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Analysis of Nonintrinsic Spatial Variability 
by Residuai Kriging with Application to 

Regional Groundwater Levels 1 

Shlomo P. Neuman 2 and Elizabeth A. J a c o b s o n  2'3 

A method for obtaining pointwise or spat•lly averaged estimates o fa  nonintrinsicfunction 
is introduced based on residual kriging. The method relies on a stepwise iterative regression 
proeess for simultaneously estimating the global drift and residual semivariogram. Estimates 
o f  the function are then obtained by solving a modified set o f  simple kriging equations writ- 
ten for the residuals. The modification consists o f  replacing the true variogram in the kriging 
equations by the variogram o f  the residual estimates as obtained from the iterative regres- 
sion process. The method is illustrated by considering groundwater levels in an Arizona 
aquifer. The results are eompared with those obtained for the aquifer by the generalized co- 
variance paekage BL UEPA CK-3D. 

KEY WORDS: Spatial variability, nonintrinsic, nonstationary, drift, kriging, residuals, 
groundwater levels. 

INTRODUCTION 

A variety of geostatistical problems involve nonintrinsic phenomena exhibiting 
a spatial drift. Examples include the topography of a hill slope, the e!evation of 
a dipping structural feature, and the thickness of a wedge-shaped stratum. Of 
particular concern in this paper is the spatial variation of vertically averaged hy- 
draulic heads in an aquifer. For groundwater to flow laterally within the aquifer, 
the hydraulic head surface taust have a distinct inclination in the main direction 
of fluid movement. Suppose that the hydraulic head is represented by water lev- 
els measured in a number of wellbores completed within the aquifer. To estimate 
the hydraulic head at selected points between these wellbores by kriging, one 
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needs to know the drift and semivariogram of the differences between actual and 
meali'head values. Our problem is to estimate the drift and semivariogram from 
the available wellbore data and incorporate these estimates in the kriging process. 

Let Z(x) be the nonintrinsic function of interest where x is a vector of co- 
ordinates. We assume that Z(x) can be expressed as the sum of a deterministic 
drift component,/~(x), and a zero-mean intrinsic residual component, R(x), such 
that 

Z(x) = U(x) + R(x) (1) 

Since E[R(x)] = O, it follows that E[Z(x)] =/a(x), E being the expectation sym- 
bol. We further assume that R(x) can be characterized by an isotropic semivario- 
gram, 7Æ (s), defined as 

vR(s )  = ½ F [ R ( x  + s) - Æ(x)] 2 (2) 

where s is a displacement vector and s = l s [. 
Suppose that Z(x) was measured at a discrete number of points and we 

• wish to use these data to determine the semivariogram o fZ  by means of a stan- 
dard procedure (e.g., Journel and Huijbregts, 1978). Theoretically, such a semi- 
variogram is an estimate of a function, 7z, defined as 

~z(x ,  s) = ½ e [ z ( x  + s) - Z(x)]  2 (3) 

Substituting (1) into (3), expanding and using the above definition of VR (S), we 
find that 

3'z(X, s) = VR(S) + 1 [/~(X + S) -/.t(X)] 2 (4) 

This shows that for arbitrary drifts, 7z(X, s) remains a function of both x and s, 
indicating that Z(x) is neither intrinsic nor isotropic. In the particular case where 
#(x) varies linearly with x, "Yz(X, s) increases quadratically with s without limit. 
This feature, together with a strong anisotropy, can be used to diagnose the pres- 
ence of a drift by examining the shape of a sample semivariogram, determined 
from the data. If the diagnosis is positive, the appropriate variogram is VR (s), not 
3'z(x, s). The difficulty is that 3'R (s) cannot be determined from measured values 
of Z(x) without knowing g(x), and/a(x) cannot be determined without knowing 
~'R(s). 

Past attempts to resolve this difficulty have led to three key methods: Uni- 
versal kriging, generalized covariance, and simple kriging modified to account for 
a prior estimate of the drift. Universal kriging was introduced by Matheron 
(1969) and applied to various problems by Delhomme (1976), Haas and Jouse- 
line (1976), Chiles (1977), and others. Good descriptions of the method have 
been published by Delfiner (1976) and Beucher, Delhomme, and de Marsily 
(1981). The method differs from simple kriging in that #(x) is introduced for- 
mally into the kriging model as a low-order polynomial with undetermined coef- 
ficients. Since such a low-order approximation may not be valid over the entire 
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domain of interest, universal kriging is usually applied locally over small neigh- 
borhoods. Theoretically, the rnodel is written in terrns of 3'R(S)- In practice, 
however, 7R(s) is unknown. One approach is to replace 3'R (s) by 7z- This can be 
justified as long as 3'z is applied to srnall neighborhoods within which s is srnall 
enough to disregard the square terrn in (4), so that 7z ~'gg(s). Another ap- 
proach is to estirnate the drift on the basis of an assurned 7R (s) and then obtain 
a new sernivariograrn frorn the cornputed residuals. The resulting blas depends on 
the structure of the nonintrinsic function and the method used to estirnate the 
drift (Matheron, 1969; Huijbregts and Matheron, 1971; Sabourin, 1976; David, 
1977, p. 247). The error in both the drift and the residual sernivariograrn can be 
rninirnized by adopting an iterative generalized least-squares procedure sirnilar to 
that ernployed in this paper and alluded to by others (e.g., Ripley, 1981, p. 58). 
This, however, elirninates the need for universal kriging, as we will point out 
later. The (unnecessary) practice of applying universal kriging to local neighbor- 
hoods restricts the rnetbod to sufficiently dense data sets, otherwise there rnay 
not be enough points for kriging in each neighborhood. The local approach also 
suffers frorn a lack of objective criteria to choose the order of the polynornial 
drift and the size of the neighborhood within which universal kriging is valid. 
Such choices can only be justified a posteriori by cross validation, a technique 
in which the analyst elirninates one datum point at a tirne and cornpares its rnea- 
sured value with that estirnated by kriging. 

Closely related to universal kriging is the generalized covariance rnethod of 
Matheron (1971, 1973) and Delfiner (1976). Hefe again p(x) is taken to be a 
low-order polynornial over a small neighborhood, leading to a system of equa- 
tions sirnilar to those arising in universal kriging. However, instead of working 
with explicit forrns of the drift function, the rnethod seeks to determine 7n (s) 
by filtering out a polynornial drift. Such filtering is accornplished by considering 
not only zero-order spatial increments of Z(x) as one does in simple or universal 
kriging but also higher-order incrernents. In general, an incrernent of order m is 
able to filter out a polynorniäl drift of sirnilar order. Thus, if the residuals are 
intrinsic, so are the mth order incrernents of Z(x), and Z(x) is therefore said to 
be an "intrinsic randorn function of order m." Clearly, the semivariogram of 
such mth order incrernents, 7ra(s), is identical to 3'R(s), the sernivariograrn of 
zero-order incrernents of the residual, R(x). The function 7ra(s) is called "gen- 
eralized sernivariograrn of order m ." 

The nurnber of data points required to estirnate ")'ra(s) increases rapidly 
with m. For this reason, m in practice is seldorn taken to be greater than 2. 
Since a second-order polynornial approxirnation of p(x) rnay not be valid on the 
global scale, the rnethod is usually applied to srnall neighborhoods. The ap- 
proach, based on theoretical considerations, is to approxirnate 3'ra(s) by a low- 
order (~<5) polynornial whose coefficients rnust satisfy certain predeterrnined 
criteria. These coefficients are evaluated autornatically by fitting tbeoretical mth 
order incrernents to their experimental values with the aid of ordinary least 
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squares (in some contrast to 7z and 7R(s), which are often fitted to the sample 
semivariogram by eye). Just as in the case of universal kriging, the choice of 
neighborhood size and m can only be justified a posteriori by cross validation. 

Conventional universal kriging and generalized covariance techniques make 
no attempt to define the global nature of the drift. One attempt to determine 
the global drift explicitly has been reported by Gambolati and Volpi (1979) in 
connection with land subsidence near Venice, Italy. Based on hydrogeological 
considerations they argued that the drift, ~t(x), of the groundwater head surface, 
Z(x), taust vary logarithmically with distance from the subsidence-causing center 
of pumping outside of Venice. They estimated the coefficients of this logarith- 
mic function by fitting it to measured groundwater level data with the aid of 
ordinary nonlinear least squares. This enabled them to compute the residuals at 
all well locations and to construct an approximate residual semivariogram. The 
authors then developed a kriging model incorporating the estimates of~t(x)and 
7R (s) that includes fewer constraints, and is thus simpler, than equivalent mod- 
els based on universal kriging or generalized covariance (this is true even if~t(x) 
in the latter is treated locally as a polynomial of just first order). Unfortunately, 
their approach is internally inconsistent because ordinary least squares treat the 
residuals as being uncorrelated, whereas the existence of a semivariogram de- 
pending on s implies that R(x) has an autocorrehtion structure. 

In the present paper we describe a consistent method for obtaining point- 
wise or spatially averaged estimates of a nonintrinsic function based on simple 
kriging of the residuals. The method is based on a stepwise iterative regression 
process that yields simultaneous estimates of the global drift and the residual 
semivariogram. A case study is included to illustrate the method, dealing with 
groundwater level data Dom the Avra Valley aquifer in southern Arizona. Other 
case studies can be found in the dissertation of Binsariti (1980) and in the thesis 
of Fennessy (1982). The results of the Avra Valley case are compared with 
those obtained for the same aquifer by the generalized covariance package, 
BLUEPACK-3D, developed at the Ecole des Mines in Fontainebleau, France. 

STEPWlSE ITERATIVE REGRESSION 

Let Z be a vector of Z(x) values measured at I discrete locations, xi, i = 
1, 2 . . . . .  I, and let /z be the corresponding drift vector. Then, by virtue o f ( l ) ,  
Z and ~are related through 

Z : ~ + R  (5) 

where R is the vector of residuals at xi. The latter vector is characterized by a co- 
variance matrix, V, defined as 

E[RR T] = V (6) 



Analysis of Nonintrinsic Spatial Variability by Residual Kriging 503 

If R(x) is weakly stationary and 7R(s) is known, the (i, ] ) th  term of Vcan be de- 
termined from 

vii = pR(sij) = pRO) - vR(s,)  (7) 

where PR (s) is the covariance function of  R(x), defined as 

~[R(x) R(x + s)] = PR(s) (8) 

and sq = Ix; - xjl. Clearly, p(o) is the "sill" of the semivariogram, defined as the 
constant maximum value of 7R(S) attained beyond a certain "range" of s values, 
S ~ S  o. 

Suppose that the drift at the p th  step of our procedure is expressed as 

Jp 

gp(X) = y '  aif j(x)  (9) 
i=! 

where Jp is an integer satisfying Jp + ~ >. lp ,  aj are coefficients to be determined, 
and f i (x)  are prescribed linearly independent basis functions. We can then re- 
write (5) in the form 

Z = F a  + R (10) 

where F is an I X Jp matrix of the basis function values, y~(x/), and a is a vector 
of the Jp coefficients, aj£ If V is known, one can obtain an unbiased minimum 
variance estimate of a, a, by minimizing the generalized least-squares criterion 
(Schweppe, 1973, p. 101) 

g2(~) = (Z - F~) T V-I (Z  - F a )  (11) 

The resulting estimate of a is given by 

= G F r V - l Z  (12) 

where V a is the covariance matrix of the estimation error, ~ - a, defined as V a = 
E[(~ - a)(~ - a)T].  This matrix is computed independently of Z from 

G = ( F r V - ' F )  -~ (13) 
Estimates of  the drift,/~, and residuals, R, are given, respectively, by 

~t = F ~  and (14) 

R = Z -  IR (15) 

These can be rewritten with the aid of (12) as 

IR = P Z  and (16) 

f i=(1-e)z (17) 
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w h e r e P = F V a F T V  -1. According to (A1) in Appendix A, f r - P ) F = O a n d  
thus, R can also be expressed as 

= ( I -  e) R (18) 

Equation (A2) shows that rank ( I - P ) > ~ I - J p ,  implying that the computed 
residuals are generally linearly dependent. The tank becomes strictly equal to 
(I - Jp) when V = I (Seber, 1977, p. 46). 

A 
Since R has mean zer% the same clearly holds true for R. On the other 

hand, the covariance of R, V = E[pd~T], is given by (I - P) V(I - p)T which, by 
virtue of (A3) and (A4), takes the simpler form 

V = ( I -  P) V (19) 

It follows that 

V -  ~:=PV= FVaF T (20) 

is positive semidefinite and the covariance structure of R is not exactly the same 
as that of R. This means that the semivariogram, "/k (s), determined from the 
computed residuals, R, will differ from ")'R (s): in particular, the sill of 7k (s) will 
generally be smaller than that of 7Æ (s). For this reason, we develop out kriging 
equations in terms of 7k, instead of 7R, as is usually the custom. Implicit in this 
approach, of course, is the assumption that a positive definite ~,k exists. This is 
true at best as an approximation when I » Jp. 

Let 

v = R -  R = / * -  ~R (21) 

be the estimation error of 1~ and ~ä. By virtue of (18), E[v] = 0, meaning that 
both R and ~ are unbiased. The covariance of v, V v = E[vvT], is obtained di- 
rectly from (13) and (14) as 

l/'v =FVa FT  (22) 

If the drift at an arbitrary point, x, is computed according to 

Jp 
ü(x) = Z~ ä/:/(x) 

i=1 
(23) 

then the covariance, Cu(x, x + s) = E{ [/~(x) - #(x)] [~(x + s) - #(x + s)] }, of 
the corresponding estimation error,/~(x) -/~(x), is given by 

:p :p 
c»(x, x + s) = Z Z :,(x) va0»(x + s) 

i = l  ] = 1  

where Vai/is the (i,/')th component of V a. 

(24) 
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Since 7R(S) is initially unknown, V is unknown, and the above regression 
model cannot be used. We therefore proceed in two stages. In Stage 1, the resid- 
uals are treated as if they were uncorrelated, and V is replaced by the identity 
matrix, I. This is equivalent to ordinary, as opposed to generalized, least squares. 
Starting with p = 1, we compute R, and use these residuals to obtain a semivario- 
gram, 7k(s), in a standard manner. If %~(s) shows a distinct sill and no marked 
anisotropy, it is adopted for Stage 2 of the analysis. Otherwise, p is incremented 
by 1, and the procedurë is repeated untfl 7k(s) attains the desired properties. 

Stage 2 starts by computing V from 

Vi j  = p ~ ( o )  - "y#(sq) (25) 
A 

in analogy to (7). Upon replacing V in the regression model by V, we proceed to 

evaluate R, which leads to a new 7~ (s), which in turn yields a new l) matrix, 
and so on. This iterative process continues until the computed drift, ~ü, and the 
semivariogram, 7k (s), attain stable values. 

The above procedure worked well in all the three case studies we have men- 
tioned in the introduction. In principle, however, Stage 1 should work only if 
the ordinary least-squares estimator of the drift is efficient with respect to the 
(optimal) generalized least-squares estimator. When this is the case, the improve- 
ment attained at Stage 2 will be small compared to that attained at Stage 1, al- 
though not necessarily insignificant (as we find in all three case studies). If Stage 
1 does not show a marked improvement within a few steps, it may be necessary 
to repeat it by iterating after each step, that is, applying Stage 2 after each step 
of Stage 1. 

Thus rar, pp(x) has been taken to be linear in the regression parameters, 
% Extension to the case where pp(x) is nonlinear in a (as in the work of Gam- 
bolati and Volpi, 1979) is relatively straightforward. Assume that, instead of (9), 
we have 

Jp 
pp(x) = ~2 ~(a, x) (26) 

]=1 

where a is a vector of Kp coefficients, ak, k = 1, 2 . . . .  , Kp, Kp >/Jp. Then (1 I) 
takes the form 

B(ä )  = ( Z - / 2 )  r V -1 (Z -  p )  (27) 

which must be minimized by nonlinear mathematical programming to yield an 
estimate of a, ä. Let G be the I X Kp Jacobian (or sensitivity) matrix whose 
(i, k)th component is defined as 

«p ~ß.(ä, x) 
Gik = 2 

]=1 C~äk 
(28) 
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Then, to a second order of approximation [Neuman and Yakowitz, 1979] 

V a ~ ( G T v - 1 G )  -1 (29) 

Vv ~ GVaG 7" and (30) 

% x, 
Cù(x, x + s) ~ ~ ~ gk(x) Vaklgt(X + s) where (31) 

k = l  l=1 

«p ~ß(ä, x) 
g~(x) : 

j=l Oä'k 

Otherwise, the linear and nonlinear cases are treated in identical manners. 

ESTIMATION OF Z BY RESlDUAL KRIGING 

Suppose that we are interested in estimating the spatial average of Z(x), 

1 f Z(x) dx (32) 
Zn = Fn r n 

over some finite domain, Ph. We can accomplish this by kriging the residuals and 
adding the result to the drift. Let/1 n and Rn be the spatial averages of/J(x) and 

R(x), respectively, over Pn, and let ün and/}n be the corresponding generalized 
least-squares estimates. These quantities are related through 

z .  = ~,ù + R .  = ü .  + ~ .  (33) 
/ x  

which can be viewed as a definition o f R  n. 
We define the kriging estimate ofZn,  Z'n, as 

Z* =/~n + R* (34) 

where R*, the kriging estimate of the unknown generalized least-squares resid- 
ual,/~n, is given by 

I n  

Rù*-- Z x.i~n; (3») 
i=1 

Here ~kni are "kriging coefficients," and Rni are components of R corresponding 
to [n(<~I) measurement points of Z(x), X n i  , i = 1 ,  2 ,  . . . , I n ,  inside and/or in the 
neighborhood of rn. By virtue of (18) 

E[Z*I =/1ù (36) 

and the kriging estimate o f Z  n is, thus, unbiased for any choice of ~'ni. 
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Defining the kriging estimation error as 
/x 

e n - Z n - Z n - R n - R n 

* = E[enem],  becomes (Appendix B) the covariance of this error, Vnm 

In  

V~m = -T/}(Pn, I'm) + £ Xni'Y~(Xni, Pro) 
i = 1  

(37) 

Im  In  Im  

+ ~ Xm]T~(Xmj, P n ) -  ~_~ ~ ~,ni?tm/T~(Xni,×m/) (38) 
j=1 i=i /=i 

where 7k(x, y) = 7 k ( ] x -  YI) and 7k(x, P) is the spatial average of %6(x, y) 
over all y E I'. This expression holds true provided that 

I n Im  

F. xù,= I2 ami= 1 
i=1 j=1 

(39) 

The kriging coefficients, Xni, are determined so as to minimize V*m subject 
to (39). Appendix B shows that this leads to the (/n + 1) "residual kriging 
equations" 

I n 

Xn/7k(Xni, xn/) + [3n = 7~(xni,  Pn) i = 1, 2 , . . ,  I n (40a) 
]=1 

I n 

Xnj =1 
]=1 

(40b) 

where/3 n is a Lagrange multiplier. Upon solving these equations for Xn/and ~n, 
the "kriging variance," * Vnn, can be computed from 

lr n 

Vn* = -3'/}(Ph, Ph) + 12 XniTk(Xn«, Pn) + ~n (41) 
i = 1  

which is obtained by substituting (40a) into (38) when m = n. The "kriging er- 
ror" is defined as ( V ' n )  1D. 

The above kriging equations differ from their conventional counterparts in 
that they involve 3'~ instead of 7R- Since these equations are exact, knowing the 
semivariogram of the true residuals, 7R, would be of little help unless/J was also 
known exactly. 
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RELATIONSHIP TO UNIVERSAL KRIGING 

In universal kriging the estimate ofZn,  Zn ~, is written as 

In 
Zn v = ~ XniZni (42) 

n = l  

where Z n i  a r e  the values of Z(x) at the I n measurement points, Xni , i = l ,  2 ,  . . . , 

I n. Since the method does not rely on a prior estimate of the drift, the latter is 
filtered out by requiring that the kriging coefficients satisfy 

/n 
B.(Ph) = Z Xniß(Xni) (43) 

i=1  

for all ] = 1, 2 , . . ,  Jp, where 

B(rù)=~ f r f/(x) dx 
n 

This, by virtue of (23), implies that 

In 
Pn = ~ XùiP(Xni) and (44) 

i=1  

I H 

Bn= Z ~'ni~(Xni) ( 4 5 )  
i=1  

• As shown in Appendix B, (44) leads to the universal kriging equations 

Iù sp 
F. Xù/VR(xù;, xù/) + Z t~ù~:~(xù~) = ~R(xù» rù) 
j=l 1=1 

i= l ,2 ,  . . , I  n 

(46a) 

I n 
Xn,ft(Xni ) = fr(Ph) l = 1, 2 , . . ,  Jp 

i=1  

(465) 

where f l n l  a r e  Lagrange multipliers and it is understood that f l  (x) = 1. Similarly, 
(45) leads to an equivalent set of equations in terms of 7k- Both sets of universal 
kriging equations exceed the number of residual kriging equations in (40) by 
(Jp- a). 

The increase in the number of equations and unknowns in universal kriging, 



Analysis of Nonintdnsic Spatial Variability by Residual Kriging 509 

as compared with residual kriging, sterns from the attempt of the former method 
to circumvent the need for estimating the drift coefficients, a. In addition to in- 
creasing problem size, this attempt leads to ambiguities in the determination of 
the semivariogram and the choice of the basis functions for the drift. 

AVRA VALLEY CASE STUDY 

We illustrate our method by considering groundwater level data from the 
Avra Valley aquifer in southern Arizona (Fig. 1). A detailed description of the 

0 Z 4 6 8 1(3 MILES 
L I I B L I 

Fig. 1. Location of Avra VaUey study area and finite element grid. 
Dots indicate location of wells in which watet levels were measured. 
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valley and aquifer can be found in Clifton (1981) and Clifton and Neuman 
(1982). Figure 1 shows the location of 99 wells at which quasi steady-state water 
level data are available. Superimposed on the figure is a finite element grid used 
by Clifton and Neuman to simulate groundwater flow in the aquifer. Our objec- 
tive is to estimate the steady-state watet levels at all the finite element grid 
points. 

Let Z(x) represent watet levels or heads in the aquifer. Figure 2 shows an 
average sample semivariogram, 7z, based on the 99 available Z data. The semi- 
variogram is seen to increase with s at a rate higher than quadratic, suggesting the 
presence of a drift. 

To deal with this problem the basis functions, ~(x),  in (9) were chosen to 
be monomials of up to 4th order. In Stage 1 of the analysis, p varied from 1 to 4 
so that /~p(X) represented complete polynomials ranging from 1st to 4th order 
(with J1 = 3, J2 = 6, J3 = 10, and J4 = 15). For each value o fp  the coefficients 
of the polynomial, a i, were evaluated by an ordinary least-squares fit to the data. 
Figure 3 shows directional and average sampte residual semivariograms, 7k(s), 
for all four cases. One can see that as p increases from 1 to 4, the spread of the 
directional semivariograms gradually decreases, the presence of a sill becomes 
more distinct, and the magnitude of the sill diminishes (note the gradual reduc- 
tion in vertical scale from Fig. 3a to 3d). Based on these results, we decided to 

35,000 | I I I I I I l 

30,000 

25,000 

~ 20,00(? 

.~ 15,000 

I0,000 

5,000 

0 2 4 6 8 I0 12 14 16 18 20 

s (miles) 

Fig. 2. Average samp]e semivariogram of watet levels for Avra Valley. 
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adopt a 4th-order polynomial as an acceptable representation of the global drift, 
thereby completing Stage 1. 

Stage 2 is a refinement accounting for the correlation structure of the resid- 
uals. The effect of this refinement on the average sample residual semivariogram 
is seen in Fig~ 4. After only two generalized least-squares iterations, the sample 
residual semivariogram appears to have converged to a stable shape. Figure 4 
shows the spherical model fitted to the final version of the sample semivariogram 
and used in all subsequent calculations. 

The polynomial drift/~4(x), associated with the same spherical semivario- 
gram model, is contoured in Fig. 5. The standard deviations of the corresponding 
drift estimation errors, computed with the aid of (24), are presented in Fig. 6. 

Having estimated both the semivariogram and the drift, the hext step is to 
obtain kriging estimates of  the residuals at the finite element grid points and add 
them to the drift estimates according to (34). The resulting water level estimates 
are shown by the solid contours in Fig. 7. To compare our method with the gen- 
eralized covariance technique described earlier, we applied BLUEPACK-3D (a 
package developed at the Ecole des Mines in Fontainebleau, France) to our data. 
The results are shown by the däshed contours in Fig. 7. Except for areas where 
data are missing (see Fig. 1), the results agree reasonably weil. 

The kriging errors associated with our water level estimates are plotted in 
Fig. 8. These are computed with the aid of (41) and represent estimation errors 
of the solid contours in Fig. 7. Figure 9 shows contours of kriging errors as com- 
puted by BLUEPACK-3D. The general configuration of the contours in the two 
figures is similar in many areas. The largest differences between the two maps 
occur near the bulge in the western boundary and the southern and north- 
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Fig. 4. Effect of iterative regression on the sample residual semivariogram for 
-the Avra Valley with 4th-order polynomial drift. The solid curve shows a 
spheiical model fitted to a sample semivariogram from the 2nd iteration. 



R 9 E  ~ R IOE  , R I I E  ~ R I 2 ~ " ' -  

Analysis of Nonintrinsic Spatial Variability by Residual Kriging 513 

0 2 4 6 8 I0 M~LES 
I ~ ~ I I _.-3 

Fig. 5. Drift associated with the spherical semivariogram model 
for Avra Valley shown in Fig. 4. 

eastern corners where the BLUEPACK-3D contours show steeper gradients and, 
therefore, larger errors than out contours. These areas include very few data 
points (see Fig. 1) and it is, therefore, natural that a local interpolator such as 
BLUEPACK-3D would associate them with large estimation errors. A global esti- 
mator such as ours interpolates across gaps in the data and thus tends to be more 
optimistic. 

A comparison of  Figs. 6 and 8 will reveal that the kriging'errors in the 
southern and northeastern corners of  the modeled area are smaller than the cor- 
responding drift estimation errors. This simply shows that in these corners there 
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Fig. 6. Standard deviations of drift estimation errors for Avra Valley. 

is less uncertainty in the estimation of  Z than in the estimation of  its compo- 
nents, # and R. 

To study the autocorrelation of  out kriging errors, we consider the six tra- 
verses AA',  BB', CC', DD', EE', and FF '  shown in Fig. 1. Fig. 10 shows the auto- 
correlation along each of  these traverses. The distance along which the errors are 
positively correlated varies between 1 and 2 miles, as compared with the 4-mile 
range of  the spherical semivariogram model. Negative correlations are small or 
nonexistent. Unfortunately, out results cannot be compared with BLUEPACK- 
3D because autocovariances and autocorrelations are not included in its output.  
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! Fig. 7. Kriged water levels for Avra Valley. Dashed contours 
show estimates obtained with BLUEPACK-3D. 

CONCLUSIONS 

The following conclusions can be drawn from this paper: 

(1) The drift and residual semivariogram of a nonintrinsic function can be deter- 
mined simultaneously by stepwise iterative regression. The method is easy to 
implement and appears to converge rapidly. 

(2) Once a prior estimate of  the drift has been obtained, the function of  interest 
can be estimated by residual kriging. The residual kriging equations differ 
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Fig. 8. Kriging errors for Avra Valley. 

from their conventional counterparts in that  their exact form involves the 
semivariogram of  the residuals est imated by regression, rather than the un- 
known true residuals. 

(3) Our estimates and est imation variances compare favorably with those ob- 
tained from the same data by means of  the generalized covariance package 
BLUEPACK-3D. However, we were not  able to compare the estimation 
error autocovariance and autocorrelat ion structures because these are not  in- 
cluded in the output  of  BLUEPACK-3D. 
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Fig. 9. Kriging errors for Avra Valley obtained with BLUEPACK-3D. 

APPENDIX A 

Let P = F V a  F T  V -1 . Then P F  = F V a F  T V - I F  = F V  a Ira ~ = F and, thus 

( I -  P ) F  = 0 (AI)  

A lower bound for the rank of ( I -  P) is established by noting that (Pearson, 
1974, p. 903) 

rank(P) = r a n k ( F V a F r  V -a ) 

~< min [rank(F),  rank(Va),  r a n k ( F r ) ,  r ank(V --I )] 

=Jp 
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Fig. 10. Sample au tocorre la t ion  of  es t imat ion  errors  
along selected traverses in Avra Valley (refer to 
Fig. 1). 

since the columns of F are linearly independent. Thus, for I ~> Jp 

rank( / -  P) >t rank(/) - rank(P) >~ I - Jp 

On the other hand 

p v p  T = F V a F T  V -1 VV-a F V a F  1" = F V a F  T 

= P V  

and since P V  and V are both symmetric 
P V  = ( P v )  r = v P  r 

(A2) 

(A3) 

(A4) 
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APPENDIX B 
/x 

I_et e n = R *  - R n. Then (35) implies that the covariance of e is 

In Im In /\ A A /., 
= Z Z Xni~'mfÆ[RniRmj] - Z )kniE[RniRm] 

i=1 j=l  i=1 
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j=l 

If the kriging coefficients satisfy (39) then, by virtue of (25), (B1) reduces to 
(38). The kriging equations (40) are obtained by minimizing 

with respect to ~,ni and the Lagrange multiplier/3 n. 
In the case of universal kriging, the kriging variance can be expressed by 

virtue of (44) as 

E[(zU-Zn)2] =E [<~= 1 ~kniZni-Zn) 2] 

= E X , « Z n ;  - ~ X , « , u ( x , ù )  - Z n  + Un 
i = 1  

=e XniRni-Rn =e[~~l (B=) 

The universal kriging equations (46) are obtained by minimizing 

E[eg] + Z t 3 n /  x . ;B(x . i )  - ~ ( r~ )  
. =  

with respect to ~kni and the Lagrange multipliers/3m.. If, instead of (44), one uses 
(45) in (B2), the result is a set of universal kriging equations equivalent to (46) 
but expressed in terms of %~ instead of 7R. 
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