
Formal Aspects of Computing (1989) 1:85-114
�9 1989 BCS Formal Aspects

of Computing

The RAISE Language, Method and Tools
Mogens Nielsen a, Klaus Havelund a, IOm Ritter Wagner a
and Chris George
a Corporate Technology Computer Resources International A/S, Vesterbrogade 1A, DK-1620
Copenhagen, Denmark and b STC Technology Limited, London Road, Harlow, Essex CM17 9NA,
UK

Key words: The RAISE method; Formal software development; Wide-spectrum
specification language; Computer based tools for SE

Abstract. This paper presents the RAISE 1 software development method, its
associated specification language, and the tools supporting it. The RAISE method
enables the stepwise development of both sequential and concurrent software
from abstract specification through design to implementation. All stages of RAISE
software development are expressed in the wide-spectrum RAISE specification
language. The RAISE tools form an integrated tool environment supporting both
language and method.

The paper surveys RAISE and furthermore, more detailed presentations of
major RAISE results are provided. The subjects of these are (a) an example of
the use of the RAISE method and language, and (b) a presentation of the
mathematical semantics of the RAISE specification language.

1. Introduction

As described in Prehn [Pre87], the starting point for RAISE 1 is the Vienna
development method (VDM) - [BjJ82, Jon86] probably the most widely used
"formal" method for software development. Experience from various applications
has revealed a number of problems which seem to complicate the use of VDM
in full scale industrial software development projects:

1. VDM has until now been a largely paper-and-pencil approach. Real life

1 RAISE is an acronym for "Rigorous Approach to Industrial Software Engineering".

Correspondence and offprint requests to: M. Nielsen, Dansk Datamatik Center, Lundtoftevej lC,
DK-2800 Lyngby, Denmark.

86 M. Nielsen et al.

software development requires a number of powerful, computerised tools
supporting the development process.

2. The VDM specification language does not have a satisfactory facility for the
specification of concurrency. Many applications need to deal with concurrency,
in specification, development and implementation.

3. VDM does not have facilities for modularisation of specification and develop-
ment in such a way that the development of large software systems can be
divided into blocks of a reasonable size, which can then be combined in a
well=defined way.

4. The VDM specification language has never been given a satisfactory mathe-
matical semantics. Such a semantics is a prerequisite for a thorough under-
standing of the language, and for a proof theory allowing reasoning about
specifications written in the language.

5. The VDM specification language lacks abstraction facilities. The developments
of formalisms for property oriented specification of abstract data types [FGJ85,
CIP85, GHW85] have shown the feasibility and usefulness of employing more
abstraction than the domain equations in the VDM specification language
provide.
These problems have been the motivation for designing a "second generation"

formal method for software development. The aim of the RAISE project is to
construct a mathematically well-founded software development method, suppor-
ted by comprehensive computer based tools, which forms an environment for
the method and language. RAISE extends and improves VDM in the areas
mentioned above. The outcome of the RAISE project is termed the RAISE
product and it consists of the following components:

1. The RAISE method for software development
2. The RAISE specification language in which the stages of software development

can be expressed
3. The RAISE tools consisting of the tools supporting method and language
4. The RAISE documentation, including manuals and educational material for

language, method and tools

RAISE is intended to be used for industrial development of large and complex
software systems, an area in which the need for the extensions and improvements
of VDM, removing the above mentioned problems, are commonly acknowledged.
RAISE is designed to be applicable to the development of a wide variety of
software systems. Examples are: embedded real-time systems, network software,
database management systems, application generators, expert system generators,
operating systems, compilers, and control and robotic systems.

As is the case for VDM, the RAISE focus is on supporting the specification,
design, and implementation stages of the software development process. There
are, however, important implications on most of the remaining development
stages from using RAISE, e.g. the maintenance stage will be improved consider-
ably by the presence of a formal recording of the development of the software
system to be maintained.

The development of software using RAISE is a stepwise process in which all
stages are expressed in the RAISE specification language (RSL). Each stage in
the process is called a specification and represents the knowledge of the problem
and its solution at that stage. The number of steps may vary according to the
nature of the problem to be solved and the project organisation.

The RAISE Language, Method and Tools 87

A RAISE specification is often derived from the preceding specification by
constraining the description (commitment), reflecting the fact that a degree of
freedom or indeterminacy has been removed. A specification can also be construc-
ted from the preceding specification by taking further requirements into account.
In the last step, the specification will he transformed into a program written in
the programming language chosen for the project.

Within this framework, the use of RAISE can be varied according to the
nature of the software project in question and the people involved in the develop-
ment. RAISE allows the user several styles of expression through a wide-spectrum
language with the possibility of implementation in a range of programming
languages, and allows the application of a user-defined degree of formalism
ranging from systematic, via rigorous, to formal.

In this paper, the main characteristics of the RAISE product are surveyed. It
should be noted that RAISE is an ongoing project, and that the method, language
and tools might undergo changes during the remaining year and a half of the
project. In particular the results so far are being evaluated in "industrial trials"
where project partners are applying them to real projects. Their evaluations will
be an important input to the final product. The paper is organised as follows:
Section 2 surveys the RAISE method and Section 3 the RAISE specification
language. These two sections are conceptual, as the method and language is
exemplified in Section 5. The mathematical semantics of RSL is discussed in
Section 6. Section 4 presents the RAISE tools and finally Section 7 contains
information on the RAISE project organisation and discusses the current state
of the project.

2. The RAISE Method

In this section we survey the RAISE method. An example of its use is given in
Section 5, and for a more complete documentation of the method, see the report
by George [Geo88].

2.1. RAISE - A Rigorous Method

The aim of the RAISE method is to enable the construction of reliable software
by formalising the software development process. By a formal method we mean
a method in which properties of specifications can be mathematically proved
and in which the development steps can be mathematically proved to maintain
desired, recorded properties. Insisting on complete formality would render the
method unsuitable for industrial usage (at present at least). But many of the
benefits of formal development can be obtained without actually carrying out
the proofs completely, and a good notation for development steps is useful in itself.

Software development can be charactefised by a sequence of increasingly
strict development styles: (a) ad hoc, (b) systematic, (c) rigorous, (d) formal.

Rigorous methods and formal methods differ from ad hoc and systematic
ones, in having a specification language and a notion of development with a
mathematical description (semantics), such that specification and development
of software can be subject to mathematical reasoning. The process of software
development then produces the obligation to prove mathematically the well-
definedness and correctness of the specifications written and the development
steps carded out. Whereas a formal method would insist on the formal proof of
all such obligations, a rigorous method allows a level of formality which fits the

88 M. Nielsen et al.

actual situation. This notion of rigour is central to the RAISE method, and allows
users to select the level of formality that is appropriate to particular circumstances,
project standards, etc. Since there is an underlying mathematical semantics, a
correctness argument that is challenged can always be proved in more detail.

2.2. The Development Process

As it is the case for VDM, the RAISE method is based on the notion of stepwise
refinement ([Dij76], [Wir71], Jon86]). The basis of stepwise refinement can be
summarised as follows:

Software is constructed by a series of steps - it is an iterative procedure.
Each step starts with a description of the software and produces a new one,
which is in some way more detailed (or more concrete).
The result of each step is not only more detailed but also in some way conforms
to the previous one, so that it can be used to replace it.
Refinement typically involves both algorithm and data, since a change in one
normally involves a change in the other.

This basis is taken into account in RAISE developments where initial abstract
specifications are successively developed by a process of commitment in which
degrees of freedom or indeterminacy are removed. Thus the top level specification
is developed to give a more committed specification which in turn may be subject
to the same development process. In each step data structures and/or control
structures are elaborated. Such elaboration may take place within one specification
or it may involve the creation of specifications to be developed separately, but
whose combination satisfies the properties posed by the previous specification.
Development steps also involves justification that each new specification, or
combination, in some sense is a correct development of the previous one.

In RAISE the term development step is used for the process of performing
each step and development level for its result. A development level records the
specification constructed, the abstract specification it is a development of, and
information about separate developments on which the present level depends. A
development is a sequence of development levels.

The last development step produces a program or a collection of programs
written in the programming language chosen for the project. Since the last
development level containing specifications written in RSL should be very
implementation oriented, the task of producing a program will be automated or
semi-automated.

The software development process using RAISE can be illustrated as in
Fig. 1.

Note that the requirement to be able to support such a development process,
places several requirements on RSL. It must provide a structuring concept so
that specifications can be encapsulated and so that representation details can be
hidden. Without the possibility of abstracting from particular representations the
ability to provide different implementations and prove them correct would be
lost. Secondly, RSL must allow for abstraction and underdeterminacy to be
expressed, to allow e.g. design decisions to be postponed until appropriate, and
to allow re-use. This leads to such notions as parameterisation, specification by
property, and underspecification. Thirdly, the RSL needs a range of definition
styles - imperative as well as applicative, concurrent as well as sequential, concrete

The RAISE Language, Method and Tools

[..... ToP[ievei con!aining initial specification in RSL

I Level containing refined RSL specification

I Level containing final RSL specification

[~ve! containing final Program] ,

i 1
17t Dovolopmont ~: steps

generating
t ~ proof obligations

Fig. 1. Raise software development process

89

types as well as abstract ones, implicit as well as explicit definition of entities -
to enable specifications at different levels of development.

2.2.1. The Initial Specification

Initial specifications are intended to both capture the functionality of a system
(or, for subsidiary developments, of part of it) and at the same time be as abstract
as possible, i,e. make as few design decisions as possible. These are frequently
contradictory objectives as many statements of requirements give too much detail
- they are expressed in terms that assume the system will be designed in a certain
way. Thus the early development stages typically involve a mixture of implement-
ing incomplete specifications by making design decisions and enriching them to
include more of the functionality, so that there is no specification that is both
complete and fully abstract. The initial specification is then taken to be the first
one recorded as part of a development. Thus RAISE allows developers some
freedom in how much of the early development work is recorded and retained
as part of the development history. The overall guidelines are that the initial
specification should say something significant about the system, such as its
breakdown into major components, and subsequent development steps should
also each have a particular purpose in making and recording a particular design
decision.

2.3. Managing the Development Process

Since RAISE is concerned with industrial application the method must also cater
for "programming in the large", for large projects with many people working in
parallel on different parts. Hence there are a number of "software engineering"
requirements:

1. It should be possible to record not only the RSL specifications at each stage,
but also the relations between them. Such relations take one of three forms:

a) One specification may be expressed in terms of another, i.e. it may use it.
b) One specification may be recorded as being in some semantic relation to

another. In particular, one may implement another by preserving all its proper-

90 M. Nielsen et al.

ties, or there may be some logical statement relating their properties.
Implementation is defined formally as theory inclusion (possibly also including
a fitting to express how named entities in one specification are implemented
by entities in another).

e) One specification may be regarded as a development of another, whether
or not a semantic relation has also been recorded. Ideally there should be such
a relation and it should be implementation, but in practice we sometimes need
to change properties in development steps.

The first of these forms of relation is recorded in RSL; the RAISE method allows
the others to be recorded as well. Together with the second, the semantic relations,
we may want to record not only the precise relation but also its (rigorous) proof.
Together with the third, the development relations, we may wish to record the
purpose behind the development step - what details we are elaborating on, what
design decisions are being taken and why, etc. The underlying purpose of such
recording is the usual one of recording the design process - to make it manageable.
In particular it is intended to help maintenance and reuse. If certain features are
to be changed we need to find where the original development needs changing,
and what other changes are required as a result.

2. It should be possible to divide systems into pieces, to develop these pieces
separately, and then to combine the results again in such a way that the properties
of the result are the same as those of the original (the ideal situation, and
guaranteed if the developed pieces are implementations of their initial
specifications), or bear some known, stated relation to them. This is a natural
extension of the notion that formal specification and rigorous development are
intended to discover and deal with problems as early as possible. There should
be no unpleasant surprises at system integration time.*

3. It should be possible to identify key milestones in the development process
so that progress can be checked against plans. It seems to be the case that,
compared with more traditional models of the development process, the use of
formal methods extends the analysis and design phases but shortens the coding
and testing phases. If progress is only measured by lines of target code produced
the process appears slow and unmanageable.

In order to do development in practice, standard paradigms for development
steps, and the conditions under which they produce implementations, are also
part of the method description. The method also involves quality assurance
procedures applicable to the various activities, notions of how changes of one
part affect others, and guidelines for managing the process.

2.4. Proof Obligations

In a RAISE development, proof obligations will arise in two ways.
Firstly, almost any specification on its own will produce proof obligations

because it must be shown to be consistent, i.e. have a possible implementation.
It must be shown, for example, that a partial function is not called with a
parameter outside its domain of definition. Such obligations are not in general
decidable and will not always be provable by tools. However, the tools are capable
of identifying what needs to be proven in the form of proof obligations for the
user to discharge. Simple checks such as ordinary type checking will be carried
out by the tools.

The RAISE-Language, Method and Tools 91

Secondly, we have noted that development involves proving the existence of
certain development relations between specifications. The RAISE environment
allows the recording of such relations together with the appropriate proof obliga-
tions and whatever proofs are given to discharge them.

As discussed earlier, the notion of rigour in RAISE entails the user being
able to choose an appropriate level of formality in discharging each proof
obligation. This may range from a completely informal statement that the proof
is "obvious" or "immediate", over sketching some reasons, to a completely formal
proof. To support users in recording proofs in such a range of styles, a proof is
regarded as a formal object in RAISE. This will enable tools to assist users in
the development and presentation of proofs.

2.5. The Role of Transformation

Note that the notion of stepwise development in RAISE may be distinguished
from design by transformation. In RAISE there is a cycle of construction (which
generates proof obligations) followed by justification (which involves discharging
these obligations). Thus each successive specification must be shown to implement
the previous one. Implementation is in this way justified post hoc.

By a transformational design method is generally meant one in which each
step is a transformation where the justification is included in the step. Part of
this justification is a priori - the transformation has been shown to be correct -
and part is usually particular to the specification to which it is being applied,
since transformations are frequently only correct if certain semantic conditions
are met (such as associativity of an operator).

Since transformational design frequently involves proving the applicability
of a transformation, the difference between transformational design and the
RAISE method may be small; they share the notion of stepwise development.
There is a difference, however, in that the user perceives them differently. In
RAISE the use constructs the next development step; in a transformational system
the user selects a transformation and then applies it.

The decision not to attempt a transformational design system is purely prag-
matic. We suspect that future methods may well be based on a transformation
paradigm, and there are projects like CIP [CIP85] actively pursuing this approach.
There are, however, problems of providing a sufficiently general and complete
set of transformations, and of helping users choose the appropriate ones. It seems
unlikely that this approach is adequate for RAISE, which is intended for use in
large-scale industrial projects.

3. The RAISE Specification Language

In this section, the basic concepts of the RAISE specification language (RSL)
are described. Examples of specifications in RSL are shown in Section 5 and the
mathematical semantics of RSL is discussed in Section 6. A more complete
documentation of RSL can be found in the report [JPC88]. Here, we survey the
language from a conceptual point of view.

The starting point for RSL was experience with model based approaches to
specification, mainly gained from the VDM meta language [BjJ82]. However,
RSL derived inspiration from many other sources, the most prominent being

92 M. Nielsen et al.

Clear [BUG77, BGS0], OBJ [FGJ85], ML [HMM86], CSP [Hoa85], and Occam
[Inm84].

RSL is a wide-spectrum language, complete with facilities for structuring and
concurrency; it offers facilities for implicit and explicit specifications, as well as
the possibility of expressing these specifications applicatively or imperatively.
We therefore claim that RSL is a major improvement compared with the VDM
meta language, removing the criticism mentioned in the introduction.

RSL is intended to provide mathematical abstractions for functional
specifications of software. Therefore certain aspects of the description of software
systems are outside the scope of RSL. Among these are performance requirements
and real-time constraints. However, through the method and tools, such require-
ments can be recorded and associated with the relevant part of a specification
or development for later verification. The RAISE proof system will, however,
not be able to support such verification.

Software developed using RAISE will, in many cases, be part of a system
containing components which were not developed using RAISE. To achieve
integration in these cases, the developer will need to construct interface descrip-
tions in RSL. Such interfaces express the system characteristics on which a piece
of software depends. RSL has facilities for abstract description of interfaces.

3.1. Structures

The fundamental structuring unit in RSL is the structure. Structures are the
building blocks and abstraction units of RSL. Structures constitute the frame in
which the RSL entities types, values, variables, operations and processes are
defined. Semantically a structure consists of a signature associating type informa-
tion to the entities in the structure, and a class of models where each model is
an association of mathematical objects to the entities in the structure. A model
constitutes an environment in which the expressions and statements of the
structure can be interpreted. The reason for having a model class rather than just
a single model is the possible presence of underspecification. Each model can be
considered as an abstraction of one possible implementation,

Structures can be defined in a number of ways in RSL:

As a flat structure which is just the encapsulation of a number of entities (types,
values, variables, operations, and processes)
As a layered structure which uses previously defined structures to define new
entities. A layered structure can be considered as parameterised with respect to
the structures on which it is building, due to the construct for defining structures
by structure substitution
As a result of structure substitution where a structure $2 is derived from a structure
St by substituting another structure for one that is used by Sl
As a fitted structure which is the result of renaming, hiding, and copying entities
in a structure

3.2. Types

Semantically, types should be thought of as characterising non-empty sets of
values. RSL provides two styles of type definitions:

The RAISE Language, Method and Tools 93

1. Abstract type definitions, where a type is named without explicitly indicating
which values it characterises. These are characterised via the entities (constants,
functions, operations and processes) which operate on the type.
2. Explicit type definitions, where a type is defined by expressing its equivalence
with a type expression. The basic type equivalence is structural, but name
equivalence can be obtained through labelled type definitions, where a type is
defined whose values are labelled copies of the values characterised by a type
expression. Recursive type definitions in the style of VDM are allowed.

Type expressions can be either names denoting predefined or abstract types
(e.g. integers, Booleans, and characters), or type constructions where the type is
constructed from other types (e.g. Cartesian products, disjoint sums, and function
spaces), or subtypes of other types consisting of values satisfying additional
constraints.

3.3. Values

A value definition serves to name a value and to state its type. Values can either
be defined explicitly as the semantic meanings of value expressions, or they can
be characterised implicitly using axioms.

RSL has a rich language of value expressions, including value expressions
corresponding to atomic values, to composing and decomposing values of con-
structed type, applying operations and functions to other values, to expressing
values using locally defined entities, and to conditionals.

A subset of the value expressions corresponding to the expressions resulting
in values of Boolean type constitute the language of axioms. This is a very
powerful language for property oriented specification, offering most of what is
known from predicative specification languages.

3.4. States and Operations

A structure may introduce a state through the declaration of variables, and
different instantiations of the state of a structure can be created through copying
of such a structure. A state is an association of values to variables. The state of
a structure is not directly accessible outside the structure. Instead, manipulations
of the state of a structure are performed by calls of operations defined in the
structure.

In addition to the value expressions which can be used for specifying value
returning operations, RSL has a language of statements for specifying proper
operations. There are statements assigning values to variables, composing other
statements, applying operations to argument values, statements defining
operations using locally defined entities, and loop statements.

Additionally, operations can be specified axiomatically by pre- and post-
conditions.

3.5. Processes

Parallel activities can be specified via the RSL process concept. It is based on
communicating sequential processes (CSP) [Hoa85] and the language Occam
[Inm84].

94 M. Nielsen et al.

A process can be considered as an entity capable of (1) communicating with
other processes along (uni-directional) channels, and (2) accessing variables. The
semantics of processes is based on the failure set model of [Ros84].

Processes can be specified by the statements described above and additionally
the so-called process statements. These include atomic processes (SKIP, STOP,
RUN, CHAOS), communication between processes, choices between processes,
parallel composition of processes, interleaving of processes, hiding of communica-
tions, application of parameterised processes, renaming of channels, and alphabet
extensions.

4. The RAISE Tools

Support tools play an important role in RAISE. The aims of the RAISE tools
are to provide a software development environment specifically supporting the
RAISE method and language, and to interface to tools supporting the software
development aspects outside the scope of RAISE. In this section we concentrate
on outlining the facilities of the final RAISE tools.

The RAISE tools will be of professional quality and will include documenta-
tion enabling its maintenance (and adaptation to specific organisations); since
the tools are developed using the PAISE method, the documentation will be in
the RAISE style.

The tools are primarily designed to run on SUN: workstations, and will be
based on the UNIX 3 operating system, and the X Window System 4 is chosen as
the screen interface. There will be rudimentary support for the interface of
character terminals. The language related components will all be based on the
Cornell Synthesiser Generator (CSG) [ReT87]) which provides the RAISE tools
with a uniform user interface. The RAISE tools will use LATEX ([Lam86]) as
a document preparation system.

4 .1 . T h e R A I S E D a t a b a s e

The basis of all tools is the RAISE database. This allows recording of information
about RSL structures, semantic relations between structures, and RAISE develop-
ments. It is capable of recording all parts of RAISE developments, and addi-
tionally it can be adapted so that information specific to a given RAISE application
area or an organisation can be stored. The database responds to commands of
the usual sort - add, delete, rename, etc. - and it handles version control. It
allows several users to work against it at the same time.

A number of tools have a close relation to the database:

The configuration control tool which provides facilities for connecting and mai-
taining related objects (in RAISE this includes RSL structures, relations between

2 Trademark of SUN Microsystems.
3 Trademark of Bell Laboratories.
4 Trademark of Massachusetts Institute of Technology.

The RAISE Language, Method and Tools 95

structures, and developments). The tool will provide possibilities for both static
and dynamic building of configurations.
The database browser which can be used to display the contents of the database
in various ways. The Browser provides a query language facility allowing users
to define which information should be extracted from the database.
The change propagation tool which can be used to (a) propagate changes in the
database, and (b) analyse the effects of changes.

4.2. The RSL Editor

Another basic tool is the RSL editor. It is a syntax-directed editor, including
visibility- and type-checking. There are facilities for multi-window, multi-buffer
editing. The editor unparses with extended character sets, such that the RSL
specifications shown on the screen, are identical to the ones prepared by LATEX
(allowing boldface characters, underscoring, mathematical symbols etc.). As
mentioned the editor is constructed using CSG and with XWindows as the screen
interface.

Closely related to the editor is the Text formatting tool which, for the structures
created by the editor, generates LATEX output suitable for incorporation in other
documents prepared in LATEX.

4.3. The Proof Tools

The proof tools are the part of the RAISE tools which supports reasoning about
properties of RSL specifications and RAISE developments. Together, the proof
tools constitute an interactive assistant for theorem proving and specification
transformation, with some limited facilities for automatic theorem proving.

The proof tools consist of:

The proof editor with proof well-formedness checks and automatic proof sim-
plification. The editor is syntax directed over the syntax of RAISE proofs and
theorems. It is generated by CSG.
The RSL context condition tool which performs semantic analysis of specification
correctness, and generates proof obligations for checks which cannot be carried
out automatically. This tool can also be considered part of the RSL editor, as it
extends the checks on RSL specifications, carried out there (syntax, visibility,
type, etc. checks).
The transformation tool which supports transformation of RSL specifications
according to a set of transformation rules. As mentioned previously (Section 2)
only a few simple rules are defined in RAISE, but the tool will be extensible
with respect to new transformation rules. The tool generates proof obligations
when the proof of applicability of a transformation cannot be carried out
automatically.
The semantic relation tool which supports establishment of semantic relations
between RSL structures. The tool generates proof obligations when checks, that
a certain relation (e.g. an implementation relation) exists between structures,
cannot be carried out automatically.

96 M. Nielsen et al.

4.4. The Translation Tools

The translation tools support the translation from an executable, implementation
oriented subset of RSL to various programming languages. The translation tools
generate target code of a high quality and is not to be considered primarily as
prototying tools.

The basic translation tool will be generic and translators to C, Modula-2, and
possibly Ada will be constructed as instantiations of the generic translation tool.

5. An Example Development - Evaluating Reverse
Polish Expressions

This section aims to describe the main features of the RAISE development method
by means of a fairly simple example - the evaluation of reverse Polish expressions
using a stack. The example is small to allow it to be developed within the confines
of a short paper. It might be part of a much larger system. While describing the
method as applied to the example, some features of RSL are also illustrated.

First we give a brief note for those not familiar with the example. An expression
like "(1 +2) * 3" may be converted into a "reverse Polish" expression which is
a list, in this case "(1, 2, +, 3, *)". The reason for the conversion is that such a
list can now be evaluated using a stack. The list is read from left to right. Any
number is pushed onto the stack; any operator is applied to the top two elements
on the stack, the two values are removed from the stack, and the result pushed
onto it. At the end the number at the top of the stack is the result of the evaluation.

5.1. Planning the Example

We can define the following milestones in the development:

The evaluation of expressions
The generation of reverse Polish lists and the applicative evaluation of such
expressions using an applicative stack
An imperative version of the previous milestone

5.2. Evaluating Expressions

We start with a structure EVAL0 (Fig. 3) defining the function eval to evaluate
expressions. We use a subsidiary structure CALC (Fig. 2) defining the type Exp
of expressions and the function calc. For simplicity we take expressions with
operators plus and minus only.

Some comments on the features of RSL displayed so far are in order. An
RSL specification takes the form of a structure, which may in turn use other
structures, just as EVAL0 uses CALC. Other possible constituents of structures
include type and value definitions. In CALC are defined two types, Exp and Op.
Each are union types, where a union type is expressed as a collection of (tag: type)
pairs (as in Exp) or just of tags (as in Op). Thus an expression of type Exp is
either a simp(le) expression which is an integer, or a comp(ound) expression
which is a Cartesian product of two expressions of type Exp and an operator of

The RAISE Language, Method and Tools 97

CALC = structure
type

Exp = [simp:lnt,eomp:Exp • Op • Expl],
Op --- [plus,minusl]

value
eale (l:lat,opn:Op,r:lnt) &

match opn with
[Iplus[] then I + r
[lminust] then l - r

end
end CALC

Fig. 2. The structure CALC

EVAL0 = structure
use CALC
value

eval (e:Exp):Int &
match e with

[simp = i] then i,
[comp-- (1,opn,r)l] then calc(eval(l),opn,eval(r))

end
end EVAL0

Fig. 3. The structure EVALO

type Op. An operator is either plus or minus. In CALC is also defined a function
calc used to evaluate a pair of integers and an operator. Note how the constituents
of a union type (in this case Op) may be discriminated by a match expression.
Another match expression is employed in the definition of eval in the structure
EVAL0. The match is used here not only to discriminate the constituents in the
union but also to bind identifiers to the component values of the matched value.

5.3. Generating Reverse Polish Expressions

To show that the function, eval_rp, say, that evaluates reverse Polish expressions
is equivalent to eval we will need to define the function, make_rp, say, to convert
from expressions to reverse Polish expressions. We can then prove that the
composition of evaLrp and make_rp computes the same result as evaL We first,
then, define reverse Polish expressions in a new structure RP (Fig. 4).

A reverse Polish expression is represented as a non-empty list (indicated by
the type "Rp_el +'') of either integers or operators.' is the concatenation symbol
and "(...)" is the list constructor.

RP = structure
use CALC
type Rp_el = [lintel:Int, opel:Opl]
value

make_rp (e: Exp) :Rp_el + A_
match e with

[Isirap = ill then ([lintel = ill),
[Jcomp = (l,opn,r)[] then make_rp(l)~make_rp(r) ([Jopel = opal])

end
e n d R P

Fig. 4. The structure RP

98 M. Nielsen et al.

5.4. An Abstract Stack

Evaluation or reverse Polish expressions requires a stack. We can define a stack
abstractly in the structure STACK0 (Fig. 5). Several things are worth noting
about STACK0. Firstly, we have used a structure ELEMENT that does nothing
other than define a type name E1 (Fig. 6).

S T AC KO= structure
use E L E M E N T
type

Stack,
Staekl = those st :Stack. - i s_empty (s t)

value
empty: Stack,
is_empty: S t aek~ Bool,
push: El • Stack--, Stackl ,
pop: Stackl ~ Stack,
top: Stackl ~ El

axiom
V st:Stack, x :El .

pop(push(x,s t)) = st ̂
top(push(x,st)) = x ^
is_empty(empty) ^
- i s_empty(push(x , s t))

end STACK0

Fig. 5. The structure STACK0

E L E M E N T = structure
ty~El

end E L E M E N T

Fig. 6. The structure E L E M E N T

We can regard STACK0 as parameterised, since we can substitute for the use
of ELEMENT the use of any structure that implements it. In particular we shall
want stacks of integers. But the development of STACK0 in which we introduce
various representations of stack (as lists, arrays or whatever) can proceed quite
separately from developments of other structures using stacks of integers, etc.

Secondly, we note that the type Stack in STACK0 has no definition - we say
it is "abstract" as opposed to our previous types like Exp which are "concrete".
When employing such abstract types we typically use axioms rather than
definitions to define the values (including functions) involving these types.

Lastly, note we have used the "subtype" notion (those ...) to define the type
Stack1 of non-empty stacks. This allows us to record that pop and top are defined
for all non-empty stacks and that push produces a non-empty stack.

5.5. A Concrete Stack

We can also define a structure STACK1 using a concrete type definition for Stack
as a list of elements (Fig. 7).

We can easily show that STACK1 implements STACK0 (it amounts to little
more than showing the axioms in STACK0 are true in STACK1) and hence that
any structure using STACK0 can safely use STACK1 instead. So why do we

The RAISE Language, Method and Tools

STACK1 = structure
use ELEMENT
type

Stack = El*,
Stackl = those st:Stack. --is_empty(st)

value
empty:Stack=(),
is_empty (st:Stack) :Bool & st = empty,
push (x:El,st:Stack) :Stackl & (x)^st,
pop (st:Stackl) :Stack-Aft st,
top (st:Staekl) :El-~hd st

end STACK1

Fig. 7. The structure STACK1

99

produce two versions? The abstract STACK0 is useful when used in other
structures. They can use the properties expressed in the axioms without having
to be concerned with any particular representation of the data structures that
will eventually be developed as the stack implementation. Hence we describe
STACK0 as the "view" of the stack development. This development can now
proceed quite independently of that of the evaluator. It is in general the case
that axiomatic specifications like STACK0 are harder to write than those like
STACK1, particularly for those brought up in the VDM tradition. But it is
possible, o f course, to formulate STACK1 first and then abstract from it to
produce STACK0 as containing precisely those properties that the stack developer
intends to maintain. It should also be the case that such axiomatic specifications
will be written comparat ively rarely because they are easy to re-use. Indeed we
would expect in practice to find our stack development in the RAISE library.

5.6. Eva lua t ing Reverse Pol i sh Express ions Appl ica t ively

We are now ready to formulate the structure EVAL1 defining the function eval_rp
and a new eval function, hopefully equivalent to the original one in EVAL0 (Fig.
8).

There are two things to notice about EVAL1. Firstly, the use clause

S T = STACK0 w i t h I N T providing fit Int for E1 in E L E M E N T

EVALI = structure
use

RP,
ST=-STACK0 with INT providing fit Int for El in ELEMENT

value
eval_rp (st:Stack, rp:Rp_el*) :Int -A

match rp with
0 then top(st),
([intel = i])~t then eval_rp(push(i,st),t),
([opel = opn])At then

let v = calc(top(pop(st)),opn,top(st))
in eval_rp(push(v,pop(pop(st))),t) end

end omit,
eval (e:Exp) :Int---evai_rp(empty,make_rp(e))

end EVAL1

Fig. 8. The structure EVALI

100 M. Nielsen et al.

means that instead of using STACK0 we are using a structure ST obtained by
substituting the built-in structure INT for ELEMENT. At the same time we use
a "fitting" (fit ...) to replace the type name E1 with the name of the built-in type
Int. Thus we have obtained integer stacks from the generic ones. Secondly, note
that the definition of eval_.rp is regarded as local to EVAL1 and so is "omit ted".
A structure using EVAL1 can mention eval but not eval_rp.

We can now prove that EVAL1 implements EVAL0, because EVALI'eval (the
full name of the "eval" defined in EVAL1) computes the same result as
EVAL0'eval. (A rigorous proof can be found in George [Geo88].) Thus we have
completed our second milestone.

5.7. Evaluating Reverse Polish Expressions Imperatively

We will firstly need our stack developers to provide an imperative stack structure
IMP_STACK0 (Fig. 9).

Note that we have used STACK0 in IMP_STACK0 so that we can define the
imperative stack in terms of the applicative one. We have also added an operation
tpop_op that both pops the stack and returns the old head value - this is useful
in our imperative evaluator IMP_EVAL0 (Fig. 10).

IMP_STACK0 = structure
use STACK0
variable stack: Stack
operation

empty_op write stack is stack:---empty end,
is_empty_op :Bool read stack&is_empty(stack) end,
push_op (x:E1) write stack is stack := push(x,stack) end,
pop_op write stack pre stack # empty is stack :--pop(stack) end,
top_op :El read stack pre stack # empty-top(stack) end,
tpop_op :El write stack pre stack # empty&

let r-- top(stack) in stack := pop(stack) return r end
end

end IMP_STACK0

Fig. 9. The structure IMP_STACK0

It is not the case that IMP_EVAL0 implements EVAL0 because we have
changed from an applicative function eval to an imperative operation eval_op.
But there is, we hope, a relation between the function and the operation - they
should return the same value. So we want to record and prove the semantic
relation between IMP_EVAL0 and EVAL0, namely

V e :Exp , eval_op(make_rp(e)) = EVAL0'eval(e) (1)

We describe how this is done in Section i.9.

5.8. A Stack Process

There is insufficient space in this paper to describe the features of RSL dealing
with concurrency, but to give at least a flavour of what is involved, Fig. 11 shows
a stack process.

The concurrency features of RSL are based on those of CSP. The stack process
has two input channels empty and push, the second of which also inputs a value,

The RAISE Language, Method and Tools 101

IMP_EVAL0 ffi structure
use

RP,
S ffi IMP_STACK0 with INT providing fit Int for E! in ELEMENT

operation
eval_op (rp:Rp_ei +) :lnt write S&

block
variable rpl:Rp_el* := rp, x,y :Int

in loop
match hd rpl with

[intel = i] then push_op(i),
[opel ffi opn] then

x := tpop_op;
y := tpop_op;
push_op(calc(y,opn,x))

end;
rpl~- tl rpl

until rpl = 0
return tpop_op

end
end eval_op

end IMP_EVAL0

Fig. 10. The structure IMP_EVAL0

PROC_STACK0 = strneture
use ST= IMP_STACK0
process

stack in [Jempty,push:El]] oat [[tpop:El[] write ST
is while true loop

empty?-~ empty_op;SKIP
B
push?x ~ push_op(x);SKIP
I
when ~is_empty_op do tpop!tpop_op ~ SKIP

end
end stack

end PROC_STACK0

Fig. 11. The structure PROC_STACK0

and an output channel tpop that outputs a value. The process stack is a non-
terminating loop that in each cycle can set the stack to empty or push a value
on to it or, provided it is not empty, pop the stack and output the previous top
value.

Note the form of use clause employed in this structure. If we had written
"use IMP_STACK0" we would have shared IMP_STACK0 with any other
structures having a similar use clause. When we write instead "'use ST=
IMP_STACK0'" we make a local copy of IMP_STACK0, called ST, that can
only be accessed in PROC_STACK0 or structures using it in turn. Thus in this
case we have prevented our stack being shared accidentally with any other
processes.

5.9. Recording the Development

We will not take this example any further in this paper, but we will consider how
the collection of structures formulated so far are organised in the RAISE library.

102 M. Nielsen et al.

Firstly, of course, all the structures are stored against their names, so that they
can be referred to in other places, such as in use clauses. Secondly, we want to
record some semantic relations between structures. Thirdly, we want to record
the development relations.

5.9.1. Recording Semantic Relations

You will recall that semantic relations are relations between the properties of
structures. The relation may be the general one of implementation, or it may be
one or more particular properties like (1) above. For each relation we can record
the name of the source structure, the name of the target structure (where if A
implements B then A is the source and B the target), the fitting (if any), the
property or properties being asserted, and the (rigorous) proof. We have estab-
lished those shown in Table 1.

Each of these relations may be stored as an item in the library, indexed by
the (source, target) pair.

Table 1. Semantic relations

Source Target Fitting Property

INT ELEMENT Int for El
STACK1 STACK0 - -
EVAL1 EVAL0 m
IMP~EVAL0 EVAL0

Implementation
Implementation
Implementation
V e:Exp.

eval_op(make_rp(e)) = EVAL0'evaI(e)

5.9.2. Recording Development Relations

We have assumed for our example that there are two separate developments, one
for stacks and one for the evaluator. We want to record the sequence of develop-
ment steps, the rationale behind the step and the connections, called "contracts"
between developments. We also need to distinguish between structures used as
"views", which are the specifications seen by other developments while the
development work is proceeding, and structures used as "'bodies", which contain
the current state of the developing specification. Developments will also have a
set of requirements to be met, by which we mean an informal statement of both
the non-functional and functional requirements. For a main development these
requirements will be the original system requirements; for subsidiary develop-
ments (like that for the stack) they will be the requirements relevant to the
subsidiary development. To capture all this, the RAISE library contains named
objects called "'developments". These consist of the set of requirements and a
sequence of "levels". Each level consists of a triple - a "body" (which is a
structure name), a "view" (also a structure name) and a (possibly empty) set of
"contracts" (which are names of other developments on which this development
is immediately dependent). There is a requirement that the body and view are
either the same or the source and target of a semantic relation which is an
implementation. This is necessary because it must be possible for structures in
developments having a contract with this one to be able to substitute a body for
a view. There is no necessary relation between the bodies and views of successive

The RAISE Language, Method and Tools 103

levels, but the same view appearing in them suggests that implementation is being
maintained; a different view suggests that implementation has not been
maintained and some change in contracts may be necessary.

In our example there are two developments, which we shall call STACK_DEV
(Table 2) and EVAL_DEV (Table 3) respectively.

Table 2. The development STACK_DEV

Level Body View Contracts

1 STACK1 STACK0 { }
2 IMP_STACK0 IMP_STACK0 { }

Table 3. The development EVAL_DEV

Level Body View Contracts

1 EVAL0 EVAL0 { }
2 EVAL1 EVAL0 {STACK_DEV}
3 IMP_EVAL0 IMP_EVAL0 {STACK_.DEV}

Note that it is always possible to make the first level have the same body and
view, as with EVAL_DEV, if we want to establish the development with its name,
requirements and initial view before we have actually done any development of
that view.

This notion of developments is quite separate from the other relations in the
library; projects may establish as many or as few separate developments as they
find convenient. For example, we could have established IMP_STACK_DEV as
a separate development for imperative stacks, with a contract to
STACK_DEV. IMP_STACK_DEV would then have appeared as the contract in
level 3 of EVAL_DEV instead of STACK_DEV.

6. The Semantics of the RAISE Specification Language

This section presents some of the principles used to give a semantics to RSL.
The semantics is written in a combination of a transformational and denotational
style, where certain constructs are transformed into a kernel, which is then given
a denotational semantics. The kernel is, however, quite large compared with the
complete RSL and the semantics is thus mainly written in a denotational style.

This approach differs somewhat from an earlier attempt, where we attempted
to base the semantics on a very small, purely applicative, kernel language. The
transformation of processes into this kernel, however, became too complex, and
we seemed to lose the advantage of a small kernel language: clarity.

This section is organised as follows. Section 6.1 presents an applicative subset
of RSL, large enough to illustrate the major semantic techniques used in the
semantics of RSL. Section 6.1 contains the syntax of the RSL subset, an example
of a specification and a summary of intrinsic characteristics. Then follows an
outline of the semantics of the RSL subset in the form of the semantic domains
and the major semantic functions. We then illustrate the semantics of the example

104 M. Nielsen et al.

in Section 6.1.2. Finally, we discuss the semantfcs of types and the choice of
logic, and we give the semantic domains for states, operations and processes in
RSL.

6.1. An RSL Subset

6.1.1. Syntax

The syntax is written in a BNF-Iike formalism:

1. spec
2. struc-def-list

.2
3. struc-def
4. strut

.2
5. def-list

.2
6. def

.2

.3

.4

.5

.6

::=id where struc-def-list
::=struc-def
[struc-def struc-def-list

::= id = struc
::=structure

def-list
end

~

::=def
[def def-list

::=use id
type id
type id = type
value id: type
axiom exp

A specification (1) is a list of structure definitions (2) together with an
identification of a main structure (the name of one of the structures in the structure
definition list).

A structure definition (3) names a structure (4), which in the atomic version
is build from a list of definitions. A definition (6) can (here) have one of five
forms: an import of another named structure (6.1), a type definition (6.2, 6.3),
the introduction of a value (6.4) or the restriction of such a value by an axiom
(6.5). Note that types can be given without a type equation (6.2) corresponding
to sorts in algebraic specification languages.

6.1.2. Example

The following example consists of two structures, where the one (ELEM) is
imported into the other (BOXES).

BOXES where
ELEM =

structure
type

Elem
value

eq : Elem x Elem--> 13001

The RAISE Language, Method and Tools 105

a ~ o m
V el , e2, e3 : E lem.

eq(el ,e l) ^
(eq(e l,e2) =) eq(e2,e I)) ^
(eq(el,e2) ^ eq(e2,e3)~eq(el ,e3))

end
BOXES ---

structure
use

ELEM
type

Box
Boxes = Box*

value
empty : Box
add : ELEM'Elem • Box-, Box
isin : ELEM'Elem • Box--> 13oo1

axiom
V el, e2 : ELEM'Elem. V b : Box.

isin(e 1,empty) = false ̂ ~
isin(el,add(e2,b)) = (ELEM'eq(el,e2) v isin(el,b))

value
exists : ELEM'Elem • Boxes--> Bool

axiom
V e : ELEM'Elem. V bs : Boxes.

exists(e,bs) = (isin(e,hd(bs)) v exists(e,tl(bs)))
end

The ELEM structure specifies a type Elem and an equivalence relation eq
on the elements of that type. An equivalence relation must be reflexive, symmetric
and transitive. These properties are specified by "'algebraic equations".

The BOXES structure specifies boxes of these elements (a box could for
example be represented as a set, a bag or a list) and sequences of such boxes.
Note the mixture of sorts (Box) and type equations (Boxes). Note also how one
of the functions (isin) is specified in an algebraic style, while the specification
of the other (exists) looks more like what is usually called a definition.

6.1.3. Semantic Characteristics

RSL has, among others, the following semantic characteristics:

The denotation of a specification is the denotation of the main structure, which
is the set of models satisfying the axioms of the main structure and the structures
used transitively by the main structure.
Name clashes introduced by combining structures (by use clauses) are avoided
by prefixing entities from imported structures.
Types can be given as sorts (without a defining equation) as well as with a defining
equation. Sorts are defined indirectly through the functions defined over them.
A value is defined by a signature and possibly one or more axioms.
Since recursive function definitions are just special axioms, we do not find least

106 M. Nielsen et al.

fixed points for these. A recursive function definition may thus have more than
one solution (fixed point).
The logic for interpreting an axiom in a model is a two valued logic with existential
equality.

6.2. Semantic Domains

The denotation of a specification is a set of models, where a model is a mapping
from identifiers to components:

f
Model = Id ~Component

A component can be of one of four kinds depending on whether the identifier
represents a type, a value, an operation or a process:

Component = Carrier l Value [Operation I Process

The domains Carrier, Value, Operation and Process will be elaborated in
succeeding sections.

In obtaining the denotation of a specification consisting of a structure
definition list and the name of a main structure, the first step is to evaluate the
structure definition list to give a set of environments. Each environment maps
each structure name to a model:

Env = Id ~Mode l

6.3. Semantic Functions

The semantics of RSL is given in a denotational style where semantic functions
map syntactic objects into semantic (mathematical) objects. Each semantic func-
tion is defined by a signature and a defining equation.

The semantics of a specification is as follows:

Spec : spec--, Model-set

Spec[lid where struc-def-listl] =
let envs = {env : EnvlStruc-Def-List[Istruc-def-listl]env} in
{env(id) I env ~ envs}

The first step in constructing the denotation of a specification is to obtain all
environments that satisfy the structure definition list. This is perhaps an untradi-
tional way to regard "declarations" when comparing with programming language
semantics, where a declaration usually denotes some function taking an environ-
ment and giving a new environment. In our approach, which is inspired by
[Mon85], a declaration denotes a function that takes an environment and gives
a Boolean which is true if and only if the environment satisfies the declaration.

Having obtained the set of environments, a new set of all models denoted by
the main structure name in each environment is returned.

The semantics of a structure definition list is just the conjunction of the
semantics of the structure definitions in it:

Struc-Def-List: struc-def-list--, Env ~ Bool

The RAISE Language, Method and Tools 107

Struc-Def-List[Istruc-defl]env =
Struc-Def[lstruc-defl]env

Strue-Def-List[[strue-def struc-def-listl]env =
Struc-Def[struc-defl]env A
Struc-Def-List[strue-def-list]env

In the semantics of a structure definition, it should be noted that the structure
expression denotes a set of models in the given environment, and that the structure
identifier on the left hand side in that environment is supposed to denote one of
these models:

Struc-Def : struc-def~, Env--> Bool

Struc-Detllid = strucl]env =
env(id) ~ Struc[Istrucl]env

One could say that the equality sign in the syntax is misleading syntax, since
it really means "belongs to".

In the semantics o f a structure expression, observe the same view on
declarations (here def-list) as seen above for struc-def-list: a definition (whether
it is a structure import, a type definition, a value signature or an axiom) denotes
a function that takes a model and gives a Boolean which is true if and only if
the model satisfies the definition:

Struc : struc-> Env--> Model-set

Struc[lstrueture def-list endl]env=
let ms = {m : Model lDef-List[Idef-listl]env m} in
let new-concrete-types = New-Concrete-Types[Idef-listl] in
find-least-fixed-points(ms,new-concrete-types)

In the first line, all models satisfying the definitions are obtained. This would
be the result, if we were not to find least fixed points for type equations. The
next two lines are concerned with exactly this. First the names of those newly
introduced types which have been defined by equations are selected. An auxiliary
function then throws those models away that do not represent least fixed points.

The semantics of a definition list is the conjunction of the semantics of the
definitions it contains:

Def-List: def-list ~ Env ~ Model ~ Bool

Def-List[[def[]env m =
Def[[defl]env m

Def-List[def def-list[]env m =
Def[[defl]env m
Def-List[Idef-listl]env m

Definitions have the following semantics:

Def: d e f ~ Env ~ Model ~ Bool

Def[[use idl]env m =
prefix(id,env(id)) _= m

Dell[type id[]env m =
m(id) ~ Carrier

108 M. Nielsen et al.

Def[[type id = typel]env m =
m(id) = Type[ltypel]m

Def[]value id : type]]env m =
m(id) ~ Type[Itype[]m

Def[laxiom expl]env m =
Exp[lexpl]m =true

Note that the environment is only used for giving semantics to use clauses.
A sort is just required to denote some arbitrary carrier in our type universe
(Section 6.5). A type equation must be satisfied in the obvious way. Note that
least fixed points for type equations are found in Struc above. An axiom is just
a Boolean expression.

The following auxiliary function prefixes all names in a model which have
not already been prefixed:

prefix: Id x Model ~. Model

prefix(id,m) =
[id'x-~ re(x) Ix ~ dora(m) ^ - prefixed(x)]
u Ix-, m(x)l x ~ dora(m) ^ prefixed(x)]

Avoiding prefixing already prefixed names implies that the prefix of an entity
is always just the name of its defining structure. This principle makes sharing of
one structure between several structures possible. Note, however, that RSL also
allows copying of structures, and in this case entities may get longer prefixes.

The following functions are only defined here by their signature:

Type: type-, Model ~ Carrier
Exp: exp-* Model -* Value
New-Concrete-Types: def-list-~ Id-set
find-least-fixed-points: Model-set x Id-set ~ Model.set
prefixed: Id ~ Bool

6.4. Semantics of Example

In this section we illustrate the semantics of the example from Section 6.1.2. We
do not show the semantics of the entire specification, but rather the last part of
it, viz. the sequence of structure definitions. In the semantic functions this point
is reached in the function Spec:

Spee[lid where struc-def-listl] =
let envs = {env: Env[Struc-Def-List[Istrue-def-listl]env} in
{env(id) [env ~ envs}

where envs is created. It is envs we show in the following denotion.
envs maps structure names (here E L E M and BOXES) to possible models.

There is one environment for each possible choice of combination of models for
the structures in the struc-def-list. Here we have only shown one of the environ-
ments, one where the type Elem is bound to the natural numbers.

Another choice that is specific for the shown environment is the representation
of the abstract type Box. Box is bound to a function domain (a function being
a set of pairs) mapping elements from Elem (which are natural numbers in this
environment) to a natural number saying how many times the element occurs in

The RAISE Language, Method and Tools 109

the box. If the element does not occur in a box, however, it is not mapped into
0, but absent from the domain of the function representing the box. The first
element shown in Box is the box containing two 0s and a 1. Many other
representations could have been chosen, as long as they fulfil the axioms. These
other choices are present in other environments in envs.

There is a difference for Boxes which is constructed explicitly. Its representa-
tion is fixed as a list of whatever the representation of Box elements are.

Note, how the elements from ELEM are prefixed with their structure name
when imported into BOXES, in order to resolve possible name clashes.

envs ---

[ELEM -*
[Elem-> {0, 1, 2,. . .},
eq-* {(0, 0), (1, 1), (2, 2), . . .}
],

BOX ES -->
[ELEM'Elem--> {0, 1, 2 },
ELEM'eq~ {(0, 0), (1, 1), (2, 2), . . .},
Box-* {{(0, 2), (1, 1)},...},
soxes-* {< >, <{(o, 2), (I, ,)1),...},
empty ~ { },
add-> {((5, { }), {(5, 1)1),...},
isin-> {((5, {(5, 1)}), [rue),...},
exists-* {((5, ()) , false) }
]

1,

6.5. Semantics of Types

Since we do not find least fixed points of recursive definitions of values, but are
happy with the presence in the models of all values satisfying the axioms, we
need not order values according to content of information, and types need not
be cpos. They are just sets.

Types are different in this respect. We wish that (reeursive) type definitions
have unique solutions, apart from the part that depends on abstract types (which
range over the whole type universe). We have ordered types according to size in
a subset ordering. Some type operators are continuous with respect to that
ordering, others are not. We allow recursive type definitions with recursion
through the continuous type operators, but not through the non-continuous ones.
The following type operators are continuous:

Cartesian product
Finite subsets (-rinser)
Finite lists (*)
Finite, non-empty lists (+)

110 M. Nielsen et al.

Finite functions (~)
Union type ([[[])
Record type ({I I})
Optional ([])

The type constructors for infinite lists, infinite subsets, total functions and
partial functions are not continuous, and types must not he defined recursively
through these operators. They can however be used in recursive type definitions
if the recursion does not go through them, such as in this example.

type T = T x (Bool-* (Bool-set))

The following, however, is not legal.

type T = T-~- Bool

The semantic domain corresponding to types is called Carrier. Carrier is thus
the type universe. It is a set of sets of values, and its elements (the carriers) are
ordered subsetwise. Carrier is closed under arbitrary applications of type
operators and recursion through continuous type operators (i.e. under least upper
bounds of chains).

6.6. Semant ics o f Ax ioms

The denotation of an axiom is a model filter: it maps a model into either true or
false according to whether the model satisfies the axiom or not. Axioms are
logical expressions and we have the following semantic function:

Def: de f~ Env-~ Model-* Bool

Def[[axiom exp[]env m =
Exp[texpt]m = true

The environment is not essential here. It is used for other kinds of definitions
(uses).

There is a problem with undefined expressions. In general expressions can
be undefined in a model. For instance the expression 1/0 is undefined in every
model, and the expression 1/x is undefined in models binding x to 0. The question
is how to handle such expressions, and our solution (highly inspired by the
PROSPECTRA approach [Bre88]) can be sketched in the following way.

1. All user defined functions are strict, so if a user defines a function f : Int-> Int
then the expression f (1 /0) is always undefined.
2. Predefined operators (like hd, card etc.) are all strict except if-then-else.
3. Boolean expressions are treated separately:

a) We imagine that every Boolean expression, b say, is understood as if the
expression were b = true. Together with the notion of equality explained in the
next point this ensures that all Boolean expressions in effect evaluate to either
true or false. This means that we can employ a two valued logic for axioms.
They are never undefined.

b) We employ existential equality, so that the expression x = y is true if
both x and y are defined and equal. Otherwise the expression is false.

The RAISE Language, Method and Tools l i t

The example from Section 6.1.2 illustrates some o f the points behind the
scheme. Consider the axiom for exists:

V e: ELEM'Elem. V bs: Boxes.
exists(e,bs) = (isin(e,hd(bs)) v exists(e,tl(bs)))

According to (3a) we should interpret this axiom as i f " = true" was appended
everywhere a Boolean expression occurs. It is only the innermost occurrences of
" = true" that make a difference, so we can rewrite the axiom to the following:

V e: ELEM'Elem. V bs: Boxes.
(exists(e,bs) = true) =
((isin(e,hd(bs)) = true) v (exists(e,tl(bs)) = true))

Now, if bs is non-empty, everything works as usual - the " = true" means
nothing. If however, bs is the empty list, hd(bs) is undefined according to (2),
and according to (1), so is isin(e,hd(bs)) for every e. With existential equality
the expression isin(e,hd(bs))=true then becomes false, according to (3b). So
does exists(e,tl(bs))=true, and, to make the axiom true, exists(e,bs) must be
either undefined or false for bs = () . According to the signature o f exists in the
example, exists is a total function, so ~t can only be false. Thus, only models in
which exists(e, ()) is false for every e are accepted.

I f one wants to allow the axiom for exists, then we think that the chosen
interpretation is the desired one. However, one could get the feeling that the
rather indirect way undefined expressions are treated here suggests a too "clever"
style of programming, where undefinedness is treated in a rather subtle manner.

6.7. Operations and Processes

In this presentation we have concentrated on the applicative part of RSL for the
sake of brevity. However, in RSL one can specify states, operations on states,
and processes, possibly reading and writing states. Processes and operations are
bound in models just like values. This is reflected in the semantic domain Model
that maps names into components which include operations and processes.

The semantic domains for states, operations, and processes are as follows:

State = Id ~Value

Operation = (State x Value) -* (State • Value)

Processes are modelled by failure sets like in [Ros84]:

Process = (State x Value) ~ Failures x Termination

Failures = Failure-set

Failure = Trace x Refusal

Trace = Value*

Refusal = (Value x {tick})-set

Termination = Trace ~ (State-rinser u d{_d~y.})

For the sake o f brevity we do not elaborate on this, but refer to [RosS4].

112 M. Nielsen et al.

6 . 8 . C o n c l u s i o n

We have presented a subset of the RAISE specification language (RSL), and
illustrated its semantics. In order to keep the presentation to a reasonable size
we have dealt only with the applicative aspects of RSL.

We have focused on points that we think characterise RSL or its semantics.
These points include the structuring and naming scheme of RSL, the mixture of
abstract types (sorts) and types specified by equations, the axiomatic style of
defining values (in contrast to the "definitional" style of VDM) implying that we
do not find least fixed points of recursive value definitions, and finally, the way
in which we treat undefined expressions, using a two-valued logic for axioms
together with existential equality.

7. The RAISE Project

The RAISE project is being carried out by a consortium formed by:

Dansk Datamatik Center (DDC), Lundtoftevej 1C, DK-2800 Lyngby, Denmark
STC Technology Limited (STL), London Road, Harlow, Essex CM17 9NA,
United Kingdom

Asea Brown Boveri A/S (ABB), Ved Vesterport 6, DK-1612 Kebenhavn V,
Denmark
International Computer Limited (ICL), ICL House, Putney, London SW15 1SW,
United Kingdom

Dansk Datamatik Center is the main contractor. The RAISE project is part of
the ESPRIT programme (ESPRIT 315) partly funded by the Commission of the
European Communities. The project has a size of 115 staff-years. The project
was started 1 January 1985 and runs for 5 years.

The project is divided into two phases. Phase I involves 64 staff-years of effort
over (roughly) the first three project years. Phase I concerned with research and
development of the method, language and prototype tools, while phase II is
concerned with development of the final tools and training and technology transfer
material. The industrial trial applications link the two phases. The trial applica-
tions will be carried out in the industrial environments of ICL and ABB. These
trials ensure that RAISE meets the requirements of the software producing
industry.

The project plan is illustrated in Table 4.

Table 4. The RAISE project plan

Phase I Phase II

1985 1986 1987 1988 1989

Fundamental issues

Method, language and tool specification

Industrial trial

Final tools and technology transfer

I
I I

I

The RAISE Language, Method and Tools 113

The project is approaching the second year of phase II, and the definitions
of the method and the language are undergoing the final revision. The industrial
trial projects, based on the preliminary method, language, and tools, have been
going on for some time now, and the feedback has been encouraging. The
experience gained from these industrial trials has and will provide input to the
final revision of method and language.

Acknowledgements

The work described here is the result of a collective effort by the RAISE project
team. We would like to thank the following people for encouragement and
inspiration: C. B. Jones, M. Broy, D. Bj~rner, D. Sannella, A. Blikle and B.
Monahan.

References
[BjJ82]

[Bre88]

[BUG77]

[BUG80]

[CIP85]

[Dij76]
[FGJ85]

[Geo88]

[GHW85]

[HMM86]

[Hoa85]

[Inm84]
[Jon86]

[JPC88]

[Lain86]

[Mon85]

[Pre87]

[ReT87]

Bjerner, D. and Jones, C. B.: Formal Specification and Software Development. Prentice
Hall International, 1982.
Breu, M., Broy, M., Grfinler, T. a~d Nickl, F.: PA""dA.S Semantics. PROSPECTRA
Study Note M.2.1.S1-SN-1.3, Universit~t Passau, Fakultfit f'tir Mathem(~tik und Infor-
matik, 1988.
Burstall, R. M. and Goguen, J. A.: Putting Theories Together to Make Specifications.
In: Proc. Fifth International Joint Conference on Artificial Intelligence. Cambridge, Mass.,
pp. 1045-1058, 1977.
Burstall, R. M. and Goguen, J. A.: The Semantics of Clear, a Specification Language.
In: Proc. 1979 Copenhagen Winter School on Abstract Software Specifications. Lecture Notes
In Computer Science Vol 86, pp. 292-332, Springer-Verlag, 1980.
The Munich CIP Group: The Munich Project CIP, The Wide Spectrum Language CIP.L.
Lecture Notes in Computer Science Vol 183, Springer-Verlag, 1985.
Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall International, 1976.
Futatsugi, IC, Goguen, J. A., Jouannaud, J-P. and Meseguer, J.: Principles of OBJ2. In:
Eleventh Annual ACM Symposium on Principles of Programming Languages, Association
for Computing Machinery, Inc., 1985.
George, C. W.: Practical Aspects of Development. RAISE Report CWG/28/V4, STC
Technology Limited, April 1988.
Guttag, J. V., Homing, J.J. and Wing, J. M.: Larch in Five Easy Pieces. Digital Systems
Research Center, 1985. Report 5.
Harper, R., MacQueen, D. and Milner, R.: StandardML. LFCS Report Series ECS-LFCS-
86-2, Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1986.
Hoare, C. A. R. (ed.): Communicating Sequential Processes. P-H Series in Computer Science,
Prentice-Hall International, 1985.
lnmos Ltd.: Occam Programming Manual. Prentice-Hall International, 1984.
Jones, C. B.: Systematic Software Development Using VDM. P-H Series in Computer
Science, Prentice-Hall International, 1986.
Jergensen, J., Palm, S. U., Christensen, P., Haft, P., Henriksen, L. W. and Sestoft, P.:
Preliminary Definition of the RAISE Specification Language. RAISE Report JJ/14/V6,
Dansk Datamatik Center, February 1988.
Lamport, L.: LATEX: a Document Preparation System. Addison-Wesley Publishing
Company, 1986.
Monahan, B.: A Semantic Definition of the STC VDM Reference Language. November
1985. Unpublished notes.
Prehn, S.: From VDM to RAISE. In: Proc. VDM '87 Symposium, D. Bjorner and C. B.
Jones (ed.). Lecture Notes in Computer Science Vol 252, pp. 141-150, Springer.Verlag,
March 1987,
Reps, T. W. and Teitelbaum, T.: The Synthesizer Generator Reference Manua~ 2nd Edn.
Cornell University, Dept of Computer Science, July 1987.

114 M. Nielsen et ai.

[Ros84]

[Wir71]

Roscoe, A. W.: Denotational Semantics for Occam. In: Seminar on Concurrency, G.
Winskcl, S. D. Brookcs and A. W. Roscoe (ed.), Lecture Notes in Computer Science Vol
197, Springer-Verlag, July 1984.
Wirth, N.: Program Development by Stepwise Refinement. Communications of the ACM,
14, 221-227 (1971).

Received October 1988
Accepted October 1988 by C. B. Jones

