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Summary. According to a theorem of de Finetti's, an exchangeable stochastic 
process with values in a compact metric space can be represented as a 
mixture of sequences of independent, identically distributed random vari- 
ables. This paper demonstrates the existence of a separable metric space for 
which the conclusion fails. In the opposite direction, an example is given of a 
nonstandard space for which the representation necessarily holds. 

Modifications of the argument lead to examples of exchangeable stochas- 
tic processes and stationary Markov processes which take values in a 
separable metric space but do not satisfy the conclusions of the Kolmogorov 
consistency theorem. 

1. Introduction 

Let (S, Y)  be a measurable space, and 

(s*, g 0~ = I~I (s, ~ ) ,  
n = l  

the usual product space. A permutation ~ of the positive integers is finite if re(n) 
--n for all but finitely many n. Each rc induces a measurable mapping ~ on S ~ as 
follows: 

~(Xl, x2,...) =(x~(,), x~2) ....  ). 

A probability P on ~ is exchangeable if P is invariant under all 5. (Unless 
specified otherwise, in this paper probabilities are countably additive.) 

Let S* denote the class of all probability 0 on (S,Y). Endow S* with the 
"weak*" a-field ~ * ,  namely, the a-field generated by the sets {0: O(F)< t}, where 
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F ranges over ~ and t over [0, 1]. For O~S*, let 0 ~176 be the power probability on 
(S ~ ~-~) which makes the coordinates independent, with common distribution 
0. 

If g is a probability on ~ * ,  define the probability P, on (S~ ~ as follows: 

(1.1) P,(A)=SO~176 all A ~  -~. 
S* 

Clearly, each 0 ~176 is exchangeable, and so is P,. De Finetti's theorem and its 
generalizations give the converse: for reasonable spaces (S, ~-), if P is exchange- 
able in S ~176 there is a # on ~ *  with P=P~. For instance, as proved by Hewitt 
and Savage [6], it is enough to assume that S is compact Hausdorff, and W is 
the Baire a-field in S. 

Hewitt and Savage raised the question of whether the conclusion holds even 
in the absence of topology, that is, for an abstract measurable space (S, ~) .  For 
a recent discussion, see Varadarajan [13]. The main object of this paper is to 
answer this question in the negative: There is a separable (nonstandard) metric 
space S, equipped with its Borel a-field ~,  and an exchangeable probability P on 
Woo which cannot be presented in the form (1.1). 

In the terminology of Hewitt and Savage, if P=P~ for some #, then P is 
presentable. If every exchangeable P on (S ~, Y~)  is presentable, then J itself is 
called presentable. In these terms, the main result is that there is a separable 
metric space whose Borel a-field is not presentable; this theorem is proved in 
Sect. 2. 

What happens when the mixing measure # in (1.1) is allowed to be only 
finitely additive? This is discussed in Sect. 3, where it is shown that P, is 
countable additive iff/~ is. So the exchangeable (and countable additive) proba- 
bility P constructed in Sect. 2 cannot even be represented as a finitely additive 
mixture of (countably additive) power probabilities. 

Section4 contains some remarks to clarify the results of Sect. 2 and 3. 
Section 5 gives an example of a separable metric space which, though non- 
standard is presentable. The argument is modified in Sect. 6 to make two 
examples: an exchangeable stochastic process and a stationary Markov process 
which take values in a separable metric space but which do not satisfy the 
conclusions of the Kolmogorov consistency theorem. Section 7 gives an example 
of a finitely additive exchangeable probability on the space of sequences of 0's 
and l's which cannot be represented as a finitely additive mixture of countably 
additive power probabilities. 

2. The Construction 

Let I be the closed unit interval, equipped with the usual Borel a-field ~.  For 
tsI, let tj be the j  th digit in the binary expression of t, so 

t= ~ tj/2 j, tj=O or 1. 
j = l  
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(2.1) For 0 < p < l ,  let 0p be the probability on (I ,~) which makes the tfs 
independent, with common distribution 

Op(tj= 1) =p, Op{tj=O} = 1 -p .  

Let 
1 

(2.2) Q=~O~2(dp), 2=Lebesgue measure on (I,N). 
0 

Thus, Q is an exchangeable probability on (1 ~, N~). 

(2.3) Let Z(t)= lim 1 - ts, on the subset L of I where the limit exists. 
n ~ oe Yl j = it 

Plainly, L is a Borel set and Z is a partially defined Borel function with 
domain L. Furthermore, 

(2.4) 0v(Z = p) = 1. 

Let x=(xl,x2, . . .  ) be a typical point in I ~176 Let G be the set o f x  in I ~ such 
that xs~L and Z(xs)=Z(x 0 for allj. 

(2.5) Lemrna. (a) G~GJ ~ and Q(G)=I.  
(b) For C~r 

Q {x: z(xl)~ c }  = ;~(c). 

The proof is routine. 

(2.6) Lemma. Let T ~  I have cardinality strictly less than c, the cardinality of the 

continuum. Let 71"= U T~, where Tj is the set of all x in I ~176 with xs6L and Z(xj)~T. 
j = l  

Then T has inner Q-measure O. 

Proof Let A ~  ~ and ACT.. By Lemma 2.5a, to show Q(A)=0, it is enough to 
show that Q(Ac~G)=O. To do this, let Z 1 map G into I as follows: Zl(x  ) 
=Z(Xl). Clearly, ZI  is Borel, so C=Z~(Ac~G) is an analytic subset of I. But 
C c T, so the cardinality of C is strictly less than c. It follows that C is countable 
(Kuratowski, 1958, pp. 35l, 387). Consequently, 2(C)= 0. Plainly, A ~ G c Zi- '  C, 
so (2.5b) implies 

Q(Ac~G)<Q(Z~ ~ C)=2(C)=0.  [] 

The main step in the construction is the next proposition. In the statement, 
and later, an asterisk will be used to denote outer measure. 

(2.7) Proposition. Define Q and Z as in (2.2)-(2.3). There is a subset S of the unit 
interval I with the following two properties: 

(2.8) Q*(S ~176 1, 

(2.9) Sc~{Z=p} is countable, for each peI. 
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Proof. Let K be the set of ordinals of cardinality strictly less than c. Then K has 
cardinality c. Let YF be the set of all A s N  ~176 of positive Q-measure. Then 3(4 too 
has cardinality c. Hence, there is a 1 - 1 map c~ ~ A~ of K onto 3((". 

For each asK,  choose a point y ~ A ~  as follows. Fix risK, and suppose by 
induction that the y~ have been chosen for all ~<fl. Now y ~ I ~ :  let y~ be i ts j  th 
coordinate. Let T~ be the set of relative frequencies obtained so far: t~T~ iff t 
--Z(y~j.) for some ~<fl  and some j =  1,2, ... with y~]~L. The cardinality of T~ is 
strictly less than c, because the product of two infinite cardinals is just the larger. 
Define 2Pr as in (2.6): by that result, 7} has inner Q-measure 0, so A s -  Tp is 
nonempty. Now choose y~eA~-T~. 

Having chosen the y~ for all c~eK, let 

Then y ~ S  ~ c~A~, so S ~176 intersects each A~N ~ of positive Q-measure, and (2.8) 
follows. On the other hand, y~Ap-~ 'p ,  so for each p, Z(y~j)=p for at most one 
~, proving (2.9). [] 

For use in Sect. 3, the next two lemmas are stated in terms of finitely additive 
probabilities. Only countably additive probabilities are involved in this section. 
If # is a finitely additive probability on (I, ~), the outer measure 12" of A c I is 
defined as usual: 

12*(A)=inf{#(B): BeN and B ~ A } .  

(2.10) Lemma. Let (X,N) be an abstract measurable space. Let Y be a subset of 
X, not necessarily an element of N. Let Zy= Yc~Z be the a-field of subsets of Y of 
the form Yc~B, with B~Z. 

(a) Let 0 be a finitely additive probability on (Y, Xy). 7hen 4) induces a finitely 
additive probability tlO on (X, Z) by the rule 

(tlO)(B)=O(Yc~B) for B~2. 

And (t/qb)*(Y)= 1. I f  ~ is countably additive, so is tld ?. 

(b) Let 0 be a finitely additive probability on (X, 2) with O*(Y)= 1. Then 0 has 
a trace finitely additive probability p 0 on (Y, Zr): 

(pO)(Yc~B)=O(B) for BEX. 

I f  0 is countably additive, so is p O. 

(c) The map tl, defined in (a), is 1 -  1; its range is the set of finitely additive 
probabilities assigning outer measure 1 to Y, and its inverse is p, as defined in (b). 

(d) Consider tl as acting only on the set Y* of countably additive probabilities 
on (Y, Zy) , and p as acting only on 

Y-={O: O~X* and O*(Y)= 1}, where OEX* is countably additive on (X,Z). 

Then t 1 is (~*, Z*)-measurable, and p is (Yc~ Z*, Z*)-measurable. 

Proof. Part (a) is routine. 
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Part (b). First, pO is well-defined: if Bo,BI~Z and YmBo=Yc~BI, then 
Bo ABa~2; and is disjoint from Y,, so O(B o AB1)=0.  Second, pO is additive: if 
Yc~B o and Yc~B~ are disjoint, then B o n B ~ E  is disjoint from Y and O(Boc~B1) 
~ 0 .  

Part (c). Suppose ~b is a finitely additive probability on (Y,,Zy). Then p~/q~=~b, 
because for BEZ, 

(pqO)(YmB)=~I~(B) = 0(Y~B).  

Part (d). To show q is measurable, fix B eE  and 0 < t <  1. Then 

~/-1[0: OeX* and O(B)<t}={O: beY*  and O(YnB)<t}EZ~. 

The argument for p is almost the same. [] 

The next 1emma will be helpful in the proof of the main theorem. Note that 
q~ES* is a countably additive probability on (S,Y); and ~/q~, defined by (2.10), is 
a countably additive probability on (I, ~). However, P, Q and v may be only 
finitely additive. Of course, S ~ is a subset of I~;  by (2.10), any finitely additive 
probability P on (S ~, ~ )  induces a finitely additive probability Q on (I ~, 2~) :  
write Q=~/~ P. Here and later, ~ = S m ~ .  

(2.11) Lemma. (a) S ~ 1 7 6 1 7 6 1 7 6  ~ 

(b) r/~~176176174 for (~eS* 
(c) I f  A e ~  ~, then ~ ( r / ~ 1 7 6  qS~)(A)is ~*-measurable. 

Let v be a finitely additive probability on (5 p*, Y*), and let 

(2.12) P =  y ~b | v(dO) 
S* 

be a finitely additive, exchangeable probability on (S ~ , ~ ) .  Then P induces a 
finitely additive, exchangeable probability ~l~ P on (I ~, ~ ) ,  and 

(2.13) ,~op = ~ (r/~b)~ v(d(~) 
S* 

where ~l ~ is the probability induced by (~ on (I, ~). 

Proof Part (a) is routine. 
Part (b). Fix n and B1, . . . ,B,  in ~ .  Let 

A={x :  xe I  ~ and xieB i for i= l , . . . , n} .  

Then 

~l ~ (a~(A)=~b~~ 

= [] 4(S~B~) 
i = 1  

= f i  (qO)(Bf) 
i = 1  

=(,Tq~)~(A). 
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The rest of the argument is routine. 

Part (c) is routine. 

For the rest, it is easy to verify that t/~P is exchangeable. For (2.13), fix 
A ~ B  ~. Then 

(tl r162 P)(A) = P(S ~ c~ A) 

= S ~b ~ (S ~ c~ A) v (d q~) by (a) 
S* 

= ~ tl ~ (o~(A)v(dc~) 
S* 

= ~ (t/~b)~ by (b). [] 
S* 

The next theorem shows there is a separable metric space S whose Borel a- 
field is not presentable. Indeed, let S be the subset of I = [0, t] constructed in 
(2.7). Of course, S is separable in the relative metric, and o~ = S c~ 2 is the Borel 
a-field of S. Define the exchangeable probability Q on (I ~ 2 ~176 by (2.1)-(2.2). Let 
P be the trace of Q on ( S ~ , ~ ) :  this is legitimate by (2.8) and Lemma 2.10b. 

(2.14) Theorem. The probability P on (S ~ , ~ )  is exchangeable, but cannot be 
presented in the form (1.1) as a mixture of  independent, identically distributed 
random variables. 

Proof. Suppose by way of contradiction that P were presentable: 

(2.15) P =  ~ q5 ~ v(d4). 
S* 

By (2.11), 

(2.16) O = t / ~ n =  S (t/qS) ~ v(d~p). 
S* 

Let R be the range of the mapping p---~Op from ! to I*. Then R e 2 * .  To 
verify this, endow I* with the weak*-topology, so I* is compact metric and 2 "  
is the Borel a-field in I*. As is easily verified, the map p ~ 0p is continuous, so its 
range is a compact set in I*. 

As is well known [6], the/~ in (1.1) is unique. (This is discussed in the next 
section.) Comparing (2.2) and (2.16), the v-distribution of ~b ~ q ~b coincides with 
the ).-distribution of p ~ 0p. In particular, v r/-1R = 1. Consequently, there is at 
least one q~S* and pc(0, 1) with 170=0 v. And this is a contradiction: (t/q~)*(S) 
=1 by (2.10a) and 0*(S)=0 by (2.9). [] 

3. Finitely Additive Mixtures 

The previous section constructed a separable metric space S equipped with its 
Borel a-field ~,  and an exchangeable probability P on (S ~~ ~ )  which could not 
be presented in the form (1.1), as a countably additive mixture of i.i.d, variables. 
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Is the representation (1.1) possible with a finitely additive #? The answer 
remains, no. Note that the 0's in (1.1) are countably additive. By contrast, Hewitt 
and Savage [6] show that any exchangeable probability is a countably additive 
mixture of finitely additive power probabilities, on the field generated by the 
finite dimensional rectangles. 

First, a lemma on finitely additive probabilities. 

(3.1) Lemma. Let  ( f i ,Z i )  be abstract measurable spaces for  i=  1,2. Let  t 1 be a 
(Z1, Z2)-measurable mapping f rom ~ to f 2 .  Let  v be a f ini tely additive probability 
on Z 1 . Then l~ =v t l -  1 is a f ini tely additive probability on Z 2. And for  any bounded, 
real valued, Z2-measurable function h on X 2 

(3.2) h( xl (dx)= 
Xi ~2 

Proof  In (3.2), the function h is a uniform limit of simple Z2-measurable 
functions. [] 

To state the main result of this section, let (S, Y)  be an abstract measurable 
space, P a finitely additive exchangeable probability on ($5 ~ ) ,  and v a finitely 
additive probability on (S*, ~*) .  Consider the representation 

(3.3) P ( A ) = ~ ( A ) v ( d O )  foral l  A e Y  ~. 
S* 

This differs from (1.1) in that P and v can be finitely additive: however, 
~beS* is still countably additive on (S, ~) .  

(3.4) Proposition. Suppose (3.3) holds. Then P determines v uniquely - even if  P 
and v are onIy f ini tely  additive. Furthermore, P is countably additive iff v is. 

Proof  If v is countably additive, so is P, by a routine argument. For the other 
assertions, it is convenient to treat three special cases first. 

Case I. S = I = [ 0 , 1 ] ,  and ~ - = ~ ,  the Borel a-field in I. Then I* is compact 
metric in the weak*-topology, and N* is the Borel a-field in I*. For t e I ,  let 6 t be 
point mass at t. 

(3.5) For x e I  ~, let 

~bx=weak* lira 1 ~ 6xJ 
n~o~n j = l  

on the set H where the limit exists. 
Plainly, H is a Borel subset of S ~ and x--* q~ is a Borel mapping from H to 

S*. For any ~eS*, the strong law implies 

(3.6) 4~{q~x=q~} = 1. 

Consequently, qb~~ for all ~b, so P ( H ) = I  by (3.3). If F e ~ * ,  then (3.6) 
implies 
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v(F) = ~ 1F(~b ) v(d~b) 
S* 

= 

S* 

So by (3.3), 

(3.7) v(F)=P{x" 4)x~F). 

In particular, P determines v; and v is countably additive when P is. 

Case 2. S c l  and ~,~=Sc~M. To begin with, P induces a finitely additive, 
exchangeable probability t /~P on (1 ~ ,~~  by (2.10)-(2.11). The representation 
(3.3) extends too: by (2.13) and (3.1), 

= S 
S* I* 

where # =  vq-1 is a finitely additive probability on .~)*. 
By (2.10), the range of q on S* is 

S={0:  0~I* and 0*(S)=I}. 

Endow g with the a-field ~ = S ~  ~*. Let ~ map S* to g by: ~q~=~/qS. Then ~/is 
(~-*, ~)-measurable by (2.10), with a measurable inverse p. Thus, ~ establishes 
an isomorphism between (S*, ~* )  and (S, ~) .  

Clearly, #*(S)= 1. Let/~ be the finitely additive probability traced on (S, 2 )  
by #. As is easily verified, ~ = v ~  -~, so v = ~ p  -~. In particular, P determines 
t/~P, and hence/~, by Case 1. But/~ determines ~, and hence v. Finally, if P is 
countably additive, so is t/~P by (2.10). Then # is countably additive by Case 1, 
and ~ is countably additive by (2.10), and v=~p-1  must be countably additive 
too. 

Case 3. ~ is separable. As is well known, f f  must then be isomorphic to a a- 
field of the type covered in Case 2. 

The General Case. Let fro be a separable sub a-field of ~-. Any probability 0 on 
can be restricted to fro: call the resulting probability r o 0. Write S~ for the set 

of probabilities on (S,~o), equipped with the weak* a-field a~o *. Then r o is 
(,,~*, o%*)-measurable from S* to S*. 

If P is a probability on (S ~, ~-~o), write Po for the restriction of P to ~o ~~ The 
whole representation (3.3) can now be restricted to ~0~176 

(3.8) P0(A)= ~ (rod/))~(A)v(d(~) for A ~ 0  ~ 
S* 

= ~ O~(A)vo(dO) by (3.1), 
sa 

where vo=vr o 1. 
To show that P determines v in (3.3), let FE,~*. By a routine argument, these 

is a separable a-field ~ 0 c o  ~ and a set G~Yo* such that F= ro lG .  Now 
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v ( F )  = Vro ! 6 = Vo(C) 

is determined by Po, and hence by P, according to Case 3. 
Finally suppose P is countably additive. To show that v in (3.3) must be 

countably additive, let F~e~ be pairwise disjoint. Again, there is a separable a- 
field ~ o C ~  and sets GiE~-* such that Fi=roaGi for i=1,21~.... Since Fir~F ~ 
= rol(Gf c~ G;), the sets G~ must be pairwise disjoint, modulo v0-null sets. Now P0 
is countably additive because P is, so v o is countably additive by Case 3, and 

v(i@=lFi)-~V(FoliU=lGi)-~Vo(i=@lGi ) 
i~1  i=1  

(3.9) Remark. The same argument shows that if a finitely additive mixture of 
(countably additive) ergodic probabilities is countably additive, the mixing mea- 
sure must be countably additive too. For a discussion of ergodic decompositions 
in standard spaces, see Oxtoby [11] and Varadarajan [13]. 

4. Some Remarks 

Theorem (2.14) shows that in the absence of topological assumptions, the 
conclusions of de Finetti's theorem break down. The following discussion may 
clarify the reason. Continue with the notation of the previous sections, but now 
let (S,~)  be an abstract measurable space. Let ~ f  be the field generated by the 
product-measurable rectangles in I ~, so J~Y generates the a-field ~ .  Accord- 
ing to [1], any countably additive exchangeable probability P on (S~ ~) 
admits the representation 

(4.1) P(A)=~ O~(A)#(dO) for all A~Y I. 
S* 

In this formula, 0 runs through the countably additive probabilities on (S, ~) .  
But #, which is only finitely additive, need not be unique. The repesentation (4.1) 
may be contrasted with a result by Hewitt and Savage [6], which shows that 
any finitely additive exchangeable P admits a representation like (4.1), with 
Ae~,~Y and 0 being finitely additive; but their # is countably additive and 
unique. 

The representation (4.1) must also be distinguished from (3.3), discussed in 
the previous section: in (3.3), the set A ranges over the full a-field Y~.  Theorems 
2.14 and 3.4 show that in general, there may be no # for which (4.1) holds, if the 
field YT is replaced the full a-field ~ %  Even if P is countably additive, there 
need not be a countably additive # which satisfies (4.1). 

De Finetti's theorem is closely related to the possibility of conditioning on 
the a-field of exchangeable events, as in [2, 8, 10J. The connection will now be 
discussed. It will be shown that there are exchangeable probabilities which do not 
admit regular conditional probabilities given the a-field of exchangeable events. 
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Again, (S, ~,~) is an abstract measurable space. The event A~o ~ is exchange- 
able if nA =A for all finite permutations 7~. Let 4, be the n th coordinate of xsS~:  

~,(xl ,x2,  . . . ,x  . . . . .  )=x , .  

Let Q be an exchangeable probability on (S ~, ~oo). 

(4.3) Lemma. Suppose ~ is separable. Then Q admits a regular conditionl 
distribution given the a-field of exchangeable events only if Q is presentable. 

Proof. Let Q(x,A) be a regular conditional Q-probability on yoo given the a- 
field of exchangeable events, and let q~x be the Q(x, .)-distribution of 41. In view 
of de Finetti's theorem, as formulated in [8, Th. 5, p. 151], and the separability of 

Q(x,')---q~2 for Q-almost all x. 

But Q=SQ(x,.)Q(dx). [] 

(4.4) Corollary. There is a countably additive, exchangeable probability on 
(S ~, ~ )  which does not admit a regular conditional probability given the a-field 
of exchangeable events. 

Proof. Define S, ~ and P as in (2.14), and use (4.3). [] 

Since any tail set is exchangeable, and any exchangeable set differs by a null 
set from a tail st ([2] or [8, Th. 3, p. 150] or [10]), (4.3) and (4.4) hold with the 
tail a-field in place of the exchangeable a-field. 

5. A New Presentable Space 

Continue with previous notation, letting (S, i f )  be an abstract measurable space. 
This section demonstrates the existence of a peculiar a-field which is present- 
able, as defined in Section 1. 

(5.1) Theorem. Let S be a subset of the unit interval I such that S and its 
complement both meet every uncountable Borel subset of I. Let ~ be the Borel a- 
field ~ relativized to S. Then ~ is presentable. 

Here are the preliminaries to (5.1). Let # be a probability on (S*,~*), 
Restating (3.7), 

(5.2) Pu{x: q~xeF}=#(F), 

where ~b~ was defined in (3.5). Now make the following definition. 

(5.3) Let G be the set of xEH such that, if ~bx({t}) > 0 there is some i = 1, 2,... with 
Xi=t. 

(5.4) Lemma. The set G is complementary analytic in I ~, and Pu(G)= 1 for any 
countably additive probability tz on (I*, N*). 
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Proof Consider the set of pairs (t,x) in I x H such that: ~bx({t}) > 0  , and xi,t=t for 
all i. This set is Borel, and its projection onto I ~ is H -  G, the complement of G 
in H. So H - G  is analytic, and G is complementary analytic. As is easily verified, 
for every OEI*, 

O~{x: x~G and qSx=0}=l.  

So 0~(G)=I ,  and Pu(G)=I too. [] 

As before, v* denotes v-outer measure. 

(5.5) Lemma. Let A be a subset of I. Let A d be the set of OeI* with O({t})=O for 
all tr Then, for any countably additive probability # on (I*, ~*), 

P;*(A~)<=#*(A~). 

Note. A d is the set of countably additive probabilities on ( I ,~)  whose discrete 
part (if any) lives on A. 

Proof As (5.2) implies, 

#*(Ad)~P~*(x: x~H and ~bx~Ad}. 

In view of (5.4), it is enough to show 

Gc~A~~ x~G and qSsA" } 

or, equivalently, 

{x: xeG and C~x(iAe}~G-A ~. 

But OxCA e implies there is a t(sA with qS~({t}) >0. Then x~G implies there is an i 
with x i = t C A  , so x(~A ~. [] 

(5.6 Corollary. Let # be a countably additive probability on (I*, N*), with/2{0:0 
is discrete} = 1. Let A be a subset of I. 

(a) I f  #*{O: 0 is discrete and 0 ( A ) = I } = 0 ,  then Pu*(A~)=0. 
(b) Suppose Pu*(A~~ Then #*{0:0  is discrete and 0 ( A ) = I } = I ;  further- 

more, P= ~ O~~ where P is the trace of P u on A ~ and v{(o(Ac~Bi)>t } 
A* 

=#{O(Bi)>t } for any finite collection of Bi's in ~. 

In particular, the construction for Theorem 2.14 cannot be accomplished with 
discrete mixands. Note: {0:0 is discrete}e~* by [3]. 

It does not seem possible to sharpen (5.6a-b) very much, for #* {0: 0(A)< 1} 
=1 is compatible with Pu*(A~176 Indeed, a construction similar to that for 
(2.14) shows 

(5.7) Example. Let 0 t = �89 + �89 c5 l_t for 0 _< t _< 1. Let P = ~ 0t ~ dr. There is a subset 
A of [0, 1] with P*(A~)=  1, but A has inner Lebesgue measure 0: in particular, 
Or(A)< 1/2 for a set of t's of outer Lebesgue measure 1. 

Proof of Theorem 5.1. Let ~ denote the Borel a-field of I = [ 0 ,  1], so ~-=Sc~N.  
Let P be an exchangeable, countably additive probability on (S ~ ff~).  Then P 
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induces a countably additive, exchangeable probability Q on (ioo, Mo~), by (2.11). 
By de Finetti's theorem, 

(5.8) Q = f r 
I* 

where # is a countably additive probability on (I*,M*). As (2.10a) implies, 
Q*(S~)=I ;  so (5.5) implies that #*(Sd)=l. In other words, # assigns outer 
measure 1 to those q~'s whose discrete part (if any) lives on S. On the 9ther hand, 
since every uncountable Borel set intersects S, the continuous part of any q5 
assigns full outer measure to S. Thus 

(5.9) #*(S)=1, where ~={q~: qSEI* and q~*(S)=l}. 

Endow S with the trace a-field o & =S  n ~*;  let ~t be the trace of # on (S, ~) ,  as in 
(2.10). As is easily verified, 

~ f d#=~f  d'ft 
I* S 

for any bounded, real-valued, N*-measurable function f on I*. In particular, 
(5.8) implies that 

(5.10) Q(A)=s for all A e ~  ~~ 
S 

As (2.10) implies, any q~S has a trace p~b on (S, ff) ;  and the map p is 
(~, ff*)-measurable. Let v be the ~-distribution of p. So, for any bounded, real- 
valued, ~*-measurable function g on S* 

(5.11) ~g(pq~)~(dqS)= ~ g(O)v(dO). 
S S* 

Let Ai~M for i=1,  ...,n. Then 

P{x: xeS ~ and xieA i for i= l , . . . , n}  

=Q{x:  xeI  ~ and xieA i for i=1 .... ,n} 

S i = l  

=~ ~ (pO)(Sc~Ai)~t(d(o) 
S i = l  

= I ( I  O(S A )v(dO) 
S* i = 1  

That is, 

P= i O~ v(dO). [] 
S* 

by (2.10) 

by (5.10) 

by (2.10) 

by (5.11) 

This finishes the proof of Theorem 5.1, that the a-field f f  in the space S is 
presentable. Next, it will be shown that f f  is not isomorphic to any of the 
previously known presentable a-fields. Here are some preliminaries. 
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If N is a a-field of subsets of the set X, the universal completion J of ~ is the 
a-field of subsets of X which are measurable for any probability measure on ~.  
The next result is easy, and taken from [1]. 

(5.12) Lemma. I f  ~ is presentable, and X is a a-field with ~ Z ~ ,  then X is 
presentable. 

A a-field Z of subsets of a set X is regular if X can be topologized as a 
compact Hausdorff space, and N c s  where N is the Baire a-field in X. 
Hewitt and Savage [6] show that N is presentable; so any regular a-field is 
presentable by (5.12). All the presentable a-fields known to us - except for the Y 
constructed in (5.1) - are isomorphic to regular a-fields. For instance, the wide 
Baire a-field inroduced by Hewitt and Savage 1-6] is isomorphic to a regular a- 
field. 

In principle, fields can be isomorphic without the spaces being isomorphic. 
In the present context, however, this cannot happen. The result is probably 
known, but we cannot supply a reference. 

(5.13) Lemma. Let ~ be afield of subsets of a set S; suppose {x}e~-~ for all xeS.  
Let N be afield of subsets of a set T; suppose {y}eN for all yeT. Suppose ~ and X 
are isomorphic, in the sense that there is a 1 - 1  function G mapping ~ onto s 
such that G(A u B) = G(A) u G (B) and G (S - A) = G (S) - G(A). 

Then, there is a 1 - 1  function g of S onto T, such that G(A)=g(A). Further- 
more, g is bimeasurable, in the sense that g(A)eN for all A e ~ ,  and g - l ( B ) ~  for 
all BeN. 

Proof. Verify that G(~)=ft, so A4=}~ implies G(A)#:}~, and G{x} is a singleton 
too. Define the function g(x) by the relation G {x} = {g(x)}, and verify that g has 
the requisite properties. [] 

(5.14) Theorem. The a-field ~ constructed in (5.1) is not isomorphic to any 
regular a-field. 

Proof. In view of (5.13), only point isomorphisms need be considered. Let X be a 
compact Hausdorff space with the Baire a-field N; let ~ be the universal 
completion of ~,  and let X be a a-field between ~ and ~.  

Suppose by way of contradiction that f were a 1 - 1 bimeasurable mapping 
of X onto S. Let 2 be Lebesgue measure retracted to (S,~-): 

2(S ~ B) = Lebesgue(B), all Borel B. 

Let g be 2 pulled back to X by f: 

g(A)=2{f(A)} ,  all AeZ.  

This is legitimate because f is 1 -  1 and bimeasurable. 
As is easily seen, there is a/~-null set Ne2; such that X - N  is a Baire subset 

of X, and f retracted to X -  N is (~, ~)-measurable.  Since S c I, and ~ is the 
Borel a-field in I relativized to S, the function f may be considered as a real- 
valued, Baire function on X, whose range is S. Of course, the Baire functions on 
X can be built up from the continuous functions by successive countable passages 
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to the limit. So Egoroffs theorem implies there is a Baire set B c X - N ,  with 
#(B) close to 1, such that f restricted to B is continuous. Since Baire probabili- 
ties are regular, there is a compact G~-set K cB,  with #(K) close to #(B). Of 
course, f restricted to K is still continuous. So f (K) is a compact subset of S, with 
positive Lebesgue measure. This is a contradiction, because S and its comple- 
ment both meet every uncountable Borel subset of [0, 1]. [] 

6. Two Counterexamples to the Kolmogorov Consistency Theorem 

As is well known, the Kolmogorov consistency theorem can fail for sufficiently 
bad spaces [14]. The object of this section is to give two new examples of this 
phenomenon: in the first, the finite-dimensional joint distributions are exchange- 
able; in the second, they are stationary Markov. 

Here are some preliminaries. Let X be a set, d a field of subsets of X and 22 
the a-field generated by d .  Let Q be a countably additive probability on (X, I;). 
For Y ~ X, let 

Q~(Y)=inf{Q(A): A e d  and A ~  Y}. 

As usual, 

Q*(Y) =inf{Q(A): AeZ and A ~ Y}. 

Clearly, Q~(Y) > Q* (Y). 
Suppose Q~(Y)=I. Then Q has a trace finitely additive probability P on 

P(Yc~A)=Q(A) for A ~ d .  

Let m=Q*(Y). Let Y~Z with Y ~ Y  and Q(Y)=m. Let Q(F)=Q(Yc~F), a 
countably additive measure whose total mass is m. Let Po be the trace of (~ on 
(Y,, Yc~d) 

Po(Yc~A)=Q(A)=Q(Yc~A) for all A ~ d .  

Then P0 is a countably additive measure on (Y,, Yc~d) whose total mass is m. 
For an example of this setup, let X be the unit interval and d the field 

generated by the intervals, so 22 is the Borel a-field. Let Q be Lebesgue measure 
on 2. Let Y be the rationals, so Q~(Y)=I while Q*(Y)=O. Then P is a finitely 
additive measure on Yc~d, the P-measure of an interval of rationals being its 
length. According to the next result, P is purely finitely additive. 

(6.1) Proposition. Po is the countably additive part of P: namely, 
Po(Y~A)<=P(Yc~A) for all A ~ d ,  and Po is the largest such countably additive 
measure on (Y, Yc5 ~). In particular, P is countably additive iff Q*(Y)= 1, and P is 
purely finitely additive iff Q* (Y) = O. 

Proof. First, Po-<-P, because 

Po(Y~A)=Q(A) =Q(fZ c~A)<=Q(A)=P(Yc~A). 
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Next, suppose P1 is countably additive on (Y, Y n d )  and PI<P. The a-field 
generated by Yc~s/ is just Y~2;, and P~ extends to this a-field by 
Caratheodory's theorem. Now PI(YC~A)<Q(A) for all A~Z,  by the monotone 
class argument. If A ~ d ,  then 

PI(Yr~A)=PI(Y(~ Yr~A)<=Q(Yc~A)=Po(Yc~A ). [] 

Turning now to the construction, let I be the unit interval mod 1, so O= 1. 
Let N be the Borel a-field in I. Let s ~ t  i f f s - t  is rational. Let V be a Vitali set: 
that is, V selects exactly one point from each ~-equivalence class. Let S = I -  V. 

Let 0 be a probability on the rationals R, assigning positive mass to each 
rER. For  t~I, let 0 t be 0 translated by t, that is, O~{s} =O{s+t}.  Let Q=~O~ dr, 
an exchangeable probability on (I~176 Let sr be the sub a-field of gY~ 
generated by the first n coordinate functions 41, ..., ~,, where ~,(x)=x, .  Let d 
= U d , ,  so d is a field which generates ~ o .  

n 

(6.2) Proposition. Q~r ~) = 1 but Q*(S ~) =0. 

Proof. Let Q, be the Q-distribution of ~1 . . . . .  ~,, a probability on (I ' ,~') .  To 
prove Q~n(S ) - 1 ,  it is enough to show Q*(S')= 1. Now Q, = ~ 0 7 dt, so 

Q, = X o ( r ~ )  . . .  O(ro)~r~ . . . . . . .  

where the sum runs over all n-tuples (rl, ...,r,) of rationals ri~I, and #,~ ....... is 
the uniform distribution on the linear segment 

L,, ....... = { r ~ + t , . . . , r , + t :  0<t_<l}.  

Consequently, 

P,* { s~ = X O(r~) ... O(r,) ~ ........ :(S~). 

So, it is enough to show that 

]~ . . . . . . . .  : ( S " )  = 1. 

Let M .. . . . . .  map I onto L,~ ..... as follows: 

t--,rl + t  .. . .  ,r~+t. 

Then # . . . . . . .  is the M .. . . . . .  -image of Lebesgue measure. And L,~ ..... c~S" is the 
M,~ ..... image of 

(5.3) (S-r l )r~. . . r~(S-r~)  , 

where S - r = { t - r :  tES}. 
The problem is therefore reduced to showing that the set (6.3) has outer 

Lebesgue measure 1, or equivalently, that the complement of (6.3), namely 

(6.4) g-=(V-rl)k)(V-r2)k).., u(V-rn) 

has inner Lebesgue measure 0. Let R o be the set of differences r,.- 0 as i,j run 
over 1 ... .  , n. Ifs,  s' are rationals with s - s ' r  then V +s  and V+s'  are disjoint. 
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Thus, l? has countably many pairwise disjoint translates, so its inner Lebesgue 
measure is 0. This completes the proof that Q~,(S)=I for all n, and hence 
Q~(S ~ = 1. 

It will now be argued that Q*(S~176 Indeed, (2 concentrates on the set 
B~N ~ of sequences (xl ,x2,  ...) such that x i - x  ~ covers the rationals as i varies 
from 1 to oo: in other words, x i covers the H-equivalence class through x 1. And 
B is disjoint from S ~ [] 

Let P be the trace of Q on (S*,S ~176 c~d). As (6.1) and (6.2) show, P is purely 
finitely additive, although it is countably additive on S~176 d ,  for each n. This is 
the desired example. To state it in more familiar terms, let ~ - =  S c~ ~.  Let P, be 
the P-distribution of the first n coordinates ( ~ , . . . ,  in). The argument just given 
proves 

(6.5) Theorem. For each n, Pn is an exchangeable, countably additive probability 
on (S",o~n), and the P, are consistent However, there is no countably additive 
probability on (S~ ~176 which projects onto the P~'s. Indeed, there is a unique 
finitely additive probability P on the field of measurable cylinders in S ~ which 
projects onto the P,'s, and P is purely finitely additive. 

This example overlaps with Wegner's [14]. However, his process is not 
exchangeable. 

Persi Diaconis asked whether the Kolmogorov consistency theorem held for 
Markov processes. The answer is negative, by a slight variation on the previous 
argument. Define a probability Q on (I~~ ~) as follows: choose t e l  from 
Lebesgue measure; independently, choose rl ,r2, . . ,  from 0, a probability on the 
.rationals assigning positive measure to each; then Q is the distribution of 

(t, t + r l ,  t + r  I +t'2, ...). 

In other words, relative to Q, the coordinate process ~1,~2,... performs a 
random walk: the starting position is uniform, and the steps are distributed 
according to 0. The transition probabilities are 

(6.6) K(t ,A)= ~ O(r) lA(t+r ) 
r ~ R  

Recall that d is the field of Borel cylinders in I ~176 Exactly as before, 

(6.7) Q~(S~)=I  but Q*(S~~ 

Let P be the trace of Q on (S ~176 d ) ,  so Q is purely finitely additive, but 
countably additive on each S~ Let P, be the P-distribution of the first n 
coordinates ~ 1,-.-, 4,. Recall that @ = S c~ N. 

(6.7) Theorem. For each n, P, is a countably additive probability on (S ~, ~ ) .  
Relative to P,, the coordinate process is stationary Markov. Furthermore, the P, 
are consistent. However, there is no countably additive probability on (S ~ , ~ )  
which projects onto the P,'s. Indeed, there is a unique finitely additive probability P 
on the field of measurable cylinders which projects onto the P,'s, and P is purely 
finitely additive. 

Proof. The new point is the Markov property. Let (~a .. . .  , (,) be the coordinate 
process on S ". It will be argued that K(~m,-), as defined in (6.6), is a regular 



E x c h a n g e a b l e  Processes  131 

conditional P,-distribution for ~,,+1 given ~1, ..., ~ ;  furthermore, the ~'s are all 
uniformly distributed. Indeed, fix m with l < m < n ,  and Borel subsets 
Aa, ...,A,~+~ of I. By construction, 

P~{~i~A~ for l _ < i _ m + l }  

=Q{s  for l_<i_<m+l} 

= ~ K(~m,A,,+~)dQ~ 
{~iEA i for l <--i<_m} 

= ~ K(~m,A,,+~)dP," 
{~iEA i for 1 <_i<<_ml 

Likewise, P~{~i~A}=Q{~I~A} is the Lebesgue measure of A, for any Borel A, 
proving stationarity. Q 

If the ~ are visualized as taking values in the unit interval, then ~m+~ has a 
regular conditional P,-distribution given ~ , . . . ,  ~m, by general theory. However, 
K(t, S)< 1 for all t. So, if the ~ are visualized as taking values in the nonstandard 
space (S, ~-), then ~,,+~ does not have a regular conditional P,-distribution given 
~ , . . . ,  ~m' Hence, Tulcea's theorem does not apply. 

7. Finitely Additive, Exchangeable Probabilities in Standard Spaces 

Say that the finitely additive probability P on (I v, ~ v )  is representable if 

(7.1) P(A)= S (PV(A)t~(d~) for all A ~  v 
I* 

where I* is the set of countably additive probabilites on (I, ~)  and/~ is a finitely 
additive probability on (I*, B*). To review briefly, if P is countably additive and 
exchangeable, and (I ,~)  is a standard Borel space, the representation (7.1) 
necessarily holds, and # is unique and countably additive. This is de Finetti's 
theorem [1] and (3.4) above. On the other hand, if ( I ,~)  is not standard, the 
representation (7.1) may fail even for countably additive, exchangeable P, by 
(2.14) and (3.4). One case remains: where P is finitely additive and exchangeable, 
but ( I ,~)  is standard. Then (7.1) may fail. 

(7.2) Proposition. Let I =  {0, 1} and ~ be the discrete a-field in I. There is a 
finitely additive, exchangeable probability P on (I v , ~ )  which cannot be repre- 
sented in the form (7.1), as a finitely additive mixture of countably additive power 
probabilities. 

Proof. Let G be the set o f x ~ I  v for which lira 1 - x i exists. By the strong law, 
n ~  h i =  1 

q~V(G)= 1 for all ~b~I*, so P(G)= 1 if (7.1) holds. The next step is to construct a 
finitely additive, exchangeable probability P on (I v, ~ )  with P(G)=0. 

The group /7 of finite permutations of the positive integers is amenable 
[5, 9] ; let dn be a finitely additive, invariant probability defined on all subsets of 
/7, so that for a~/7 and any bounded real-valued function f on/7,  

(7.3) ~f(~za)d~= Sf(~)d~z. 
/ /  / /  
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Let Po be any probability on (I~ ~) with Po(G)=0, and let 

(7.4) P(A)--- ~ Po(TzA) dzc. 
// 

Clearly, 
= G for all 

P is a finitely additive probability on N~. And P(G)=0,  because rcG 
rc~H. Finally, P is exchangeable: if a6H, then 

P(aA) = ~ Po(~zaA)d~ by (7.4) 
// 

= ~ Po(~zA)d~ by (7.3) 

=P(A)  by (7.4). [] 

Essentially the same argument can be used to make P invariant even under 
the larger group F, which changes any finite number of coordinates. Formally, 
7eF  is specified by a finite subset F of the positive integers: 

(Tx),= 1 - x ,  if n~F 

= x ,  if n~F. 

Of course, if P is invariant under F, it agrees with coin tossing on the cylinder 
sets. 

As noted earlier, Hewitt and Savage [6] show that any finitely additive, 
exchangeable P is a (unique) eountably additive mixture of finitely additive 
power probabilities, on the field generated by measurable rectangles. This may 
be contrasted with (7.1)-(7.2), where ~b ~ is countably additive on the entire ~- 
field ~, but # is only fnitely additive. 
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