iz, — ST < C /——i"ﬁ"

if F is a Jordan arc (resp.

37 (e — 1XSE D) USTUNI < C \/‘-"%ﬁ

in the case of a Jordan curve F). For the special case Ec R and f ¢ CE) (¢ is a
nonnegative integer), there exist infinitely many n such that

38) (5 = XST DI < 8,[(3 +20) 22,

4. Proof of the Theorems

For the proof of the results we need several lemmas.

Lemma 1. Let S < E be a continuum which has positive distance to E\S. If M,
denotes the component of E, containing S, then there is a 6, > 1 such that

(4.1) EnM,=S§

SJoralll <o <a,.
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Proof. Let
4.2) M= ﬂ M.

neN
Thus § € M < E. We show that M is connected. Otherwise there are disjoint open
sets U, U, with

U nM#g,
4.3) UnM#Q,
McUvul,.

Since each M, is connected, we can pick z, € (C\(U; u U;)) n M, ,.. Every limit
point z of the sequence (z,) is in (C\(U, v U,)) n M. This contradicts M <
U v ,)

Since M is connected and S is a connected component of E, we get S = M. Since
all M,,, are compact sets and S has a positive distance to E\S, there is a number
neN with M;,(YE=S.Thus M,AnE=Sforo < 1/n. [ ]

Lemma 2. Let S < E be bounded by a Jordan curve F of class C** with positive
distance to E\S. Then G(z) and grad G(z) extend continuously to F with G(z) = 0
and

@.4) {grad G(z)| = -(%G(z) >0
Jor all z € F, where n denotes the outer normal on F. Moreover, the derivative
d o

is continuous on F, where s denotes the arc length of F.

Lemma 2 is a special case of Lemma 4.1 of Widom [16]. We include a sketch of
the proof because we use a formula for dG/én in the next lemma.

Proof. Since all points of F are regular points for the Dirichlet problem, G(z)
extends continuously to F with G(z) = 0. Concerning the continuity properties of
grad G(2), the reflection principle yields (4.4) and (4.5) if F is the unit circle. Then
the general case is reduced to the case that F is the unit circle. Let t = @(2) be a
conformal mapping from the exterior of F to the exterior of the unit circle such that
the point at infinity remains fixed. By a theorem of Warschawski and Kellogg (see
[11]) we know that ¢, ¢, and ¢” can be extended continuously to F with ¢'(z) # 0
forallzePF.

Consider the Green function G*(z) of the region ¢(2) with pole at infinity. Then

G(2) = G*(¢(2))
is the Green function for Q with pole at infinity and
grad G(z) = grad G*(¢(2))De(2),
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where D¢(z) is the Jacobian matrix:

2 Re p(2) —% Re ¢(2)
Deg(z) =

0 0 )
e Im ¢(2) 3 Im ¢(2)

Now

2 () = lgrad G@)| = <grad G(p(e), ),

where u is the vector

2 Re pl2)
u= = —¢(2).

0
n Im ¢(z)

Hence the vector

0
U=~ 0()

has the direction of the normal to the unit circle at the point ¢(z), i.e., u has the
same direction as grad G*(¢(z)). Therefore,

%—(r? (2) = |grad G(z)| = |grad G*(e(2)! |¢'(2)| # 0,

where we have used |grad G*(e(2))| # 0 from the special case.
The continuity of (4.5) on F follows from the continuity of ¢"(z) and from the
assumption that F is of class C2*. [ |

Lemma 3. Let S < E be bounded by a Jordan curve F of class C** and let G(z) be
the Green function G(z, z,) defined in the interior F* of S with pole in z,. Then G,
extends continuously to F with Gy(z) = 0 for ze F and

lgrad Go(2)| = 2 Go(2)>0
on,

Jor all z € F*\{z,}, where n, denotes the inner normal on F. Moreover,
d o
——G
ds o o)

is continuous of F, where s denotes the arc length of F.

The proof follows the same line as the proof of Lemma 2 using the conformal
mapping ¢ which maps F* to the unit disk with ¢(z,) = 0.
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Lemma 4. Let F be a Jordan arc of class C** in E with endpoints a and b and
positive distance to E\F. Then the functions

ha(2) = Iz — al |2 — b1)!"? 3"%2)

are continuous at the interior points of F where n, and n_ denote the two normals at
the point z directed into Q. Moreover, h .(z) can be continuously extended to F with
h.(z) > O for all z € F. Furthermore, if we set

h.(z)

q(Z) = m’

then the function

d
(12 =~ al 2 — b)'" - @)

extends continuously to F where s denotes the arc length of F.

Proof. For simplicity we assume that +1 are the endpoints of F. Then we cut the

z-plane along F and define on C\F the function ./z% — 1 as the branch which is
asymptotically z near infinity. If we set

t=¢(z):=z+,/zz—-1,

then the exterior of F corresponds to the exterior of a certain closed Jordan curve F
in the t-plane. This curve contains 0 in its interior. Moreover,

z=|//(t)=%(t+%)

extends continuously to F as a function of ¢, and z traverses F twice, once in each
direction, as t traverses F once.

By Lemma 11 of Widom [16, p. 206] F is a Jordan curve of class C** if F is of
class C2*. Let G(t) denote the Green function of ¢(Q) with pole at infinity. Then

G(z) = G(¢(2)). By Lemma 2 G(¢) and grad G(z) extend continuously to F and
tgrad G(t)] > O forall t e F.
Let us fix an interior point z of F and let us define

(4.6) @:(z)= lim @(z + any).

a0,

Then we obtain, as in the proof of Lemma 1,

23 @ = 18730 Gl oDl 192,
+

where

¢':(z) = lim @'(z 4+ uny).

a=0.,
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Then

oG

5— (2) = |grad Glos@) @) |22 — 1|72
ni

or

hy(z) = |grad G((Pi(z))l lo +(2)}-

Hence, h,(z) can be extended continuously to F with hy(z) > 0 for all ze F.
Now,

o = 824Gl l0. @) _Z
grad Glo_@llo-@I N’

where Z and N denote the numerator and the denominator. Let ¢ denote the arc
length of F, then

2 oy o N@2Jds) = Z(N/ds)
ds 1) = N? ’

where
dz d
—d—; = l(p+(Z)l d"—s lgrad G((P+(z))l

+1g1ad G0, )] & [ (2

d
=l9+()19%(2)] 7~ lgrad Gl

1= +(2)

+ |grad G(e . @) [0+ (2)1,
and, analogously,

dN d
= = 19-@)11¢-@)] 7 lgrad &)

+ |grad G(e - ()] 19~ (2)I.

t=p-(2)

By Lemma 2 the derivative
% |grad G(r)|

is continuous on F and because of (4.6) the same is true for the functions

d
— |grad G(t)| , zeF.
dO' t=@4(2)
Hence,
d
2 _ iz Z
|z I I q(2)

is continuous on F and the lemma is proved. [ |
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Lemma §. For all 0=1,<1;< --- <t,=1 and n> 0, there is a function
¥ € C3(R), ¥: R - [0, 1], and xq > 0 such that, for all k < K,

(l) l)(I(C) = 1f0r X <K,
(i) y(x)=0forx=>1 —x,
(i) y"(x)=0forn=1,2,xe[1,— x, 7, + x},v=0,...,m,
@(v) W' < (2 + n)m for all x e R,
™) " (x)| <@+ nmforall xeR.

Proof. Letx <}and

0 forx <k,

-1 forxe[2x,1—«],

+1 forxef}+k 1 —2k],
0 forx>1-—x,

U (x) =

and linear in between. Define

4 x (¥
@.7 ¥, (x)= Z—l——_—m J; L u(t) dt dy.

Then, for « sufficiently small, the function Y(x) = ¥, (x) satisfies (i)-(v) for m = 1.
Form>1,let §; =1, —~1;,_, and

LH

i

AR YN

fori=1,...,m. Now, define y(x) = 1 for x <0, y(x) =0 for x > 1, and
: 1
Vo= 1= 3t e =)

for x € (1;_,, 1) (x chosen as above). Then  satisfies (i), (ii), and (iii) and

” i 4+
WG < @4 m) = oo,
i v=l Yy

Since Y'™_, 5, = 1, we get, from Hélders inequality,
m 2 m
(= (v; av) <m 8
and therefore (v) is true. Inequality (iv) can be proved analogously. | |
First we prove Theorem 2.
Proof of Theorem 2. Let us denote by
To., = {z€ F*: Go(2) = log o}
the level curves of G,. By Lemmas 1 and 2 there is a 6, > 1 such that
48) M, 0 (E\S)=O
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and
4.9 a% G(z)>0  forall zeM,\F*,
where n denotes the outer normal on I',, ze I', (resp. on F). By Lemma 3

I G>0  forall zek,,
ong

where n, denotes the inner normalon I'y ,,z€ Ty ,.

First we prove, for 6 = 1 + ¢, /U "¥(z,) + 2¢, that there exists C > 0 depending
on E, z,, and ¢, such that

(4.10) (0 —XS;(N) U S, () < C /U H(zo) + 2e.

We may assume ¢ < gy, since otherwise, for C = ¢y/(c, — 1), the right-hand side of
(4.10) exceeds 1.

Let J, be a closed subarc of J and let J; and J; be the two subarcs forming J\J,.

Fix

§im con /U Hag) ¥ o =0 — 1.
Since we may assume u(J) > 24, we can choose J, in such a way that
(4.11) u(h) = () = 6.

Now we construct a test function g that is 1 on J, and 0 on C\(S; (J) u S (J)).
We start by defining g on F. Let us first consider the case J s F. Then we fix a point
to € F\J and introduce Green’s coordinates on

Voo = M, \(F* U L{to)),
i.e., we choose a harmonic conjugate ¢(z) of G(z) such that
‘D(Z) - eG(z)+i:p(z)
maps ¥, onto

K, ={re®:1<r<ay, 0, <0 <@,
Let ¢(J) = [a, 1. Then, by (4.11),
o(f) = [a + 275, B — 2n6].
Note that
1 4 1 0G
mds® " on
is the density function of y; on F.

By Lemma 5 we can define g, : R — [0, 1], twice continuously differentiable, such
that

3591

d2
‘dfp

.5 d 1 _3
SenoyY |de? | S 3ms
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and
Iilow = 1, 91 lrewy =0
Analogously, we define a harmonic conjugate ¢, of G, on
U == F*\Ly(to),

where Ly(t,) is the Green line connecting z, with #,. Thus we project any point
ze U to a point 7y(z) € F along the orthogonal trajectories to the family of level
lines rO.c: i'e" (Po(z) = (PO(nO(z))'

Furthermore, we set
eG(z) -1
zpl( ) for ze M \F*,

o
g (z 1oz Golz) __
) l(e_____l) for zeF*,
é
0 elsewhere

where , = ¢ is the function of Lemma 5 for m = 1,7 = 1. Now we set

91(9(2))g:(2), zeV,,
4(2) =={ gi(p(mo(2N)g,(2), ze U,
0 elsewhere
where
U, = F,\Lo(to)
and

Vor= M\(F* U L{to)).

In the case F = J we set g = g,. Then g is continuous on F and twice continuously
differentiable on C\F.

We need to estimate [Ag|. Let ze V,\F. Since ® is analytic, we get, by a
well-known identity,

A,g(z) = |¥'(2)*A,.9(w),
where w = ®(z). We use polar coordinates in K, and get

02 1 d 1 82
A g(W)| = | g:(@) P g.(r) + " g:(®) a g2(r) + = g2(r) e g1(®)

C
<3
for some constant C, > 0 (we may assume § < 1). Thus
8G\? G,
@) a0l 7(5) 52

for z € V,\F, where n denotes the outer normal on I}, ze I,.
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Next we take z € U,. From Lemmas 2 and 3 we know that ¢, is a C>-function of
¢ on F\t,. Thus

dz
do3

&

9y 52

_|2e d!h (dcp )’ d*q,
" |do d dp,) do*

on F\i, with some constant C, > 0. As above, we get

2
(4.13) [Ag2)| < (‘ZCW) 5C;

for all z € U, and some constant C, > 0.

Since Ag = 0 for all z e C\(V, u U,), (4.12) and (4.13) show that |Ag| is bounded
on C\F.

Next we prove the representation

(4.14) g(z) = —;-n ”AQ(C) log |z — {ldx dy

({ = x + iy) which is well known for g e C3(R?) with compact support. Since
|Ag(z)] is bounded on C\F, both sides of (4.14) are continuous in z and we need
only prove (4.14) for z ¢ F. We take p > 0 so small that the circle C(z) of radius p
around z does not intersect F and apply Green’s formula to the region

R,=C\(B,@) U F),

where B,(z) is the interior of C(z). Since g has compact support and is continuous
on F and since

d %
Eg(z)‘b‘n;g(z)zo forall zePF,
we get

1
o= [[ e 10810~ z1dxay

1
= lim (21: L o 01 =—g(0) log |{ — 2| ds(0)

p—0

~L 2 ogi i dsm)

21T. C’(z)a 1

= lim (— log p J'J‘ Ag({)dx dy + —
2 np

p—0

o0 ds(c)),

Cp(z )
By(z)

where n; denotes the inner normal on C,(z). For p — 0 the first term vanishes and
the second term tends to g(z).
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For later use we remark

(4.15) H Ag(0) dx dy = 0.

This can be proved in the same way.
We are now able to prove (4.10). First,

(4.16) @ —=YS; DS < Jg(du —d1) + pJ\J%)

= Jg(d,u —dt) + 24.
Next, using (4.12)-(4.15) and (1.9) together with Fubini’s theorem

Jg(du — dr)

-|= (ﬂ Ag(D) log |z — {] dx dy)(du e

1 —n
- EE.JU (OAD dx dy

-5 [Jo @+ ong ax ay

1 f[orreofn () wo
4 oo (2

Changing coordinates with ® we get

! cuy G o (0GY? G J f ]

— © == dy = T dod

ZnJJ(U +e)62r (an dx dy s xr . (U™ + g)dodr
Ve

(:0 i J. t St ] _aE
SEESf 1r r,(U + &) andsdr.

For all functions h superharmonic in Q, we have

1 G
i; J;-' h '5-,;' ds < h(CD).

Thus, since U*™* is superharmonic in £,

oG
@417 —-ﬂ(Uf‘ue)g;’r (a ) dx dy _2C°62 rdr$C_z,§

for some constant C, > 0.
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Since

j 1950 4s < hizp)
To.r a

Ny

for superharmonic functions h in F*, we get analogously

2 f~u
(4.18) ” U +c)§§r2(§ﬂ) dxdy< G LG rE
Uc

on, o

for some constant C, > 0. Combining (4.16), (4.17), and (4.18) we get (4.10).
The proof of

(1= NSF NV S () 2 C /U ™H(z0) + 2¢

follows the same line. This time we construct a test function § which is 1 on
SHJ)yuwS;(J)and 0 on

C\(S7+24(Jo) v ST+ 25(Jo)),

where J, is a subarc of F such that J,\J consists of two subarcs J; and J, with
u(Jy) = pJy) = 6 if p(F) — u(J) > 26. Otherwise g is 1 on ; (F) u S, (F)and 0 on
the set C\S7 25(F) U S 24(F).

Then (4.16) is replaced by

—(u =S uS, ()< jﬁ(df —dp) + 26

= J. —g(du — dt) + 26.

The proof proceeds as above with g replaced by —4.
It remains to show (2.8) for

0> 1+ co /U T%zg) + 2¢.
But, by Remarks 1 and 2,

(2 — DUC\E,) U (FA\E)| < Lol + 2

log o
Thus
[(u — DY(C\E,) U (F¥*\F)| < Co/U " #(z0) + 2,
where

1
CS = max(l, m)

The proof of Theorem 2 is now complete. [ |
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Proof of Theorem 1. The proof follows the same ideas as the proof of Theorem 2.
By Lemmas 1 and 4 there is a 6, > 0 such that (4.8) and (4.9) hold. It is sufficient to
prove (2.5) for subarcs J of F which contain one of the endpoints of F. As in the
proof of Theorem 2, we show that, for 6 =1 + co\/g, there is a constant C >0
depending on E and ¢, such that

(4.19) (1 — SO < C /e

We may assume that ¢ < o, since otherwise (4.19) is satisfied with C = ¢4f(cy — 1).
Let a and b be the endpoints of F and a e J. As above we define the simply
connected set

Vo = M \(L(b) v F).

On ¥, we choose a harmonic conjugate ¢(z) of G(z). Then ¢ can be extended
continuously to F from either side of F. We call these extensions ¢ , and @ .. Again
¢ defines a projection z on V, to F along the orthogonal trajectories of the family of
level lines T,.

We now decompose J into two subarcs J; and J, such that J; is compact,a e J;,
and

) = 8:=co /2

(we may assume p(J) > ). Since pu(J;) is the sum of the lengths of the intervals
¢+(J;) and ¢_(J;) we may suppose ¢.(J;) > §/2. Using Lemma 5, we define
g1:R—[0,1] such that g,(¢.(2))=1 for all ze F in a neighborhood of
J1s g1(9 +(2)) = 0 for all z € F in a neighborhood of F\J and

d? S 3

< dgl I
dgZ = moy> =7

4.20
(4.20) do.

The function g, is defined by

1\ forzeM
gz(z) — { lpl( F; ) Oorzemy,,

0 elsewhere

(Y = ¢, from Lemma 5 for m = 1, n = 1). Finally, we set

_fa:1(e+(=(2))g2(2), zeM,
9= {0 elsewhere.

We need to estimate |{Ag| and proceed as in the proof of Theorem 2. We remark
that

d2

2‘(;?91‘:

¢, dg,  (do.\?d%g,
do® do, \do.) do%

By Lemma 4

do, _ 9G/on,
do_  9G/on_
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is bounded on F, just as

d? ds (dd
(421 (P2+ - 4 do.
de? de_\dsdo_
_ dq/ds
"~ 0G/on_’
where g denotes the function in Lemma 4. Thus we deduce
aG\*C
g()] < r* (5—,1—) 4

for all ze M, \F and some constant C, > 0.

Since Ag = 0 in a neighborhood of a and b, |Ag| is again bounded on C\F.
Therefore the representation formula (4.16) holds. Following the proof of Theorem
2 we get (4.19) and subsequently

(r— WXS; () < C/e.

Finally, Remarks 1 and 2 show that (2.5) is true for all o > 1 + co /. ]

Proof of Theorem 3. We set
o= inf E, ﬂ = Sup E.

Since all zeros of p are real, it suffices to prove

(4.22) (u—)(I) < 4 \/znf + 4e.

for any interval I = (— o0, b], where b < f. We may assume that u(J) > 4./2¢/=,
since otherwise (4.22) is obvious.

Let b’ € E such that u([b', b]) = 6. /¢, where é < 4,/2/n will be specified later.
Then we consider the Green function G*(z) for C\ E* with pole at infinity where E*
is the point set

E*:=E u[b,b]

E* is again regular.

ug« ([V', b]) is equal to the value at infinity of the function h*, harmonic in C\ E*
with boundary value 1 on (¥, ) n E and 0 on E*\[¥’, b]. Analogously, u([¥’, b])
is the value at infinity of the function h, harmonic in C\ E which is 1 on (b', b)) n E
and 0 on E\[¥', b]. Since

(v, b)]nE)< [V, b],

it follows from the maximum principle for harmonic functions that A* > hin C\ E*
and

(4.23) pe[b', b)) = pg([¥', b]) = u([Y', b).

The proof now follows the above ideas. Let ¢(z) be a harmonic conjugate of G*
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on C\[«, ). Then ¢(z) extends continuously to [«, co) from the upper half-plane.
Moreover, (4.23) yields

o(b) — o(b) 2 on /e
Fix n > 0. By Lemma 5 there is a function g,: R — [0, 1], twice continuously

differentiable, and x > 0 such that g,(¢) =1 for ¢ = @(b") — x, g,(¢) = 0 for
o < o(b) + x, and

dz
d¢2 gl

€@ — 1
6=y ( e )

(¥, = ¢ from Lemma 5 with m = 1, 5 > 0 fixed). Then we set
o) = {gl(rp(Z))gz(Z) for Im(z) 20,
9:(@(@)gx(2)  for Im(2) <O.

Because of the symmetry of G(z), namely G(z) = G(Z2), g is continuous on C.
Since g has compact support and

4 44
.t:((Sn)2

Next, let

——g() ——-9(2) 0 forall zefaf],

where n, =iand n_ = —i, the representation formula (4.14) holds.
Introducing Green coordinates (r, ¢) again such that G(z) = r, we have

oG\?| 9%, 1 dg, 1 &%
IAy(Z)l—r(a ) |gl T2t tatg,
0G\? r—1 14+
2( = —
Sr(én) 1+ r +r2 (om)%e
0G\> 8 + 2y
2~ ¢
=T <6n> (6m)%e

for all z € C\[a, o), where we have used
7} &
gZ ( ) J 92 d

Again the estimates start with

=D < j gy — &) + u(Tb', b).

Proceeding as in the proof of Theorem 2 we obtain, with n = 0,

'[g(du —d) < s ), (267 /¢ + (67)%).
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Thus

(-1 < (:—5 + 5>Jé + de.

Choosing & = / 8[7r (4.22) follows. Furthermore, for \/2 < }, inequality (2.9) yields
(2.10). But, for \/& > &, (2.10) is obvious. u

Proof of Theorem 4. First we prove

(4.24) (n—)SHD) < (;?5 + 5\/12>ﬁ +4e

for any interval I = [a, b] where b < § (x and B as in the proof of Theorem 3). We
may assume z([a, b]) > 6\/;.. Define b’ € E such that

(4.25) w([¥', b)) = 6./ ke.

The arguments which follow depend only on G(z), i.e., the role of G*(z) in the
proof of Theorem 3 is taken over by the function G(z) itself.

For ze C\[«, o0}, define a harmonic conjugate ¢ of G. We extend ¢ contin-
uously to [a, #] from the upper half-plane and remark that ¢ is constant on each
interval S;:=[sup /;,inf I;,,]. Let m — 1 be the number of intervals S, in (¥, b),

b' < Sj+1 < Sj+2 < e <Sj+m—l <b.
Then we set

To = (p(bl)’ L= (P(Sj+1), iy Ty = ¢(Sj+m—l)$ Ty = ‘P(b)’

and note that 7, — 7, = 57r\/l;. For this distribution 7,,..., 7,,and # > 0, Lemma
S yields a function g,: R — [0, 1] such that
d2

44nmm 44
gt

= (6n)%e k = (6n)%e’

Moreover, we set

eG(z) -1
gz(z)""l’l( 511\/; >

and
4(2) = {gl((p(Z))gz(Z) for Im(z) >0,
9:(p(2))g(z)  for Im(z) <O.
The same estimates as in the proof of Theorem 3 yield

aG)z 8 + 2

2 ——— —
|Ag@)] < ( o)

Proceeding as in that proof we get (4.24).

for C\[«, o0).
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Of course, (4.24) holds for any interval of the form [¢, f] too. Furthermore, we
deduce from Remark 1 with some calculations

H(C\E;+xs02) < (e__—;%/é + e

Observing (t — u}(C) = 0, we obtain (2.13). Now we insert 6 = 3/(ﬁk”") in
(2.13). This yields (2.14). -

To prove (2.17) in Remark 3, we note that all components of E, , ; 7 contain
exactly one interval of E. We fix b’ € E such that

wIb', b)) = 8./e.

If [b', b] = E we proceed as in the proof of Theorem 3 (resp. as in the proof of
Theorem 4 with k = 1). If [¥, b] & E we have to modify g(z) in a straightforward
way. Let I; be the interval with b’ € I; and let

K = max z.
zel;

Then we define, for Im(z) = 0,

_[g2(2)  for ¢(2) < o(k),
6(2)= {0 elsewhere

and extend g(z) to Im(z) < 0 by g(2) = g(2).

S. Proof of the Corollaries
Proof of Corollary 1. The zeros of the polynomial p¥, , — p*eIl, ., are all real
and separate the alternation points. Let
Pre1—Pr=0s1To1y + 4y,
where g, €I, and T, .., is the Chebyshev polynomial of degree n + 1 on E. Then
l@ns 1 T le =11 — @F + g2) — (f — pa+ D e
A result of Widom [16] shows that there exists a constant ¢ > 0 such that
G.1) | T lg < c(cap E)"
for all n. Hence,

€y —€h11
c(cap E)n+ 1
and for the monic polynomial p, ., == (p¥.; — p¥H/a,., we obtain

(5.2) [2s1l 2

e,,+e,,
(53) Hm+ds$0;—*4ﬂ

s Cnt+1

(cap E)u+ 1
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for integers n, where e, # ¢, . Since lim,_ , ¢, = 0, there exists a subsequence
(n;)5% such that

1 .
€pey < 1—;13 e, for n=n;, j=1,...,
and therefore, for such n,

€n — €y > 1
eyt e,., 2n°

Then, by (5.3) there exists a constant y such that
IPur1lle < yn’ (cap E)"*!
for n = n;. Then Theorem 1 together with & = O((log n)/n) yields

ogn

)(Tp..n - ﬂE)(IN =< CO\/l n

for any interval I < R. Since the zeros of p,,, , separate the alternation points, (3.2)
is true. |

Proof of Corollary 2. The proof is based on estimate (3.9) in Blatt, Saff, and Totik
[3], namely

log V(% (M,(/) 2 "3 wrd

log|| T, llg - log(n + 2).

We may assume that cap(E) = 1. Since || T, ||y > cap(E)", we get

3(n+2)

(54) log V(Z+ :(My(f)) 2 — 3

log(n + 2).

Dropping the index n, we set

z! ’='g':;+2(Mn(f)) = {ZO’ cees Zu+l}9
n+1
wy(2) = n (z = z),
k=0
and define Z/, ' inductively by
Z=2Z"" Uz, ),
wfz)=w;_(2)(z — z,.)),

where w;_,(2) attains its maximum modulus M jon E at the point z,, ; € E. By the
construction we get, for the Vandermonde expression (3.3),

(5.5) V(ZI*Yy = V(ZHM I3
Let n > 4 and suppose, for some subarc J of F,

#E(J)(n + 2) - Zn(f‘ J) > zma
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where m is a positive integer. Thenm<n—2and, forl gj<m+ 1,

pNn+j+D>m+ Y L

z6ZinJ
Hence Theorem 1 (resp. Theorem 2) implies that there is a constant ¢ > 0 with
m\? 1 m?
logM; 2|~} ———— 27—~
&My (c) n+j+1- 2c¢n

for 1 <j<n-— 1, and by (5.4) and (5.5)

(5.6) log V(Z™*1) > Y log M; + log V(Z")
i=1
m* 3n+2)
ECTI; - 2 log(n + 2).

On the other hand, we use an upper bound for V(Z™*!), namely a result of Siciak
[12]. There exists a constant M > 0 such that, for all n,

m log ¥, < log cap(E) +

— log(Mn),

where V, is the Vandermonde expression for an n-point Fekete point set in E. This
is true because each connected component of E has a diameter greater than p with
p > 0 fixed.

Since log cap(E) = 0, (5.6) yields

log V(Z™*Y) <108 V4 a2 < 3(n + m + 2) log[M(n + m + 2)].
Hence, by (5.6), there exists a constant y > 0 such that
m® < yn? log n.
Thus
pe(D(n + 2) — A,(f, I) < const(n® log n)'/?

and this is equivalent to the statement of Corollary 2. ]

Proof of Corollary 3. The statement is an immediate consequence of the above-
mentioned result of Widom (5.1) and Theorem 1. ]

Proof of Corollary 4. We may assume || f ]|z = 1. Thus || p}ll <2 for all n e N. Let
a, denote the highest coefficient of p then, as in (5.2),

len—l — &

la,] = c (cap E)*
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Next, consider the monic polynomial p, := (1/a,)p}, whenever a, # 0. For such n,

2c "
5.7 ipalie < PRy (cap E)".

n—1
Now we show that there exists a subsequence (n;) and a constant s > 0 such that

1
(5.8) en_;-l - e’lj 2 ;;
J
for all je N.
Let us assume that (5.8) is false and fix a real number s > 2. Then there exists an
no € N such that

e <1
en—l n-—-n,
for all n > ny and
d 1
5.9 —pHe < =
(59 I f = pXle P2y
(2o
_ 1
T (s— Dt

for all n > ny. Furthermore, the generalized Markov inequality yields a constant
C > 0 with

(5.10) lgle<Cn?lig,lg forall g,ell,

[12, Remark to Lemma 1 on p. 50].

Since s is arbitrary, it follows from (5.9) that all derivatives of p¥ converge
uniformly on E. This implies that all derivatives of f exist on E, which contradicts
our assumption. This proves (5.8).

Let us first assume that F is a Jordan arc. By (5.8) and (5.7)

I Palle < 2cni{(cap E)™.

Thus (1.9) is replaced by
Uk~%n(z) < g,
with
(5.11) Mslog20+slognjs%lognj

ny n;

for some constant ¢y > 0. Inequality (3.6) now follows from Theorem 1.
In the case of a Jordan curve we fix z, in the interior of F such that f(z0) #0.
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Such a z, exists by assumption. Then

_ 1
Uk ~"pny(z) = - log |p,(z0)| — log cap E
i

1 1
< —log|py(20)| — —logla, | —logcap E
n; hy

log n;

n;

<c¢

as above and (3.8) follows from Theorem 2.
In the special case E <= R and f ¢ C*(E), the above-defined real number s satisfies

$§ <24 20

Otherwise, Markov’s inequality together with (5.7) imply f € C*(E). Hence, (5.11)
leads to

1
0, < (3 + 20) 2
"

for a subsequence (n;). Therefore, the critical points of G(z) are outside of E | ; 3

fbn,

for j > j,. Then Remark 3 yields the desired inequality (3.8). |
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