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Abstract. The six generator deformation of the Lorentz algebra is presented. The Hopf algebra structure 
and the reahty conditions are found. The chiral decomposition of SL(2, C) is generalized to the q-case. 
Casimir operators for the q-Lorentz algebra are given. 
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1. Introduct ion  

In a recent work, a q-deformed Lorentz algebra was presented [ 1]. Three questions 

were left open in this paper. First, the deformation involves seven generators, while 
one needs only six. Second, the whole family of  algebras labelled by a parameter  r 

was presented. This is not desirable, since (classically) the most general group acting 
linearly on spinors is GL(2,  C). If, for different values of  r, the generators presented 

in [ 1] were independent, together they would generate an infinite-dimensional algebra 

acting linearly on spinors. This contradicts geometrical intuition. Third, the reality 
conditions for four of  the generators were not apparent.  One could think that adding 

conjugates of  these generators would produce an algebra with eleven generators. 

In this Letter, we address all of  these questions. We show that generators for 
different r can be expressed in terms of  each other. This allows the value of r to be 
fixed. In Section 2, we prove that the deformation actually contains only six 

generators, and present the reality conditions for all of  them. We also give formulas 
for the antipode in the algebra. 

In the classical case, it is convenient to have chiral SL(2) groups which act only 
on barred or unbarred spinors. The rotation SU(2) subgroup of  the Lorentz group 
is the diagonal in SL(2) • SL(2). We discuss the generalization of this picture to the 
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quantum case in Section 3. We also give expressions for the Casimir operators of 
the q-deformed Lorentz algebra. 

Finally, in Section 4, we give explicit expressions for the generators for arbitrary 
r in terms of the simplest ones corresponding to the value r = q- l .  

In another work, a six generator q-deformed Lorentz algebra has also been found 
following an approach based on the R-matrix [2]. 

2. Lorentz Algebra 

In a previous work, a seven generator q-deformed Lorentz algebra was discussed 
[1]. That algebra was arrived at by considering the representation on a complex 
quantum spinor space. In addition to the usual deformation parameter, that 
algebra had an additional parameter and the representation on spinors had two 
extra parameters. A further analysis shows that these extra parameters may be 
eliminated. In this section we recall the algebra and action for special values of 
these parameters. The coproduct, counit, antipode, and real structure of the 
generators is determined. A central element of the algebra is found which also 
commutes with the spinors. Thus, it is equal to unity, and the algebra actually has 
only six generators. In the appendix we show how the results of [l] may be 
recovered from this algebra. 

First we outline the techniques used in [1]. Complex quantum spinors have 
components x and y and conjugates ff and 37. They obey q-relations: 

x y  = qyx ,  y 2  = q:fy, 

x x  = x x  - q2.~y, y y  = yy ,  

x y =  qfix, ~ .9= q - 1 9 2 .  

(2.1) 

These relations come from the R-matrix for SLq(2) with deformation parameter 
q real. There are also q-relations between two different copies of the quan- 
tum spinors [1]. The action of generators on the spinors is then constrained 
by requiring consistency with all of the q-relations. The algebra is then found 
by considering bilinear combinations of generators acting on the spinors. Finally 
the action of the generators on monomials in the spinors determines the co- 
product. 

The generators of the SUq(2) subalgebra arise from a simple ansatz for the 
action on spinors. Two of the generators are uniquely determined by consistency 
with the q-relations. Their action on spinors is 

T +  x = q x T  + + y ,  

T + y  = q - l y T + ,  

T - x  = q x T - ,  

T - y  = q - l y T -  + x ,  

T+.~ = q - 1 2 T  +, 

T+.~ = q f iT  + _ q -  1~, 

T - g  = q - 1.~T- -- qy, 

T -  fi = q f i T - .  

(2.2) 
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The third generator of SUq(2)  is determined by requiring the algebra to close. Its 
action on spinors is 

"~ 3 T3x  = q - x T  - qx, T3s = q -  2s + q-1s 
(2.3) 

T3y = q -2yT3 + q ly, T3 f  = q2yT3 -- q g. 

The algebra of these generators is then 

q I T + T  - - q T  T + = T  3, 

q 2 T 3 T + - - q - 2 T + T 3 = ( q + q  I)T+, (2.4) 

q - 2 T 3  T -  _ q 2 T - T 3  = - ( q  + q  1)T- .  

This is the form of the SWq(2) algebra introduced by Woronowicz [3]. 
One important property of the above generators is that they annihilate the 

constant monomial, i.e. T -+ 1 = 0 and T31 = 0. In the following, it will be conve- 
nient to introduce the quantity r 3 =  1 - ~ T  3 where 2 = q  - q - 1 .  Then 1:31 = 1 and 
the action on spinors takes the simple form 

,.g3 x ~_ qZx.c3 ' 7:3~ = q -2s 

3 (2.5) "r33 ' = q -yT , T3)I~ = q2fT3. 

In this basis the algebra may be written 

= - T - a T + - c 3  1T+ T r3T  +- q - , q -  - q T  T + = 2 - 1 ( 1  "c3). (2.6) 

Similar quantities for the other diagonal generators will be used later. 
The coproduct A may now be written in a simple form using ~3. It is 

A(T • = T • | 1 + (z3) 1/2 (~) T • m(.t.3) _~..f3 (~ ~.3. (2.7) 

The counit e and antipode S are 

e(T -+) = 0, S ( T  +) ----- --('C 3) -l/2T+-, 

e(~ 3) = 1, S(~3) = (~3) -1. (2.8) 

Finally, the real structure of the generators is found by taking the complex 
conjugate of their spin or action. This includes reversing the order of the elements, 
for example T3x  = .~T 3. Direct inspection then shows 

T • = q-V-2TV- r3 = ~3. (2.9) 

This completes the description of the SUq(2 )  generators and algebra. 
The diagonal generator r3 (or T 3) was  determined by requiring closure of the 

algebra. One can define two other diagonal generators which fulfill the requirements 
of consistency. Their action on spinors is 

r l l x = q 2 x r l ,  z l s  2s 

" - - ~  2 zSy = q -yz2, r 2 f  = qZy,.g2- 2 

(2.lO) 
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and they obey ~I1 = 1 and ~z21 = 1. The Hopf  algebra and real structure are 

completed by 

A ( z ' , )  = ~| 

e (~ ' , )  = l ,  s ( ~ ' , )  = ( , : : )  - l  , 

where i = 1 or 2, no sum. It is easy to see that 

l 2 2 1 ~3 1 2 (2.12) ~'lT2 ~--- ~'2"1~ l ~ --~- Tl~ '2 .  

The combination 

,,cO 1 2 -- l  = zl(z2) (2.13) 

(2.11) 

T 2 x  = x T  z + y z  l, T 2 . f  = q.~T 2, 

T2y  = y T  2, T2y  = q - lyTZ ' 

S ~ x  = x S  l, S~s  = q - 1 ~ $ 1  + flex 2, 

S l y  = y S  I, SI.9 = q y S  l, 

f i x  = q - l x z t ,  t l ~  = .ft 1 + q22f iT  2, 

z l y  = qy.rl, ,~lfi = f i ~ . l  

a 2 x  = q x a  2 + q2 2yS  l, a2.~ = s  2, 

o '2y  = q -  lyo-2, dr2y = rio "2. 

(2.14) 

commutes with the SUq(2) generators. Classically, T ~  2-1(,~0_ 1) reduces to the 

usual U(1) generator. Therefore, we say that the set of four generators T +, T - ,  

T 3, and T O generate the quantum U(2) algebra. 

As discussed in [1], quantum four vectors may be constructed as bilinears in the 

spinors and their conjugates. The action of  the generators on spinors may be 

iterated to find the action on four vectors. The time coordinate is proportional to 

g x  + y y ,  the central length preserved by SUq(2), so the generators introduced 

above do not produce Lorentz boosts. A more general ansatz for the action on 

spinors was used in [1] to construct generators which will produce boosts. This 

ansatz required four new generators to complete the algebra. Again the action on 

spinors must be consistent with the q-relations obeyed by the spinor components. 

In this case the action is not completely constrained, but there are two free 

parameters. Here we make a particular choice for these parameters, a = 1 and 

d = q, and later show how the results of  [1] may be recovered from this algebra. 

Following the notation in [1], we have two new raising and lowering operators T z 

and S l and two new diagonal generators T ~ and S 2, all of  which annihilate the 

constant monomial. Again for convenience, we define ~ 1 = 1 + 2 T ~  and 

a 2 =  1 + 2S 2. The action on spinors is 
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Using this the full algebra may be 

above, we find 

271T+ = T+27 1 q - , ~ T  2, 

271T = q - 2 T - z l - - 2 S  1, 

, t - iT 2 = q2T2,.f 1 ' 

z l S  1 = Sl .c  1, 

a 2 T  + = T +  ff 2 -  q 2 2 z 3 T 2  ' 

0-2T = q 2 T - 0 - 2  q- q 2 2 S  l, 

a 2 T  2 = q 2T2a2, 

0-2S 1 = Slo -2, 

T3T + = q-4T+273 ' 

~.3 T -  = q4T-T3 ' 

273T2 = q-4T2"r3 ,  

273S1 = q4St273" 
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computed. Including the SUq(2) algebra from 

T + T  2 = q - 2 T 2 T + ,  

T -  T 2 = T 2 T  - "-[- )c 1(0.2 _ z 1), 

T + S  l = q 2 S 1 T +  + 2-I(273"rl - a2),  

T S 1 = S I T  , 

T + T  = q 2 T - T +  + q 2 - 1 ( 1 - z 3 ) ,  

T 2 S )  = S 1 T 2, 

Z 10-" = i f2  t I + q 2 3 T 2 S 1 ,  

~. 327 1 =.151273 

2730-2 = 0"2"L -3. 

(2.15) 

Finally, the U(1) generator z ~ commutes with all of  the other generators. The 

algebra may be written in a more conventional form by the substitutions 
z l = l + 2 T  l, a 2 = 1 + 2 S  2, and z 3 = l - 2 T  3. 

This algebra appears to have seven generators. However, there is an extra 

relation in the algebra which allows elimination of  one of the diagonal generators. 
Consider the quantity 

Z = z t 6 2  - -  q 2 2 2 T 2 S I .  (2.16) 

One finds that Z is central in the algebra and commutes with all of  the spinors, 

e.g. Z x  = x Z .  Therefore Z is 1. Then one could eliminate z I or 0-2 from the algebra, 
for example by the substitution a 2 =  (271)-1(1 + q2j ,2T2Sl ) .  However, this would 

leave the algebra with inverse powers of the remaining diagonal generator. In the 

next section we show a substitution leading to a more appealing form of  the 
algebra. 

The coproduct for the new generators is found by considering their action on 
functions of  the spinors. It has the form 

A(27 1) = 271 ~) 27 1 _~ ~2S1(273 ) 1/2 | T 2, 

A(o.2) = 0.2 ~) 0.2 + )2T2(27 3 ) 1/2 ~) S 1, (2.17) 

A ( T  2) = T2|  q- (273)-1/20-2 | T 2, 

A(S 1) = S 1 | 0-2 + (273) 1/227 1 | SL 
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The counit and 

e(, 1) = 1, 

/3(O "2) = 1, 

8 ( T  2) = 0, 

~(S 1) = 0, 

In checking the 
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antipode are 

S(T1) = ~ ,  

S(0.2) = z "  (2.18) 
S ( T  2) = - -  q2(z3) 1/2T2, 

s (s  ~) = _ ( z 3 ) - , / ~ s , .  

antipode property one needs the fact that Z = 1. Finally, the reality 
conditions for the new generators are 

z l  = (Z3) --1/2~2, T 2 _. _ ( T 3 ) - 1 / 2 S 1  ' 

tr2 = (z3)l/2-r l, $I=  -q2(z3)l/2T2" 

This completes the construction of the Hopf  algebra SLq(2,  C). 

(2.19) 

3. Chiral  Decompos i t i on  

Recall that classically one builds from rotations and boosts two copies of SL(2). 
Denoting rotations by j i  and boosts by K i those copies are spanned by 
M ' =  J ' +  iK' and N i =  J i - i K ' .  We wish to generalize this picture to the q-case. 

Analyzing the structure of the algebra in the last section we find that the proper 
choice for M is 

M -  = q(zl)-lS1 + T - ,  
M 3 = ~ ,  1(1 - -  ( z l ) - 2 ) ,  (3.1) 

M + = q ( z l ) - l T  2. 

The N generators are 

N -  = q - 1 ( T -  - M - )  = - ( r ~ ) - ~ S  1, 

N 3 = (z3) - l ( T 3  __ M 3) = ~, - l ( ( z  3) - l ( z  1) - 2  __ 1), (3 .2 )  

N + = q-l(z3 ) - I ( T +  _ M +) = (z3) - t (q - iT+  _ (~l)-  1T2). 

Now the generators M i and N; mutually q-commute. Namely, N 3 simply commutes 
with the M', M 3 simply commutes with the N i, and for the rest we have 

N M -  = q Z M - N - ,  N - M  + = q - 2 M + N - ,  

N + M +  = q2M+N+ ' N + M _  = q _ Z M _ N + .  (3.3) 

Among themselves they obey 

q2M3M+ _ q - 2 M + M 3  = (q + q - 1 ) M +  ' 

q - I M + M -  _ q M - M  + = M 3, 

q - 2 M 3 M -  - -  q 2 M - M  3 = -  - -  (q + q - *)M- (3.4) 

q-2N3N+ _ q2N+N3 = (q + q - l ) N + ,  

q N + N  - _ q - 1 N - N +  = N 3, 

q2N3 N - q - 2 N - N 3 =  - ( q  + q - l ) N - .  
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(The generators can be rescaled by powers of "C 3 SO that this algebra is invariant and 
the M' and N' strictly commute, but this would result in a more complicated spinor 
action.) The coproduct for the redefined generators is easily found using the 
coproduct  for (r 1) - l: 

A((-cl) -1) = (-el) -1Q( ' r l )  -1 ~ ( q 2 2 ) ' ( N - ( z 3 ) - ' / 2 Q M + ) ' .  (3.5) 
t - - 0  

The action of the M' on the spinors is 

M + x  = q x M  + + y, M + g  = q s  + - q22)7(M+) 2, 

M + y = q  l yM+,  M + 9 = q - I ) 7 M  +, 

M - x = q x M - ,  M s 1 6 3  
(3.6) 

M - y = q  l y M  + x ,  M )7=q37M , 

M 3 x  -~ q2xM3 - qx, M3x = ~ M  s + 237(1 + q -2 )M+(1  - )~M3), 

M3y = q 2yM3 + q - ly, M337 = )TM 3. 

Similarly, the N' act as follows: 

N + x  = q -  l xN+ ' N + s  = q s  + - q2~(r 3) - , M  + + q-z22)7(r 3) -1(M+)2 ' 

N + y  = q y N  +, N+37 = q l)TN+ + q-3~.)7(.r3)-lM+ - ~(-c3) -1, 

N x = q x N - ,  N - Y = q - l g N - - ) 7 ( 1 - 2 M 3 ) ,  

N y = q - ' y N - ,  N-37 = q ) T N - ,  (3.7) 

N3X =. x N  3, N3.~ = q2~N3 _ (q2 + 1)2)7M+(1 + 2N 3) + qs 

NSy = y N  3, N337 = q - 2 3 7 N 3  _ q -137. 

Observe that the M' (N') vanish when acting on functions of only ~, )7 (x, y). This 
is the analogue of the classical property of chiral SL(2) algebras. Note also that 
although the M' and N' form independent algebras, in the action they mix. 
Therefore they do not form independent Hopf algebras, a fact which is also seen in 
the term N-(z3)-I /2(~M + in (3.5). Finally, the M' and N' found here are not 
simply related by complex conjugation as in the classical case. 

The basis M', N' immediately allows one to write the Casimir operators for the 
quantum Lorentz algebra. Since we have two independent copies of the SLq(2) 
algebra, the Casimir operators are given by 

Cm=q22-2ml/2"~-,~. 2m-l/2 + m - l / 2 M + M  - 2 - 2 ( q 2 +  1), 
(3.8) Cn=q-2,~,  2nl/2-~-~, 2n- l / 2 . . ] . _n - l / 2N+N-_ , l  " 2 ( q - 2 + 1 ) ,  

where 

m = 1 - 2 M  3, n = I + 2 N  3. (3.9) 

The constant terms are needed for the correct classical limit. 
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4. Appendix 

We now show how to recover the results of  [1]. That  work described a family of  
generators parameterized by two numbers a and d. More precisely, a and d appear  
in the spinor action. The algebra depends only on the ratio r = a / d .  However all of  

those operators can be expressed in terms of  the generators in section 2. (Recall 
that Section 2 used the results of  [1] for the parameter  values a = 1 and d = q.) To 
this end define a = q2~ and d = q2~, and let 

? = ('r I ) ~<(z 2)(1/2) - a. ( 4 . 1 )  

Then the operators 

1 / ~ 1 z = z z  , T 2" = d - l q ~ T  2, 

2 t ~ 2 tr = ztr , $ 1 ,  = d q _ l ~ S i ,  (4.2) 

reproduce the algebra and spinor action in [1]. We note that the extra relation 

allowing the elimination of  one generator can be written directly inside this algebra. 

It  is done using the quantity 
# # # / 

Z '  = z I a 2 - -  r - i q 2 2 T  2 S 1 . (4.3) 

One finds that the commutat ion relations of  Z '  and ~2 with all generators and 

spinors coincide. Therefore we have the relation 

~ - 2 Z '  = 1 (4.4) 

which gives the reduction of  the algebra to six generators. 
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