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In this paper we give a complete classification o f  (smooth, closed, orientable) 
3-manifolds that admit a linear circle of  equal volume contact forms (see Def- 
inition 1.1 for the precise meaning of  this term; there we introduce the name 
tau t  con tac t  circle  for this type of  structure). One of  the most intriguing as- 
pects o f  this classification is that it relies on the Enriques-Kodaira classification 
of  compact  complex surfaces and Wal l ' s  study of  locally homogeneous geo- 
metric structures on these surfaces. We show that i f  M 3 admits a taut contact 
circle, then M 3 • S 1 is a complex surface and the obvious free circle action is 
by holomorphic automorphisms. Complex surfaces of  this type will be classi- 
fied (up to diffeomorphism) in Section 4. The additional structure on M 3 • S 1 
provided by the taut contact circle allows to recover M 3 from M 3 • S 1, this 
yields the classification Theorem 1.2. Furthermore, we relate homotopies of  
taut contact circles to the complex geometry, and show that any taut contact 
circle is homotopic to a certain distinguished type of  taut contact circle that 
we call Car tan  s t ruc ture  (Definition 1.1, Theorem 1.6). 

*Current address: Department of Mathematics, ETH Zentrum, CH-8092 Zfirich, Switzerland; 
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The motivation to study taut contact circles is twofold. First of  all, they 
arise naturally as the Liouville-Cartan forms on the unit cotangent bundle of  a 
Riemann surface (see Remark (2) after Definition 1.1 ). Secondly, we were led 
to these structures by our study of  certain quaternionic analogues of  contact 
structures [8, 12, 13]. 

In [13] the second author showed that every 3-manifold admits a triple of  
pointwise linearly independent contact forms. In [8] we showed that every 3- 
manifold admits a triple o f  contact forms with pointwise linearly independent 
Reeb vector fields, which is equivalent to saying that the differentials o f  the 
three contact forms are pointwise linearly independent. 

In this context it seemed natural to ask which 3-manifolds admit a pair or 
triple of  contact forms such that every non-trivial linear combination o f  these is 
again a contact form (pointwise linear independence o f  the two (or three) con- 
tact forms and their differentials, respectively, is clearly a necessary condition). 
We call such structure a contact circle or contact sphere, respectively. 

We then observed that by imposing an additional equal volume constraint 
on these contact forms, one uncovers a rich complex geometric theory asso- 
ciated to the theory o f  taut contact circles. In the present paper we explore 
this holomorphic theory to arrive at a variety of  classification results for taut 
contact circles and spheres. 

1 Definitions and main results 

Our initial object of  study is a pair of  contact forms eel, ee2 on a 3-manifold 
such that any non-trivial linear combination 21eel + 22ee2 with constant coef- 
ficients 21,22 c IR is also a contact form. (Recall that a contact form on a 
3-manifold is a 1-form ee such that co A d(o is nowhere zero, that is, a volume 
form.) Clearly it suffices to check this non-degeneracy condition for the pairs 
(21, 22) E S 1, where S 1 denotes the unit circle in ]R 2. 

Definition 1.1 We say that a 3-mani~bld M 3 admits a contact circle /f  it 
admits a pair o f  contact forms  (eel,ee2) such that Jor any (21 ,22)6  S l the 
linear combination 21 eel + 22ee2 is also a contact form. 

We say that this circle is a taut contact circle i f  the contact forms  2~ eel + 
22ee2 define the same volume fo rm for  all (21,22) E S I. This is equivalent to 
the following equations being satisfied: 

eel A dee] = (1)2 A dee2 ( :~0), 
091 A dee2 = -032 A deel. 

Notice that these equations can also be written as co A dco = 0 with ee = 
eel + ice> 

We say that the pair (eel, e)2) is' a Cartan structure on M 3 i f  the following 
equations are satisfied: 

eel Adeel = 0)2 Adee2 (4:0) ,  
eel A dee2 = 0 = (D 2 A deel. 
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Remarks. (1) By slight abuse of  language, we shall usually refer to (uJl,~2) 
as the (taut) contact circle. Also, we shall sometimes use the expression "equal 
volume contact forms" for contact forms that define the same volume form. 
This should cause no confusion since "volume" in its more restricted meaning 
of  integral of  a volume form over a manifold will not be used in this paper. 

(2) The Liouville-Cartan forms on the unit cotangent bundle ST*~ of  a 
Riemann surface 2; can be written in local coordinates as ~oa = Pl dqL + P2 dq2 
and ~o2 = Pl dq2 - p2 dql,  where ql + iq2 is a local complex coordinate on 2; 
and the pj  are the dual coordinates of  the q~. It is then a straightforward check 
that (~ol, ~J32) is a Caftan structure. 

(3) Our terminology "Cartan structure" seems justified by the fact that 
the Liouville-Cartan forms play an important r61e in E. Cartan's theory of  
moving frames (where these forms arise in the structure equations for the 
natural Riemannian connection), as well as by the natural relation between 
Cartan structures and the Maurer-Cartan form of  certain Lie groups c~; this 
relation will be explained below. See in particular Section 7. 

(4) Clearly the forms col and o~2 of  a contact circle have to be pointwise 
linearly independent. One can also consider triples of  contact forms o~1, o32, ~o3 
such that any non-trivial linear combination with constant coefficients is a 
contact form. Then these forms parallelize the 3-manifold, and no such family 
o f  four or more contact forms is possible because they will be linearly de- 
pendent at every point. In analogy with Definition 1.1 we call such a triple 
(~ol,o~2,~o3) a contact 2-sphere, and again we have the corresponding notion 
o f  a taut contact 2-sphere. A particular case of  taut contact 2-sphere is an 
S2-Cartan structure, defined as a triple (~ol,oJ2,o~3) where each pair (co,,~oj) 
is a Cartan structure in the sense o f  Definition 1.1. 

Our main classification result is the following. 

Theorem 1.2 Let  M 3 be a closed 3-manifold. Then M 3 admits a taut contact 
circle i f  and only i f  M 3 is diffeomorphic to a quotient o f  the Lie group 
under a discrete subgroup F acting by left multiplication, where ~,~ is one o f  
the Jbllowing. 

(a) S 3 = SU(2), the universal cover o f  SO(3). 

(b) SL2, the universal cover o['PSLzIR. 
(c) E2, the universal cover o f  the Euclidean group (that is, orientation 

preserving isometries o f  IR 2 ). 

All these maniJblds admit a Cartan structure. 

It is well-known that two 3-manifolds in Theorem 1.2 o f  different type (a), 
(b), or (c) cannot be diffeomorphic. See [23], as well as Section 5.3, for a 

detailed description o f  the Lie group SL2, and Section 5.4 for a description 
of  E2. All the manifolds in Theorem 1.2 are Seifert manifolds whose Seifert 
invariants can be described explicitly [21], see also [9]. We also note that 
the left-quotients o f  E'2 are precisely the TZ-bundles over S I with periodic 
monodromy, and there are exactly five such manifolds (up to diffeomorphism). 
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To explain the main ideas in the proof of  this theorem and in order to give 
a reasonable classification criterion for contact circles, we need to introduce 
the concept of  homothety. 

Given any smooth function v and a 1-form ~o on M 3, we have 

(vo9) A d(v~o) = I)2( .o/~ do.  

This implies that if (~ol,co2) is a contact circle on M 3 and v a nowhere zero 
function, then (wol,vo92) is also a contact circle. Furthermore, we can rotate 
the forms ~Ol, (D2 by a constant angle 0. If  we set 

o~' I = ool cos 0 - ~o2 sin O, 

o~ = ~ol sin 0 + co2 cos 0, 

then (co],~o~) is again a contact circle, in fact, the circles spanned by ~ol, 6o2 
' ' respectively, are identical. This suggests the following definition. and co I, ~o2, 

Definition 1.3 The homothety class of  a contact circle (co1,~o2) is' the col- 
lection o f  all pairs (oo'l, ~o' 2) obtained jJ'om (~Ol, CO 2 ) by multiplication by the 
same positive Junction v and rotation by a constant angle O. 

The relation o f  a homothety class to a representative (~o1,~o2) is analogous 
to the relation o f  a contact structure ~ to a contact form co defining ~ = ker ~o. 

Notice that if a contact circle is taut, then so are all the contact circles 
homothetic to it. Hence, rather than classifying taut contact circles, one wants 
to classify their homothety classes. 

The key step in the proof  of  Theorem 1.2 and the classification results 
that will be stated below is the following theorem ( =  Corollary 3.12), which 
points to a close relationship between the theory of  taut contact circles and 
holomorphic geometry. 

T h e o r e m  1.4 There is a natural bijection between the Jollowing families: 
(i) Homothety classes o f  taut contact circles on M 3, where we identify 

homothety classes that are equivalent under a diJfeomorphism of  M 3. 
(ii) Pairs (S~,.), where S is a complex surface and X,. is a nowhere zero, 

holomorphic vector fieM on S, satisfying the following two conditions: 
(1) There exists a di]feomorphism S ~ M3 • IR taking X = 2REX,. 

to c3t, 
(2) There exists some holomorphic symplectic form ~2 on S satisfying 

the identity Lx, ~2 = f2. 
In particular, i f  M 3 admits a taut contact circle, then M 3 • S I is a com- 

pact complex surface. 

The proof of  the necessity part o f  Theorem 1.2, that is, that no other 3- 
manifolds than those listed in the theorem admit a taut contact circle, is then 
carried out in three steps: In Section 4 we classify complex surfaces (up to 
diffeomorphism) o f  the form M 3 • S 1 with holomorphic S l-actiOn, in Section 5 
we classify (up to biholomorphism) those complex surfaces of  that form that 



Contact geometry and complex surfaces 151 

can arise from a 3-manifold M 3 admitting a taut contact circle, and finally we 
consider the possible holomorphic Sl-actions on these complex surfaces and 
determine which 3-manifolds occur as quotients under such an action. 

Section 3 lays the technical groundwork for this classification scheme. 
There we give formulae for recovering the pair (coj,~o2) from the complex 
surface (Proposition 3.10) and provide a universal local model for taut contact 
circles (Theorem 3.6). 

For the sufficiency part of  Theorem 1.2, that is, to prove the existence of  
a Cartan structure on each of  the manifolds listed there, a simple Lie algebra 
argument is used. Let ~ be one of  the (simply-connected) Lie groups in The- 
orem 1.2. We express the Maurer-Cartan form e)0 of  f# in terms of  a basis 
el, e2, e3 for the Lie algebra of  f~, 

090 ~ cole I q- 602e 2 4- (03e3, 

and show that the basis el ,e2,e 3 can be chosen in such a way that (r 
defines a Cartan structure on fr (and such that (m], ~2, ~o3) defines an S2-Cartan 
structure if fr = SU(2)).  These structures clearly descend to any left-quotient. 
The details of  this existence proof will be given in Section 2. 

We shall also see in Section 2 that if we fix a discrete, cocompact subgroup 
F C ~ then the above construction, for all admissible choices of  Lie algebra 
basis, yields Cartan structures on F \ ~ which are diffeomorphic to one another 
in a natural way. We thus consider these Cartan structures as one, which we 
call the standard Cartan structure for this choice of  the subgroup F. In Section 6 
we shall give a more concrete description of  the standard Cartan structures in 
terms of  holomorphic objects. Given a manifold M 3 from Theorem 1.2, there 
is a discrete, cocompact subgroup F of  f# and a diffeomorphism F \ c~ ___+ 
M 3. Then we can use this diffeomorphism to push forward to M 3 a standard 
Cartan structure on F \ f#. But the diffeomorphism type of  M 3 alone need not 
determine the choice of  F. The conjugacy class o f  F need not be determined 
either. So there may be non-equivalent standard Cartan structures on M 3. 

Liouville-Cartan forms are a particular case of  standard Cartan structures. 
To see this, notice that the Lie groups ~ in Theorem 1.2 are the universal 
covers o f  the groups of  orientation preserving isometries of  S 2, the hyperbolic 
plane H 2, and the Euclidean plane E 2, respectively. If  S is a real surface with 
metric o f  constant curvature 1, - 1 ,  or 0, then given a description of  S T * X  
as a left-quotient of  re, the Liouville-Cartan forms on S T * S  lift to a pair of  
linearly independent, left-invariant forms on ~ which can be used as a choice 
for ~ol and o)2 in the above construction. 

We now define a further equivalence relation on taut contact circles. 

Definition 1.5 A taut  contac t  circle (~o'1,~o~) is called homotopic to a taut  

contact  circle (ooj, ~o2 ) i f  there is a smoo th  1-parameter  f a m i l y  o f  taut  contac t  
circles (~o~, ~ot2) with 0 0 , , ((DI,fD2) ~- ((DI, CO2) and (co11, o4)  = (fOI,(D2). 

In Section 6 we use the results of  Sections 3 and 5 to classify homothety 
classes. In particular, we prove the following theorem. 
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T h e o r e m  ! .6 Let  (o)t,~o2) be a taut contact circle on a (compact) left- 
quotient M 3 o f  one o f  the Lie groups ~ listed in Theorem 1.2. 

I f  fr = S'L2 or E2, then there is a particular discrete subgroup F o f  ~ and 
a diffeomorphism F \ ~--+ M 3 which pulls' back (~oj,~o2) to a taut contact 
circle that is homothetic to the standard Cartan structure on F \ (~. The same 
is true i f  M 3 is a left-quotient o f  S 3 under,a non-abelian discrete subgroup. 

I f  M 3 is' diffeomorphic to F \ S 3 with F trivial or cyclic, then there are 
taut contact circles on M 3 that are not homothetic to any Cartan structure, 
and there are also Cartan structures that are not equivalent to the standard 
one up to homothety and diffeomorphism. 

I f  M 3 is a left-quotient o f  S 3, then M 3 admits a unique taut contact circle 
up to homotopy and diffeomorphism. 

In all cases, f o r  any taut contact circle ( ~ ,  ~02) on a left-quotient M 3 o f  
fr there is a discrete subgroup F oJ" (~ and a diffeomorphism F \ ~ ~ M 3 
which pulls back (~01,c02) to a taut contact circle that is homotopic to the 
standard Cartan structure. 

As a by-product of  the proof o f  Theorem 1.6, we determine the moduli 
space of  homothety classes on the lens spaces L(m, m - 1) (including L(1,0) = 
$3). To give a flavour of  these results, we state the classification theorem for 
taut contact circles on S 3. 

P r o p o s i t i o n  1.7 There are two disjoint families o f  taut contact circles on S 3, 
up to homothety and diff'eomorphism. The f irst  fami ly  is given by 

o)l + ic02 = j*(azldz2 + (a - 1 )z2dzl ), 

where j denotes the standard inclusion o f  S 3 as the unit sphere in C 2, and 
the complex number a satisfi'es 0 < Re(a) < 1. Different values a and a ~ 
yield equivalent taut contact circles i f  and only i f  a' = l - a. The homothety 
classes containing Cartan structures correspond to the real part (0, 1 ) o f  that 
slab. 

The second fami ly  forms" a discrete set {P,} and is given by 

oJ1 + i~02 = j* (nZ ldZ2-  z2dzl + z~dz2), - 

where n ranges over the positive integers. These homothety class'es do not 
contain any Cartan structures. 

The existence of  non-trivial moduli shows that the analogy described above, 

contact form/contact structure ~ , taut contact circle/homothety class 

fails in one important respect. Contact structures are stable, that is, if two 
contact forms on a closed manifold are homotopic through contact forms, then 
the underlying contact structures are diffeomorphic (in fact, isotopic). Thus, 
in spite of  the existence o f  a universal local model for taut contact circles 
- a "Darboux theorem" in the language of  symplectic and contact geometry 
- there is no global stability, i.e., homotopic homothety classes are not, in 
general, isotopic. 
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Corollary 1.8 Homothety classes o f  taut contact circles do not satisJ)~ global 
stability. 

It will be shown in Section 6 that Theorem 1.6 also entails the following. 

Corollary 1.9 I f  (ol is a contact form (on a closed 3-manifold) that is part 
o['a taut contact circle (~o1,~)2), then the contact structure ~1 = kere)~ is 
tight. 

See [5] for the definition and relevance o f  a contact structure being tight. 
We have already pointed out that the left-quotients of  SU(2) admit an S 2- 

Cartan structure. We shall see that no other manifolds admit a taut contact 
2-sphere. 

Theorem 1.10 Let M 3 be a closed 3-manifold. Then M 3 admits a taut contact 
2-sphere (/'and only i f  M 3 is diffeomorphic to a quot&nt o f  SU(2) under a 
discrete subgroup acting by left multiplication. 

This theorem will be proved in Section 8. 

We close this section with a few remarks on (non-taut) contact circles. 
Since the first version of  this paper was written, we have made considerable 
progress on the existence problem for contact circles, and there is evidence that 
such structures exist on every closed 3-manifold. For the moment, however, 
we only state the following theorem, which is proved in [10]. 

Theorem 1.11 Let M 3 be the connected sum o f  any number of  copies of  the 
Jollowing maniJbMs. 

(a) All the mani['olds' listed in Theorem 1.2, 
(b) T2-bundh's over S l, 
(C) S 2 x S I. 

Then M 3 admits a contact circle consisting o f  tight contact structures. 

We have an ad hoc construction o f  a contact circle on each of  the inde- 
composable manifolds listed in the theorem, and we can show that at least 
in the neighbourhood of  some point on the manifold this contact circle may 
be assumed to satisfy the equal volume condition. Then, based on the local 
model for taut contact circles and the connected sum construction in [12], we 
can show that one can attach 1-handles near points where the contact circle is 
of  equal volume and extend the contact circle over this 1-handle. 

Section 3 discusses the close relationship between taut contact circles and 
holomorphic geometry. To give a simple example that illustrates the failure 
of  complex geometric methods in the general setting, we may consider the 
manifold IRp3#1RP 3. This manifold admits a contact circle by Theorem 1.11, 
but (IRp3#1RP 3) x S l does not admit any complex structures (cf. [27]). 

See also [6] for related results in 4-dimensional symplectic geometry. 
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2 P r o o f  o f  Theorem 1.2 - P a r t  I 

In this section we prove that the manifolds listed in Theorem 1.2 do indeed 
admit a Caftan structure. In fact, on each left-quotient F \ fr we construct a 
particular Caftan structure which depends only on the subgroup F, and we call 
this the standard Cartan structure for the subgroup F. 

The reader may wish to refer to [19] for the basic facts on the relevant 
3-dimensional Lie algebras, in particular, the existence of  bases with the prop- 
erties described below. 

The Lie algebra off#  (where ~ : SU(2),  S'L2 or/72) admits a basis el,e2,e3 

with 
[el,e2] = ee3, [e2,e3] = el, [e3,el] = e2, 

where c = 1 for SU(2),  e = - 1  for S-s and e = 0 for/72, respectively. 
Let (01, (02, ~03 be the coframe dual to el,e2,e3. In other words, (01, (02, ~03 

are the components of  the Maurer-Cartan form of  fg in terms of  the basis 
el,e2,e3 for the Lie algebra o f  ~. We regard the ei as left-invariant vector 
fields on N, so the 0~, are left-invariant 1-forms on ff. Let Vol be the left- 
invariant volume form on fr such that Vol (e l , e2 , e3 )=  --1. Then 

091 A d~ol(el,e2,e3) = d(01(e2,e3) = -~Ol([e2,e3]) = - 1 ,  

Thus (01 A deol = Vol. Similarly, we see that 

co2 A d~o2 = Vol, 

and 

(03 A d~3 = c Vol, 

co iAd~o j=O for i 4 j .  

Hence, (~o~,o92) is a Cartan structure on if, and this structure descends to 
any left-quotient. 

Remark. As mentioned in Section 1, there are only five compact left-quotients 
of/72 (cf. [21]), namely, the TZ-bundles over S I with periodic monodromy. 
(Up to taking the inverse and transposition, there are exactly five periodic 
matrices in SL2;~.) This allows to give explicit descriptions ~of these manifolds 
as quotients of  IR 3, and to write down explicit formulae for the Caftan structure 
((01,~o2). 

For instance, consider the manifold M s corresponding to the monodromy 

0 J ) o f  period 4. We can regard M 3 as the quotient of  IR s under matrix ( _j 0 

the group F generated by the three maps that send (x, y , z )  E IR 3 to 

respectively. Set 

(x + ~ , z , -  y), (x, y + 1,z), (x, y ,z  + 1), 

~ol = cosx dy - sinx dz, 

032 = s inxdy  + cosxdz .  

These forms are invariant under F and induce a Cartan structure on M 3. 
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We notice that in fact (col, 0)2, 0)3) is a left-invariant S2-Cartan structure 
on SU(2).  More generally, let V3* be the space of  lefl-invariant l-forms on (~ 
and define a bilinear form B(.,-)  on V3* as follows: 

/~ d/~ : ~(~,/~) Vol; ~, ~ ~ v;. 

Then the matrix of  this bilinear form with respect to the basis 0)1,0)2,0)3 is 
diagonal, with diagonal entries 1, 1,s. Hence B(. , . )  is a symmetric bilinear 
form, and it corresponds to a quadratic form Q* on V3*. The value of  Q* on 
the general element 210)i + 22(02 Av 23603 of V3* is 

(a) 22 + 2~ + 22 for (r = SU(2),  

(b) 2~ + 2~ - 2~ for fg : SL2, 
(c)  ;~,~ + ,~  for ~ = ~:2, 

that is, we have a 1-sheeted hyperboloid of  left-invariant equal volume contact 

forms on SL2 (and a 2-sheeted hyperboloid of  equal volume contact forms with 
volume form - Vol), and a cylinder of  equal volume contact forms on/22. 

Notice that the left-invariant Cartan structures on N are (constant multiples 
of) the orthonormal bases for the 2-planes in //3* on which Q* is positive- 
definite. 

For N = SU(2)  or SL2, the coadjoint representation of  .~g on //3* covers the 

full orientation-preserving isometry group of  Q*. For E2, it covers the group of  
orientation-preserving isometries of  Q* which fix every element of  the null line 
lRo3. From this it follows that given any two left-invariant Cartan structures 
on f~' there is an element 7 E N such that right multiplication by Y takes one 
Cartan structure to (a constant multiple of) the other. 

Now, right multiplication by the elements of  ~4 descends to any left quotient 
F \ N, and so the Cartan structure we have constructed on F \ f(g is unique, 
up to diffeomorphism and constant factor, once the subgroup F c (~ is given. 
We call this the standard Cartan structure on F \ ~. 

3 The complex structure 

In this section we establish the relationship between taut contact circles and 
complex surfaces. 

In Section 3.1 we study the basic linear algebra of  1-jets o f  contact circles. 
A natural consequence is the construction of  an almost complex structure from 
certain pairs o f  2-forms. This construction applies to contact circles, where 
it yields an almost complex structure with special features. We discuss these 
features in Corollary 3.3 and in Proposition 3.4. 

In Section 3.2 we discuss the integrability of  the almost complex structure 
and show that it is related to tautness in a very strong sense. 

In Section 3.3 we begin the investigation of  the converse o f  this construc- 
tion, where taut contact circles are derived from holomorphic objects. This 
construction is universal enough to allow a classification of  the possible 3- 
manifolds admitting taut contact circles, o f  the homothety classes of  taut con- 
tact circles (up to diffeomorphism), and of  which homothety classes contain 
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Caftan structures. We end the section with a brief sketch o f  the programme 
for solving these classification questions. 

At several places in this section we deal with open 3-manifolds. These 
results are not needed in the sequel, but we include them for the sake of  
completeness. 

Notation. Throughout this section we use U to denote a not necessarily closed 
3-manifold. As in the rest of  the paper, we reserve the notation M 3 for closed 
3-manifolds. We shall often consider the product U • IR, and then t will denote 
the lR-coordinate. 

Given a pair (~ol,~o2) of  1-forms on U, then the complex 1-form ~oj + ir 
will be denoted ~o. An asterisk as exponent of  a real or complex 1-form on U 
indicates the pullback o f  that 1-form under the obvious projection U • 1R --, U. 

3.1 Construction and properties of  J 

It is well-known that a 1-form ~j  on U is a contact form if and only if  the 2- 
form d(et~o~) is a symplectic form on S = U • IR. Thus, a pair (oh,~o2) of  1- 
forms on U is a contact circle if  and only if any non-trivial linear combination 
o f  d(e*m~) and d(et~3~) is symplectic on S. 

This is a non-degeneracy condition for the pair 

d(e'o~ )p , d(et ~ ) p  

at each point P C S. We are now going to analyze the linear algebra o f  this 
non-degeneracy condition. 

To that effect, let V4 be a 4-dimensional real vector space and set V6 = 
A 2 V4*. Then on V6 we define a symmetric bilinear form Q by 

Q(A',A") =A '  AAr';  A',A" E V6, 

where A4V~ has been identified with IR. Note that Q has signature (3, 3). The 
problem is to understand the real 2-dimensional vector subspaces o f  V6 on 
which Q restricts to a posititve-definite form. We call such~subspaces positive- 
definite planes. 

It turns out that, up to linear isomorphism of  V4, there is only one positive- 
definite plane in V6. Moreover, these planes (with an orientation chosen) are 
in one-to-one correspondence with the complex structures on V4. 

In order to state the precise theorem, notice first that a 2-plane in V6 is 
positive-definite if and only if  it admits a Q-conformal basis, that is, a basis 
{AI,A2} with 

Q(AI,AI) = Q(A2,A2) > 0 and Q(A1,A2)= O. 

Theorem 3.1 Given a non-zero, complex-valued, anti-symmetric bilinear form 
6) = Ai + iA2 on V4, the following are equivalent: 

(1) There is a complex structure J on V4 for which 6) is' of  type (2,0), 
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(2) We have 0 2 = 0, and the real part  o f  6) is non-degenerate, 
(3) The pair A L,A2 is a Q-cor![ormal basis Jor a positive-definite 2-plane 

inV6. 
Moreover, i f  A~l,A~ is another Q-conformal basis Jor the same plane, giving 
the same orientation as AI,A2, then 6)' = A' 1 + iW 2 equals c 6 ) f o r  some com- 
plex number c. Thus we have a bijection between oriented positive-definite 
planes in V6 and complex structures on V4. 

A 2-plane in V4 is a complex line Jor J i f  and only i f  6) induces the zero 
f o rm  in this 2-plane. 

Remark�9 Another characterization of the Q-conformal bases A~I,A~ defining the 
given orientation is 

A' 1 = A~2(J., . ), 

as A~ ranges over the non-zero elements of  the 2-plane. Therefore the opposite 
orientation in the plane corresponds to - J .  

Proof  Given A1 and A2, consider the complex-valued 2-form 6) = AI + iA2. 
A quick calculation shows that the equations 

Q(AI,A�91 = Q(A2,A2) and Q(AI,A2) = 0 

are equivalent to O 2 = 0. On the other hand, the algebra of anti-symmetric 
complex-valued forms on V4 is identical to the exterior algebra over C of the 
complex vector space V] + iVy. Hence, from 6)2 = 0 we deduce the existence 
of a pair of complex-valued linear forms d and (~ on //4 such that 6) = ( A d'. 
Separating these linear forms into their real and imaginary part, 

{ = #1 + i[2, 
�9 , I  

dt = ('l + t(2, 

we get the identities 

AI = { i  A d~j -- (2 A dt2, 

A2 ={i A{~+d2Afl, 

and the extra requirement that Al have rank 4 implies that {{1,~2, f/i,{~} is a 
basis for V4*. These formulae provide a universal model for the Q-conformal 
bases of positive definite planes; in particular, this implies that such planes are 
unique up to linear isomorphisms of V4. 

The map 
( f ,  f l )  : V4 ) (~2 

is a real isomorphism, and it is clear that the only complex structure o n  V 4 for 
which O is of  type (2,0) is the one pulled back from C 2 by this isomorphism. 
Then ( and d' become complex linear coordinates for V4. If one wants to see 
this complex structure as an endomorphism of V4 whose square is -1 ,  one 
only has to take the unique automorphism J of V4 which satisties the identity 

AI( ' ,  ") = A2(J' ,  "). 
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It is a straightforward check that 

Ai(J . ,J . )  = -Ai( . , . ) ,  i =  1,2. 

I f  Bt,B2 is a different positive Q-conformal basis for the 2-plane spanned 
by AI,A2, we have 

B i = r A i - s A 2 ,  

B2 = sAi § rA2, 

or 
Bi + iB2 = (r + is)(Ai + iA2). 

This implies that B1 and B2 are related by the same complex structure J .  
Conversely, we see that the automorphism relating a basis BI,B2 that is not 
Q-conformal is not a complex structure, because it equals c ~ - (identity) + c"J 
with c ~ + c" i 4= • i. 

To prove the last statement of  Theorem 3.1, we first observe that the (2, 0)- 
form 6) induces the zero form on any complex line, since O(e, Je) = iO(e, e) = 
0 for any e E V. On the other hand, if  {el,e2} is the basis of  a 2-plane in V4 
which is not a complex line, then the vectors ej, e2 are also linearly independent 
over ~ (which acts on V4 via J ) ,  and in the factorization O = E A #' we can 
choose { and E ~ so that 

d(el) = 1 , d ( e 2 ) =  0 ,  dt(e2)+O, 

and O(ej ,e2)  = E'(e2)#:0. 
This completes the proof  of  the theorem. 

The following is immediate. 

Corollary 3.2 Let (21,02 be 2-forms on a 4-maniJbld W such that any non- 
trivial linear combination is o f  rank 4. Then there is" a unique almost complex 
structure J on W such that the (non-vanishing) Jbrms o f  type (2, 0) .['or J 
are precisely those o f  the form Ai + iA2, where at each point A1,A2 is a 
Q-conformal basis J'or the plane spanned by (21, (22 and defining the same 
orientation as 01,02. 

A real surface C in W is a J-holornorphic curve i f  and only i f  it is almost 
Lagrangian for  both (21 and 02, that is, (2i[TC -= 0, i = 1-,2. 

Remark. The characterization of  holomorphic curves in this corollary is similar 
to the class of  special Lagrangian surfaces in ~4 ,  as studied in [14]. 

The unique 2-form (2(J) o f  type (2 ,0)  and with real part (2] is 

(2(1) = 01 + i(21(-J' ,  "). 

Stated a different way, we have (2(1) = (21 + i(2~l, where (2t] is determined by 
the following three conditions: 

�9 {Qt, (2~ } and {(2a, (22} define the same oriented plane at each point, 
�9 (21 A (21 ---- O'1 A ~2~, 
�9 (21A(2~ - 0 .  

Thus (2(1) equals (21 + i(22 if and only if ((2! + iO2) 2 ~ 0. 
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Corollary 3.3 Let (O)1,O92) be a contact circle on a 3-manifold U. Then the 
jbrms ~i = d(do3*), i = 1,2, on S = U • ~ satisfy the conditions o f  Corol- 
lary 3.2, and so S inherits an almost complex structure J. Th& structure & 
&variant under translation in the direction o f  the factor IR of  U • JR, i.e., 
the f low o f  ~t is by automorphisms o f  J. 

Moreover, i f  we define (~ = QI + iQ2, we have the identities 

L~,~ = O and co =j~(O~J~2), 

where jo maps U into U • 1R by p ~-+ (p,O). The contact circle & taut i f  and 
only i f  Q & o f  type (2,0) with respect to J, that is, i f  and only i f  ~ 2 ~ O. 

Proof  The identities are straightforward. Also, we compute 

~22 = 2e2tdt A co* A dco*, 

so the identity ~22-  -- 0 is equivalent to m A d c o -  0, which is the tautness 
condition. 

Finally, we have to check the statement on translational invariance of  J .  The 
flow in time to pulls back 121,(22 to et"f21,et~ respectively. So the pulled- 
back 2-forms still span the same oriented plane at each point, and therefore 
determine the same J .  Because of  the naturality of  the construction in Corol- 
lary 3.2, the pulled-back d equals the almost complex structure induced by the 
pulled-back forms. This proves the statement. 

The tangent bundle of  an almost complex manifold S diffeomorphic to 
U • IR (or to U x S I ) splits into the complex tangencies to the level sets Ut,, = 
{t = to} and the complex lines spanned by c~,. In the case of  the construction 
in Corollary 3.3, this specializes further, as explained in the next proposition. 

Proposition 3.4 Let J be the almost complex structure constructed in Corol- 
lary 3.3. The complex tangencies to the level sets Ut~ = {t = to} are spanned, 
as real planes, by the Reeb vector fields ~j and ~2 of COl and ~2, respectively. 
The complex line spanned by Ot equals + the real 2-plane spanned by ~t and 
the line 

ker cot N ker co2 in TUto. 

Thus TS is topologically trivial as a complex vector bundle. 
The contact circle (cot,co2) is taut i f  and only i f  J~t = ~2. 

Proof  Lift ~j and ~2 to U • IR as vector fields tangent to the level sets o f  t. 
Then we have 

~21(~j, ~2) = e'(dt A ~o~ + dm~)(~l, ~2) = d(~lJd~o~)(~2) = 0. 

Likewise ~22(~1,~2)= 0. By Theorem 3.1, the plane o f  ~1,~2 is a complex 
line. 

Let Y be a non-zero vector field on U which spans kercol A kerco2, and 
lift it to U x IR as tangent to the level sets o f  t. Then, for k = 1,2, we have 

(2k(Ot, Y) = et(OtJ(dt A co~ + dco~))(Y) = etco~(Y) ~ O. 

Thus the span of  0t and Y is a complex line. 
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Finally, we prove the equivalence between tautness and the equality J~I = 
~2. We have seen in Corollary 3.3 that i f  O (l) = Oi + iO'j is the (2 ,0)-form 
with real part Ol (that is, ~/ l (J . , . )  = ~?l), then the contact circle is taut if and 
only if O~j = O2. We have 

~2JO2 = - e td t  = ~.IJOI = (J~_l)JO'l. 

Hence, if  Or1 = O2, then the non-degeneracy of  this form implies J~.l = ~2. 
Conversely, suppose J~l = ~2. Then ~2JO' l = -etdt .  Now O~ is a (point- 

wise) linear combination of  f~2 and Oi. But ~2jOI induces a non-zero form 
on the level sets o f  t, since d2Jdcnj =t=0 (because of  the linear independence of  
dcol and dco2). Thus we must have ~2' 1 = O2. 

We now address the issue of  integrability of  J ,  first for the construction in 
Corollary 3.2, and then, in Section 3.2, for that o f  Corollary 3.3. 

Proposit ion 3.5 Let 01,02 be as in Corollary 3.2 and suppose O 1 is closed. 
Then J is integrable i f  and only ~['the (2,0)-[brm O (I) = O1 + iO~l is closed. 

Proof The assumption that the (2 ,0)-form O (I) has closed real part ~l  can 
be written as 

d ~  (~) + df2I~) = 0. 

But for integrable J the form dO (1) is o f  type (2, 1), while the form dE20) is 
o f  type (1,2).  Thus they must be zero separately, so O (I) is closed. 

Conversely, if O~l) is closed, then we deduce integrability of  J by using 
the Newlander-Nirenberg Theorem as follows. I f  XI and )(2 are complex vector 
fields of  type (0, 1), then ~2(1)(X1, . ) =  ~'~(l)(x2, ' ) ~  0 and one computes 

0 = dQ(I)(XI,X2,Z) = -Q(I)([X1,X2],Z), 

for any complex vector field Z. Hence [XI,X2]] ~2 ~j) = 0, thus [X1,X2] is of  
type (0, 1), which implies that J is integrable. 

Remark. Theorem 3.1 and Proposition 3.5 together imply that a complex, 
closed 2-form O on a 4-manifold W is holomorphic symplectic with respect 
to a (necessarily unique) complex structure J on W if and only if  O 2 = 0 and 
Re(O) is symplectic. Proposition 3.5 says that if  Ol is closed and if O1,(22 
induce an integrable almost complex structure, then we can induce the same 
structure from a holomorphic symplectic form. See [6] for more information 
on these symplectic aspects of  the theory. 

3.2 Tautness and integrability 

The almost complex structure induced from a taut contact circle is always 
integrable. We can deduce this from Proposition 3.5 and Corollary 3.3, in which 
case we would be quoting the Newlander-Nirenberg Theorem. But actually we 
do not need this theorem, because the local model for taut contact circles 
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that we develop next provides a special holomorphic atlas. This approach was 
suggested to us by the referee. 

I f  w,z are complex-valued functions on some domain in U, we are go- 
ing to use w*,z* to denote their respective pullbacks to U x Ill as functions 
independent of  t. 

Theorem 3.6 A taut contact circle 0ol ,  o92) o n  U ahvays admits the followin# 
local expression, 

col § ico2 = w dz, 

where w and z are suitable local complex-valued fimctions. 

Conversely, 9iven w and z, the real and imaqinary part o f  w dz form a 
taut contact circle i f  and only ( f  w is nowhere zero and the map (w,z )  is 
an immersion transverse to the radial directions o f  the f irst  .['actor o f  ( ~ -  
{0}) x ~.  That is, the map (w/Iwt,z) must be an immersion into S 1 x IF.. 

I f  we take all such pairs (w,z )  fo r  a .qiven taut circle on U, with domains 
restricted to make them embeddinys, then the maps (etw*,z *) on U x IR 
jorm a holomorphic atlas. The correspondin9 comph'x structure is that f rom 
Corollary 3.3. 

Proof  Let Y be a vector field on U which spans kercot Nkerco2. Since col 
and co2 are everywhere linearly independent, the complex 1-form co = cot + ico2 
defines a real isomorphism from the quotients TpU/(Y)  onto It.  Let Jo be the 
unique complex structure on TU/(Y) making co a complex isomorphism on 
each fibre. Since the flow of  Y preserves Y, it induces isomorphisms between 
fibres of  TU/(Y).  These isomorphisms preserve Jo i f  and only i f  Lye) is a 
complex multiple o f  co. 

Now, taking interior product with Y in the tautness condition co A dco =- 0, 
we get - co  A Ly(o =_ O, which implies "that Lyco is a complex multiple of  co 
since co is nowhere zero. Thus Jo is indeed invariant under the flow of  Y. 

Let now (Uo,Xl,X2,X3) be a flow box for Y as follows. The image o f  
Uo under the coordinate maps (xl,x2,x3) is D • (interval) for some domain 
D C_ IR 2, and in these coordinates Y is ~ , .  The invariance of  Jo under the flow 
of  Y now means that there is a unique almost complex structure on D of  which 
Jo is the natural lift. As D has complex dimension one, we have by the classical 
result of  Gauss (extended to non-analytic metrics, as for example in the work 
of  Ahlfors-Bers) that there are local holomorphic coordinates z = x + iy for 
this structure on D. We can shrink Uo so as to make z defined on all of  D. 
Lift z to D x (interval) as constant in the interval direction, and then pull it 
back to Uo. Now dz is a complex 1-form on (2o with the same null line (Y) as 
co, and defining the same transverse complex structure Jo. Therefore co = w dz 
for some complex-valued function w on Uo. 

For the converse, start with complex functions z = x + iy and w, defined on 
a domain Uo C U. Clearly w must be nowhere zero i f  Re(wdz)  and Im(wdz)  
are to be contact forms. Then we can locally write w = re '~ for suitable real 
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functions r, 0, with r > 0, and (Re(re '~176 is a taut contact circle 
if and only if (Re(ei~ Im(ei~ is a taut contact circle. The latter is 

( cos O dx  - sin O dy, sin O dx + cos O dy ) , 

which is the pullback under the map (O,x,y)  of  the Liouville-Cartan forms 
on the unit tangent bundle of  the Euclidean plane. Therefore we have a taut 
contact circle if and only if the map (O,x, y )  has rank 3 everywhere, and this 
is the same as (w/Iw[,z)  being an immersion. 

As for the last statement, it is obvious that e t w * d z * =  et~o *, so that if 
21 = e t w  * and if Z 2 = 2"* then dzl A dz2 = d(et~o*), hence ( Z l , Z 2 )  a r e  complex 
coordinates for the structure J which makes d(eto9 *) a (2, 0)-form. 

This concludes the proof of  the theorem. 

Remark. It is very easy to check directly that the coordinate changes between 
the maps (etw*,z *) are holomorphic. This gives a construction o f  J ,  in the 
case o f  taut contact circles, which avoids the linear algebra we have developed 
since Theorem 3.1. We have taken the longer route because it allows to treat 
more general situations such as that of  Corollary 3.2 and the case o f  non-taut 
contact circles. Furthermore, studying taut contact circles in this more general 
context, the integrability o f  J is seen to be equivalent to the tautness condition, 
in a sense made precise in the following propositions. This equivalence holds 
in a particularly strong sense for closed 3-manifolds (Corollary 3.9), but first 
we formulate two slightly more technical propositions. With these results we 
also begin the analysis of  how to recover taut contact circles from the induced 
complex structure. 

Proposition 3.7 I f  the almost complex structure J induced on U • IR by a 
contact circle (coa,co2) is inte,qrable, then it is also induced by a taut contact 
circle o f  the fo rm 

(~Ol,r/2) = ( r , ( h l /h2 )co I - (1/h2)~02), 

where  h2 < 0 and h = hi + ihz is a complex junction on U which extends 
over U x IR as a ~t-invariant holomorphic function. 

Proposition 3.8 I f  co = ~ol + i032 represents a taut contact circle on U, in- 
ducing J on U • IR, then the contact circles (hi,  n2) inducin,q J are precisely 
those ,qiven by 

nj + in2 = h~ oo + h"oo, 

for  any h', h" : U -+ 112 that extend as #t-invariant holomorphic .functions on 
U x IR and satisfy Ih"l < ]h' I everywhere. The circle (~l,zt2) is taut i f  and 
only i f  h" - O. 

Remark. I f  r / - -h 'o ) ,  then (Re(q) ,Im(q))  is a taut contact circle inducing J. 
We have ~1 + izr2 = 1/+ ~-~, with ,q -- h ' /h  +, and ,q being constant is equivalent 
to (~l,Ct~l +c2~z2) being taut for a suitable choice of  constants cl,c2 with 
c2 > 0. In general (for instance, for a small domain U), there is much more 



Contact geometry and complex surfaces 163 

freedom in the choice of  g (c3t-invariance of  g essentially means that g is 
a holomorphic function in one variable), so there are many contact circles 
(n~,n2) that yield an integrable J but which are not taut, even after passing 
to ( ~ , c ~  + c2~2) for any constants c~,c2. On the other hand, there wilt be 
cases where U is not closed but g is still forced to be constant, since it takes 
values in the unit disk. 

Corollary 3.9 For a closed manifoM M 3, the only contact circles induc- 
ing integrable almost complex structures on M 3 • IR are those o f  the form 
(~ol,cl~ol + c2~o2), where (091,c02) is a taut contact circle and cl,c2 are con- 
stants, with c2 > O. Such circles are the (positively oriented) ellipses centered 
at the origin in the plane of  ~o~ and 092. 

Proof of  Proposition 3.7. We have ~2k = d(et~o;), and (2 Ik) = ~2k + if2~ of  
type (2,0), k=l ,2 .  By Proposition 3.5 we know that f2 (1) and ~212) are holo- 
morphic symplectic. Thus (2 II) = hf2 (2), where h = hi + ih2 is a nowhere zero, 
holomorphic function. It follows that f22 = h i 0 1 -  hzf2tl, and the orientation 
requirements imply h2 < 0. We can then solve for f2' 1 : 

, hj f21 ~2 f21 = h22 - f22. 

Since L,~,~2k = •k, k = 1,2, and since ~21,(2' I is a Q-conformal basis for the 
plane o f  ~21,~22, we conclude that L~ g2' I = f2' I, and so L,-,(2 (I) = (2/I). Likewise 
L,,O 12) = g2 (2). This has the following consequences. 

�9 0 t h  = 0. 
�9 q2 = e-tOtJf2'l is a 1-form on U x IR satisfying L * �9 ~,q2 = 0 and t/~(~t) =- 

0. That is, t/~ is pulled back from a l-form on U, which we denote 02. 
�9 The identities L~,f2~I = f2~l and dO '  I = 0 imply (2~1 = d(etq~). So the holo- 

morphic symplectic form (2 (1) can be written as d(et(co~ + itl~)), which means 
that (r is a taut contact circle inducing J. 

It only remains to express q2 in terms of  col and co2. We have 

q~ = # ,J (e - '~ ' , )=  O,J [ ~ e  Q, - e-'02 

and restricting this identity to {t = 0} gives the desired expression for Y/2. 

Proof o f  Proposition 3.8. Let n~, k = 1,2, denote the pullback of  nk under 
the obvious projection U x lit --+ U, define //k = d(etn~), and define H~ by 
the requirement that 17 (k) = I I k  + iFl~ be of  type (2,0) with respect to J ,  for 
k = 1,2. We know that the H (k) are holomorphic. 

Since f2 = d(et(~o~ + i~o~)) is holomorphic symplectic for J ,  there are •t- 
invariant holomorphic functions htl),h ~2) such that H Ik) = h(k)Q, k = 1,2. 
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We consider 17 = 171 + ili2 = d(et(7c~ + i ~  ) ). This form is important for 
recovering ~1 and ~2, because e t ( ~  + i ~ )  = ~tJH. We compute 

H = R e / / 0 )  + / R e / / ( 2 /  

h~l) + h (I) + ih  ( 2 ) -  -- ih(2)(2 + (2, 
2 2 

which displays H as a form without (1, 1)-part. Let 

h (1) + ih (2) h (1) _ ih (2) 
h I - and h" - 

2 2 ' 

then 

et(rc~ + irc~) : OtJH 

-= h'O,j(2 + h"Otj~2 

= et(h'~o * + h"~o*), 

hence ~l + i ~ 2  = h~r + h"a~. 
We now have to prove that if  h ~, h" are 0t-invariant holomorphic functions, 

then ~j + iTc2 = h~r + h"~o represents a contact circle inducing J i f  and only 
if  [h"[ < [h'[. 

The holomorphic 1-forms dh~,dh",et~o * all annihilate ?t, therefore 

d h ~ /~ ~o * = d h " A o~* =_ 0, 

and so 

d(et(n~ + i ~ ) )  = h'd(eto~ *) + h"d(etco * ) = h 'Q + h"~2. 

At a point where h ~ = 0, the form d ( e t ( n t  + in~))  is o f  type (2,0)  with respect 
to the conjugate structure - J ,  and so (~1,~2) would induce - J  there. We 
conclude that h ~ is nowhere zero. 

Then 7 j = ht(2 is a holomorphic symplectic form for J ,  and 

d(et(rc~ + i7~))  = yt + gTJ, 

with g = h"/h ~. Consider the real and imaginary pans,  

: ~/'tl ~- i ~ 2  and g = ,ql + ig2, 

then (n j ,  n2) is a contact circle inducing J if  and only i f  d(e tn~)  and d ( d n ~ )  
are linearly independent and define the same orientation as ~uj, 7~2. Direct 
calculation yields 

t// _Jr_ g t / /  : (1 -+- ,ql ) I/'tl - -  ,q2 t//2 -~- i ( - - ( ]2  t//I ~- (1 - -  g l  ) t / / 2 ) ,  
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and the condition becomes 

0 < det ( l+g'-g2 1 -g2_ g, ) = 1 _ g~ _ g2, 

that is, [gl < 1. 
Notice that if  Igl > 1, we still get a contact circle, but the complex structure 

it induces is the conjugate one - J .  
Finally, the circle (~1,7r2) is taut if and only if d(e'(Tr~ + i~z~)) is of  type 

(2,0) with respect to J ,  and it is clear that this is equivalent to h" = 0. 
This finishes the proof of  Proposition 3.8. 

3.3 Construction and study via holomorphic objects 

For the remainder of  this paper, we consider taut contact circles only. 
Proposition 3.8 provides a construction of a family of  (taut) contact circles 

starting from a taut contact circle that serves as reference. The formula co = 
j~((?~J(2) of  Corollary 3.3 gives a clue as to how we can construct a family 
of  taut contact circles without starting with a reference one. Instead, we need 
a holomorphic 2-form f2 and a vector field X (playing the role of  (3,) and, to 
keep the situation of  Corollary 3.3, we impose the identity Lxf2 = f2 and that 
the flow of  X be made of  holomorphic maps. 

It is convenient to consider the complex vector field X,. dej(1/2)(X -- iJX), 
from which X is easily recovered as 2 ReX~.. Note that Xc is holomorphic if  
and only if the flow of X is made of  holomorphic maps. Also, as f2 is a (2, 0)- 
form, we have XJ f2 = X+J ~ and Lxf2 = Lx, ~2. Now all the relevant conditions 
can be formulated in terms of  the holomorphic objects f2,X~. 

Proposition 3.10 Let S be a comph'x surface on which we have 
(1) a nowhere zero, holomorphic 2-form f2, 
(2) a nowhere zero, holomorphic vector field Xc, 
(3) a real hypersurface j : U ~ S, 

and suppose that 
( i )  Lx, ~ = f2, 
(ii) j is transverse to X = 2ReXc. 

Then e91 + i~o2 = j*(XeJ(2) defines a taut contact circle on U which induces 
the complex structure o f  S i f  we identify a neighbourhood of  U x {0} in 
U x IR with a neighbourhood o f j ( U )  in S, taking 3, to X. 

A complex surface S comes from a taut contact circle as in Corollary 3.3 
i f  and only i f  it has a pair Xc, Q, satisfying (1), (2), and (i), and where 
2ReX~ is complete, with open orbits, and admits a global transversal which 
pierces each orbit exactly once. 

Proof Let G = XcJf2. This is a nowhere zero, holomorphic 1-form which 
satisfies 

doo=f2,  L x f f g = L x G = f f 9 ,  and ~ ( X c ) = o g ( X ) - 0 .  
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Since we are in complex dimension 2, we have local expressions if9 = zldzz,  
where zj = xl + iyl and z2 = x2 + iy2 are holomorphic functions, and zl has 
no zeros. Now d G =  f2 translates to dzl A dze = f2, hence zl ,zz  define local 
complex coordinates and we are back to the situation in Theorem 3.6, so let 
us compute the radial vector field in the zl-direction. 

The equation X,.J (dzl A dz2) = zl dz2 implies Xc = zl ~ , ,  therefore 

X = 2Re  (zlc3z,) = Xl~x, + yl0y, 

is the radial vector field in the zl-direction. By Theorem 3.6, the real and 
imaginary part o f  r =j*ff9 define a taut contact circle if and only if j is 
transverse to X. 

Consider now the immersion ~/', from a neighbourhood of  U • {0} in U • 
IR to a neighbourhood o f j ( U )  in S, which maps ( p , 0 )  c U • {0} to j ( p )  and 
whose differential takes t3t to X. Let J* be the pullback under q~ of  the complex 
structure o f  S. This is the unique almost complex structure for which r is 
a (2,0)-form. We have to show that J* agrees with the complex structure 
induced on U • IR by the taut contact circle (Re(co),Im(co)).  

The identities G(X) = 0 and Lxff9 = fro pull back to the identities 

(~*~) (Sr )  =-- 0 and L~,(~*G) = ~*~o, 

hence r = etco *, where co* is the pullback under the projection U x ~-~ ~ U 
of  j ~ * ~  = j * ~  = co, here j o ( p ) =  (p ,0) .  Thus J* is the almost complex 
structure for which r = d(er *) is a (2, 0)-form, i.e., the complex structure 
induced by the taut contact circle (Re(co), Im (co)). 

A real vector field X on S is Or, for some product structure S ~ U • IR, 
if and only if it is complete, with open orbits, and it has a global transversal 
piercing each orbit exactly once. 

The proof of  Proposition 3.10 is now complete. 

For col + i c o 2  = j*(XcJ~2) to define a taut contact circle, X = 2 ReX~. need 
not be ~3t for any product structure S ~ U • lR (indeed, X need not be com- 
plete), and the transverse immersion j need not be injective. But obviously 
we already get all taut contact circles if we restrict ourselves to quadru- 
ples (S, Xc, f2 , j )  satisfying (1), (2), and (i) of  Propostion 3.10, and where 
X = 2ReXc is complete, with open orbits, and j is an embedding transverse 
to X and piercing each orbit exactly once. The pair (X , j )  represents a product 
structure S ~ U • IR. 

The choice of  one such product structure is implicit in Proposition 3.8, 
because it gives all (taut) contact circles (7tl, rt2) such that J is the only almost 
complex structure for which d(#(Tt~ + irc~)) is o f  type (2,0). It is then clear 
that the projection S---+ U and the function t : S  ~ IR have been fixed in 
Proposition 3.8, and this is the same as fixing a product structure S ---- U x IR. 

Of the two data ( X , j )  which determine the product structure, we now allow 
changes in the second part j .  This gives a much larger family of  taut contact 
circles, which we again restrict by fixing a choice (up to a multiplicative 
constant) o f  the holomorphic 2-form. 
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Theorem 3.11 There is a natural bijection between the Jollowing families: 
(i) Homothety classes of" taut contact circles on U, where we identify 

homothety classes that are equivalent under a diff'eomorphism of U. 
(ii) Triples (S, Xc,(2), where S is a complex surface, X,. and ~2 satisfy 

(1), (2), and (i) of Proposition 3.10, and X = 2ReXr is complete, with open 
orbits, and has a global transversal diffeomorphic to U piercing each orbit 
exactly once. We identify two such triples (S, Xc,~2) and (S',X~,(2') i f  there 
is a biholomorphism between S and S r taking X~ to Xr and pulling E2 r back 
to a constant multiple of  s 

Proof The embeddings of  U into U x 1R, transverse to ~ and piercing each 
orbit exactly once are, up to reparametrization, the graph embeddings 

j ~ : U  ~ U •  

p ~ (p ,u(p) )  

for u any smooth function on U. 
We conclude that, for a quadruple (S,X~,~2,j) as above, the set of  embed- 

dings transverse to 2ReX~. and piercing each orbit exactly once is the set of  
reparametrizations of  the embeddings 

f~(p) = q0u(p)(j(p)), 

where qot is the flow of  2REX,., and u ranges over the smooth functions on 
U. Then j = j~, and the identity Lx(X,.J f2) = (XcJ f2) implies 

" r * x  ~2 (J,)  ( c] ) = e~j*(X,.Jf2). 

Therefore, if we let o91 +i~o2 =j*(X~Jf2),  then as jr ranges over all such 
embeddings, the taut contact circle made of  the real and imaginary part of  
j'*(XcJf2) ranges over all diffeomorphic copies of  the taut contact circles 
(e"o)l, e~co2), for any smooth function u on U. 

If  we further let z0 range over all complex constants, then the taut contact 
circle made of  the real and imaginary part of  f*(X,.](zof2)) ranges over all 
diffeomorphic copies of  all taut contact circles homothetic to (~ol,o)2). 

If  we drop the choice o f j  and consider the triple (&X,., f2), up to isomor- 
phism and multiplication of  f2 by complex constants, then we determine, up to 
diffeomorphism, a homothety class of  taut contact circles on U, in the explicit 
way we describe next. 

We first recover U as the orbit space of  X = 2ReXc. A more concrete 
model for U is provided by any transversal to X which pierces each orbit 
exactly once. Then the homothety class is recovered by inducing the 1-form 
XcJf2 in that transversal, and taking real and imaginary part o f  the induced 
form. 

Conversely, fix a taut contact circle (~ol,o)2) on U, and let (qj,r/2) be 
a homothetic taut contact circle. I f  we set co = co~ + i~o2 and q = r/~ + #12, 
then there are a function u and a complex constant z0 such that i / =  zoeUo). 
It follows from the proof of  Proposition 3.10 that if  q~ is the diffeomorphism 
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of  U • 1R which preserves 8t and satisfies ~boj0 = j u ,  then 4~ pulls et~o * 
back to et(eU~o) *, and therefore it pulls back the quadruple (S,X,.,f2,jo) to the 
quadruple (S',X,f,(1/zo)f2t,ju). Here S is U • IR with the structure J making 
(2 = d(e~e9 *) a (2,0)-form, and Xc = ( 1 / 2 ) ( 8 t -  tJSt); likewise S'  is U • IR 
with the structure J '  making f 2 / =  d(etq *) a (2,0)-form, and X,( = ( 1 / 2 ) ( 8 t -  
iJ'8t ). 

In particular, we see that homothetic taut contact circles induce complex 
structures on U • 1R isomorphic through a diffeomorphism which preserves St. 
Moreover, this diffeomorphism makes the corresponding holomorphic symplec- 
tic forms isomorphic up to a multiplicative constant. 

Theorem 3.11 is now proved. 

Corollary 3.12 Classifying homothety classes o f  taut contact circles on closed 
3-maniJolds, up to diffeomorphism, is the same as classifyin9 pairs (S, Xc) 
where S is a complex surface and Xc is a nowhere zero, holomorphic vector 

f ieM on S, satisfyin9 the Jbllowin9 two eonditions: 
(1) There exists a diffeomorphism S ~- M 3 • 1R taking X = 2ReXc to t3r. 
(2) There exists some holomorphic symplectic.form (2 on S satisfyinq the 

identity Lx, f2 = (2. 

Proof. The only fact that needs to be checked is that f2 is unique up to a 
multiplicative constant. The holomorphic 2-forms f21 satisfying Lx, f2 ~ = (2 ~ are 
given by f2~= hf2, with h a ~t-invariant, holomorphic function. But we have 
S ~ M 3 • 1R, with X = ~t and M 3 compact, hence h must be constant. 

This proves the corollary. 

From here to the end of  the paper, we consider only the case of  a closed 
3-manifold M 3. 

We shall next give an outline of  how the classification of  homothety classes 
and of  the manifolds M 3 is carried out in this paper. The main tools will be 
Theorem 3.11, the classification of  compact complex surfaces, and the descrip- 
tion of  geometric complex surfaces (in the sense of  [27]) as quotients under 
discrete group actions. 

For the classification of  the triples (S, Xc, f2), let S be the universal cover of  
S, and let (-~c,~) be the lift to S of  (Xc, (2). The real vector field X = 2 R e ~ .  
is the lift of  X = 2 REX,. 

Let F be the group ~zl(M 3) = 7rl(S), considered as a transformation group 
of  S by the monodromy representation. Then F is a group of  holomorphic 
automorphisms of  S which preserve X~. and ~.  From the quadruple (S, F,X~, ~ )  
we determine the triple (S,X,,,f2) as follows. The surface S is obtained as the 
quotient S = F \ S. Now X~ and f2 descend to this quotient, thus defining X~. 
and ~ and allowing to recover the homothety class as explained in the proof  
of  Theorem 3.11. 

Notice that theposs ib le  3-manifolds M 3 are also obtained here. There is 
a diffeomorphism S ~ M 3 • IR taking X to c3t, where ~ 3  is the universal 
cover of  M 3. The hypersurface M 3 • {0} C S = M 3 • IR lifts to a hypersur- 

face H0 in S which is F-invariant and pierces each orbit of  X exactly once 
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and transversely. Clearly /to is diffeomorphic to the orbit space of  X. As 
is F-invariant, the transformations ?, C F map orbits of  X to orbits of  ,~ and 
therefore induce diffeomorphisms of  the orbit space of  ,~. Then we have 

m 3 = F \ (orbit space of  X)  = F \ H0 ~ F \ Hi, 

where H1 is any F-invariant hypersurface piercing each orbit o f  X once and 
transversely. The choice of  Hj does not matter because they are all isotopic 
to one another, due to the uniqueness up to isotopy of  the global transversals 
of  X in S. 

Consequently, it is sufficient to classify the quadruples (S,F,X~.,~). We 
relate them to compact surfaces in the ~ l lowing obvious way. 

Use qot to denote both the flow of  X and the flow of  X. Then, for each 
positive number to, we define 

S(to) = I~o~,) \ S, 

which is a compact complex surface diffeomorphic to M 3 • S I . 
Notice that S is also the universal cover of  S(to), for all to > 0. 
The vector field Xc descends to each S(to), defining there a vector field 

which we also denote by Xc. Similarly for X, and the relation X = 2 ReX~, 
holds also on S(to). The pair (S(to),Xc) determines to as the common period 
of  all orbits o f  X. 

The diffeomorphism q), constructed in the proof of  Theorem 3. l 1, descends 
to a diffeomorphism of  S(to) for any to > 0, that is, homothetic taut contact 
circles o n  M 3 not only induce isomorphic pairs (S,X~.) and (S',X,!), but also 
isomorphic pairs (S(to),X,.) and (S'(to),X/) for each to > 0. Pairs with different 
to cannot be isomorphic. 

We have thus associated to each homothety class a family of  pairs 
(S(to),X,.), parametrized by a real number to, and this family is a diffeo- 
morphism invariant for the homothety class. We shall use this observation 
in Section 6 to dis t inguishhomothety classes. 

The F-invariance of  Xc implies that each map q)t o f  S commutes with 
every element of  F. Thus, if we let G be the group ~zt(S(to)), considered as a 
transformation group of  S by the monodromy representation, we have a direct 
product decomposition 

G ~ (~o~,,) x F. 

The vector field ~',. is invariant under every element of  G. An element of  G 
leaves ~ invariant if  and only if it is in F, because we have (pT~ = er~ for 
all t. 

Remark. In the proof of  Theorem 3.1 1 we have seen that the global transver- 
sals j ,  piercing each orbit of  X in S exactly once, form a single isotopy 
class. By mapping these under the projection S - *  S(to), we determine an 
isotopy class of  transversals piercing each orbit of  X in S(to) exactly once. 
The isotopy classes of  transversals in S(to) correspond to the elements of  
[M3,S l] = HI(M3; ;g ) .  Thus it is not immediate to determine the pair (S ,X)  
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from the pair (S(to),X), unless HI(M3; 7Z) is a finite group. We deal with this 
delicate point by giving the following alternative description of the covering 
space S of S(t0): 

where S is the universal cover of S(t0) and F is the isotropy subgroup of Q in 
the monodromy representation G of ~l(S(to)). Thus the determination of the 
possible forms ~ implies the determination of the possible (non-compact) sur- 
faces S. This shows that it is convenient to work at the level of the quadruples 
(3, F, Xc, ~ )  rather than at the level of the quotients S(to), although these will 
be needed to make the classification possible because they are compact. 

In Section 4 we classify those compact complex surfaces of the form M 3 x 
S I where the obvious circle action is by holomorphic maps. We obtain seven 
classes of such surfaces. If one such surface is {~0t,,) \ S, where S = M 3 x 1R 
has complex structure constructed as in Theorem 3.6, then the special features 
stated in Corollary 3.3 and in Proposition 3.4 for the complex structure of 
S impose additional restrictions, and not all surfaces found in Section 4 are 
allowed. We use this idea in Section 5.1 to show that a surface S(to) has to 
be in one of the following classes: 

(a') Hopf surfaces, 
(b') Properly elliptic surfaces of geometric type S L  2 )~ E l, 

(c') Hyperelliptic surfaces with Euler class (0,0), 
(c") Complex tori. 
For each of these four classes, the surfaces S(to) form a proper subclass. 

These subclasses are completely determined in Sections 5.2, 5.3, and 5.4. 
Notice that the four classes above give a description S(to) = G \ S, where 

is known and either all possibilities for G are known (case of Hopf surfaces) or 
G is a subgroup of the isometry group of some standard homogeneous metric 
on S. Then we apply the conditions: 

�9 ~c is G-invariant and nowhere zero, 
�9 ~2 is holomorphic symplectic, and L~, ~ = ~, 

�9 ~ is F-invariant, 
�9 G is the direct product (q~t,,) x F, 

to determine the triple (F,X~.,~) up to biholomorphism of S. Surfaces of 
classes (b')  and (c')  are elliptic, and we prove in Section 4 that the ellip- 
tic fibres contain the orbits of X. This helps in the determination of Xc for 
these two classes. 

At that point, the quadruples (S, F,X~., ~ )  are finally classified up to bi- 
holomorphism. 

For example, for class (b')  we get S = ~ 2  • E I with the standard com- 
patible complex structure, :~X is the unit vector field along the EL-factor, and 
F is a discrete subgroup of the obvious action of SL2 by left multiplication. 
Since not all discrete isometry groups of SL2 • E l are equivalent to the direct 
product of a subgroup of SL2, acting by left multiplication, and an infinite 
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cyclic group of translations along the El-factor, we see that not all properly 
elliptic surfaces of this geometric type are surfaces S(to) arising from a taut 
contact circle. 

In particular, the vector field X has a unique canonical form for class (b') .  
The same is true for classes (c ' )  and (c"), but for class (a ')  the situation is 
more complicated, and we get a continuous family of non-equivalent canonical 
forms as well as a discrete set of additional canonical forms. The families 
of  taut contact circles of  Proposition 1.7 are obtained from the families of 
canonical forms for X in class (a'). 

After classifying the quadruples (S,F,X,. ,~) up to biholomorphism, we 
obtain the list of  all possible 3-manifolds M 3 by the procedure indicated above. 
Cases (a) and (b) of Theorem 1.2 correspond to surfaces S(to) in the classes 
(a ' )  and (b') ,  respectively. Case (c) of Theorem 1.2 corresponds to surfaces 
S(to) in classes (c ')  and (c"). 

Returning to the example of  class (b') ,  the hypersuface H0 = SL2 x {0} is 
a transversal for the unit vector field along the El-factor, and it is invariant 
under left multiplication by any subgroup F of SL2. Thus, we can write: 

M 3 = F \ S'L2, 

and these are the 3-manifolds arising in case (b) of Theorem 1.2. One arrives 
at cases (a) and (c) of  Theorem 1.2 in the same way. 

With the help of the invariant (S(to),X~), we completely classify homothety 
classes corresponding to case (a). For cases (b) and (c), we give a construction 
of all homothety classes, which we further discuss in Section 7, but the study 
of the moduli spaces in these two cases is left to a forthcoming paper [11]. 

Simultaneously with the description of all the homothety classes, we discuss 
Cartan structures. This is possible because we have a characterization, also in 
terms of holomorphic objects, of  the homothety classes which contain a Cartan 
structure. We end this section with such a characterization. 

Proposition 3.13 Let a taut contact circle ((01,0)2) be constructed as in 
Proposition 3.10, that is, col-[-i(o2 =j*(XcJ~).  Then (wl,w2) is a Cartan 
structure i f  and only i f  J X  = - 2  ImX~. is tangent to the immersion j. 

Proo f  It suffices to check the condition locally. So let Xc = Zl~z, and wl + 
i~o2 = j*(zldz2).  Then 

w, A d w 2  = j *  ((--y,Cqx, +xl~v , ) J  (dxl A d y l  Adx2 A dy2)) 

= j* ( -2 ( ImXc)  J (dxl A dyl  A dx2 A dy2)).  

Thus wl A dw2 = 0 if and only i f j  is tangent to -2ReX~.. 
Since (wl,w2) is a taut contact circle, the identity {01 A deo2 =-0 is the 

only condition for it to be a Cartan structure. 

Corollary 3.14 Let (O91,602) be a taut contact circle on a closed 3-manifold 
M 3. Then (wl,w2) is homothetic to a Cartan structure i f  and only i f  there 
is a compact hypersurface in M 3 x IR, transverse to Or, piercing each orbit 
o f  ~ exactly once, and tangent to J~t. 
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4 Complex surfaces 

This and the following section rely heavily on the Enriques-Kodaira classifi- 
cation of compact complex surfaces in general, for which [1] is a standard 
reference, as well as on Wall's detailed study [27] of geometric structures (in 
the sense of Thurston) on these surfaces. We freely use some fundamental 
results on geometric manifolds. For this the survey by Scott [23] is a good 
introduction; the most relevant references for us are [25, 26, 27]. 

In the light of Theorem 1.4, the first step towards proving Theorem 1.2 is 
the following. 

Theorem 4.1 A compact complex surface W is diJfeomorphic to a complex 
surface o f  the form M 3 x S I on which the obvious smooth SJ-action is by 
holomorphic automorphisms, i f  and only if  W is one of  the Jbllowing. 

(a) A Hopf  surface that is (topologically) of  the form (F \ S 3) x S j with 
F a discrete subgroup of  U(2). 

(b) A properly elliptic surface o f  the jorm (F \ (H x E I )) x S 1 or (F \ 

SL2) • S 1 , with F a discrete subgroup o f  the identity component of  the isom- 
etry group of  H • E 1 or SL2, respectively, where H denotes the hyperbolic' 
plane and E l the Euclidean line. 

(c) One of  the hyperelliptic surfaces (which are topologically T2-bundles 
over T 2 with monodromy A,I ,  where A C SL22g is periodic and I the identity 
matrix, A + I )  with Euler class (0,0). Up to diffeomorphism, there are four 
such surfaces. 

(d) A complex torus, diJfeomorphic to T 4. 
(e) A primary Kodaira surface, which is topologically a TZ-bundle over 

T 2 with trivial monodromy and non-zero Euler class. 
(f) A secondary Kodaira surface o f  the form ( F \ Nil 3) x S I , where F is 

a discrete subgroup of  the identity component of  the isometry group of  N i l  3 

(the Heisenberg group). 
(g) A ruled surface of  genus 1 that is topologically S 2 • T 2. 

Proof All the manifolds listed in the theorem are of  the form M 3 • S 1 and 
can be endowed with a complex structure such that the obvious S 1-action is by 
holomorphic maps. This can be seen from [27], since all the manifolds in the 
theorem admit a geometric structure in the sense of Thurston and a complex 
structure compatible with the geometry. 

We have to show that no other complex surfaces are possible. Note that 
there may be different decompositions of W a s  M 3 • S 1, not necessarily com- 
patible with the geometric structure, so the classification of the corresponding 
M 3 is not a straightforward consequence. 

Observe that W = M 3 • S 1 has to be minimal. For any rational curve C 
in W necessarily represents a class in H2(W) that lies in the image of i , "  
H2(M 3) ~ H2(W). Hence C has self-intersection 0. 

Also, W is clearly (real) parallelizable, so in particular its Euler number 
c2 equals zero. Then from the Enriques-Kodaira classification (cf. [1]) we see 
that W is among the following: 
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(i) surfaces of class Vllo, 
(ii) ruled surfaces of genus 1, 

(iii) hyperelliptic surfaces, 
(iv) primary and secondary Kodaira surfaces, 
(v) tori, 

(vi) minimal properly elliptic surfaces. 
We now deal with these complex surfaces in turn. 
(i) Surfaces of class VIIo have first Betti number bi = 1. Hence, if W = 

M 3 • S 1, then bl(M 3) = 0. So b2(M 3) = 0 by Poincar~ duality and therefore 
bz(W) = 0. By a famous result of Bogomolov ([2, 3]; see also [24] for an 
alternative proof of  this result), such a surface is a Hopf surface or an Inoue 
surface. 

If  tV is a Hopf surface, then by [16] it has to be as described in (a). 
We now make the following observation. 

Proposition 4.2 3&~ Inoue surface is diffeomorphic to a 4-manifold M 3 x S t. 

Proof Let W be an Inoue surface. We show that the fundamental group n l ( W )  
does not have a direct summand 2g. 

There are three families of  Inoue surfaces, SM, S + and S m (see [15]). The 
fundamental group ni (SM) has generators go, gl, g2, g3 and relations 

y, gj = gj(]~ for i , j  = I, 2, 3, 

9ogigo I = gl~,, gm,2gm,, for i = 1,2,3, , 2 , 3  

where M = (mit)  C SL32g is a unimodular matrix with eigenvalues c~, fl, ~ such 

that ~ > 1 and floe-ft. An element of  nl that yields a free generator of  
HI(SM;2g) has to be of  the form 

al (/~ a3 
g I <(']2- g3  g o  

(or an inverse of that). The condition that this commutes with go in nl is that 
(al,a2,a3) is an eigenvector of  M with eigenvalue 1, which cannot happen. 

This proves Proposition 4.2 for the surfaces SM. The proof for the other 
two families of Inoue surfaces is similar. 

(ii) Up to diffeomorphism, there are only two ruled surfaces of genus 1, the 
trivial and the non-trivial S2-bundle over T 2. A standard argument shows that 
the latter has non-vanishing second Stiefel-Whitney class we(W), and hence is 
not parallelizable. 

(iii) Up to diffeomorphism, there are seven hyperelliptic surfaces. These 
are elliptic surfaces without exceptional fibres over an elliptic curve, hence 
topologically T2-bundles over T 2, with b l ( W ) =  2. The elliptic fibration is 
unique up to bundle isomorphism, even in the topological category [22] (that 
is, there is a unique fibration of this surface as a T2-bundle over T 2, without 
any reference to the complex structure). The holomorphic S~-action on W has 
to send fibres to fibres (see Lemma 4.3 below), so it projects to an Sl-action 
on the base torus. Hence the quotient of  W under this SI-action is either a 
T2-bundle over S I, if  the projected SI-action is non-trivial, or an SI-bundte 
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over T 2, if  the Sl-action is along the fibres. The latter cannot happen, since 
then b l ( W ) =  3 or 4. In the former case, the toms bundle is easily seen to 
have Euler class (O, 0) (see [22] for the definition of  this class), and precisely 
four of  the seven hyperelliptic surfaces meet this condition (cf. [25]). 

We shall have to use this type of  argument several times in the sequel, so 
we formulate it as a separate lemma. 

Lemma 4.3 Let n : W ---+ Z be a ruling or an elliptic fibration of  a complex 
surface W over a complex curve Z, and assume that W admits an S l-action 
by holomorphic automorphisms. Then this SI-action sends general .,fibres to 
general fibres and each exceptional fibre onto itself So the S j-action projects 
to an action on Z, and this action is again by holomorphic automorphisms. 
Furthermore, if  the action is jree, there are no singular fibres, that is, the 
only exceptional fibres are multiple fibres. 

Remark. We use the term ruling in the sense of  [1], meaning an analytic fibre 
bundle with fibre C P  I . Other authors refer to this as geometric ruling. 

Proof Consider a general fibre F0. Let ~Pt : W --~ W be the action of  t E S 1. 
Then Ft = q~t(F0) is a complex submanifold o f  W isotopic to F0. Since all 
general fibres represent the same homology class with self-intersection 0, we 
have, for any general fibre F ,  either Ft N F = (3 or Ft = F. 

By a similar argument, the Sl-action has to send each of  the finitely many 
isolated exceptional fibres (in the elliptic case) onto itself. 

So the SI-action projects to an Sl-action by holomorphic automorphisms 
of  Z, with at least as many fixed points as exceptional fibres. 

Let X be the real vector field that induces the S I-action on W. We have 
seen that X has to be tangential to the exceptional fibres. A holomorphic action 
cannot move any singular point of  such a fibre to a non-singular point. Since 
X is nowhere zero if the action is free, we conclude that the only exceptional 
fibres are multiple fibres. 

(iv) The primary Kodaira surfaces are listed as (e) in Theorem 4.1; it 
remains to show that among the secondary Kodaira surfaces only those listed 
in (f) are possible. From Wall [27, Lemma 7.2] we know that a secondary 
Kodaira surface (which has Kodaira dimension ~" = 0 and b l ( W ) =  1) admits 
a unique elliptic fibration, and this fibration has no singular fibres. Furthermore, 
W is modelled on the geometry Nil 3 • E j and the base orbifold of  the elliptic 
fibration is a sphere with three or four cone points (corresponding to multiple 
fibres) [25, 27], since the base orbifold has to be orientable and of  orbifold 
characteristic 0 (the base cannot be a toms, for then there would be no singular 
fibres and we would have a primary Kodaira surface). As shown in Lemma 4.3, 
the projected Sl-action has fixed points at these cone points, hence is trivial. In 
other words, the S~-action is along the fibres. This implies that the quotient M 3 
under this Sl-action is a Seifert bundle over a sphere with three or four cone 
points, and it has to be of  geometric type Nil 3, that is, a Seifert bundle with 
non-zero Euler class. This follows from the fact that W is a Seifert TZ-bundle 
with non-zero Euler class or from [27, Theorem 10.1], where it is shown that 
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the geometric type of  W is uniquely determined. Then M 3 = F \ Nil 3 with F 
as claimed in (f). 

(v) The tori give class (d) in Theorem 4.1. 
(vi) The minimal properly elliptic surfaces are surfaces with K = 1. Topo- 

logically these are Seifert T2-bundles over base orbifolds of  negative orbifold 
characteristic. Again Wall shows that the elliptic fibration is unique and that 
the possible geometric types are H x ~ and SL2 x E I. Lemma 4.3 shows that 
there are no singular fibres. Furthermore, the base orbifolds clearly admit no 
non-trivial Sl-action and so the circle action on the surface has to go along 
the fibres. Now argue as in (iv) to obtain class (b). 

This completes the proof  of  Theorem 4.1. 

5 P r o o f  o f  Theorem 1.2 - Part  II 

In this section we use the notation of  Section 3, and we follow the outline 
(except for Section 5.5) given in Section 3.3. 

In Section 5.3 we describe in detail the complex structure on SL2 x E l and 
its canonical holomorphic symplectic form ~H; in Section 5.4 we describe the 
complex structure on E2 x E ~ and its canonical holomorphic symplectic form 

The main result we are going to prove is the following. 

Theorem 5.1 A quadruple (3, F,X~., 5 )  is associated to a taut contact circle 
on a closed 3-manifold M 3, as described in Section 3.3, I f  and only i f  it is 
biholomorphic to a quadruple in any o f  the Jbllowin9 jour  classes: 

(a ' )  S = if72 - {(0,0)}, ~ = (cons tant ) .dz l  Adz2,  F is any finite sub- 

9roup o f  SU(2),  X is given by Proposition 5.5 below. Then S(to) = ({~Pt,,) x 
F ) \ ( C  2 - {(0,0)}) is a H o p f  surJace, and M 3 ~- F \ S 3. 

(b ' )  S ~ - ~ 2  x E I , ~ = (constant).  ~H, ~Pt is translation by - t  in the 

El-direction, and F is any discrete, compact subgroup o f  SL  2 acting by left 
multiplication. Then S(to) = (F  x {to)) \ (SL2 x E 1 ) is a properly elliptic sur- 

face and M 3 ~- F \ SL2. 

(c ' )  S = E2 x E 1, ~ --- (constant) .  ~E, ~Pt is translat ionby - t  in the E I- 
direction, and F is any discrete, cocompact subgroup o f  E2, acting by left 
multiplication, with not all elements o f  F translations. Then S(to) = (F x 
{to)) \ (E2 x E l ) is a hyperelliptic surfitce with Euler class (0, 0), and M 3 
F \ E2 is a T2-bundle over S 1 with non-trivial periodic monodromy. 

(c") S,Q,q~t are as in (c ') ,  and F is any lattice o f  rank 3 in the transla- 
tion part if7 x (2~i7/) of  E2. Then S(to) = (F + {0} x (t0)7)) \ (E2 x E I ) is" a 
complex torus, and M 3 ~ F \ Ez is diJfi~omorphic to T 3, the T2-bundle over 
S I with trivial monodromy. 

Notice that Theorem 1.2 is contained in Theorem 5.1. 
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The other important result is the complete classification up to biholomor- 
phism of the surfaces S(to) in class (a ')  of  the above theorem, and of the 
corresponding pairs (S(to),X~.). This is done in Section 5.2. 

We now explain how the present section is organized. In Section 5.1 we 
use elementary topological arguments to show that ruled surfaces, properly 
elliptic surfaces of type H x C, and Kodaira surfaces can never be a surface 
S(to) constructed from a taut contact circle. That is, we reduce the list of  com- 
plex surfaces in Theorem 4.1 to Hopf surfaces, hyperelliptic surfaces, properly 
elliptic surfaces of type SL2 x E l, and complex tori. In Section 5.2 we find 
which Hopf surfaces can be constructed as S(to), similarly for properly elliptic 
ones in Section 5.3, likewise for hyperelliptic ones and complex tori in Sec- 
tion 5.4. Except for certain Hopf surfaces and complex tori, all the surfaces 
determined in Section 5.1 are elliptic, and the arguments to reduce the diffeo- 
morphism classification of these surfaces to a diffeomorphism classification of 
the corresponding 3-manifolds are already contained in Section 4, where we 
were able to describe the properties of the circle action even without knowing 
any details about the biholomorphism classification of these surfaces. 

As for complex tori, they give M 3 ~ T 3 by a very short argument given 
at the beginning of Section 5.2 below. 

Therefore, except for the non-elliptic Hopf surfaces, it would be enough 
to prove Theorem 5.1 up to diffeomorphism rather than biholomorphism. We 
give an outline of the topological arguments of such a proof in Section 5.5. 

However, for the homothety classification of taut contact circles and to 
understand which 3-manifolds correspond to non-elliptic Hopf surfaces, we 
need to prove Theorem 5.1 up to biholomorphism. The Hopf case is by far 
the most difficult, due to the fact that not all Hopf surfaces are geometric. By 
comparison, the result in the other cases is a fairly straightforward consequence 
of the invariance conditions imposed by the geometry. 

Notation. The following conventions will be used in Sections 5, 6, and 7. When 
dealing with Hopf surfaces, the coordinates on ~2 will be denoted (zl,z2). 
When dealing with properly elliptic surfaces, the upper half plane in C will 
be denoted H and the coordinates in H x C will be denoted (z,~).The cor- 
responding point (z, ew) in H • (C - {0}) will be denoted (z,w). Finally, in 
the context o f  hyperelliptic surfaces, the coordinates on ~ x ~ will be denoted 
(z,w). 

5.1 Reduction o[" the problem 

At several places in this section we use the fact, from Proposition 3.4, that the 
Reeb vector fields ~j, ~_2 span a complex line complementary to the complex 
line which contains X. 

First we show that M 3 x S I cannot be a ruled surface. Suppose that it 
were, and let C be a holomorphic sphere from a ruling. By Lemma 4.3 the 
vector field X is either tangent to C or transverse to C. The former possibility 
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is ruled out by the hairy ball theorem, hence X must be transverse to C. The 
same is true for all constant linear combinations of  X and JX, because C is 
a holomorphic sphere. Since the Reeb vector fields ~l, ~.2 determine a comple- 
mentary complex line distribution, they give a parallelization o f  C, which is 
absurd. 

This shows that the complex surfaces in class (g) of  Theorem 4.1 do not 
arise from a 3-manifold admitting a taut contact circle. 

Next we show that from the construction in Theorem 3.6 (or Section 3.3) no 
surface of  geometric type H x C can arise. This is one of  the two possibilities 
in case (b) of  Theorem 4.1. 

The complex surfaces o f  geometric type H • C are elliptic fibrations over 
an orbifold of  negative orbifold characteristic. Such orbifolds do not admit 
a non-trivial Sl-action, so from Lemma 4.3 we conclude (assuming that the 
complex surface arose from the construction in Theorem 3.6) that X is tangent 
to the fibres, hence so is JX. Then ~l and 42 span a distribution transverse to 
the fibres. Topologically, the surfaces of  geometric type H x C are Seifert T 2- 
bundles with zero Euler class. This means that we can find a section, that is, 
an immersed surface (of  negative Euler characteristic) transverse to all fibres. 
The Reeb vector fields would provide a parallelization of  such a surface, which 
is impossible. 

The third class of  complex surfaces we want to consider in this section are 
the Kodaira surfaces (classes (e) and (f) in Theorem 4.1). 

Let S be a primary Kodaira surface. Topologically, this surface fibres in 
non-isomorphic ways as a 7,2-bundle over  T 2 (see [22]), but the elliptic struc- 
ture is unique [27, Lemma 7.2] and is as described in Theorem 4.1. 

Suppose that S arose from the construction in Theorem 3.6. As shown in 
Lemma 4.3, the vector field X sends fibres to fibres, so it can induce either 
the trivial action or a free SJ-action on the base torus, in the latter case, the 
M 3 quotient would be a T2-bundle over S I with non-trivial monodromy, and S 
would fibre holomorphically as a T2-bundle with non-trivial monodromy and 
zero Euler class, which is impossible. Hence, X is everywhere tangent to the 
fibres of  the elliptic fibration. 

Consider a fibre F0 = S l x S I, where we may assume that X is tangent 
to the first Sl-factor. We see that F0 is transverse to M 3, so a priori F0 
intersects M 3 in a finite union of  circles. However, since any orbit of  X has 
to intersect each of  these circles, and it intersects M 3 only once, we conclude 
that F0 N M  3 ~  S 1. Since Y = J X -  f X  is tangent both to F0 and M 3, this 
intersection circle is in fact an orbit of  Y. So the common kernel of  0)1 and 
0)2 has closed orbits. Moreover, we see that it is these orbits that make M 3 

into an S j-bundle over T 2 (with non-zero Euler number e). Note that the Reeb 
vector fields are everywhere transverse to this fibration. 

Let D be a 2-disc in the base torus T 2. Fix a section a of  the SJ-bundle over 
T 2 -  D, and identify a (T  2 -  D) with T 2 -  D. Projecting ~l along the fibres 
onto T 2 - D ,  we obtain a nowhere zero vector field Z on T 2 - D .  Along the 
boundary of  7 ,2 - - D ,  we may view Z as a vector field tangent to D, and this 
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vector field has rotation number zero with respect to the centre o f  D since T 2 
has Euler characteristic zero. 

Over D we have a section al,  and we write Di = al(D).  In identifying the 
boundary tori o f  the trivial bundles Di x S 1 and ( T  2 - -  D) • S I, the boundary 
c3D is identified (homologically) with dl - e& where dl is the class o f  (?Di 
and 6 the class o f  the circle fibre in (?Di • S I. 

Clearly the Reeb vector field ~1 (regarded as a vector field tangent to D1) 
has rotation number zero along •Dl with respect to the centre of  D1, since it 
extends as a nowhere zero vector field over DI. 

As we move once around a fibre over a point in c?Dj, the Reeb vector 
field makes m full turns with m4=0 (and m locally constant on 0DI, hence 
constant), since the fibre is an integral curve of  the contact distribution ker co~, 
which forces the contact plane to keep rotating with positive angular velocity 
along this curve (because of  the non-integrability o f  the contact distribution), 
and this also forces the rotation o f  ~l. This implies that Z has in fact rotation 
number - m e  along OD with respect to the centre of  D, a contradiction if e 4= 0. 

We note this as a separate result (see also [9] for related statements and a 
more detailed account o f  the preceding argument). 

Proposition 5.2 Let  M 3 be a non-trivial Sl-bundle over T 2. Then M 3 does 
not admit a contact f o r m  whose Reeb vector f ie ld  is everywhere transverse 
to the fibration. 

Finally, we consider secondary Kodaira surfaces. We have seen in the proof 
o f  Theorem 4.1 that the SJ-action has to be along the fibres, so we would 
obtain a Seifert bundle M 3 with non-trivial Euler class over a good (in the 
sense o f  [23]) euclidean orbifold (a sphere with three or four cone points), 
and with Reeb vector fields transverse to the Seifert fibration. M 3 is finitely 
covered by an S l-bundle ~143 o v e r  T 2 with non-zero Euler class, and the contact 
forms on M 3 would lift to contact forms on ~r3 whose Reeb vector fields are 
transverse to the fibration, which is impossible by the proposition above. 

5.2 H o p f  surfaces 

Before dealing with Hopf  surfaces, we consider the case where S(to) = M 3 • 
S 1 is a complex torus. Here S = 112 2 and Xc = (1/2)(.~ - i J X )  is holomorphic 
on ~2 with fourfold periodic coefficient functions, hence constant. So X is a 
constant slope vector field, and the quotient of  S(to) under the circle action 
generated by X is necessarily a 3-torus. 

This simple case contains the basic idea necessary to deal with the Hopf  
surfaces: I f  S(to) is a Hopf  surface then X~. is holomorphic on IE 2 - {0} and 

extends to 117 2. Then X also extends because it is 2Re(.~.), and we shall use 
the flow structure of.,~ to determine the Hopf  surface and the 3-manifold. 

A Hopf  surface is a compact quotient o f  IU 2 - {0} under a discrete group 
G of  automorphisms. By Hartog's theorem, any automorphism of  112 2 -  {0} 
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extends to a self-mapping of  ~ z  This extension is also an automorphism. Thus 
we can view G as a group of  automorphisms of ~2, such that the elements of  
G not equal to the identity fix only the origin. 

A list of  the possible groups G can be found in [ 16]. Call a map T : •2 
(~2 a contraction if  for any (zl,z2) E ~2 the sequence T~'(zl,z2) converges to 
(0,0)  as v goes to ex~, and this convergence is uniform in (zl,z2) ranging over 
compact sets. Then G is always a semidirect product {T)F of  the infinite cyclic 
group (T) generated by a contraction T and a finite subgroup F C U(2)  which 
acts freely on S 3. The possible factorizations o f  G with an infinite cyclic factor 
are (T~/)F for any y E F, where the generator T7 is always a contraction and 
where the factor F cannot be changed because it is the torsion part o f  G. 

There are non-cyclic abelian subgroups of  U(2),  such as {•  x {•  
but if  an abelian subgroup of  U(2)  acts freely on S 3, then it has to be cyclic 
and of  a special form. First o f  all, we can diagonalize the elements o f  F 
simultaneously, so F is conjugate to a subgroup of  U(1)  x U(1).  Secondly, 
assuming without loss o f  generality that F C U(1 ) x U( 1 ), the condition that 
F acts freely on S 3 implies that it acts freely on S j x {0} and on {0} x S I, and 
so the projections of  U(1)  x U ( I )  onto its factors inject F into U(1). Thus 
F must be the cyclic subgroup o f  U ( t )  x U(1)  generated by (el ,e2) with ej 

and e2 primitive mth roots of  1, where m is the order of  F. Conversely, the 
cyclic group generated by any such pair o f  primitive roots o f  the same order 
acts freely on S 3. 

If  F is contained in SU(2)  then it automatically acts freely on S 3, because 
SU(2)  is the same as S 3 acting on itself by left multiplications. For each 
m => 1, there is a unique cyclic subgroup of  order m in S ( U ( 1 ) x  U(1)) ,  

namely the group of  all pairs (Go  -~)  where c ranges over the mth roots o f  1. 
We shall denote this group by Fro. 

For any factorization G = (T)F, the holomorphic coordinates (zl,zz) (with 
domain and range all of  ~2)  can be chosen so that with respect to them 
F C U(2) and T is o f  one of the two following types. 

Type (1): T(zl,z2)= (Tzl,flz2), 0 <~ 1O~l <~ 1, 0 < Ifl[ < 1. 

Type (2): T(zl,z2)= (a"z~ + 2z~,~z2), 0 < Is[ < 1, 2 + 0 .  

It is also proved in [16] that if  ~p is a holomorphic self-mapping of  ~2 
which commutes with the contraction T, then ~ is as follows. 

I f  T is of  type (1), then ~9 has to be linear. 

I f  T is of  type (2), then ~9(z~,z2) = (~"zt + 2z~,~z2). 

Moreover, in type (2), ~b has finite order if  and only if  2 = 0 and ~ is a 
root of  1. 

Suppose now that S(to) =~ M 3 • S 1 is a Hopf  surface. From the description 
given above of  all possible factorizations of  G with an infinite cyclic factor, 
it follows that the contraction T can be chosen so that T = (P• for a suit- 
able choice of  sign, and then G = (T) x F = (qho) x F is a direct product. 
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Moreover, the torsion group F equals the group ~I(M 3) acting on S by the 
monodromy representation, and so rq (M 3 ) is finite and the universal cover ~r 
of  M 3 is compact. Now every element of  F commutes with T, and we apply 
the above given facts to find extra restrictions on T and F. 

I f  T is of  type (1) then F can be non-abelian only if  c~ = fi, otherwise it 
is either trivial or cyclic as described above. I f  T is of  type (2) then F has to 
be either trivial or the cyclic subgroup o f  U(1)  • U(1) generated by (e~,el)  

where el is a primitive m th root of  1 and (n,m) = 1. 

Remark. Surfaces of  type (1) are elliptic if  and only if c f  =/3n" for some 
positive integers n p and n ' ,  and they are geometric if and only if [c~] = [B]. 
Surfaces of  type (2) are neither elliptic nor geometric. 

We give next an equivalence result for Hopf  surfaces. This is valid for 
all Hopf  surfaces, regardless of  their being a surface S(to) or not. It will be 
essential later for the distinction between homothety classes. 

Lemma  5.3 A Hopf surface of type (1) is never biholomorphic to a Hopf 
surjace of  type (2). I f  a Hopf surface is of type (1), then the unordered pair 
{[~l, 1/31} is determined by the complex structure, l f  a Hopf surface is of  type 
(2), then the complex structure determines [ct] and the integer n. 

Proof Here we use the same method as the one employed by Kodaira-Spencer 
in the proof  of Theorem 15.1 in [18]. Suppose there is a biholomorphism 
between the quotients 

W = ((T)F) \ (r  _ {0}) and W' = ((T')F') \ (r _ {0}). 

There is a lifting o f  this map to an automorphism ~b of ~2 _ {0} which conju- 
gates the group (T)F to the group (T~)U. (Conversely, if  such a conjugating 
automorphism exists, then W is biholomorphic to W'.)  This ~b extends to an 
automorphism of IU 2. Let q~0, To, T~ denote the differentials at the origin (0, 0) 
o f  q~, T, T ' ,  respectively. These are elements of  GL(2, ~ ) .  We have 

o T o q ~ - J  =(T~):HT~ for some 7 ' E F  t. 

The left-hand side is a contraction, so the exponent on the right-hand side is 
+1.  Taking differentials at the origin, we get 

q'0 o To o 4~o I = T U .  

Suppose first that T is o f  type (2) and T t is of  type (1), and let us derive a 
contradiction. Since T t and y ~ are diagonalizable and commute,  their product 
T~7 t is diagonalizable and so T would be biholomorphically conjugate to a 
diagonalizable linear map. In particular, there would be two transverse complex 
curves through the origin invariant under T. I f  n = 1, then To has the following 
Jordan canonical form 
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and it cannot be linearly conjugate to ir~7~ = T~7 ~. 
If  n > 2, then To is equal to 

0 with ]c~"J < I~1, 

and its only invariant lines are C • {0} and {0} • C. Therefore, if T has 
two transverse invariant curves through the origin, then these curves must be 
tangent to C x {0} and {0} • t~ respectively. We see that ~ x {0} is indeed 
T-invariant. A complex curve through the origin tangent to {0} • ~ is locally 
a graph zl = f ( z z )  for some convergent power series f(z2). The image of  this 
graph under T is the graph 

and it is trivial to see that it has at best a contact of  order n - 1 with zl = f ( z2)  
(meaning that they differ by a non-zero multiple of  z~). Hence, a contraction 
o f  type (2) cannot be biholomorphically conjugate to any automorphism with 
two invariant tranverse complex curves through the origin. Thus T is not bi- 
holomorphically conjugate to T~7 '. 

As the order of  contact is a diffeomorphism invariant, we also conclude that 
the integer n is associated with T in a way that is invariant under biholomorphic 
conjugation. The same integer n is associated with T 7 for any ? E F, and so 
the complex structure of  W determines n. 

Suppose now that T and T ~ are both of  type (1), in which case T = To 
and T ' =  T~. Then q>0 o To o 4~o1= T~7 ~ implies that T and Tt7 / have the 
same eigenvalues. The eigenvalues of  T are c~ and fl, and those o f  Tr3, ' are 
e 'el and fl'e2 where s are roots o f  1. Hence either [c~[ = [c~'[ and [BI = [fl'[ 

or [~t = Jfl'] and Jill = I~'l �9 
Suppose finally that T and T' are both o f  type (2), with the same integer 

n. Then ~0 o To o ~ o l =  T[~7' implies that the eigenvalues ~n,~ of  To equal 
the eigenvalues tn ,k , k ~e] .  Afort iori ,  we must e I , ~ e I o f  T~),'. We conclude ~ = 

h a v e  I~1 = I~'l-  
The lemma is now proved. 

We now consider a Hopf  surface obtained as S(to) from a taut contact 
circle on M 3. Then, as explained above, G is the direct product (~ot,} • F, and 
T = tp+t,, is a contraction for a suitable choice of  sign. We are now going to 

determine this sign and the form ~. 

The holomorphic 2-fonw ~ is clearly invariant under nl (M 3) = F. We can 

extend ~ to the origin as a holomorphic 2-form, and then write 

(2 = h(zt,z2)dzt A dz2, 

where h(zl ,z2 ) is an entire function. We have h(0, 0)4 = 0, for if h(0, 0) = 0, then 

by the Weierstrag preparation theorem we would get zeros o f  (2 in IlJ 2 - {0}. 
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We have qff~ = e t~  for all t, and the real part of  ~ is a symplectic form 
on ~2. Therefore q~t can be a contraction only for negative t. We conclude 
that q~-t,, = T, and we have 

T*~ : r  = e - " ~ .  

We can write T ( z l , z 2 ) =  (~zl + Lz~,/~z2), for both types (1) and (2), by al- 
lowing 2 = 0 and imposing the condition 2 ( ~ - / i n )  = 0. Then the relation 

T*~ = e - " ~  translates to 

aft" (h o T) = e-t~ 

o r  
e-t~ h h o T = ~ -  . 

Therefore, for all (Zl,Z2) C (!~ 2, 

[e-',,'~ v 
l i r n  \ - - ~ - j  h(z. ,z2) = ,,lirn h(r~'(zl,z2)) = h(0, 0)4=o, 

and this convergence is possible only if  c~/3 = e -t~ But then h(zm,z2) = h(0,0)  
for all (zl,z2), and h is constant. Thus 

~2 = codzl A dz2, co E ~. 

Now the F-invariance of Q means that F C SU(2).  This guarantees that F 
acts freely on S 3, because SU(2)  is the same as S 3 acting on itself from the 
left. 

I f  F is abelian (hence cyclic, as was observed above), then it has to be 
equal to Fm for some m. 

I f  T is of  type (2), then F = F m  is generated by (e~,el)  where el is a 

primitive mth root o f  1, and so n + 1 must be a multiple o f  m. Equivalently, 
n is o f  the form n = rnq - 1 for some positive integer q. 

Now we can state a corollary of  Lemma 5.3 for surfaces S(to) which are 
Hopf  surfaces. 

Corollary 5.4 The positive number to is determined by the complex structure 
of  the Hopf  surface S(to). 

Proof We have just shown that ~fl = e -t~ Then e -t'' = [allfl[, which for T of  
type (2) can be rewritten as e -t~ = [a[n+l. Thus, by Lemma 5.3, the quantity 
e -t~ is determined by the complex structure, and so is to. 

We are now going to determine the vector field -~c by using the relations 

~p_l , ,=T and L ~ = ~ ,  

together with the fact that each map ~ot commutes with each element of  G. 



Contact geometry and complex surfaces 183 

If  T is o f  type (1), then the q~t must be linear, that is, there exists a constant 
matrix A0 such that 

~ot = exp(tAo) for all t. 

Since ~o-t,, = T is a linear diagonal map, the Jordan canonical form of  A0 has 
to be diagonal. 

I f  F is abelian, then A0 and all elements of  G are simultaneously diagonal- 
izable, and we can choose the linear coordinates (zl,z2) such as to keep the 
diagonal form of  the elements o f  G and giving ~ot the following expression: 

(Dt(Zl, z2 ) = (eatzl, ebtz2 ), 

where a and b are constants. It follows that 

If  F is non-abelian, then A0 has to be a scalar multiple of  the identity, 
for otherwise the fact that each element of  F commutes with ~ot would allow 
us to diagonalize all elements of  F simultaneously with A0, and F would be 
abelian. So for non-abelian F we get a = b in the above formula for Xc. 

The relation ~ = L~ ~ is equivalent to a + b = 1. Also, since ~o_~,, is a 

contraction, the numbers Re(a) and Re(b) must be positive. Thus for T of  
type (1) we have 

Xc =azIC3z, + ( 1  --a)z2~;z2 with 0 < Re(a) < 1, 

and if F is non-abelian, then a = 1/2. 
If  7" is of  type (2), then qot is a one-parameter group of  mappings of  the 

form (~nzl + fiz~,~z2). It follows that there are constants a and b0 such that 

t .  - n a t  n a t  q)t(zl,z2) = (e~alzl + uOW z2,e z2). 

Thus 

2~ = (nazi + boz~)#z, + aZ2~z2 

and the condition L~ ~ = ~ gives a = 1/(n + 1 ). 

The relation ~o-to = 7" implies b0 # 0 ,  for otherwise T would be of  type (1). 

We are now ready to state the biholomorphism classification of  (F,X~,, ~2) 
for surfaces S(to) which are Hopf  surfaces. We also have the biholomorphism 
classification of  the surface S(to) itself, and of the pair (S(to),X,.). 

Proposition 5.5 I f  S(to) = G \ (112 z - {(0, 0)}) is a H op f  surface constructed 

f rom a taut contact circle (col,co2) on M 3, then, in suitable coordinates, {2 
equals" co �9 dzl A dz2, for  some constant co, and G equals the direct product 
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{q0-t~,) • F, where to > 0, ~Pt is the flow o f X  = 2ReXc, and the possibilities 
Jot F and )(~. are those given below. 

(1') F is a non-abelian subgroup of  SU(2) and 

1 
xc = ~(Zl~z, + z2~,) .  

(1") P is the cyclic subgroup F,n of  S(U(1) X U(1)),  and 

X~.=azlO~, +(l-a)Z2~z2 with 0 < Re(a) < 1. 

(2) F & ~m and 

n ) 1 z~. 
= 7 7 7 z ,  + boz  + U 4 5  2 

where bo:#O and n = m q -  1 for some q E N. 

All these Hopf surfaces actually arise in such a construction. 
In cases (1") and (2), the integer m E IN is determined by the homotopy 

type of the surface. 
For two such surfaces to be biholomorphic it is necessary that they be of  

the same type, (1'), (1"), or (2). 
Two surfaces of type (1') are biholomorphic if  and only if  they have the 

same F, up to conjugation in SU(2), and the positive number to is the same 
for both. The number to and the homotopy type q;" the surjace determine 
together the complex structure, which in turn determines the vector field Xc. 

Two surfaces o f  type (1") are biholomorphic if  and only iJ they have the 
same value Jor the pair (m, to) and the respective values Jor a are related by an 
element of  the group generated by the rotation R : a ~ 1 - a and the trans- 
lation a ~ a + (2=i/mto). Thus the moduli space of" surfaces of type (1"), Jbr 
fixed (m, to), is the quotient orbiJbM Q2 of the slab {0 < Re(a) < l} under 
this group of two generators. The vector field Xc determines the unordered 
pair {a, 1 - a } ,  hence the moduli space of pairs (S,X~.) of  type (1"), for 
f ixed (m, to), is the quotient orbifoM QI of the slab {0 < Re(a) < 1} under 
the rotation R. The canonical map Ql ---+ Q2 has infinitely many sheets, and 
so every surface of  type (1") admits an infinite sequence of  non-isomorphic 
vector fields X~.. 

Two surfaces of type (2) are biholomorphic if  and only ~ they have the 
same value for the triple (m, q, to). The vector field X,~ is determined by the 
complex structure. 

Remarks. (1) The orbifold Qi, i = 1,2, is topologically a disk with i cone 
points of  multiplicity 2. 

(2) The surface is geometric if and only if it is of type (1') or of type 
(1") with Re(a) = 1/2, independently of  to. The surface is elliptic if and only 
if it is of  type (1') or of type (1") with a C Q + (2~i/to)Q. 
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Proof of  Proposition 5.5. A good part of  the proposition has already been 
proved above. What remains to be proved is the statements about moduli 
and the fact that all such Hopf  surfaces do indeed arise from taut contact 
circles. 

We first treat type (2), because this case is simpler. 
The linear automorphism of  I~ 2 whose matrix is 

( ;  01) ' c ~ 0 '  

conjugates every element of  U(1 ) x U(1)  to itself, and pushes forward the 
vector field 

+ boz~ ~ + -~v ,  z2~  

to the vector field 

) ' 
~ l Z l  + (cbo)z~ ~z, + n + 1 z2cZ~" 

We conclude that all pairs (S(to).Xc) of  type (2), with the same values for m, 
n, and to, are isomorphic to one another. We can restrict our attention to the 
value bo = 1/(n + 1) and so 

= + z 2 a z 2 ) .  
n + l  

but sometimes it will be convenient to let b0 take on arbitrary values. 
It is easy to see (cf. the proof  of  Lemma 5.3) that two pairs (S(to),Xc) 

! 
and (S'(t~),X~!) of  type (1 ' )  are isomorphic if  and only if to = t o and the 
corresponding torsion groups F and F ! are conjugate in GL(2, I~). The list of  
such finite subgroups of  SU(2)  is well-known (cf. [28, 20]), and it is the same 
list up to isomorphism or up to conjugation. Therefore the complex structure 
is determined in this case by the homotopy type and the number to. 

Let now (S(to),Xr and (S'(to),X[) be pairs of  type ( l " ) ,  with the same 
values for m and for to. Let a and a'  denote the parameter values for ~ .  and 
- - /  
Xr respectively. 

Again using the ideas in the proof of  Lemma 5.3, we see that the surface 

S(to) is biholomorphic to the surface S'(to) if  and only if there is an m th root 
e of  1 such that the matrices 

elO( 1 - a  ) and 0 C--  1 elO( I --a* ) 

have the same eigenvalues. This condition is the same as 

either E e  t~ ~ e t~ o r  c e  t~a~ ~ e l ~  

The space of  biholomorphism classes of  surfaces of  type (1"),  for fixed to 
and m, is thus the quotient Q2 of  the slab 0 < Re(a)  < 1 under the group 
generated by the rotation R and the translation a ~-+ a + (2~zi/rnto). 
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The pair (S(to),Xc) is isomorphic to the pair (S'(to),X,() i f  and only if the 
unordered pair o f  eigenvalues at the origin is the same for both, that is, a = a t 
or a = 1 - a t. The space of  isomorphism classes of  pairs (S(to),Xc) of  type 
(1"),  with to and m fixed, is the quotient of  0 < Re(a)  < 1 under the rotation 
R. In particular, every surface S(to) of  type (1")  admits an infinite sequence of  
non-isomorphic vector fields Xc, because it determines a sequence of parameter 
values 

a + 2~ik/mto, k an integer,  

which are pairwise non-equivalent under the rotation R. 

Remark. For any Hopf  surface S(to) constructed from a taut contact circle, the 
vector field Arc determines to as the common period of  all the orbits of  2 Re(Xc). 
It should be noted that for surfaces of  type (1")  the complex structure does 
not determine X,., but it does determine to. 

It remains to show that all the Hopf  surfaces in the proposition are actually 
surfaces S(to) for some taut contact circle. Here we use Corollary 3.12 and 
the method indicated in Section 3.3 for finding the 3-manifold M 3. 

The sphere S 3 = {(zl,z2) E 1122 : IZl[ 2 ~ - ] z z ]  2 = 1} is a U(2)-invariant 

transversal for all vector fields X of types (l t) and (1"),  and also for those of  
type (2), provided b0 is sufficiently small (e.g. bo = 1/(n + 1)). 

Since Xc and ~ = dzl /X dz2 are F-invariant, they descend to the surface 
S = F \  ( ~ 2 _  {(0,0)}).  Thus on S we have Xc and ~ satisfying condition 
(2) of  Corollary 3.12. Since S 3 disconnects I1~ 2 -  {(0,0)}, we conclude that 

all orbits o f - ~  in IE 2 -  {(0,0)} are open, and that (S,X~) satisfies condition 
(1) of  Corollary 3.12 with M 3 the orbit space F \ S  3 of  X in S. By this 
corollary, we have that ((q~t,,) • F ) \  (~2 _ {(0,0)})  = (~0r \ S arises from a 
taut contact circle on F \ S 3. 

The proof  of  Proposition 5.5 is now complete 

At this point we know that a Hopf  surface is a surface S(to) if and only 
if it is in class (a ' )  of  Theorem 5.1, and that the corresponding 3-manifolds 
are the left-quotients of  the group SU(2)  = S 3. Also, We have classified these 
Hopf  surfaces and the corresponding pairs (S(to),X~.) up to biholomorphism. 

5.3 Properly elliptic surfaces 

We first give a br ief  description of the geometry SL2 • E 1 (following [23] 
and [27]) and then go on to study the triples (F, Xc, O) for surfaces S(to) 
which are properly elliptic of  geometric type SL2 • E I. 

Let H denote the upper half  plane in II~, with the usual hyperbolic metric. 
The identity component of  the isometry group of  H is the group PSL2 = 

PSL2]R. I f  z is the usual coordinate on ~ ,  then an element ( ~ ~ ) E  PSL2 
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acts on H by 

r s ( z ) _  

t u t z + u  

and the isotropy group of  this action is S I. 
One can identify PSL2 with the unit tangent bundle STH by choosing any 

vector Vo E STH at some fixed point of  H and forming the map 

PSL2 ~ STH A , ~ A,(vo) .  

Under this map, the natural metric on STH is pulled back to a left-invariant 
metric on PSL2 which is independent of  the choice of  Vo. We further pull this 

metric back to SL2, and then give SL2 x E 1 the product metric. 
One can also identify PSL2 • E 1 with the bundle Toll of  non-zero tangent 

vectors on H via the map 

PSL2 • E 1 ~ Toll (A,2) ~ e;~A,(vo). 

For the product metric on PSL2 x E 1 the fibres of  Toll are product cylinders 
S 1 x E l where the Sl-factor has length 2~. Then SL2 x E I is the universal 
cover o f  Toll, with a special metric where each covering fibre is a Euclidean 
product E l • E 1 . 

The bundle Toll is biholomorphic to H • ~*,  and we let (z,w) denote 
the usual coordinates on ~2. We put this holomorphic structure on PSL2 x E I . 

The universal cover o f  Toll is biholomorphic to H • ~ with coordinates (z, ~),  
again induced from ~ 2  The relation between these two coordinate systems is 

w = e w. We consider (z ,~)  as coordinates on SL2 • E T. 
We use the notation 2, 0 for the real and imaginary parts of  ~:, that is, we 

write ~ = 2 + iO. Notice that 2 is the linear coordinate o f  the El-factor, and 
0 is the angular coordinate on the fibres of  STH (resp. the linear coordinate 
on the fibres of  the universal cover of  STH).  

The identity component of  the full isometry group of  Toll = PSL2 x E j is 
PSL2 x C*. An element of  PSL2 acts on Toll by 

t u + ( t z ~ - u ) 2  " 

An element e ;+'~ E ~* acts on Toll by multiplication on the fibres, 

ei~+i~ w) = (z, e;~+i~ w). 

Consider now the following one-parameter subgroup of  PSL2, 

( c o s t - s i n ~ )  ~ c I R ,  
sin ~ cos r 

and let ~ ' ( z )  be its lifting to a one-parameter subgroup of  SL2. The kernel o f  

the projection homomorphism SL2 ~ PSL2 is the infinite cyclic group gener- 
ated by ~ ' (~) .  
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We now define an action of  the direct product SL2 x ~ on SL2 x E l = 

H x C. Given an element A E SL2 that maps to A = ( ~ ~"i ) under the natu- 

ral projection SL2-~ PSL2, then 

f r z + s  ) 
(-~,w0)(z,w) = ~ t S ~ u , W  + Wo - 2 log(tz + u) . 

Notice that log(tz + u) is multi-valued on PSL2 x H, but it defines a single- 

valued function o n  SL 2 X H,  normalized by the requirement that it equal 0 on 
(Identity, z). Its value on (.~/(Tr),z) is 7ti for all z E H .  

This defines a surjective homomorphism 

Ss x ~ ~ Isomo(S's x E I ) 

from SL2 • C to the identity component of  the full isometry group o f S L  2 x E l . 

It is obvious that 
( ,4 (n) ,  0)(z, g,) = (z, g, - 2=i), 

hence the action by SL 2 X (F is not effective, its kernel being the infinite cyclic 
group generated by 70 = ( ~ ( ~ ) , 2 n i ) .  Therefore 

Isomo(SL2 X E I ) = (S's X r  = ffs x z  r  

The isometry group Isom0(SL2 x E 1 ) contains the subgroup SL2 as the set 
of  classes [(A, 0)] with A E SL2. It also contains the subgroup G as the set o f  
classes [(Identity,~0)] with ~6 o C G. 

We have an obvious projection homomorphism 

SL2 • 7Z ~ ..... PSL2. 

For F a discrete subgroup of  SL2 •  ~ ,  we write F '  for its image in PSL2 
under this projection (note that F '  is again a discrete subgroup, cf. [27, p. 125]). 

Complex surfaces of  geometric type SL2 • E I are quotients 

w = G \ ( ~ 2  • F~') = G \ ( H  • r  

where G is a cocompact discrete subgroup of  SL2x~r These surfaces have 
a unique elliptic fibration [27, Lemma 7.2], where the fibres are given by 
z = constant. The generic fibres are all isomorphic to the quotient of  r under 
the lattice G N C. The multiple fibres result fi'om taking further quotients under 
finite groups of  automorphisms of  the generic fibre. 

It is straightforward to see that W~w is a nowhere zero, hotomorphic vector 
field on PSL2 • E l that is invariant under PSL2 • G*. Its lifting #g to SL2 x E I 

is invariant under SL2 xa~ r  Likewise, OH = dz A d ( l /w)  is a nowhere zero, 
holomorphic 2-form on PSL2 • E t that is invariant under PSL2 and satisfies 

w~aH = w0 -1 �9 ~H for w o e  r  

where w~ denotes the pull-back under left multiplication by wo. 
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The lifting of  OH to S L  2 x E l is 

f2n = - e  Wdz A d~,  

this is invariant under SL2 and satisfies 

~'~(2 n = e--W"~H for all w0 C 117. 

Notice that w0 = 2~i can be identified with ~ 4 ( - ~ )  in S-L2, hence ~H is invari- 

ant under an isometry o f  SL2 • E I if and only if this isometry can be realized 

as left multiplication by an element in SL2. Indeed, a much stronger fact is 
true. 

L e m m a  5.6 A diffeomorphism oJ" ~ffL2 x E l preserves f2n i f  and only i f  it is 

left multiplication by some element o f  SL2. 

Proof  Since OH determines the complex structure, such diffeomorphism has 
to be a biholomorphism of  H • C. The Kobayashi pseudodistance (cf. [17]) 
degenerates along the C-factors of  H x C, thus a complex automorphism of  
H x C has to take C-fibres to C-fibres. Also, any automorphism of C is of  
the form ~ H a~  + b. Therefore the general complex automorphism of H • C 
is of  the form 

O(z, ~ ) = (A(z ), a(z )~ § b(z ) ), 

where A C PSL2 and a(z) ,b(z)  are entire functions, with a(z) nowhere zero. 
r s Given this matrix A = ( ~ , ) choose any sheet of  the function log(tz + u) 

and write 
O(z, ~ )  = (A(z), a(z )~  - 2 log(tz + u) + bo(z)), 

where bo ( z )=  b ( z ) +  2 log(tz + u) is also an entire function. We compute 

q)* f2H = - a ( z  ) e x p ( - a ( z ) ~  - bo(z ) ) dz A d~.  

The identity O*{2n = OH is satisfied if and only if there exists a sheet of  the 
function loga(z)  for which we have 

- a ( z ) ~  - bo(z) + log a(z) = - ~ .  

Since z and ~ are independent variables, we must have a(z) =- 1 and bo(z) = 
Ioga(z)  = 2~ik, for some integer k. Thus 

O(z, ~ )  = (A(z), ~ - 2 log(tz + u) + 2~ik) 

equals left multiplication by an element o f  SL2. 
The lemma is proved. 
Let now S(to) = M 3 • S t be a properly elliptic surface o f  geometric type 

SL2 • E l arising from a taut contact circle on M 3. The elliptic fibration is 
given by 

o\(~2 • E~)--,  r ' \ H ,  
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induced from the natural projection H • ~' -+ H.  Here F C SL2 • ~ is the 
subgroup n l (M 3) of  G, and F '  = G ~ is the image of  G under the projection 
to PSL2- 

On S = SL 2 • E l we have the form ~ which is the lift o f  ~ = d(et(~l + 
i~o2)) from M 3 • IR, and the vector fields X and Xc, the lifts of  X and X~, 
respectively. We observed in the last paragraph of  Section 4 that the flow of  
X is along the fibres o f  the elliptic fibration. Since X has to be invariant under 
the fibre lattice G n ~ ,  we find that 

for some nowhere zero, holomorphic function a(z) on H. 
We can write G = F • (~ot,~), where q~t denotes the flow of  X. Note that 

is invariant under F. 
Because o f  the invariance o f  ?w under the full group S L  2 x2~ (~, we con- 

clude that a(z) is F-invariant, and so it defines a global holomorphic function 
on the base orbifold Z" = U \ H of  the elliptic fibration o f  S(to). This implies 
that a(z) is a constant a = a0, say. 

Since H • ~ is simply-connected, there is a holomorphic function ~b(z,~) 
such that 

h = e~h. .  

Then the condition Ly, ~ = ~ translates to 

whose solutions are 

a0 ~-~-1 =1, 

= ~b0(z)+ 1 + ~ ,  

for any non-zero complex constant a0 and any entire function qS0(z) indepen- 
dent o f  ~. Therefore 

= - exp(~b0(z) + (1/ao)~)dz/~ d~. 

Now define a holomorphic automorphism 7 j o f  H x II~ by 

7J(z, ~:) = (z, -ao(~bo(z) + w)). 

This automorphism takes l~-factors to IU-factors, it pulls X = a0c~ w back to 
-~?w, and it satisfies 

~ * ~  = - exp(~b0(z) + (1/ao)(-ao)((ao(z) + ~ ) ) d z  /~ ( -ao)d~  = -ao~2H. 

Although ~ need not be an isometry, it conjugates F into another group of  

isometries. In fact, since F preserves 5 ,  the group k g - l o  F o 7 j preserves 

( -1 /a0)~P*~ = ~H and by Lemma 5.6 it is a subgroup o f ~ 2 .  
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Hence, up to biholomorphism of  the universal cover S = H x ~ ,  we may 
assume 

X ~ . = - 0 7 ,  ~ = ~ , q ,  and F c S ' L 2 .  

Note that this allows to identify (~o,,.) with the subgroup {t0) of  E I. 

As a F-invariant transversal for X we can use the hypersurface S's x {0}. 
Therefore 

M 3 = F \ (orbit space of  X)  = F \S'L2, 

which is a Seifert fibred manifold over the base orbifold Z = F '  \ H.  

For any discrete, cocompact subgroup F C SL2, the complex surface S = 
F \ (SL2 x E l) satisfies conditions (1) and (2) of  Corollary 3.12, with X~. and 

f2 induced from -Ow and ~ n ,  respectively, and so the corresponding surfaces 

S(to) do arise from a taut contact circle on M 3 = F \ SL2. 
We have now proved that a properly elliptic surface is a surface S(to) 

if  and only if it is in class (b ' )  o f  Theorem 5.1, and that the corresponding 
3-manifolds and triples (F,X~, Q) are as stated in that theorem. 

The group G now has the following description: 

G = F x (to) C SL2 x~ 112. 

The fibre lattice G N ~ has generators to and 2niro, for some positive integer 
r0 determined by the condition F N I1~ = 2ni(ro). 

It is easy to see that the only orthogonal bases of  the fibre lattice, positively 
oriented with respect to the complex structure, are the following: 

{to, 2niro}, {- to ,  -2niro},  {2n/r0,- to},  {-2n/ ro ,  to}. 

The complex structure of  S(to) determines the elliptic fibration and so it deter- 
mines the complex structure of  the generic fibre, which implies that the fibre 
lattice is determined up to multiplication by a non-zero complex constant. Thus 
the following unordered pair of  ratios is determined by S(to): 

2niro -to to 
- -  i .  

to ' 2niro 2nro 

This means that the complex structure of  S(to) determines the unordered pair 
! 

r 0  t o 

t ;  ~ r 0 ' 

where t~ = to/2n. I f  a homothety class is given on M 3 up to diffeomorphism, 
then the complex structure of  S(to) is determined as a function of  to, and the 
above unordered pair is also known as a function of  to. Thus the positive 
integer ro is determined when the homothety class on M 3 is known up to 
diffeomorphism. 

Remark. It follows from [21] (cf. [27, p. 141]) that there are strong restic- 
tions on the possible values of  r0, in particular, r0 has to divide the Euler 
characteristic of  the 2-manifold 2;o which covers the orbifold X. 
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5.4 Hyperelliptic surfaces and complex tori 

We begin with a description of the geometry of ~g'2 X g I and the complex 
structure compatible with this geometry. 

We write an element of the group of Euclidean motions of E 2 as 

<(:) 0) 
where the action on E 2 is given by 

( ; ) ~  f c o s 0 - s i n 0  
~ ~ sin0 c o s 0 )  ( ; ) + ( ; )  ' 

We obtain the universal cover ~;2 by allowing any real value for 0, hence, 
we may regard E2 as IR 3 with multiplication 

((::) oo) ((u) o) 
= ( ( c o s 0 0  - sin 0o u0 0)  ,,s n0o cos00) ~ 

From this description it is obvious that the standard metric on IR 3 yields the 
left-invariant metric on k22 under this identification. 

We write an element of E2 x E 1 as 

((:) 
and we give E2 • E1 the complex structure pulled back from t122 by identifying 
such an element with 

(z, w) = (u + iv, )t + iO) C 1~2. 

The identity component of the group of isometries of  E2 • E I that preserve 
this complex structure is the semidirect product of translations IR 4 and unitary 
maps U(2). If such an isometry fixes the 3-dimensional space {2 = 0} (we 
shall call such an isometry a complex isometry of  E2), it has to be of the 
form 

(( : ))  0,2 , ~ cos0o sin0o 
' sin0o cos0o + vo ' 

or  
(z, w)  ~ ) ~0o ~ Z+ZO, W+iO1), 

and such an isometry can be interpreted as an element of E2 acting by left 
multiplication if and only if 0o =- 01 mod 2~. 
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Now consider the holomorphic 2-form 

QE = e Wdz A dw  

on E2 • E j, and observe that a complex isometry of  L'2 pulls back QL to 
e ' (~176 so it preserves ~E if and only if this isometry is an element of  
E:. Also notice that translations in 2-direction send ~ .  to positive multiples 
of  itself. 

Now let S(to) = M 3 x S I be a complex torus or a hyperelliptic surface 
(with Euler class (0 ,0))  that arises from a taut contact circle on M 3. 

A hyperelliptic surface with Euler class (0,0)  can be described as follows 
(cf. [1, p. 148], [25], and [27, pp. 141 142], but note that in our description as 
compared with Wall 's ,  the r61es of  z and w are exchanged; we have opted for 

this change to get ~L into the same form as ~rt, but whereas the elliptic fibra- 
tion in the properly elliptic case was given by (z, w ) H  z, in the hyperelliptic 

case it is given by (z,w) ~-, w). Let first c be a primitive mth root of  1, where 
m = 2 ,3 ,4 ,6 ,  and take the quotient L \ ~2, where L C IF x {0} is a lattice of  
rank 2 invariant under multiplication by s. Then one takes the further quotient 
under a lattice of  rank 2 in {0} x I r c  I172, thus creating a quotient which is 
the product of  two elliptic curves, where we think of  the first factor as the 
fibre and of  the second factor as the base. Finally, one takes the quotient under 
an action of  a cyclic group of  order 2,3,4, or 6, respectively, whose generator 
acts by 

( z , w ) ,  , ( s z ,  w + w o ) ,  

where w0 is an element (of  order m) of  the translation group of  the base. 
(Note in particular that hyperelliptic surfaces with Euler class (0,0)  have no 
translational monodromy).  

If  S(to) is a hyperelliptic surface, then it is easy to see that invariance 
under all the generators of  the deck transformation group G forces X,. to be 
of  the form X~. = a0(~w, for some non-zero complex constant a0. 

Analogously to the previous section, we have 

= e<l'h , 

and as there we conclude from L2 ~ = ~ that 

= exp(qS0(z) + ( 1 / a o ) w ) d z  A dw. 

Consider now the automorphism r of  IF 2 defined by 

q'(z, w ) = (z, - a o (  4)o(z ) + w ) ). 

This map pulls .~< back to -~?w. It also pulls ~ back to - a 0 ~ e .  
Any transformation 7 E G is of  the form 

y ( z , w )  = (az + zo, w + wt ), 
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with lal = 1. The conjugate of this map by qJ is 

T - l  o 7 o  T ( z , w ) =  ( a z + z o ,  w + f ( z ) ) ,  

where f ( z )  = Co(z) - 96o(az + zo) - (wl /ao)  is an entire function independent 
of w. 

If 7 is in F, then it preserves ~ and so T - I  o 7 o T must preserve the 
pullback T*~  = --aO~2E, and this means that 

ae-W- l ( z )  ~ e -w,  

hence f ( z )  = loga for some choice of loga. Thus the conjugate group T - l  o 
F o T is contained in/52. 

We conclude that, up to biholomorphism of S = C 2, we may assume 

X_e=-~w, h = h E ,  and FC/52.  

If S(to)  is a complex toms, then invariance of ~.  under G is equivalent to 
~, = bo0z + ao0w, for some complex constants ao, bo, but we may have bo + 0 
and even ao = 0. Let first T1 be a linear automorphism of ~2 pulling X,. back 
to -~w. The identity 

implies 
T~ ~ = e4~"(z)-Wdz A dw. 

Now T2(z,w) = ( z ,w  + Co(z)) pulls -#w back to itself and pulls T~2  back 

to ~E. 
The group G now consist only of translations. As Tl is linear, every ele- 

ment 7 E T~ -l o G o Tl is a translation 

7(z, w)  = (z + zo, w + wl ). 

Then the conjugate of this map by T2 is 

~21 o ~ o q'2(z,w) = (z + zo, w + f ( z ) ) ,  

where f ( z )  = Co(z) - r  + zo) + wl .  This conjugate map preserves ~e if 
and only if f ( z )  -- 2nik for some integer k, i.e., if and only if it is in the 
translation part ~ x (2~iZ) of/52. 

We conclude that, up to biholomorphism of ~2, a complex torus S(to) has 

2c = --(]w, ~ = SE, and F C G X ( 2 n i Z ) .  

The hypersurface/52 x {0} is a F-invariant transversal for -Sw, therefore 

M 3 ~  \ /5  = f '  2. 

Given any discrete, cocompact subgroup F C/52, the surface S = F \ (/52 x 
E 1 ) admits a pair (Arc, f2) (induced from -0w and ~E) satisfying the conditions 
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of Corollary 3.12, thus S arises from a taut contact circle on the orbit space 
of X = 2 Re Arc in S, which is F \ E2. 

We have now proved that a hyperelliptic surface or a complex torus is 
a surface S(to) if and only if it is in classes (c ')  or (c"), respectively, of 
Theorem 5.1, and that the corresponding 3-manifolds and triples (F,X,, t2) are 
as stated in that theorem. 

Since in Section 5.1 we proved that a surface S(to) has to be a Hopf 
surface, a properly elliptic surface of geometric type SL2 • E I, a hyperelliptic 
surface with Euler class (0,0), or a complex torus, we have completed the 
proof of  Theorem 5.1 and consequently of  Theorem 1.2. 

5.5 Topological arguments 

In this section we give a brief sketch of the topological arguments that can be 
used to prove Theorem 5.1 up to diffeomorphism. 

The key fact is that a complex surface W = S ( t o ) ~  M 3 • S I that arises 
from a taut contact circle on M 3 has trivial Chern classes (cf. Proposition 3.4). 

Given a complex surface W with covering surface W and deck transfor- 
mation group G, one can define a complex line bundle &a over W by forming 
the quotient 

~• 
(x ,z)  ~ (Tx, Ft(7)-lz), 7 E G, 

where /t E Hom(G,~*) .  Note that ff~ ~ W is the associated principal G- 
bundle of  5q, ~ W. 

Now a standard argument (cf. [9]) shows that under the (weak) assumption 
that 7r2(~') = 0, the condition cl(Lf) = 0 implies that p[TG ab = 0, where TG ab 
denotes the torsion part of the abelianization G ab of G. 

One then applies this topological lemma to the canonical line bundle of 
Hopf surfaces and properly elliptic surfaces of type SL 2 • E I, arising as S(to) 
from taut contact circles. In both instances we have seen that there is a nowhere 
zero, holomorphic 2-form Q on W that is preserved by an isometry 7 of  

if  and only if 7 E SU(2) in the Hopf case and 7 C SL2 in the properly elliptic 
case. This is sufficient to conclude the proof in the former case, in the latter 
one also has to take care of  29 free generators of  G coming from the base 
L" of the elliptic fibration (where ,q is the genus of 2;). However, these differ 
from elements in SL 2 only by a translational component along the fibres of 
the elliptic fibration, and this component may be changed arbitrarily (and in 
particular be set to zero) without changing the diffeomorphism type of W. This 
follows from the work of Ue, since he shows that the diffeomorphism type is 
determined by the fundamental group 1tl = G of W, and the relations in G are 
not affected by changing the translational part of any of the free generators 
coming from the base. 
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6 Homothety classes 

in this section we apply the results o f  Section 3, together with Theorem 5.1 
and Proposition 5.5, to give a list of  all pairs (M 3, homothety class), up to 
diffeomorphism, and to show that the list has no repetitions when M 3 is a 
left-quotient of  S 3. Thus we deduce Theorem 1.6 and Proposition 1.7. We also 
prove Corollary 1.9. 

We keep the notation o f  Section 5. 
Before we start, recall the definition of  the standard Caftan structure on 

F \ ~.g, given in Section 2. This is induced by any left-invariant Caftan structure 
on ~.g. 

For ~g = S 3, with the ordinary inclusion j �9 S 3 --~ 1122, the complex l-form 
j*(zldz2 - z 2 d z l  ) is left-invariant (see below) and its real and imaginary part 
form a Cartan structure. In the present section and the next, we take the stan- 
dard Cartan structure on F \ S 3 to be induced by (the real and imaginary part 
of) zldz2 - -  z2dzl. 

Similarly, we take the standard Cartan structure on F \ SL2 (resp. on F \ 

E2) to be induced by e '"dz (resp. e- '"dz) .  
Let first S(to) be a H o p f  surface. We can take S 3, with ordinary inclusion j ,  

as the transversal for X in q72 - {(0,0)}. 
We now follow the terminology of  Proposition 5.5. If S(t0) is of  type (It) ,  

we consider 
(01 ~- i(t)2 = j*(X,.J f2), 

where for ~ we take 2 dzt A dz2 and 

whence 

that is, 

~. [ 

~)1 + i~02 = j*(zldz2 - z2dzl ), 

~01 = j*(xtdx2 -x2dxL + y2dyi - y ldy2) ,  

0 ) 2  = j* (x tdy2  - y2dxl + yldx2 - x2dy] ), 

which are two of  the standard Maurer-Cartan forms on S 3. Thus, to surfaces 
of  type (1 ' )  there corresponds the standard Caftan structure on F \ S 3. 

If S(to) is of  type (1"), we use the same j as above, for Q we take 
dzt A dz2, and 

)(c =azl~z, ~ ( 1  --a)z2~':2, where 0 < Re(a)  < I. 

Two pairs (S(to),X~.) with the same to and F are isomorphic if and only if 
they have the same unordered pair {a, 1 - a } .  Since diffeomorphic homothety 
classes give isomorphic pairs (S(to),X~) for each to, we conclude that the 
moduli space of  homothety classes giving surfaces of  type (1"), for fixed 
F = F .... is the orbifold quotient Q~ of  the slab 0 < Re(a)  < I under the 
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rotation R : a w+ l - a. By slight abuse of  language, we call them homothety 
classes o f  type (1"). 

The contact circle is given by 

col + ico2 = j* (az ldz2  + (a - 1 )z2dzj ). 

Such a circle descends to the lens spaces L ( m , m  - 1), including S 3 = L(I ,0) .  
By Corollary 3.14, the homothety class contains a Cartan structure if and 

only if there is a transversal in M 3 x IR tange~  to J(?~. As /'m is finite, this 
lifts to a compact transversal tangent to - 2  Im(X~.) in Ir 2 - {0}. 

The flow o f -2 Im(X ~ . )  is given by 

~t (Zl,ZZ) = (e'atzl, e'(I-a)tz2), 

and if Ira(a) is non-zero, then every point with at least one coordinate non- 
zero goes to infinity as t goes to one of  { + o c , - o c } .  Hence, in this case no 

compact real submanifold of  ~2 _ {0} tangent to - 2  lm(Xc) can exist. 

If  a is real, then - 2 I m ( X c )  is tangent to S 3. 
Therefore, the homothety class on L(m,  m - 1 ) given by 

aZldZ2 + (a - 1 )z2dz I 

contains a Cartan structure if and only if a is real. The quotient of  the interval 
0 < a < 1 under R is a ray in Q1 going from the cone point to infinity, and it 
is the part o f  the moduli space coming from Caftan structures on L ( m , m  - 1). 

Every point a on the slab 0 < Re(a) < 1 can be moved to the interval 
(0, 1). This gives a homotopy of  any homothety class of  type (1")  to one 
containing a Cartan structure. I f  we actually move a to the point 1/2, then the 
homotopy ends in the homothety class o f  the standard Caftan structure. 

Let now S(to)  be a Hopf surface of  type (2). In this case M 3 is a lens 
space L ( m , m -  1 ) = F m \ S  3. Fix some q E N  and let n = m q - 1 .  L e t j  be 

as before, and we take (n + 1)dzj A dz2 for ~, and 

= zl + boz ~z, + zz~?z~, 

where b0 + 0  is small enough so that 2 Re(X~) is transverse to j(S3). Then, 
following the proof o f  Theorem 3.11, we get a taut contact circle on S 3 by 
setting 

COl + i(o2 = j* (nz ldz2  - z zdz l  + (n + 1 )boz~dz2), 

and this contact circle descends to L ( m , m  - 1) because o f  n + 1 - 0 rood m. 
The resulting homothety classes will be called homothety classes of  type (2). 

For given m, n, and to, all values o f  b0 give the same pair (S(t0),Xc) up to 
isomorphism. Therefore there is a one-to-one correspondence between homo- 
thety classes, up to diffeomorphism, and pairs (m ,n ) .  Here m is a homotopy 
invariant of  M 3, while n = m q -  1 is geometric. 
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The flow of  -2 Im(X~)  is 

~, (zl,z2) = (exp(int/(n + 1 ))zl + ibot exp(int/(n + 1 ))z~, exp(it/(n + 1 ))z2). 

We see that a point with z2 non-zero goes to infinity as t goes to infinity. So 
there is no corrtpact real hypersurface of  ~2 __ (0} tangent to - 2  Im(-~c) and 
the homothety class does not contain any Cartan structure. We can move b0 
until it reaches the value zero, while keeping it small so that S 3 is always 
transverse to 2Re(.~c). This is a homotopy of  the homothety class into one 
containing a Cartan structure. It is an interesting homotopy because it is a 
' jump'  homotopy: While b0 +0 ,  the homothety class is being deformed into 
equivalent ones, but for b0 = 0 it is a new one. This jump phenomenon has 
been pointed out by Kodaira-Spencer in [18, pp. 435-436] for the case n = 1, 
where it prevents the construction of  a ' good '  moduli space o f  Hopf surfaces 
in the case where the contraction T is linear with double eigenvalue. For this 
reason, we define the moduli space on the lens spaces L(m, m - 1) only for 
homothety classes of  type (1"). The homothety classes o f  type (2), up to 
diffeomorphism, simply form a discrete set. 

The diffeomorphism from the homothety class given by b0 # 0  to the one 
with b0 = 1/(n + 1), is induced by the linear map of  ~ given by the matrix 

(;0 ,), 
where c = l /((n + 1)b0) goes to infinity as b0 goes to zero. 

As we pointed out in the proof of  Proposition 5.5, the vector field 2 Re(~'c) 
is transverse to S 3 for bo = 1/(n + 1 ). This particular choice gives 

COl + iCO2 = j*(nzldz~ - z2dzl + z~dz2) 
�9 * n = J (z 2 exp(zl/z~ ) d(z2 exp(-zl /z~ ))). 

Therefore the integral curves in S 3 of  the common kernel ker o~j N ker CO2 can 
be described by the equations 

Iz, I 2 + Iz212 = l ,  

z2 exp(-z t /z~)  = constant. 

Since surfaces of  different types (1'), (1"), (2) are not biholomorphic, we 
also have that homothety classes of  different type are not diffeomorphic. 

Observe that in all cases we can homotope the taut contact circle (col,co2) 
on F \ S 3 to the standard Caftan structure: In case (1")  we let a go to 1/2, 
in case (2) we let b0 go to 0 and n to l (for the purpose of  a homotopy, n 
need not be an integer). Moreover, we noticed in the proof of  Proposition 5.5 
that the isomorphism type o f  F (as an abstract group) determines F up to 
conjugation in SU(2),  hence, there is a unique standard Caftan structure (up 
to diffeomorphism) on M 3 ---/" \ S 3, even if we only fix the diffeomorphism 
type o f  M 3 and not a specific subgroup F C SU(2). 

We have thus proved Theorem 1.6 for the left-quotients o f  S 3, as well as 
the following statement on moduli, of  which Proposition 1.7 is the part for S 3. 
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Proposition 6.1 The moduli space of  taut contact circles of  type (1")  on the 
lens spaces L(m, m - 1 ), including S 3, up to homothety and diJfeomorphism, 
is the orbiJbld QI. The homothety classes of  type (2), again up to d(ffeomor- 
phism, Jbrm a countable, discrete set {Pn}, where n ranges over the positive 
integers of  the form n : mq - 1, and Pn is the homothety class induced by 
the complex form nzldz2 -z2dzl  + z~dz2. The homothety classes containing 
Cartan structures correspond to the part of  QI coming j?om the real inter- 
val 0 < a < l, where 1/2 gives the cone point and represents the homothety 
class o f  the standard Cartan structure. 

Next, suppose that S(to) is a properly elliptic surface. Then ~',. : - ~  and 

we use H • (ilR) as transversal for X ---- -t3;. Notice that - 2  lm (Xc.) -- -c30 is 
tangent to this transversal. We let j be the inclusion of  H • (ilR) into H • I17, 
and 

tO1 + ire2 = j*(XcJ (2H) = j * ( - e -Wdz )  

is invariant under the left action of  S'L2, because -~c and ~H are. Thus we get 

the standard Caftan structure on F \ SL2. 

The argument in the case ff = E2 is completely analogous. 
This concludes the proof of  Theorem 1.6. 

To deduce Corollary 1.9, we argue as follows. We have seen that any taut 
contact circle is, up to homotopy, covered by the standard Cartan structure 
( ( D l , ~ O 2 )  o n  ft. For ~ = 33 or E2, it is easy to see that .c./1 = kernel is the 
standard tight contact structure on S 3 or IR 3, respectively. Since the condition 
o f  not being tight (hence, being overtwisted in the sense of  [5]) is defined 
by the existence of  an embedded 2-disc on which the 1-dimensional foliation 
induced by the contact structure has a closed leaf and a singular point inside 
this leaf, a contact structure covering an overtwisted contact structure is clearly 
overtwisted. Therefore, if the contact structure on the cover is tight, so is the 
contact structure on the quotient. 

For ff = SL2, explicit symplectic fillings o f  the contact structures on left- 
quotients o f  f~ that come from the standard Cartan structure have been con- 
structed in [7], by [5] this implies that these structures are tight. 

The fact that contact structures coming from taut contact circles are tight 
might be very important for a complete homotopy classification o f  taut contact 
circles. For instance, it can be shown by elementary means that any taut contact 
circle on T 3 is homotopic to one of  the form 

eJ1 = cos(ro03)d01 + sin(r003)d02, 

t D  2 = - -  sin(ro03)d01 + cos(ro03)d02, 

where the Oi are the angle coordinates corresponding to the three Sl-factors 
and ro C fi'q. Recent work of  Eliashberg-Hofer-Salamon and Giroux suggests 
that every tight contact structure on T a is of  this form and that structures 
corresponding to different values o f  ro are not homotopic. This would imply 
that we have a countably infinite family o f  taut contact circles on T 3 and that 
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every tight contact structure o n  T 3 can be realized as part of  a taut contact 
circle. 

Similar considerations apply to the other T2-bundles over S I with periodic 
monodromy. 

We conclude by pointing out that it is possible to give a more detailed de- 
scription of  the set of  of  homothety classes, up to diffeomorphism, in the cases 

= S's and ~ = E2 as well, and it is also possible to describe the complex 
structure of  these sets when such structure exists. For instance, the following 

proposition shows that the problem in the SL2 case reduces essentially to a 
problem in Teichmfiller theory. 

Proposition 6.2 I f  the discrete, cocompact subgroups F(j), F(2) o f  SL2 have 
i : i in PSL2, and if  they yield isomorphic pairs the same imaqe F(~) F(2 ) 

(Sr,,,,Xe) and (Sr<2,,Xc), then FO) and F(2) are conjuqate in SL2. 

This proposition can be proved using the methods of  Section 5.3. We plan 
to discuss the moduli problem in greater depth in a forthcoming paper [11]. 

7 Cartan structures 

The purpose of  this section is twofold. First we give a construction of  all 
manifolds in Theorem 1.2 from (real) surfaces with a Riemannian metric. The 
construction actually yields a 3-manifold with a certain Cartan structure induced 
from the Liouville-Cartan pair of  that real surface. Then we characterize these 
particular Cartan structures among the class of  all Caftan structures, and we 
also discuss the set of  Cartan structures within a homothety class. 

Let 2~0 be a closed, oriented surface of  any genus, with a Riemannian 
metric. We do not require the curvature of  this metric to be constant. Let Y 
be a finite group of  orientation-preserving isometries of  X0, and denote by d~-  
the set o f  the differentials of  the elements of  ,~.  Then d,r is a finite group 
of  isometries of  STZo, where it acts freely. 

The quotient manifold dJ ~ \ STs has a canonical Seifert fibration over the 
2-dimensional orbifold 22 = ~ \ 220. 

It is obvious that i f  z0 E 2;o has non-trivial isotropy group (necessarily 
cyclic of  order q, say), then the fibre of  ST2;o over z0 becomes a multiple 
fibre o f  multiplicity q in d ~  \ ST22o. 

Remarks. (1) The manifold d ~  \ STXo is what in [23] is called the unit 
tangent bundle of  the orbifold ,~- \ 2;o. 

(2) Suppose that 22o is as above, only non-orientable. Let 2;o ~ 2;o be 
the canonical orientable covering surface, and let FXo --~ 220 be the bundle of  
orthonormal frames (whose fibre is the disjoint union of  two circles). There is 
a natural map F22o --~ STro  which is a diffeomorphism. For any group o ~ of  
isometries of  22o, there is a naturally defined isomorphic group ~ of  isometries 
of  ~0, and a natural diffeomorphism d ~  \ FZo ~- d . 7  \ STXo. 
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Sometimes we can also find 3-manifolds M 3 having a Seifert fibration over 
2; and a covering map 

M 3 ~ d ~  \ STSo, 

which takes fibres to fibres, with base map the identity 2; --* 2;. i f  ro is the 
number of  sheets of  this covering, then each fibre of  M 3 wraps ro times around 
the fibre of  d,N \ STNo over the same basepoint, for some positive integer ro. 

Notice that this is equivalent to giving a manifold M 3 with a covering 
map M 3 ---+ do -~ \ ST2;o such that the inverse image of  each Seifert fibre of  
d,N \ STZo is a single circle, and then let these inverse images in M 3 define 
the Seifert fibration of  M 3 over S. That is, the projection from M 3 to S is 
the composition of  the covering map followed by the projection of  d,N \ STSo 
onto 2;. 

Theorem 7.1 A compact 3-manifold arises from the construction explained 
above, where the surface 2;0 has 9enus O, 1, or #rearer than 1, i f  and only if  
M 3 is a left-quotient of S 3, E2, or ~SL2, respectively. 

Remark. The greater part of  this theorem is essentially implicit in [2 1 ]. How- 
ever, the subsequent discussion in the present section refers to details in the 
proof of  this theorem, so it seems convenient to present a complete proof, 
which also allows us to fix notation. 

Proof Let ~ be one of these three Lie groups, and let S. be the corresponding 
simply-connected, 2-dimensional space form. 

Suppose M 3 = F \ N for some discrete, cocompact subgroup F of  N. Let 
U be the image of  F under the obvious projection 

c# ~ Isomo(S) 

of  fr onto the group of  orientation-preserving isometrics of  S. 
I f  U is discrete, then F \ .cr has a canonical Seifert fibration with base 

the 2-dimensional orbifold S = / "  \ S. I f  f# is S s or S'L2, then U is always 

discrete, but if f# is s this is not always the case. We proceed now assuming 
that F '  is discrete and, since the statement of  the theorem is topological, we 
shall only need to check that in the case c~ = E2 we already get all topolog- 
ical types of  left-quotients if  we only use subgroups F with discrete image 
F r" 

We can always find a description S = ~ \ 2;0, where 2;0 is a closed, ori- 
ented 2-manifold (no cone points), and .~- is a finite group of  orientation- 
preserving isometrics of  27o, for some metric on 2;o with the corresponding 
constant curvature. Equivalently, we have 2;0 = F~ \ S, where F~ is a normal 

subgroup of  F '  with finite index, acting freely on S.. The genus of  S0 is 0 if 

= S 3, 1 if N = b72, and greater than 1 if cr = S'L2. 
Let now F0 be the inverse image of  F~ under the projection of  ~ onto 

Isomo(S.). The quotient F0 \ ~ is the unit tangent bundle STXo. Define also 
C cr as the inverse image of  U .  Then we have an isomorphism of  Seifert 
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spaces over 12, 
? \ d g  \ SrZo. 

Since F and F both project to the same discrete group F ' ,  the quotients F \ f6 

and F \ ~ have Seifert fibrations over the same orbifold Z = F '  \ Z. 

The inclusion F C F induces a covering map 

which takes fibres to fibres, with base map the identity S ~ Z. 
Since F \ f# is d ~  \ STZo as a Seifert space over 22, this proves that 

M 3 = / ,  \cff arises from the construction explained above, provided U is dis- 

crete. We must now check that every left-quotient o f  bS2 is obtained, up to 
diffeomorphism, from such a special F. 

For T 3 this is obvious: take a lattice of  rank 2 in E 2 and form its inverse 
image in E2. This produces a lattice of  rank 3 and the quotient is a 3-torus. 

Let M 3 be a torus bundle over S l with non-trivial periodic monodromy 
of  order m = 2,3,4,6.  To construct such M 3, let first e = exp(2rti/m). Take 
an c-invariant lattice L C I17 of  rank 2. For m = 2, any lattice in if; o f  rank 
2 is valid. For m = 3, 4, 6, the lattice L equals (1, e) up to multiplication by 
a non-zero complex number. This defines a special complex torus So = L \ IE 
with a flat metric, such that multiplication by e in 112 determines an isometry 
o f  120 of  order m, which we also denote e. Then M 3 can be described as the 
quotient of  IR 3 = II~ x (ilR) under the lattice 

L + (0,2~i)2~ 

and the transformation 

(z, iO) ~ (ez, iO + 2rci/m), 

which is the lift to the universal cover of  STXo of  the differential de. It follows 
that M 3 is really (de) \ STZo. Alternatively, the image F ' ,  o f  the group at hand, 
is the group generated by the translations of  L and the rotation e and is discrete. 

To complete the proof, we must prove the converse statement, that is, if 
M 3 admits a covering map M 3 --~ d , ~  \ STXo such that the composite map 

M 3 ---* d Y  \ STXo ~ 12 

is a Seifert fibration, then M 3 is a left-quotient o f  fr 
It is well-known that any metric on a closed, orientable surface So is 

conformal to a metric o f  constant curvature, so that a finite group of  isometries 
for the original metric still is a group of  isometries for the new metric. So in 
the construction we already get all possible topological types M 3 if we restrict 
ourselves to metrics on I20 of  constant curvature. 

I f  120 = S 2, then d Z  \ ST120 is a left-quotient o f  SO(3), hence a left- 
quotient F \ S 3 whose covering spaces are all left-quotients of  S 3 under sub- 
groups of  F. Similarly for 220 a Euclidean or hyperbolic surface. 
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We then get M 3 = / '  \ ~], where the image U of F in Isom0(S) has the 

orbifold ~ \ 2;o as quotient U \  Z. Hence F' is discrete. 
This concludes the proof of the theorem. 

Remarks. (1) Notice that we have proved more: any covering space of the 
manifold d ~  \ ST2;o is actually a left-quotient of  f~. Thus given any covering 
map M 3 --+ d ~ l  \ ST2;o we can change ,~-I into a smaller group o~ and factor 
that covering map through a new covering M 3 ~ don \ STXo where inverse 
images of Seifert fibres are connected. 

(2) From the construction it is also clear why the Seifert fibrations of  
left-quotients of SL2 have non-zero Euler class: the Euler class of the Seifert 
fibration M 3 --+ 2; is a factor of the Euler class of the Seifert fibration ST2;o ---+ 
2;0, which is a negative integer. 

Definition 7.2 A LiouviUe-Cartan structure is a Cartan structure obtained as 
Jollows: take a closed, oriented surface 2;0 with a R&mannian metric; take 
a finite group o~ of" orientation-preserving isometries of  220; finally take a 
covering map M 3 --+ d J  \ STSo. Since the Liouville-Cartan pair of  STSo is 
&variant under d7 for any orientation-preserving isometry 7, it descends to 
d ~  \ ST2;o and then is" pulled back to M 3 via the covering map. 

Remark. Let So be non-orientable, but otherwise as above. The bundle FSo of 
orthonormal frames has two tautological 1-forms 01, 02, which form a Cartan 
structure. We have already pointed out a natural diffeomorphism d ~  \ FZo -~ 
d ~  \ STSo, where S0 is the oriented covering surface of 2;0. This natural 
diffeomorphism takes the Cartan structure on d ~  \ FZo induced by (01,0 2) to 
the Liouville-Cartan pair on d 5  \ STZo. 

Given a diffeomorphism of M 3, we can use it to change the map from M 3 
to d~  STSo. Hence the pullback of a Liouville-Cartan structure under any 
diffeomorphism is again a Liouville-Cartan structure. 

Notice that we already obtain all Liouville-Cartan structures if  we restrict 
ourselves to coverings M 3 --~ d ~  \ STZo where the inverse images of  Seifert 
fibres are connected. 

The principle found in the proof of Theorem 7.1 is that there is a re- 
lation, going both ways, between Liouville-Cartan structures arising from 2- 
dimensional space forms and discrete, cocompact groups F whose image U is 
discrete. Let us examine this relation more carefully. 

Suppose F C c# is a discrete, cocompact subgroup whose image U is dis- 
crete. We have at least one pair (L'0,o~) for which there is a covering 

F \ ~ ---, d:T \ STSo, 

constructed as in the proof of  Theorem 7.1. Because of the invariance of the 
Liouville-Cartan pair under the maps d7, the construction in Definition 7.2, 
applied to 2;o, defines a Cartan structure on F \ f# which only depends on F, 
and not on the particular choice of normal subgroup F~ C U.  This also means 
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that different pairs (220,,N) can yield the same Cartan structure, as the orbifold 
27 can have several descriptions 25" = ,Y; \ So. 

In sum, we have a Liouville-Cartan structure associated with every group 
F whose image U is discrete. Recall from Section 6 that the standard Cartan 
structure is the one induced from the standard complex l-forna zldz2 -z2dz~ 

for S 3, e-Wdz for SL2, and e-Wdz for E2, respectively. Then the real and 
imaginary parts o f  the standard form are the lifts to N o f  the Liouville-Cartan 
forms on the unit tangent bundle o f  the corresponding simply-connected space 
form Z. We conclude that the Liouville-Cartan structures, arising form surfaces 
with metrics of  constant curvature, are precisely the standard Cartan structures 
for the groups F whose image U is discrete. 

For a first description o f  the other Liouville-Cartan structures, the use o f  
homothety classes is most convenient. 

Proposit ion 7.3 Given an), homothe O, c&ss o f  taut contact circles, the set o f  
Cartan structures in this class b, i f  not empty, o f  tile homotopy type of  S 1 
and its inclusion into the whole homothety class is a homotopy equivalence. 

I f  the homothety class contains one Liouville-Cartan structure, then all 
Cartan structures in this class art, Liouvilte-Cartan structures, and they are 
in bUection (up to constant rotation) with the .~-invariant metrics within 
some confbrmal class', where Y is a finite group actinq on a compact real 
Su?facc. 

The homothety cNsses containin 9 Liouvitle-Cartan structures are the stan- 
dard homothety classes for the groups F whose image U, in the corres'pondinq 
isometry group, is discrete. 

Proof If (09i, 092) is a Caftan structure, then so are the rotates by any constant 
angle. In fact, there is a unique vector field Y such that Yjd(~)l = - 0 9 2  and 
YJde)2 = c01, and then the constant rotates are the pullbacks of  the original 
pair under the maps of the flow of  Y. In particular, the constant rotates of  a 
Liouville-Cartan structure are diffeomorphic Liouville-Cartan structures. 

It is trivial to check that given a positive smooth function v, the pair 
(vc~)l,v~02) is also a Caftan structure if  and only if v is constant along the 
integral curves o f  the common kernel ker e)l N ker o22. The set o f  such posi- 
tive functions v is a convex cone. Thus the set of  Cartan structures within a 
homothety class is, if not empty, connected and of  the homotopy type of S l, 
and the inclusion of  this set into the whole homothety class is a homotopy 
equivalence. 

As to the size of  the set of  Cartan structures within a homothety class, 
this depends on the 1-dimensional foliation tangent to the common kernel. 
Clearly the curves of  this foliation are all closed for Liouville-Cartan structures, 
forming a Seifert fibration over the orbitbld S = ;~ \ Xo. Then the positive 
functions v constant along the fibres are the pullbacks o f  positive, sT-invariant, 
smooth functions on So. It is rather obvious that multiplying a Liouvilte-Cartan 
structure by such a function amounts to the same as passing in So from an o~-- 
invariant Riemannian metric to another .N-invariant metric conformal to it. So 
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if  a Caftan structure is a Liouville-Cartan structure, then all Cartan structures 
homothetic to it are also (constant rotates of) Liouville-Cartan structures, and 
this set is in natural bijection (up to the constant rotation) with a conformal 
class o f - ~ - i n v a r i a n t  metrics on S0. Since any such conformal class admits 
a constant curvature representative, we also have that the homothety classes 
containing a Liouville-Cartan structure are precisely the standard homothety 
classes for the groups F whose image F '  is discrete. 

This proves the proposition. 

We can give an even more explicit description of  which homothety classes 
contain Liouville-Cartan structures. This is done in the following theorem. 

Theorem 7.4 I f  M 3 is a non-abelian quotient o f  S 3, a left-quotient o f  SL2, 
or a torus bundle over S I with non-trivial periodic monodromy, then every 
homothety class on M 3 contains a Liouville-Cartan structure. In particular, 
the common kernel has all o f  its orbits closed and all Cartan struetures on 
M 3 are Liouville-Cartan structures. 

I f  M 3 is' the torus T 3, the homothety classes containin9 Liouville-Cartan 
structures' are those with all the integral curves o f  the common kernel closed. 

If" M 3 is a lens space L(m, m - 1 ), includinq S 3, then the Cartan structures 
with all the inteoral curves o f  the common kernel clos'ed are the Cartan struc- 
tures f o r  which the HopJ" surface S = M 3 • S l is elliptic. Their homothety 
classes f o rm the rational part  (R) \ (Q A (0, 1 )) o f  the moduli space o f  ho- 
mothety  classes o f  type (1") ,  and only the point 1/2 represents a homothety 
class containin(j Liouville-Cartan structures. 

In all cases, every taut contact circle on M 3 is homotopic to a Liouville- 
Cartan structure. 

Proo f  On F \ S 3, with F non-abelian, any homothety class contains a standard 
Caftan structure and every Caftan structure is a Liouville-Cartan structure. 

On a lens space L(m,m - 1) we have the Cartan structures induced by 

azldZ2 - (1 - a)z2dzl,  

where a E (0, 1 ). For a = 1/2 we get the standard Cartan structure, which is 
the Liouville-Cartan structure when we consider the cyclic group Fm as lift o f  
a cyclic group o f  rotations o f  S 2 around its poles, and any Cartan structure in 
this homothety class is a Liouville-Cartan structure up to constant rotation. The 
homothety classes o f  type (1" )  on L(m, m - 1 ) with a 4 = 1/2 do not contain any 
standard Caftan structure and so they do not contain Liouville-Cartan structures; 
yet their common kernel, defined as ker col ~ ker 0)2 for any taut contact circle 
(e31, ~o2) in the homothety class, has all integral curves closed precisely if  a is 
rational. Thus on these lens spaces we have infinitely many Caftan structures 
with all integral curves of  the common kernel closed, but which do not contain 
any Liouvil le-Cartan structures in their homothety classes. 

In the case o f  F C SL2, the image F '  in PSL2 is always discrete, and we 
have seen in Section 6 that every homothety class contains a standard Cartan 
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structure. So in this case every homothety class contains a Liouville-Cartan 
structure, and indeed all Cartan structures are (constant rotates of) Liouville- 
Caftan structures. 

Consider now Caftan structures on the torus T 3. We have seen in Section 6 
that standard Cartan structures exist in every homothety class o n  T 3. The 
possible complex tori S = T 3 • S 1 arising from taut contact circles correspond 
to the lattices in ~2 of  the form 

((1,0), (z0, 0), (Zl, 2nirl ), (0, to)), 

where z0 is on the upper half plane, zi is arbitrary, and rl is any positive 
integer. The homothety class is induced by the standard complex form e-Wdz. 
We then get a Cartan structure on T 3 if we construct T 3 as the quotient of  
IR 3 = ~ • (iIR) under the lattice 

F = ((1,O),(zo, O),(zl,2~irl )}, 

whose image in E2 is 
F ' =  (1,z0,zl}, 

which is discrete if and only if  qzl E (l,z0} for some positive integer q. 
The standard form is col -4- iogz = e-Wdz, and so for any homothety class 

on T 3, the common kernel ker col A ker toe is spanned by ~30, where 0 is the 
imaginary part o f  w. Thus the integral curves o f  the common kernel are closed 
if and only if  qzl E {1,z0) for some positive integer q. Thus for the torus 
T 3 the homothety classes containing Liouville-Cartan structures are those for 
which the integral curves of  the common kernel are closed. 

We take q minimal, that is, equal to the order o f  zl modulo (l,z0). We 
consider the 1-dimensional complex torus 

So = (1,z0,z~) \ r  

then M 3 is the 3-torus T 3 = Z 0 X S 1 which covers STZo by wrapping the 
S ~-factors r0 = qr~ times around the fibres o f  STZo. 

Let now m = 2, 3,4, 6. We want to describe the Liouville-Cartan structures 
on the torus bundle M 3 over S ~ with monodromy of  period m. Let r L C C 
and S0 = L \ �9 be as in the proof of  Theorem 7.1, so that r is also considered 
as an isometry o f  Z0. The hyperelliptic surfaces that can arise from taut contact 
circles are the quotients o f  ~2 under the group generated by the lattice 

L + (0,2~iro)Z -4- (0, t0)2~, 

and the transformation 
(z,w) H (zz, w + wo), 

where w0 is a translation of  (to, 2 n i r 0 ) \ ~  of  order exactly m. 
Notice that the torus which covers M 3 has zj = 0 in the preceding de- 

scription. The image F '  is generated by L and e and is discrete. At this point 
we have finished proving Theorem 7.4, but we shall take this opportunity to 
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describe in more detail the homothety classes o n  M 3, and how this manifold 
relates to the unit tangent bundle of  a 2-torus. 

The condition l o g e  - w0 (mod 2hi)  must be satisfied for the transforma- 
tion to belong to E2. This is equivalent to wo = 2rcip/m for some integer p 
satisfying the congruence p ~ 1 (mod m). Then the condition that the transla- 
tion of  (to,2rciro)\ll2 induced by w0 be of  order m requires that p = poro for 
some integer P0, and that P0 be coprime with m. All this amounts to solving 
the congruence poro = 1 (rood m). Given r0, there exists a P0 satisfying the 
congruence i f  and only if  gcd(r0, m) = 1, and then P0 is unique modulo m, 
which means that w0 is uniquely determined, as a translation o f  (to,2rciro)\~, 
by r0. The values for ro admissible here are not arbitrary as for T 3, they are 
the integers coprime with m. 

The transformation can be rewritten as follows, 

(z, w)  ~ (ez, w + 2rtiq + 2rci/m), 

for some integer q. We obtain M 3 as the quotient of  IR 3 = I12 x (iIR) under 
the lattice 

L + (0, 2rcir0)• 

and the transformation 

(z, iO) H (cz, iO + 2rtiq + 2rci/m), 

which is a lift to the universal cover of  STSo of  the differential de.  For fixed 
m and L, denote the resulting quotient by M3(ro).  Then there is an obvious 
ro-sheeted covering map 

M3(ro) , M3(1),  

and a natural isomorphism between M 3 ( I )  and (de}\STSo.  The composition 
of  the maps 

M3(ro) , M3(1)  ~ (de} \STSo ~ ( e ) \ S o  

endows M3(ro)  with a Seifert fibration over the orbifold 2; = (e} \So.  

8 Taut contact spheres 

In this section we prove Theorem 1.10. Let M 3 be a closed 3-manifold and 
(o91 ,~2 ,~o3)  a taut contact 2-sphere on  M 3. Set f2, = d(etcoi), i = 1,2,3, on 
M 3 • ~x. The ~2i are symplectic forms on M 3 • IR that satisfy 

= = ( + o ) ,  

~2, A f2/ _= 0 for i #:j .  

Such a triple (Ol,  ~22, f23 ) was called a conformal symplectic triple in [6]. It 
is shown there, by a straightforward extension of  the argument in Section 3 of  
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the present paper, that such a conformal symplectic triple induces a hyperk~ihler 
structure (Ji,J2,J3; 9) on M 3 • IR with 

g = ~ i ( . ,  J r . ) ,  

where the Ji are c~t-invariant as in Corollary 3.3. Indeed, J~ is the complex 
structure constructed from the taut contact circle (~oi,~oj), where ( i , j , k )  is a 
cyclic permutation of (1,2, 3). 

Since the complex structures Ji and the non-degenerate 2-forms e-tQi de- 
scend to M a x  S I, so does the Riemannian metric e-tg. This implies that 
M 3 • S l is a hyperhermitian manifold. By Boyer [4], (M 3 • SI , e - tg )  is con- 

formally equivalent to a complex torus with its flat metric, a K3 surface with 
a hyperk~ihler Yau metric, or a coordinate quaternionic Hopf surface with its 
standard conformally flat metric. 

Clearly K3 surfaces cannot arise from this construction since they are not 
diffeomorphic to a 4-manifold of the form M 3 • S I (the K3 surfaces have 

non-zero Euler class c2). 

If M 3 admits a taut contact circle and M 3 • S ~ is diffeomorphic to a Hopf 
surface, then we have seen that M 3 actually admits a taut contact 2-sphere. 

Thus it remains to show that a complex torus does not arise from this 
construction, in other words, that T 3 does not admit a taut contact 2-sphere. 

Assuming that it did, we lift Oi, J,, e- tg from M 3 • IR l to the universal 
cover ~2. Boyer's theorem tells us that e- tg  is equal to the flat metric go up 
to some conformal factor 2 " ~ 2  ____+ ]R +. However, since both ~/0 = 9o(J,',') 
and 

~i = g(Ji', ") = 2et go(J~ ", ") = 2eta~ 

are symplectic forms on M 3 • IR, we see that 2 = e-t20 for some positive 

constant 20. For 

d(2 i = d(2e'(2 ~ = d(2e t) A O ~ 

is identically zero if and only if 2e t is a constant, since (in the tangent space 
at any point of M 3 • IR) there is a non-degenerate ~2-dimensional subspace 
with respect to the symplectic form ~2 ~ in the (at least) 3-dimensional space 

ker d ( 2e t ). 
Hence, g = 20g0 descends to M 3 • S l (since M 3 • S l is the quotient of 

~2 under a lattice F of translations), but so does e-tg,  which is absurd. 

This completes the proof of Theorem 1.10. 
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