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We analyze the origin of quantum randomness within the framework of a com- 
pletely deterministic theory of particle motion--Bohmian mechanics. We show 
that a universe governed by this mechanics evolves in such a way as to give rise 
to the appearance of randomness, with empirical distributions in agreement with 
the predictions of  the quantum formalism. Crucial ingredients in our analysis are 
the concept of  the effective wave function of  a subsystem and that of  a random 
system. The latter is a notion of interest in its own right and is relevant to any 
discussion of the role of probability in a deterministic universe. 

1. INTRODUCTION 

Nonequilibrium is an essential aspect of our universe. However, as is welt 
known, no local physical explanation can fully account for it. As Penrose ~15~ 
has colorfully emphasized, the explanation of local thermodynamic taws 
requires an appeal to appropriate cosmological conditions, namely, very 
improbable initial conditions corresponding to a global low entropy initial 
state of the universe. 

Here we wish to explain that quantum laws also require a cosmological 
setting, and that they are indeed founded on a global equilibrium for a 
level of description beneath thermodynamic nonequilibrium. Our analysis 
shows that quantum randomness, as, for example, embodied in Born's 
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statistical law, should be regarded as a local manifestation of a global 
quantum equilibrium state of our universe. 

However, orthodox quantum theory is inadequate for the very for- 
mulation of such a contention. In fact, on the cosmological level there is no 
observer outside the system to perform measurements on it. In orthodox 
quantum theory only the appeal to the observer gives physical significance 
to the theoretical entities--such as the wave function--entering into the 
formalism. 

Suppose we do seek an observer-free (formulation of) quantum theory 
without unpleasant metaphysical implications (1°) or drastic modifications 
of the mathematical structure of the orthodox theory. (t2) How are we to 
proceed? First, we should be clear as to what precisely the quantum 
formalism is about! What we are usually told, and what we believe is 
correct, is that the quantum formalism is merely a measurement formalism. 

Indeed, the most modest attitude one could adopt then towards 
orthodox quantum theory would appear to be that of regarding it as a 
phenomenological formalism, roughly analogous to the thermodynamic 
formalism, for the description of certain macroscopic regularities. However, 
the thermodynamic formalism can be derived from microscopic physics, 
from the behavior of the constituents of the macroscopic systems. Should 
we not then demand a similar account of the quantum formalism? 

Note that in the absence of such an account, the quantum formalism 
itself suffers from serious vagueness and ambiguity, owing to the fact that 
this formalism seems to refer to the relationship between the microscopic 
and the macroscopic, for example insofar as it refers to "measurements of 
observables" for microscopic systems--and in practice this is what it always 
does! What is meant by the "measurement" of such an "observable," or, 
more generally, what is "measurement"? Is not something like measurement 
--suitable interactions between systems of interest and their environment-- 
going on, as Bell has emphasized, (3) more or less everywhere, all the time? 
Moreover, as Einstein (13) has emphasized, "on principle, it is quite wrong 
to try founding a theory on observable magnitudes alone . . . .  It is the theory 
which decides what we can observe." Thus, without a fully microscopic 
theory, the quantum measurement formalism must suffer from a lack of 
clarity and precision in the statement of its operational details. 

Nonetheless, what makes quantum mechanics controversial is not the 
quantum formalism itself, but rather a further assertion to the effect that we 
cannot get beneath this formalism, to account for it in microscopic terms. 
This is, indeed, a radical claim, which in fact can easily be refuted by an 
explicit "counterexample," the quantum theory of David Bohm. ~5~ We 
should recall that the very existence of such a theory has been declared 
impossible, both physically and mathematically, on the authority of Bohr, 
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of yon Neumann, and many others. It is thus all the more remarkable that 
a counterexample to such claims can easily be obtained, even while 
ignoring the very formalism with which it is allegedly incompatible. 

We have shown in Ref. 7 that the requirement of Galilean covariance 
naturally leads from Schr6dinger's equation to a deterministic--though 
radically non-Newtonian--theory of particles in motion, which we have 
called Bohmian mechanics (Sec. 2). We have shown that this theory 
completely accounts for the phenomenological content of nonrelativistic 
quantum mechanics. (7'9~ 

Bohmian mechanics is a priori defined only for the universe as a 
whole, and its applicability to subsystems rests on the concept of the 
effective wave function, a concept of great importance also for the quantum 
formalism since it clarifies and makes precise the notion of the wave 
function of a system (Sec. 4). Nevertheless, Bohmian mechanics eliminates 
at all scales the paradoxes and perplexities so often associated with 
orthodox quantum theory. 

The second basic concept in our analysis is that of quantum equilibrium, 
a concept analogous to, but quite distinct from, thermodynamic equi- 
librium. Quantum equilibrium provides us with a precise and natural notion 
of typicality: we show that typical initial configurations, for a universe 
governed by Bohmian mechanics, evolve in such a way as to give rise to 
the appearance of randomness, with empirical distributions in agreement 
with the predictions of the quantum formalism (Sec. 5). 

There is as yet no satisfactory extension of Bohmian mechanics to the 
relativistic domain (but see Refs. 1, 4, 6, and 8 for some partial results). 
We wish, however, to point out that the account of quantum randomness 
which emerges from Bohmian mechanics depends only on rather qualitative 
features of abstract quantum theory--not  on the details of any specific 
quantum theory such as nonrelativistic quantum mechanics or quantum 
field theory. Thus, we believe that our results-,concerning the status of 
quantum randomness-have a validity extending beyond the nonrelativistic 
framework in which they have been derived (Secs. 6 and 7). 

2. B OHMIAN MECHANICS 

The element of the quantum formalism which most seems to function 
as a theoretical entity on the microscopic level, as the objective state, is the 
wave function. Now suppose that when we talk about the wave function of 
a system of N particles, we seriously mean what our language conveys, i.e., 
suppose we insist that "particles" means particles. If so, then the wave 
function ~ cannot provide a complete discription of the state of the system; 
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we must also specify its most important feature, the positions of the 
particles themselves. 

For Bohmian mechanics the complete state for a system of N particles 
is given by 

(Q, ~) 

where 

Q =  (QI ..... Q s ) c  N3N 

with QI,-.. ,Qs the positions of the particles, and 

~b = ~b(q) = ~b(q 1,..., qN) 

is the wave function of the systrem. Note that we use Q for the actual 
configuration and q for the generic configuration space variable. 

As for the time evolution, since (Q, ~b) is indeed the "state," its present 
specification, say (Qo, ~bo), must determine the state (Qt, ~bt) at later 
times; thus, the evolution is defined by first-order differential equations: 
Schr6dinger's equation 

ih ~ = H~b , 
~Tt 

for q), and an evolution equation for Q of the form 

dQ, 
.... dt ...... v~'(Q~) 

where 

v ~' = (v~,..., V~N) (2.1) 

is a vector field on configuration space R 3N. Thus, the role of the wave 
function ~ here is to generate the motion of the particles, through the 
vector field on configuration space, 

---> Ifi 0, 

to which it is associated. 
Moreover, the detailed form of v ~ is determined by requiring space-time 

symmetry--Galilean covariance. This leads rather directly, as the simplest 
possibility, to 

v ~ = ~ Im V_~0 
m 0 
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for a one-particle system (note that the V is suggested by rotation 
invariance, the ~J in the denominator by homogeneity, the Im by time- 
reversal invariance, and the constant in front is precisely what is required 
for covariance under Galilean boosts) and to 

v~ = h _  Im Vk___~J (2.2) 
m~ 

for many particles. 
We've arrived at Bohmian mechanics: For a nonrelativistic system of N 

particles (for simplicity ignoring spin) the state is given by (Q, 0) and the 
evolution by 

dQ, 

dt = v~"(Q,) 

ih d~ , ~ h 2 
dt 2ink Vqk~' + Vtpt 

k = I  

(2.3) 

with v ° given by (2.1) and (2.2). Bohmian mechanics is a fully deterministic 
theory of particles in motion, but a motion of a highly nonclassical, 
non-Newtonian sort. Moreover, although in orthodox quantum theory the 
notion of quantum observables as self-adjoint operators plays a fundamen- 
tal role, while this notion does not appear at all in the formulation of 
Bohmian mechanics, it can nonetheless be shown that Bohmian mechanics 
not only accounts for quantum phenomena, (5) but also embodies the 
quantum formalism itself as the very expression of its empirical import/7,9) 

In order to arrive at this conclusion, a crucial question which must be 
addressed is why the familiar ensemble or distribution p = lot 2 plays a dis- 
tinguished role in Bohmian mechanics. And on the level of mathematics an 
answer is provided by the concept of equivariance. Consider the ensemble 
evolution p--. p, arising from the Bohmian motion. Pt is the ensemble to 
which the Bohmian evolution carries the ensemble p in t units of time. 
If p=p~ is a functional of ~J (e.g., pC= iq)[2) we may also consider the 
transformation pO__,p*t arising from Schr6dinger's equation. If these 
evolutions are compatible, 

(p'P)t = p ~, 

we say that p~P is equivariant. In other words, the equivariance of p° means 
that under the time evolution it retains its form as a functional of ~. 

The distribution p¢'= IO[ ~ is equivariant. This follows immediately 
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from the observation that the quantum probability current j 0 =  1~012v¢ ' so 
that the continuity equation 

-~Pt + div(pv '~) = 0 

is satisfied by the density p, = ]@tl 2. As a consequence, 

If p(q, to) = I~P(q, to)] 2 at some time to, then p(q, t) = I~b(q, t)[ 2 for all t. 

But what is the physical significance of p = 10122 It turns out that in 
Bohmian mechanics p=llp[ 2 reflects the (quantum) equilibrium of the 
configuration relative to t//: when a system has wave function q/, its 
configuration is random, with distribution [Ol 2. This assertion can be 
regarded as roughly analogous to the Gibbs postulate of statistical 
mechanics: Compare quantum equilibrium 

0 = 1 0 f  2 

whose complete justification (7~ in fact turns out to be remarkably easy, with 
thermodynamic equilibrium 

p ~ e ~H (2.4) 

whose complete justification is remarkably difficult (and as yet non- 
existent). We shall expand more on this analogy in the following. First we 
must elaborate on the status of quantum equilibrium and its empirical 
consequences. 

3. A DETERMINISTIC UNIVERSE IN QUANTUM EQUILIBRIUM 

The physical meaning of quantum equilibrium involves a crucial 
subtlety which one can begin to appreciate by first asking the question: 
Which systems are governed by Bohmian mechanics? The system which we 
normally consider are subsystems of a larger system--for example of 
the universe---whose behavior determines the behavior of its subsystems. 
Thus, for a Bohmian universe it is only the universe itself which a priori-- 
i.e., without further analysis--can be said to be governed by Bohmian 
mechanics. 

In particular, it is important to recognize that a subsystem cannot in 
general be governed by Bohmian mechanics, since no wave function for the 
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subsystem need exist. This will be so even for free motion--i.e., with no 
potential in Schr6dinger's equation--if the wave function does not properly 
factorize. For nontrivial potentials the Schr6dinger evolution would in any 
case quickly destroy such a factorization. 

Therefore, in a universe governed by Bohmian mechanics there is 
a priori only one wave function, namely that of the universe, as there is 
a priori only one system governed by Bohmian mechanics, namely the 
universe itself. Let us consider such a universe. Our first difficulty 
immediately emerges: In practice p = I~12 is applied to (small) subsystems. 
But only the universe has been assigned a wave function. What is meant by 
the right-hand side of p = I~12? 

Furthermore, suppose that an initial universal wave function ~o has 
been fixed. Then, since the Bohmian evolution is completely deterministic, 
once the initial configuration Q of the universe is also specified, all future 
events, including of course the results of measurements, are determined. 
Now let X be some subsystem variable--say the configuration of the 
subsystem at time t--which we would like to be governed by p = I~,12. But 
how can this possibly be, when there is nothing at all random about X? 

Of course, if we allow the initial universal configuration Q to be 
random, distributed according to the quantum equilibrium distribution 
I~f/0(Q)l 2, it follows from equivariance that the universal configuration Q, 
at later times will also be random, with distribution given by [gt,(Q)12, 
from which it follows that any variable of interest, for example X, has the 
"right" distribution (see below). However, this is devoid of physical 
significance! What possible physical significance can be assigned to an 
ensemble of universes, when we have but one universe at our disposal? We 
cannot perform the very same experiment more than once. We can perform 
only many similar experiments, differing, however, at the very least, by 
location or time. In other words, insofar as the use of probability in physics 
is concerned, what is relevant is not sampling across an ensemble of 
universes, but sampling across space and time within a single universe. 
What is relevant is empirical distributions--actual relative frequencies for 
an ensemble of actual events. 

Thus, in order to describe the empirical consequences of quantum 
equilibrium, two problems must be addressed: that of the meaning of the 
wave function ~, of a subsystem and that of randomness. It turns out that 
once we come to grips with the first problem, the question of randomness 
almost answers itself. We find that p = j99t 2 describes the empirical distri- 
bution of configurations arising from repetitions of similar experiments, 
performed at different places or times within a single typical sample of 
the universe (such as ours), with typicality understood as with respect 
to universal quantum equilibrium. In other words, we establish the 
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remarkable fact that the observed quantum randomness, as expressed by 
Born's statistical law, is a simple manifestation of universal quantum 
equilibrium, in the sense of typicality. 

4. THE EFFECTIVE WAVE FUNCTION 

Consider an N-particle nonrelativistic universe governed by Bohmian 
mechanics, with (universal) wave function now denoted by ~g. Focus on 
a subsystem with generic configuration variables x, i.e., on a splitting 
q = (x, y) where y represents the configuration of the environment of the 
x-system. The actual particle configurations are accordingly denoted by X 
and I1, i.e., Q = (X, Y). Note that ~P= kg(x, y). 

How can one assign a wave function to the x-system? One obvious 
possibility-afforded by the existence of the actual configuration--is given by 
what we call the conditional wave function 

~9(x) = hU(x, Y) (4.1) 

(Nonvanishing scalar multiples of wave functions are identified.) Note that 
by virtue of (2.2) the velocity vector field for the x-system is determined by 
its conditional wave function. This, however, does not in general have the 
usual dynamical significance of the wave function of a system, as it does 
not in general evolve according to Schr6dinger's equation, even when the 
x-system is dynamically decoupled from its environment. 

But one can go further, exploring the form of the universal wave 
funct ion--a  superposition of macroscopically distinct terms--which 
according to standard quantum measurement theory should arise from a 
measurement on the x-system. One then recognizes that the following 
definition (see Ref. 7) captures all the desirable phenomenological aspects 
(through its reference to the "macroscopic"): Suppose that 

~(x, y) = 0(x) 45(y) + ~U±(x, y) (4.2) 

where 45 and ~ l  have macroscopically disjoint y-supports. If 

Y6 supp 45 (4.3) 

we say that 0 is the effective wave function of the x-system. 
The reader familiar with quantum measurement theory should convince 

himself that our definition of effective wave function coincides with the 
usual practice of the quantum formalism in ascribing wave functions to 
subsystems whenever the latter does assign a wave function. In other 
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words, the effective wave function is, in effect, a "collapsed" wave function. 
Note, however, that while in orthodox quantum theory the "collapse" 
is merely superimposed upon the unitary evolution--without a precise 
specification of the circumstances under which it may legitimately be 
invoked--we have now, in Bohmian mechanics, that the evolution of the 
effective wave function is actually given by a stochastic process--whose 
probability law is governed by the universal quantum equilibrium 
distribution--which consistently embodies both unitarity and collapse as 
appropriate. 

5. F R O M  GLOBAL D E T E R M I N I S M  TO LOCAL R A N D O M N E S S  

We wish now to explain how Born's statistical law arises. For this 
consider--for the moment solely as a mathematical device-r-the probability 
space of initial universal configurations Q distributed according to the 
quantum equilibrium distribution P ~°(dQ) = I ~Vo(Q)l 2 dQ- -the only natural 
measure available--where ~u o is the initial universal wave function. Let Q, 
and gt  denote the universal configuration and the universal wave function 
at time t. Since (Q,, tp,) satisfies the Bohmian evolution (2.3), subject to 
the initial conditions given by Q and g~o, it follows that, for given ~o, 
Q, = (X ,  Y,) is a function of the initial universal configuration Q and as 
such is a random variable. 

Note that by equivariance the distribution of Q~ is given by [~,l 2. It 
thus follows at once from the definition of the (effective or conditional) 
wave function that the conditional distribution of the configuration of the 
x-system, given the configuration of its environment, is given by 

P ~o(x~ c dxl Y,) = IO~(x)I~ dx (5.1) 

where ~ is the wave function of the x-system at time t. 
Suppose now that at time t the x-system consists itself of many 

identical subsystems xl ..... x M, each one having effective wave function 
~, (with respect to coordinates relative to suitable frames). Then the 
effective wave function of the x-system is the product wave function 
Or(x) = O(Xl).-. 0(xM) (see Ref. 7). It follows immediately from (5.1) that, 
given the configuration Y, of the environment of the x-system, the con- 
figurations X1,..., X~  of the subsystems at time t form a collection 
of independent random variables, identically distributed, with common 
distribution p -- i~[ 2. The weak law of large numbers yields then that for 
large M the empirical distribution of the configurations will be well 
approximated by this distribution for the (P~I ~) overwhelming majority of 
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initial universal configurations Q (where P r~(dQ)=P~'°(dQbYt) ). In other 
words, for typical initial configurations of the universe (consistent with the 
environment of the x-system at time t) the empirical distribution is given 
by Born's statistical law. 

However, Born's statistical law is supposed to govern not only equal- 
time ensembles, but also ensembles referring to experiments performed on 
one or more (sub)systems at possibly different times. Naively, one might 
think that the construction of an appropriate multitime sample of M 
subsystems can be obtained by conditioning on the values of the wave 
functions of these systems at a given sequence of times. However, this 
procedure ignores a fundamental but surprising aspect of the deterministic 
evolution of the universe and will in general lead to an unwanted biasing 
of the sample (see Ref. 7). 

What we must take into account is the fact that, strictly speaking, the 
times at which our experiments are performed, and indeed the subsystems 
upon which they are performed, are actually random--not just the results, 
or the state of the system, for any particular experiment, but the time of 
this experiment as well as the identity of the specific system, of the 
particular collection of particles, upon which we focus and act. This might 
appear to be incompatible with the deterministic character of a Bohmian 
universe, where for each choice of initial universal wave function 7~o and 
configuration Q a "history"--past, present and future--is completely 
determined by these initial conditions. But exactly the opposite is true. 

It turns out that upon learning how to deal with this latter problem 
--of  reconciling "local randomness" of the system upon which experiments 
are performed with global determinism--we arrive easily at the correct 
solution to the problem of multitime sampling. They key idea is that of 
(random) selection: 

The selection of a subsystem is characterized by the time T at which 
the selection occurs and the identity of the selected subsystem. The latter 
might be described by a projection ~ which realizes a splitting of the 
universal configuration: q = (x, y) - (~zq,)z J-q). We must regard both T and 
~z as determined by the initial universal configuration, i.e., as random 
variabtes--T as a real-valued, and rc as a projection-valued, function on the 
space 22 of initial configurations. For a = (rr, T) we write X~ = rcQr for the 
configuration of the system and Y~ = ~±Qr for the configuration of its 
environment. 

Moreover, the selection of a subsystem is such that the identity of the 
particular subsystem and time that it happens to specify are reflected in its 
environment. In practice, this is expressed by the state of the experimenters, 
their devices and records, and whather other features of the environment 
form the basis of its selection. Thus, for any (nonrandom) ~o= (~Zo, to), 
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the occurrence of the event {~r = ao} must be decided on the basis of the 
information contained in the actual configuration of the environment of 
the a0-system. In other words, the indicator function of the event {a = ao}, 
the function 1,~_~0 ~ which is one if Q~ { a = a 0 }  and is zero otherwise, 
must be a Junctional of the actual configuration of the environment of the 
a0-system: 

1 ~ = oo~ = F [  Y~o] (5.2) 

We call a pair a =  (~, T) satisfying (5.2) a random system. Note that, 
owing to (5.2), random systems are nonrandom relative to their environ- 
ment. It is for this reason that we usually fail to notice that our systems are 
random: Relative to "ourselves," which we naturally don't  think of as 
random, they are completely determined. The condition (5.2) fits nicely 
with the notion of the wave function of a subsystem, as expressed, e.g., 
by (4.I); moreover it allows a natural extension of the fundamental condi- 
tional probability formula (5.1) to random systems (see Ref. 7): for any 
random system a 

PW°(X.~dxd Y., a ) =  IO¢(x)12 dx (5.3) 

where ~b~ is the (effective or conditional) wave function of the random 
system a. [Given the initial universal configuration Q, 0~ is the wave 
function at time T(Q) of the system defined by Tc(Q).] The formula (5.3) 
can in a sense be regarded as the most compact expression of the entire 
quantum formalism. 5 

In order to describe the repetition of similar experiments, performed at 
different places and times, in a single sample of the universe we consider a 
sequence ai = (~z~, T;), i = I,..., M, of random systems such that the require- 
ment that the ith system have wave function 0 forms part of the basis of 
selection for this system, i.e., the ai satisfy the condition ~p~, = ~,. Moreover, 
we demand that the following measurability condition be satisfied: If 
T~,< T~j, the information about the measured value of X~ must be 
grounded in the environment of X~; in other words (with probability 1), 
for all T~, i < T~ t, X~i must be a functional of Y~j, 

X~,=G(j[Y~/], where To,< T~/ (5.4) 

5 The reader familiar with the theory of stochastic processes should note the similarity 
between (5.2) and (5.3) on the one hand, and the notions of stopping time and the strong 
Markov property from Markov process theory on the other. Indeed, (5.1) can be regarded 
as a kind of Markov property, in relation to which (5.3) then becomes a strong Markov 
property. 



732 Diirr, Goldstein, and Zanghi 

Under these conditions X~ ..... X~M are independent, with each X~ 
having distribution given by I tPI 2; see Ref. 7. Thus, by the weak law of large 
numbers, for large M, it follows that for our sequence of experiments 
typical initial configurations yield empirical statistics governed by Born's 
statistical law. 

Such a result holds, without further assumptions, when typicality is 
expressed by the measure p~0, but also, and more importantly, when pv0 
is replaced by a conditional measure P~°'"~/(dQ)=P~'°(dQIJ/), where 
./¢/c .~, provided the random systems a; under consideration satisfy the 
functional relation 

1# =J~Er~,, a,] (5.5) 

Indeed, conditioning on the event ~ takes into account any kind of 
"prior" information--always present--reflecting the "macroscopic state" J{ 
at a time prior to all experiments. 

We emphasize that the assumptions (5.4) and (5.5) are physically 
minimal. They demand merely that "facts" about results and initial 
experimental conditions not be forgotten. Moreover, it is not hard to see 
that if these conditions are relaxed (e.g., by allowing the possibility of 
"forgetting" the results in a selective manner), the results should not be 
expected to agree with the predictions of the quantum formalism. 

6. UNCERTAINTY AND PROBABILITY IN 
BOHMIAN MECHANICS 

The most remarkable consequence of our analysis is absolute uncer- 
taint),: Since any (environmentally based) selection criterion, whatever it 
may be, can be incorporated into the definition of our random systems--as 
part of the basis for their selection- -it follows that no such criterion can be 
regarded as reflecting any information, beyond iOl 2, about the configura- 
tions of these systems when their wave function is qJ. Thus, in a universe 
governed by Bohmian mechanics it is in principle impossible to know more 
about the configurations of a subsystem than what is expressed by Born's 
law. 6 

We remark that the general structure of our random system analysis 
does not depend upon the detailed structure of Bohmian mechanics: any 
modeling of the universe in terms of a deterministic dynamical system 

6 The reader may be disturbed by the fact that since only the absolute value of ~ determines 
the statistics for the configuration, measuring configurations may not inform us about 0. If 
so, he should recall that the phase of tb guides the time evolution of the configurations. 
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would demand a similar analysis. In order to get a handle on the hallmark 
of Bohmian mechanics which leads to absolute uncertainty, we may 
consider a very general dynamical framework where typicality is expressed 
by a (nonstationary) measure ~t on the space of initial conditions and X 
and Y denote the "microstates" of a random system ~r and its environment, 
respectively. 

Also in this general case we have that an "experimenter" can achieve 
knowledge of the x-system only if his information about this system is 
grounded in its environment (of which the experimenter must be a part). 
However, even if the experimenter somehow has access to the full micro- 
scopic environment (grossly more than what could be possible for any 
realistic experimenter!), the state of the x-system will appear to be random 
and this randomness will be governed by the conditional distribution 
~(dXl Y). 

This conditional distribution will in general be given by a (density) 
function f (x ,  y) which depends upon the system ~ and, of course, upon #, 
but which is, however, to a large extent unknown. In the quantum case 
under consideration in this paper f ( x ,y )  is given by (5.3) and thus 
depends upon y through the (effective or conditional) wave function of 
the x-system, an "object" which has dynamical significance. In general, 
however, f(x,  y) need play no dynamical rote vis-~,-vis the future behavior 
of the x-system. A situation of this kind occurs, for instance, in classical 
mechanics, where, moreover, the evolution of macrostates (given, e.g., by 
(2.4), regarded as a conditional probability formula) is not "equivariantly" 
related to the dynamical law governing the evolution of microstates (see 
below and footnote 7). 

Thus, what lends substance to the "absolute uncertainty" in Bohmian 
mechanics--and justifies our use of that phrase--is the fact that there 
f ( x ,y )  is a functional of •, and object whose significance is primarly 
dynamical. The detailed character of this dynamical aspect is such that a 
wave function with narrow support quickly spreads, owing to the disper- 
sion in Schr6dinger's equation, to one with broad support, a change which 
generates a similar change in the distribution of the configuration and thus 
to an unavoidable uncertainty in future configurations, and hence in the 
"effective velocity." Absolute uncertainty is then in precise agreement 
with Heisenberg's uncertainty principle. ~9~ (Note, however, that while 
Heisenberg used uncertainty to argue for the meaninglessness of particle 
trajectories, here quantum uncertainty arises as a simple consequence of 
the existence of trajectories.) 

Note, moreover, that--owing to the critical dependence of the (condi- 
tional or effective) wave function of a subsystem upon its environment, 
where all knowledge is grounded--the dynamical role of the conditional 

825/23/5~3 
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distribution f (x ,y )  within Bohmian mechanics illuminates another hall- 
mark of the Copenhagen interpretation: the epistemological component, 
the appeal to the observer, with which the wave function has traditionally 
been entangled. 

We arrive then at the conclusion that local quantum randomness--as 
described by Born's statistical law--and quantum uncertainty--the impossi- 
bility of obtaining information about the actual configuration more detailed 
than what is given by the quantum equilibrium distribution--are merely an 
expression of quantum equilibrium, a global configurational equilibrium 
relative to the universal wave function h u. The physical significance of 
quantum equilibrium is thus as a measure of typicality, and the ultimate 
justification of Born's statistical law is in terms of the statistical behavior 
arising from a typical initial global configuration. 

More generally, for any theory with probabtistic content, particularly 
one describing a relativistic universe, we arrive at a similar conclusion: 
Once we recognize that there is but one world (of relevance to us), only 
one actual space-time history, we must also recognize that the ultimate 
meaning of probability, insofar as it is employed in the formulation of the 
predictions of the theory, must be in terms of a specification of typi- 
cal i ty-one such that theoretically predicted empirical distributions are 
typical. In fact, when all is said and done, the physical import of the theory 
must arise from its provision of such a notion of typical space-time 
histories, presumably specified via a probability distribution on the set of 
all (kinematically) possible histories. 

One may argue that all a theory should do is to provide a notion of 
typical "macroscopic events," for example by extracting from the standard 
quantum formalism a "quasiclassical domain of familiar experience" as 
suggested by Gell-Mann and Hartle.(11) But as we note in the introduction, 
such attempts will naturally suffer from the imprecision and ambiguity 
inherent in any reference to the "macroscopic," as well as from failing to 
ground the notion of typicality. Accordingly, we note also that insofar as 
nonrelativistic quantum theory is concerned, a significant difference 
between Bohmian mechanics and the proposal of GMH is that the latter 
defines a research program, while the former is an already existing, and 
sharply formulated, physical theory. 

We wish to emphasize this byproduct of our analysis, that quite aside 
from the relevance of this analysis to the interpretation of quantum theory, 
we find a clarification and illumination of the meaning and role of 
probability in a deterministic universe. It is tempting to say that Bohmian 
mechanics offers the first natural complete explanation of the emergence of 
statistical laws from a deterministic mechanics, by overcoming those 
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difficulties which may  arise in the f ramework of a different mechanical  
theory, such as, for example, Newtonian  mechanics. 7 

Moreover ,  the analysis of  Bohmian  mechanics presented here is rele- 
vant to the problem of the interpretat ion and application of  quan tum 
theory in cosmology,  specifically, to the problem of the significance of 
p - - 1 0 I  2 on the cosmological  level--where there is nothing outside of  the 
system to perform the measurements  from which p = t0[2 derives its very 
meaning in o r thodox  quan tum theory. 

Finally we wish to stress that  our  r andom system analysis illuminates 
the flexibility of Bohmian  mechanics:  It illustrates how joint  probabilities 
as predicted by the quan tum formalism, even for configurations, may  arise 
f rom measurement and bear little resemblance to the probabilities for 
unmeasured quantities. And our  analysis highlights the mathematical  
features which make this possible. This flexibility could be quite impor tant  
for achieving an unders tanding of  the relativistic domain,  where it may  
happen that  quan tum  equilibrium prevails only on special space-time 
surfaces (see Refs. 4 and 8). Our  r andom system multitime analysis illustrates 
how this need entail no genuine obstacle to obtaining the quan tum 
formalism. 8 

7. E R G O D I C  PROPERTIES OF B O H M I A N  M E C H A N I C S  

From a dynamical  systems perspective, it would appear  natural  to 
a t tempt  to justify Born's  statistical law directly- -wi thou t  appealing to any 
cosmological  ana lys i s - -by  using, for example, such notions as "convergence 
to equilibrium," "mixing," or  "ergodicity," suitably generalized. 

However,  it might seem that  Bohmian mechanics rather trivially fails 

7 Krylov has made an extensive and penetrating analysis of such difficulties. A (rough) 
summary of this point was given by Krylov himself: "The impossibility of interpreting the 
probabiIistic laws of statistical mechanics within the framework of the classical theory stems, 
in fact, from the absence of a necessary connection between the fact of the system being in 
a given phase space region (for example, being in a given macroscopic state) and a certain 
law of distribution of microstates within that region; in other words, it stems from the 
absence of a necessary relation between the fact of the system being in a given macroscopic 
state and a certain distribution of probabilities in the further development of the process that 
conforms to the laws of statistics and kinetics. 1141'' It should be clear from our presentation 
that equivariance guarantees the existence for Bohmian mechanics of that necessary relation 
absent in classical mechanics. 

8 Our argument here of course involved the natural hypersurfaces given by {-t = const }, but 
the only feature of these surfaces critical to our analysis was the validity of quantum 
equilibrium, or, more precisely, of the fundamental conditional probability formula (5.3). 
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to possess good ergodic properties, if one considers the motion arising from 
the standard energy eigenstates of familiar systems. However, quantum 
systems attain such simple wave functions only through complex interac- 
tions, for example with an apparatus during a measurement or preparation 
procedure, during which time they are not governed by a simple wave func- 
tion. Thus the question of the ergodic properties of Bohmian mechanics 
refers to the motion under generic, more complex, wave functions. 

Be that as it may, we have shown that establishing such properties is 
neither necessary nor sufficient Jbr the purpose of founding the statistical 
character of a deterministic theory. 

Conventional wisdom to the contrary notwithstanding, the problem of 
the rigorous justification, from first principles, of the use of the "standard 
ensembles," i.e., of the derivation of randomness governed by detailed 
probabilities, is far more difficult for classical thermodynamic equilibrium 
than for quantum theory! How can this be? How is it possible so easily to 
derive the local equilibrium behavior governed by Born's statistical law 
from first principles (i.e., from Bohmian mechanics), while the corre- 
sponding result for thermodynamics--the rigorous derivation of the Gibbs 
postulate from first principles- is so very difficult? The answer, we believe, 
is that "pure equilibrium" is easy, while nonequilibrium, even a little bit, 
is hard. In our nonequilibrium universe, systems which happen to be in 
thermodynamic equilibrium are surrounded by, and arose from, (thermo- 
dynamic) nonequilibrium. Thus, with thermodynamic equilibrium we are 
dealing with islands of equilibrium in a sea of nonequilibrium. But with 
quantum equilibrium we are in effect dealing with a global equilibrium, 
albeit relative to the wave function. 

A key aspect of equilibrium is, of course, stationarity--or equivariance. 
But how can this be sufficient for our purposes? Mere stationarity is not 
normally sufficient in a dynamical system analysis to conclude that typical 
behavior embodies randomness governed by the stationary distribution. 
Such "almost everywhere"-type assertions usually require the ergodicity of 
the dynamics. Why did we not find it necessary to establish some sort of 
ergodicity? 

The answer ties in another critical aspect of the notion of equilibrium, 
arising from the fact that we are concerned with "large systems," with the 
thermodynamic limit as it were. In equilibrium, whether quantum or 
thermodynamic, most configurations or phase points are "macroscopically 
similar": quantities given by suitable spatial averages--e.g., density, energy 
density, or velocity fluctuations for thermodynamic equilibrium, and 
empirical correlations for quantum equilibrium--are more or less constant 
over the state space, in a sense defined by the equilibrium distribution. To 
say that a system is in equilibrium is then to say that its configuration or 
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phase point  is typical, in the sense that the values of  these spatial averages 
are typical. 

N o w  while the individual subsystems with which we have been concerned 
may  be microscopic,  our  analysis, in fact, is effectively a "large-system 
analysis." This is implicit, for example, in our  measurabil i ty condit ions 
(5.4) and (5.5), which are plausible only for a universe having a large 
number  of  degrees of  freedom. Thus, just as for a system already in thermo- 
dynamic equilibrium, we have no need for the ergodicity of the dynamics  
- - b u t  only for " s t a t ionar i ty ' - - s ince  the kind of behavior  we wish to 
establish occurs for a huge set of  initial configurations, the "overwhelming 
majority." 

When all is said and done, it might  be said that  we have in fact 
established for Bohmian mechanics a kind of  effective Bernoulliness, and 
hence an effective ergodicity. 
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