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Quantum Gravity, the Origin of Time 
and Time's Arrow 
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The local Lorentz and diffeomorphism symmetries of Einstein's gravitational 
theory are spontaneously broken by a Higgs mechanism by invoking a phase trans- 
ition in the earl)' universe, at a critical temperature T c below which the symmetry 
is restored. The spontaneous breakdown of the vacuum state generates an external 
time, and the wave function of  the universe satisfies a time-dependent Schr6dinger 
equation, which reduces to the Wheeler-deWitt equation in the classical regime for 
T< To, allowing a semiclassicaI WKB approximation to the wave function. The 
conservation of energy is spontaneously violated for T> Tc, and matter is created 
fractions of seconds after the big bang, generating the matter in the Universe. The 
time direction of the vacuum expectation value of the scalar Higgs field generates 
a time asymmetry, which defines the cosmological arrow of time and the direction 
of increasing entropy as the Lorentz symmetry is restored at low temperatures. 

1. INTRODUCTION 

Because of the general covariance of Einstein's gravitational theory, time is 
an arbitrary parameter and in the canonical Dirac constraint theory the 
super-Hamiltonian vanishes, reflecting the time-translational invariance of 
the theory. The quantum mechanical operator equation for the wave func- 
tion of the universe leads to the Wheeler-DeWitt (WD) equation, ~IJ which 
is a second-order hyperbolic differential equation in the dynamical phase 
space variables and which possesses only stationary solutions. The wave 
function is time independent and there is no temporal development in a 
spatially closed universe. In effect, time has disappeared from the theory. 
The Schr6dinger equation is only meaningful in a fixed-frame situation and 
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quantum mechanics seems to require an external time in order that quan- 
tum mechanical measurements can be made of time-dependent observables. 
Thus, we are faced with a fundamental conflict between quantum mechanics 
and relativity, and it would appear that we may be forced to give up one 
or the other of the two fundamental pillars of modern physics. 

In quantum mechanics, the universe is correctly described by the 
first-order Schr6dinger wave equation, which leads to a positive-definite, 
conserved probability currrent density, but as we have seen the concept of 
general covariance is in serious conflict with this picture. Most attempts to 
extract a time variable identify time as some combination of field variables 
and rely on the WKB approximation to the WD equation. ~2-5) Such an 
approach is at best approximate, assuming a special form of the WKB 
wave function, and being valid only in certain regions of superspace, in 
which the classical regime is known to hold. The problem in this approach 
is to explain why certain domains of spacetime have a classical Lorentzian 
structure such that the wave function has an oscillatory behavior. ~6) 
Another recent attempt ~7 9) to solve the problem of time in quantum 
gravity abandons general covariance at the classical level by generalizing 
Einstein's gravitational theory to a unimodular theory with ~ - g  = 1. 

In the following, we shall propose a solution to the problem, in which 
we spontaneously break local Lorentz invariance and diffeomorphism 
invariance of the vacuum state of the early universe, with the symmetry- 
breaking pattern S0(3, 1 ) ~  0(3). Within this symmetry-breaking scheme, 
we shall retain the three-momentum operator constraint equations but 
relax the super-Hamiltonian constraint for the wave function, thereby, 
obtaining a time-dependent Schr6dinger equation. In this framework, 
quantum mechanics and gravitation are united in a meaningful observa- 
tional scheme. The local Lorentz invariant structure of the gravitational 
Lagrangian is maintained as a "hidden" symmetry. After the spacetime 
symmetries are restored in the early Universe for a temperature T< To, the 
wave function has an oscillatory behavior, and it is peaked about a set of 
classical Lorentzian four-geometries. One may then use the WKB 
approximation and the tangent vector to the configuration space--for 
paths about which ~ is peaked--to define the proper time z along the 
classical trajectories. ~6) Thus, once the mechanism of spontaneous sym- 
metry breaking of the spacetime symmetries has taken place in the early 
universe, then the problems of time and time's arrow are solved by means 
of the classical Hamitton-Jacobi equation, and the classical trajectories 
define a time and time's direction in the symmetric phase. The universe is 
then clearly divided into a quantum gravity regime and a classical regime, 
making the WKB solution to the origin of the time variable unambiguous 
without arbitrary boundary conditions. 
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The problems of quantizing gravity and treating it as a Yang-Mills 
type gauge theory are critically assessed in Sections 4, 6, and 7, without 
attempts being made to resolve many of the fundamental problems in 
quantum gravity. In Sections 5, 8, 9, and 10, a solution is proposed for the 
origin of time and time's arrow, the second law of thermodynamics, and 
the unity of gravity and quantum mechanics. We end with a summary of 
our results in Section 11. 

2. CANONICAL FORMALISM FOR GRAVITY 

The action in Einstein's gravitational theory appropriate for a fixed 
three-geometry on a boundary is ~1~ 

1 
S e _ l ~ r c G [ f ~ M d 3 x h l / 2 2 K + f M d 4 x ( - g ) l / 2 ( R + 2 A ) l  (2.1) 

where the second term is integrated over spacetime and the first over its 
boundary, K is the trace of the extrinsic curvature K,j (i, j =  1, 2, 3) of the 
boundary three-surface, and A is the cosmological constant. We write the 
metric in the usual 3 + 1 form: 

d s  2 = (N 2 - N i  N i )  dt 2 - 2 N  i dx i dt - h i j  dx i dx j (2.2) 

and the action becomes 

1 
S e -  1 6 r c G f d 4 x h l / 2 N [ - K i j K i J + K 2 - R ( h ) ~ 3 ) + 2 A ]  (2.3) 

where 

N 2 0t + NcilJ~ (2.4) 

R ~3) denotes the scalar curvature constructed from the three-metric h o and 
a stroke denotes the covariant derivative with respect to the latter quantity. 
The matter action SM can also be constructed from the N, Ni, h/j and the 
matter field. 

The super-Hamiltonian density is given by 

H =  N H  o + UiHi = Ho ~-h + U'Hi (2.5) 

where H o and Hi are the usual Hamiltonian and momentum constraint 
functions, defined in terms of the canonically conjugate momenta rc ~j to the 
dynamical variables hij: 

rcij 6LE (2.6) 
6(Oh~/dt) 
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where L e is the Einstein-Hitbert Lagrangian density. Classically, the Dirac 
constraints are 

H i = 0, H o = 0 (2.7) 

These constraints are a direct consequence of the general covariance of 
Einstein's theory of gravity. 

3. WAVE F U N C T I O N  OF THE UNIVERSE AND THE 
EUCLIDEAN PATH INTEGRAL FORMALISM 

Following Hartle and Hawking, (1°) we define the wave function of the 
universe 7 ~ by 

gt[hiy, q~] = - f  [dg][d(~] #[g, O] exp(iS[g, ~b]) (3.1) 

where ~b denotes a matter field, S is the total action, and #[g ,  ~b] is an 
invariant measure factor. The integral (or sum) is over a class of spacetimes 
with a compact boundary on which the induced metric is hij and field con- 
figurations which match ~b on the boundary. In the quantum mechanics of 
a closed universe, a problem arises with the definition of a natural energy, 
since in a sense the total energy is zero, i.e., the gravitational energy cancels 
the matter energy. Moreover, there arises the problem of the meaning of an 
"external" observer outside the universe. We shall not attempt to resolve 
this problem here. 

It is reasonable to be able to expect to define a wave function of the 
universe in terms of an Euclidean functional integral of the form 

7J[h~, O] = f [dg][dO] #[g ,  ~b] e x p ( - I e [ g ] )  (3.2) 

where IE is the Euclidean action for gravity obtained from Se by letting 
t --* -it. But this leads to a well-known problem, namely, Euclidean gravity 
is a "bottomless" theory, i.e., a theory whose action is unbounded from 
below. If we write the Euclidean metric e(E) as a product of the conformal oJAV 

factor times a unimodular metric: 

g(e) = ~,-~2g#v (3.3) 
uv 

where 

det(~) = 1 (3.4) 
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then the action 

1 fd4x [_ (a~ .Q)2_~Q2/# ]  I~= llG f d4x x/g R= l-~G (3.5) 

is unbounded from below, since it can be made arbitrarily negative by a 
suitable choice of (2, due to the "wrong" sign of the kinetic term for the 
conformal factor - ( ~ , O )  2. It has been suggested that the conformal factor 
should be integrated over a complex contour in field space. (m But it can 
be shown that contour deformations in functional integrals can lead to 
complex nonperturbative contributions to the correlation functions, even 
when all the perturbative contributions are real. (12) Other methods to get 
around this problem such as compactification of the field space ~3) or 
adding higher derivative terms to stabilize the action (~4) lead to violations 
of unitarity, and the vacuum of such stabilized theories may have nothing 
to do with the vacuum of the corresponding Minkowski theory. A recent 
promising suggestion by Greensite (15) is to use the method of a fifth-time 
action to formulate Euclidean quantum gravity. 

4. QUANTUM GRAVITY 

The problem of quantizing the gravitational field remains a serious 
issue, which has not yet been satisfactorily resolved. The standard 
approach based on perturbation theory using a fixed background metric 
such as the Minkowski spacetime metric, leads to the divergence of the 
loop integrals in the quantized theory. The first-order loops for pure 
vacuum gravity are renormalizable, but this is due to the existence of an 
identity in four-dimensional pseudo-Riemannian spacetime which does not 
lead to renormalizable higher-order loops. Moreover, the diagrams yield 
nonrenormalizable contributions in all orders when matter is present. The 
choice of a fixed classical background goes against the spirit of the 
diffeomorphism invariance of general relativity. 

Further serious problems arise when the path integral formalism is 
adopted, based on the generating function: 

Z=f [dg][dc~] #[g, qS] exp(-IE) (4.1) 

where p[g, ~b] is a measure factor which is chosen to guarantee local gauge 
invariance to all orders. This measure factor is not well defined in four- 
dimensional spacetime because the set of all topological measures cannot 
be classified. Thus, the measure is intrinsically undefined and the path 
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integral formalism cannot be mathematically formulated. In addition to 
this, one has to contend with the problem of the unboundedness of the 
functional path integral in Euclidean space. 

Attempts have been made to put quantum gravity on a gauge lattice 
using Wilson-type loop methods.(16) This approach could lead to a nonper- 
turbative solution to quantum gravity. A measure can now be uniquely 
chosen for a 4-sphere, and using the Wilson link variables U and choosing 
a lattice size a, the problem can be formulated in Euclidean space in a 
gauge invariant manner. However, manifest diffeomorphism invariance is 
lost, and it is not clear how one would recover it in the continuum limit. 
In addition, there appears to be no explicit method by which one can 
numerically realize a transition to the physical Minkowski spacetime. How 
does one numerically perform a rotation in the momentum variable Po by 
1r/2 during a Monte Carlo simulation? Moreover, the problem of whether 
the S-matrix is unitary cannot be satisfactorily answered in this type of 
formulation. Attempts to solve quantum gravity by using the canonical 
formalism run into serious difficulties because the Dirac constraint equa- 
tions are nonpolynomial equations which are hard to solve. To overcome 
this problem, Ashtekar ~17) has proposed transforming to a complex connec- 
tion and reformulating the problem with this connection. It is found that 
the Hamiltonian constraint equations become polynomial equations which 
are easier to solve. However, an equally serious problem now arises, for the 
inner products of state vectors in the linear Hilbert space are complex and 
cannot be normalized in a meaningful way. Thus, the quantum mechanical 
formalism is rendered unusable, unless some way is found to circumvent 
this problem. 

Since the gauge theory formalism in quantum field theory has been so 
successful, it would seem fruitful to formulate quantum gravity as a gauge 
theory using the vierbein formalism. A quadratic term in the curvature can 
be added to the Lagrangian, yielding a Yang-Mills type of structure. 
However, as will be shown in Section 7, the whole gauge formalism is 
intrinsically nonviable since the Hamiltonian in the physical Minkowksi 
space-time is unbounded from below, due to the noncompact nature of 
the local Lorentz gauge group S0(3, 1) in the flat tangent space (fiber 
bundle tangent space). Even after the standard longitudinal ghosts have 
been removed by choosing a suitable Faddeev-Popov ghost fixing, there 
remain additional negative metric transverse components, generated by the 
noncompact metric. After a choice of Faddeev-Popov gauge fixing is per- 
formed to get rid of these components, it can be proved that the S-matrix 
is not unitary. Thus, the whole gauge quantization program for gravity 
fails. This problem has its roots in the attempt to quantize the metric of 
spacetime with its intrinsically noncompact structure due to the existence 
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of a light cone. Standard quantization of Yang-Mills theories does not, of 
course, suffer this problem, for these Yang-Mills theories are associated 
with compact groups such as SU(n) or O(n). The Hamiltonian is bounded 
from below after suitable gauge fixing, and the S-matrix is unitary. It 
appears that a new way to consistently quantize gauge theories based on 
noncompact groups is needed to make physical sense of quantum gravity. 

5. THE P R O B L E M  OF TIME A N D  THE S C H R ( ~ D I N G E R  
E Q U A T I O N  

In quantum mechanics, a suitably normalized wave function is defined 
by the path integral 

~(2, t)= - f  [dY(t)] exp[iS(Y(t))] (5.1) 

We obtain 

(5.2) 

which leads to the SchrSdinger equation 

i ~-~t = H~k (5.3) 

A differential equation for the wave function of the universe, gt, can be 
derived by varying the end conditions on the path integral (5.1). Since the 
theory is diffeomorphism invariant, the wave function is independent of 
time, and we obtain 

- i f  [dg]Ed¢? ¢1 exp(iSEg, CJ)=0 (5.4) 

where we have taken into account the translational invariance of the 
measure factor #[g,  ¢]. Thus, the value of the integral should be left 
unchanged by an infinitesimal translation of the integration variable N and 
leads to the operator equation: 

H O T = 0  (5.5) 

The classical Hamiltonian constraint equation takes the form 

H o = 6S/6N= hl/2( - K 2 + K~K o -  R (3) + 2A + 16~GT.,,) = 0 (5.6) 
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where T,n is the stress-energy tensor of the matter field projected in the 
direction normal to the surface. By a suitable factor ordering (ignoring the 
well-known "factor ordering" problem), the classical equation 6S/6N=0 
translates into the operator identity 

6z IR(31(h) - 2A 

M~ T,,  - i  , ~b 71[h~, ~b3 = 0  (5.7) 

where Yijkt is the metric on superspace, 

?~k, = ½h I/2(h~khj, + h~,hjk - h~jhk~) (5.8) 

and M 2 = 1/G is the (Planck mass) 2. This is the familiar WD equation for 
a closed universe. (1) 

Because time has disappeared in the diffeomorphism-invariant Einstein 
gravity theory, the universe is stationary and we do not obtain the familiar 
Schr6dinger equation. This obviously creates difficulties, since time plays 
such a central role in quantum mechanics. ~18) Attempts to identify dyna- 
mical phase variables in the WD equation with time lead to problems, for 
they lack a conserved, positive-definite probability current for the wave 
function 71, since the WD equation is a second-order hyperbolic differential 
equation in the ordinary Minkowski metric signature. This has led to 
"third quantization" of the wave function, treated as a dynamical field 
variable,(19 23) and to a "wormhole" field theory. (24 26) We do not view this 
as a satisfactory situation, since we would expect that the wave function of 
the universe should be time dependent and lead to a complex Schr6dinger 
equation or its covariant counterpart--the Tomonaga-Schwinger equation: 

67 / 
i~-~- = ~ 7 1  (5.9) 

which leads to the ordinary time-dependent Schr6dinger wave equation for 
global time variations, with a positive-definite probabilistic interpretation. 
We shall therefore propose a new definition of the wave function of the 
universe which takes the form 

71[hiy, ~b] = - f  [dg][dO] M[g, O] exp(iS[g, ~b]) (5.10) 
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where M[g, ~b] is a measure factor that breaks the time translational 
invariance of the path integral and makes the wave function ~u explicitly 
time dependent. We now obtain 

6gJ r 6M [dg] [d~] exp(iS) 6N- J ~-U 
6S 

- if [ag3[d¢3 M[g, ~3 ~--~ exp(iS) (5.11) 

This leads to the time-dependent Schr6dinger equation 

t ~--~= H o ~ (5.12) 

where H0 denotes 

61nM 
/to = - i  (5.13) 

6N 

A simple example of a measure factor that brings in an explicit time 
dependence (or N dependence) is 

MEg, fb] = #Eg, O] N b (5.14) 

This measure factor M[g, ~b] retains the momentum constraint equation 
Hi = 0 as an operator equation: 

Hi ~ =  0 (5.15) 

while keeping the invariance of the spatial three-geometry at the quantum 
mechanical level as well as at the classical level. If the measure M[g, ~b] is 
chosen so that the diffeomorphism group ~ is broken down to a subgroup 
6 e, then there will exist a minimal choice of M[g, ~b] which will break time 
translational invariance. The choice of M[g, ~b] is not unique and some, as 
yet, unknown physical principle is needed to determine M[g, ~b]. At the 
classical level, we shall continue to maintain general covariance, and the 
classical constraint equation (5.5) holds. The Bianchi identities 

v G~ ;v = 0 (5.16) 

v v 1 v are valid, where G~ = R~ - ~ 6 ~  R and ; denotes covariant differentiation 
with respect to the connection. It is only the quantum mechanical wave 
function that breaks the diffeomorphism invariance, i.e., N is no longer a 
free variable for the wave function of the universe. This leads naturally to 

8 2 5 / 2 3 / 3 - 6  
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a cosmic time which can be used to measure time-dependent quantum 
mechanical observables. We find that for any operator O, we get 

6 
~-~ ( O )  = i( [H, O] ) (5.17) 

which constitutes the quantum mechanical version of Hamilton's equation. 
In contrast to the WD equation, Ehrenfest's theorem follows directly 
from (5.17). 

The probability to find the system in configuration space at time t is 
given by 

d P  = d~2q l~ (q , ,  t)l ~ (5.18) 

where d~2q is the configuration space element. Provided ~ is well behaved 
at infinity, the integral of I'/'12 taken over the whole of configuration space 
is independent of time and can be normalized to one: 

f d~q I ~(qi, t)l 2= 1 (5.19) 

This follows from the fact that I ~l 2 is the time component of a conserved 
probability current. We also have that dP  >>. O. 

The semiclassical WKB approximation is valid for Me--> oe, and the 
Einstein-Hamilton-Jacobi equation is now solved using an expansion in 
powers of the wave function 

qs = exp(iS) (5.20) 

We require that the wave function in the classical limit M e -~ o0 obey the 
operator equation: 

H0 ~w~zB = 0 (5.21) 

which is consistent with the classical constraint equation (5.6). 
Can we break spacetime translational invariance at the quantum 

mechanical level? This does not violate any known fundamental physical 
law. It solves the problem of time in quantum gravity and makes gravity 
consistent with quantum mechanics, which ultimately requires a "real" 
external observable time in order to make the theory physically meaningful. 
There is no violation of general covariance at the classical level, guaran- 
teeing that the standard macroscopic experimental tests are not violated. 
The principle of general covariance is held by most physicists to be sacred, 
but to retain this symmetry at the quantum mechanical level for the wave 
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function is too high a price to pay, since it means giving up the possibility 
of formulating a physically sensible theory of quantum gravity. It is not clear 
how we can perform an experimental test to detect a quantum mechanical 
violation of time translational invariance in the wave function of the 
universe, since quantum gravity effects only become significant at the Planck 
energy ~ 1019  GeV, or in very early universe cosmology. However, it is 

important to unify quantum mechanics and gravity within a conceptually 
logical picture, since both of these pillars of modern physics are with us 
to stay. 

6.  G A U G E  F O R M A L I S M  F O R  G R A V I T Y  

Let us define the metric in any noninertial coordinate system by 

g#v(X ) a b (6.1) = eu(x) ev(X) rlab 

where 

(8:x(X)~ (6.2) 
e ~ ( X ) = \  ax ~ ]x=x  

a The ~x are a set of locally inertial coordinates at X. The vierbeins e.  satisfy 
the orthogonality relations: 

a . ~a ~ a -  ~ ( 6 . 3 )  e~eb = °b, eaev -- ~v 

which allow us to pass from the fiat tangent space coordinates (the fiber 
bundle tangent space) labeled by a, b, c,... to the world spacetime coor- 
dinates (manifold) labeled by /~, v, p ..... The fundamental form (6.1) is 
invariant under Lorentz transformations: 

e'~a(x) = L~(x) e~(x) (6.4) 

where L~b(x) are the homogeneous S0(3,  1) Lorentz transformation 
coefficients that can depend on position in spacetime, and which satisfy 

Lac(X) L~(x)  = ~lcd (6.5) 

For a general field f , ,(x) the transformation rule will take the form 

f, ,(x) ~ ~ [D(L)(x)]nm fm(X) (6.6) 
m 

where D(L)  is a matrix representation of the (infinitesimal) Lorentz group. 
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a The e ,  will satisfy 

~ ~ - F ~  e ~ = 0  (6.7) e~,~ + (f2~)~ % ~ p 

where e~,~ = Oe~/dx ~, f2~, is the spin connection of gravity, and F~,~ is the 
Christoffel connection. Solving for F gives 

F a ~ b (6.8) o).p = gapF,~.~ = tl~b( D . e  k) e p 

where 
c Doe~ = e~,~ + (£2~)~ e~ (6.9) 

is the covariant derivative operator with respect to the gauge connection 
g2~. By differentiating (6.1), we get 

- P - P - ( 6 . 1 0 )  g~v,o gp~F~ g ~ p F ~ - 0  

where we have used ((2~)~. = -(O~)oc. 
The (spin) gauge connection (2~ remains invariant under the Lorentz 

transformations provided: 

((2~)~ ~ [LI2~L 1 - ( O ~ L ) L  13~ (6.11) 

A curvature tensor can be defined by 

( [D . ,  D~])~ = (R.~)~ (6.12) 

where 
a ~r~ a a (R~,v)b ( v)b,~--(f2~)b,~+([f2~, f2~])~ (6.13) 

The curvature tensor transforms like a gauge field strength: 

(R,~)~ ---, La(R~,~)~ (L  1)ha (6.14) 

In holonomic coordinates, the curvature tensor is 

R~,v = (R~,v)ba eae~)~ o (6.15) 

and the scalar curvature takes the form 

R = e~aeVb(R,v)ab (6.16) 

The action is written as 

; { , } 1 [R(Q) + 2A] + (R,v((2))~, (R"~(£2))] (6.17) S G =- d4x e 16~zG 
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where e = x f ~ = d e t ( e ~ e , v )  1/2, R(t2) denotes the scalar curvature 
determined by the spin connection £2, and co is a dimensionless coupling 
constant. We have included a term quadratic in the curvature to ensure 
that the action has the familiar Yang-Mills form. (27 31) 

The field equations take the form 

Ru~(g ) - ½g~,.(R(g) + 2A) = 8nkZE,, (6.18) 

where R(g) denotes the curvature scalar determined by the pseudo- 
Riemannian metric and connection. Moreover, 

1 a 2 b 1 a ( R ~ t ? ) ) ~  - g,~(R2p(O))b (R~P(~))]) E,v  = ~ ( (R .~ . (~ ) )~  

and k2= G/(~. These equations can be written as 

(6.19) 

1 
87zk 2 B~v(g) = Cu2~oB ~p, R(g) = 4A (6.20) 

where 

B,v = R,v( g) - ¼ g~vR(g) (6.21) 

and C2uvp is the Weyl tensor. These field equations are satisfied if the 
vacuum equations hold: 

R~(g)  = 0 (6.22) 

We have restricted ourselves to a torsion-free S0(3,  1)(SL(2, C)) 
gauge theory. However, our conclusions regarding such gauge theories 
apply equally well to the more general theories based on the Poincar6 
group (29'3°1 and conformal gauge symmetries. (31) 

7. QUANTIZATION OF GAUGE GRAVITY THEORY 

Some comments about the quantization of the action (6.17) are ' in 
order. Let us introduce the notation: E i = R o i ( i = l ,  2, 3), Hi= 1-o oyk 2r~ijk "t~- r, 
~ Et = ~ i O  e i --__ ~ i O  d~tgg-- i : 2~1 -ikl~-'lSkj, ~ i : l ~ikJnkj. Then we obtain 

Eoo= 1 2 2  oeE+ (7.1) 

The noncompactness of the homogeneous Lorentz group S0(3,  1), 
with the associated indefiniteness of the group metric, leads to the 
indefiniteness of the energy. (32,33) The Hamiltonian is not bounded from 
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below and we lose the ground state, and the S-matrix is not unitary. 
To check unitarity in a Yang-Mills theory of gravity, one considers the 
lowest order nontrivial diagrams--the one-loop diagrams. (33) The one-loop 
diagram amplitude is denoted by A(loop). Let us denote the contribution 
to the intermediate states by the transverse components in Im A(loop) by 
Im C(loop). Then we should have 

Im A(loop) = Im C(loop) (7.2) 

But this does not guarantee that unitarity is satisfied, because Im C(loop) 
contains the contributions of negative metric transverse components. If we 
gauge fix away the negative transverse components in the external states, 
then we see that 

Im A(loop) ¢ I m  C(loop) (7.3) 

and unitarity is violated and the SO(3, 1)(SL(2, C)) gauge symmetry is no 
longer respected. If we insist on maintaining gauge symmetry for the 
amplitudes, then the theory cannot be unitary. This problem does not 
occur for Yang-Mills theories based on compact groups. The invariant 
quadratic forms, which appear in the energy or the norm of the pertur- 
bative quanta, are not positive definite if the group is not semisimple and 
compact. The Killing form Kab a c = facfba (where f a  bc are the group structure 
coefficients) has no definite sign in this case. The quadratic invariant t/pv for 
SU(p, q) or O(p, q) has this property, and ghost particles occur in any 
representation. 

One possible way out of this dilemma (32) is to realize the noncompact 
gauge group invariance nonlinearly, its maximal compact subgroup H 
being realized linearly on the fields. Thus, the disease may be cured by 
forming field-dependent positive metrics. However, up till the present time, 
no concrete program has been developed to rid noncompact Yang-Mills 
theories of the ghost disease. 

Although the path integral is defined in the tangent fiber bundle space, 
since a Wick rotation leads to S0(3, 1) ~ 0(4) and the Euclidean action in 
the tangent space is positive definite (reflection positivity), it is unbounded 
in the base space (gpv---' ~,~E)~ due to the conformal mode. It is far from o ~ V  I 

clear that the situation is healthy. There is no mathematically rigorous 
proof that we can define the quantum theory in the physical space, since 
singularities in the solutions of the field equations probably exist, which 
prevent a simple Wick rotation, and also forbid any kind of meaningful 
analytic continuation to take place. This is a subject which seriously 
requires a rigorous mathematical solution, before any sensible quantum 
gravity theory can be defined. 
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The gravitational gauge theories are in general not renormalizable. 
For our Euclidean SO(4) theory, a calculation of the one-loop counter 
term gives (34) 

A~,=I[(I@~+rL--I'] 2 11 R**~(~)]] (7.4) 
7 10 ]R.~(g)+C2L-~(-~)tr[R~(f2) 

where e = 8rc2(rl - 4 ) ,  rL = 6, and C2L = C2(S0(4)). The zero-torsion version 
of the theory is renormalizable but nonunitary. ¢35~ Torsion would restore 
unitarity but spoil the renormalizability of the theory with a quadratic 
Lagrangian. If the vierbein e~ is not quantized, then the theory becomes 
simply an SO(4) Yang Mills gauge field theory in curved spacetime. The 
theory is not unitary in Minkowski spacetime. The one-loop counterterm 
has the form 

t[rL ~ ( 1 ) ( 1 1 R 2 ~ ]  
a =TL C$"o+C=L - 2 t r \ 12  "~]j (7.5) 

where the Weyl tensor Ca~vo depends only on the external field and does 
not spoil the renormalizability of the theory. When e~ is quantized, then 
additional R2(g) terms contribute, violating renormalizability when the 
torsion is zero. The theory in which the vierbein is not quantized simply 
avoids the problematic issue of quantizing the geometrical gravitational 
field, i.e., i t  evades the fundamental problem of seeking a consistent 
quantum gravity theory. 

8. THE ARROW OF TIME A N D  S P O N T A N E O U S  BREAKING 
OF THE GRAVITATIONAL VACUUM 

Let us now address the fundamental problem of the origin of time 
and of the arrow of time and the second law of thermodynamics. To this 
end, we shall consider a specific kind of symmetry breaking in the early 
universe, in which the local Lorentz vacuum symmetry is spontaneously 
broken by a Higgs mechanism. We postulate the existence of a scalar field, 
~b, and assume that the vacuum expectation value (vev) of the scalar field, 
(~b)0, will vanish for some temperature T less than a critical temperature 
To, when the local Lorentz symmetry is restored. Above T C the nonzero 
vev will break the symmetry of the ground state of the universe from 
S0(3, 1) down to 0(3). The domain formed by the direction of the vev 
of the Higgs field will produce a time arrow pointing in the direction of 
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increasing entropy and the expansion of the universe. Let us introduce four 
real scalar fields ~b~(x) which are invariant under Lorentz transformations 

~b'a(x) = L ~ ( x )  ~ b ( x )  (8.1) 

We can use the vierbein to convert ~b ~ into a 4-vector in coordinate space: 
~b ~ = e~b". The covariant derivative operator acting on ~b is defined by 

D.~b" = [ a . 6 ;  + (Q~);] ~b b (8.2) 

If we consider infinitesimal Lorentz transformations 

Lg(x) = 6; + ~o;(x) (8.3) 

with 

O%b(X) = --~Oba(X) (8.4) 

then the matrix D in (6.6) has the form 

D(1 + o~(x)) = 1 + ½¢Oab(X) a~b (8.5) 

where the a~b are the six generators of the Lorentz group which satisfy 
aab = - a b .  and the commutation relations 

[ a ~b, a ~d] = tlcb a ~a- -  tl caa bd + tl ub a . ,  - -  tl aaa  cb (8.6) 

The set of scalar fields ¢ transforms as 

¢'(x) = ~(x) + o~°~(x) ~a~¢(x) (8.7) 

The gauge spin connection which satisfies the transformation law (6.11) is 
given by 

t?  1 ab ~ ( 8 . 8 )  # : ~ G  e a e b v ; ,  u 

We shall now introduce a Higgs sector into the Lagrangian density 
such that the gravitational vacuum symmetry, which we set equal to the 
Lagrangian symmetry at low temperatures, will break to a smaller sym- 
metry at high temperature. The pattern of vacuum phase transition that 
emerges contains a symmetry antirestoration. (3643) This vacuum symmetry 
breaking leads to the interesting possibility that exact zero temperature 
conservation laws, e.g., electric charge and baryon number, are broken in 
the early universe. In our case, we shall find that the spontaneous breaking 
of the Lorentz symmetry of the vacuum leads to a violation of the exact 
zero temperature conservation of energy in the early universe. 
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We shall consider the Lorentz invariant Higgs potential: 

1 
V ( ~ b ) = - 2 l ,  2 ~ba~ba+2 ~ (~baqSa) 2 (8.9) 

a = O  a = 0  

where 2 > 0 is a coupling constant such that V(~b) is bounded from below. 
Our Lagrangian density now takes the form 

~CP = ~ + . ~ - - g  [ ½ D j J  a D +' (/' - V(~b)] (8.10) 

If V has a minimum at ~b a = v~, then the spontaneously broken solution is 
given by v] =/z2/42 and an expansion of V around the minimum yields the 
mass matrix: 

1( ~V ~ (8.11) 

We can choose ~b a to be of the form 

~o = = a o o ( ~ 2 / 4 ~ )  ~/~ ( 8 . 1 2 )  

All the other solutions of ~ are related to this one by a Lorentz transfor- 
mation. Then, the homogeneous Lorentz group S0(3 ,  1 ) is broken down to 
the spatial rotation group 0(3). The three rotation generators J~(i= I, 2, 3) 
leave the vacuum invariant 

J ? i  = 0 (8.13) 

while the three Lorentz-boost generators Ki break the vacuum symmetry 

K i v i # O  (8.14) 

The J~ and K~ satisfy the usual commutation relations 

[Si, Jj] : igijkJk, [Ji,  Kj] = ieo~Kk, [K;, Kj] = --ieukK k (8.15) 

The mass matrix (/x2)~b can be calculated from (8.11): 

( # 2 ) a  b : ( __ 1~2.3t_ 22v 2) aab + 42v, vb = tx26,~oabo (8.16) 

where v denotes the magnitude of v,. There are three zero-mass Goldstone 
bosons, the same as the number of massive vector bosons, and there are 
three massless vector bosons corresponding to the unbroken 0(3) sym- 
metry. After the spontaneous breaking of the vacuum, one massive physical 
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Higgs particle ~b H remains. No ghost particles will occur in the unitary 
gauge. The vector boson mass term is given in the unitary gauge by 

3 

2'a = ½x/Zg (U,) a° Vb((2")] Vc = ½-,/-~ Z ((f2,)m) z (#2/42) 
i ~ l  

(8.17) 

We could have extended this symmetry breaking pattern to the case where 
we have two sets of vector representations, ~bal and ~ba2. The invariant spin 
connection can depend on the length of each Lorentz vector and the angle 
between them, I~b~ll, I~ba21, and I~bal~.21, The solutions for the minimum 
must be obtained from the conditions imposed on these three quantities. 
We can choose ~bal with only the last component nonzero and ~.2 with 
the last two components nonzero in order to satisfy these conditions. 
The Lorentz S0(3, 1) symmetry is then broken down to 0(2) (or U(1)) 
symmetry. (44) 

A phase transition is assumed to occur at the critical temperature To, 
when v~ # 0 and the Lorentz symmetry is broken and the three gauge fields 
(f2.) i° become massive vector bosons. Below Tc the Lorentz s~nmetry is 
restored, and we regain the usual classical gravitational field with massless 
gauge fields (2.. The symmetry breaking will extend to the singularity 
or the possible singularity-free initial state of the big bang, and since 
quantum effects associated with gravity do not become important before 
T ~  1019 GeV, we expect that T~ ~< 1019 GeV. 

In most known cases of phase transitions of the first and second kind, 
the more symmetrical phase corresponds to higher temperatures and the 
less symmetrical one to lower temperatures. A transition from an ordered 
to a disordered state usually occurs with increasing temperature. Examples 
of two known exceptions in nature are the "lower Curie point" of Rochelle 
salt, below which the crystal is orthorhombic, but above which it is mono- 
clinic. Another example is the gapless superconductor. A calculation of the 
effective potential for the Higgs breaking contribution in (8.10) shows that 
extra minima in the potential V(~b) can occur for a noncompact group such 
as S0(3, 1). This fact has been explicitly demonstrated in a model with 
O(n) x O(n) symmetric four-dimensional ~b ~ field theory. (43) This model has 
two irreducible representations of fields, ~1 and ¢2, transforming as (n, 1) 
and (1, n), respectively. The potential is 

7mi~b; + ~  !,~2~ 2"2 (8.18) V =  E 1 2~2 8*Fi "~/j*Yj 
i i,j 

The requirement of boundedness from below gives (212 = 221) 

2 1 1 > 0  , 222> --(211222) 1/2 (8.19) 
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If we have 212<- (1  +2/n)222, then the one-loop free energy predicts 
spontaneous symmetry breaking to O(n)x O ( n - 1 )  at sufficiently high 
temperatures without symmetry breaking at small temperatures. The 
standard symmetry breaking restoration theorems can be broken in this 
case because the dynamical variables ~i do not form a compact space. 

When the symmetry is restored, the entropy will rapidly increase and 
for a closed universe will reach a maximum at the final singularity, 
provided that no further phase transition occurs which breaks the Lorentz 
symmetry of the vacuum. Thus, the symmetry breaking mechanism 
explains in a natural way the low entropy at the initial singularity and the 
large entropy at the final singularity. It is claimed that the entropy increase 
can be explained in inflationary models but, as yet, no satisfactory 
inflationary model has been constructed. (45-4a) There does not exist in the 
standard inflationary scenario an ingredient that can explain the time 
asymmetry between the initial and final singularity in a closed universe. C49) 

Since the ordered phase is at a much lower entropy than the disordered 
phase and due to the existence of a domain determined by the direction of 
the vev of the Higgs field, a natural explanation is given for the cosmological 
arrow of time and the origin of the second law of thermodynamics. Thus, 
the spontaneous symmetry breaking of the gravitational vacuum corre- 
sponding to the breaking pattern, S0(3, 1)~  O(3), leads to a manifold 
with the structure R x O(3), in which time appears as an absolute external 
parameter. The vev of the Higgs field, (~b)o, points in a chosen direction 
of time to break the symmetry creating an arrow of time. The evolution 
from a state of low entropy in the ordered phase to a state of high entropy 
in the disordered phase explains the second law of thermodynamics. 

9. BROKEN ENERGY CONSERVATION AND 
CREATION OF MATTER 

We shall define the energy-momentum tensor by ~5°1 

T~ = e~,v~ (9.1) 

a where v, is a coordinate vector and a Lorentz vector, and T~. is a 
coordinate tensor and a Lorentz scalar. In classical general relativity T~,, 
satisfies 

and 

T~v = Tv~ (9.2) 

TV~;v -- 0 (9.3) 
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Under the infinitesimal Lorentz transformations (8.3) with Lco~l ~ 1, the 
matter action SM must be stationary with respect to variations in the 
variables except the vierbein, which is treated as an external field variable. 
Thus, we consider only the change 

ae~a(x) = oO~(x) e~(x)  (9.4) 

The invariance of the matter action under position-dependent Lorentz 
transformations leads to 

f d4x ( _g)1/2 v~(x) eb"(x) O)~b(X) = 0 (9.5) 

Since c%b satisfies (8.4), we have for arbitrary co that the coefficient of co 
must be symmetric: 

or that 

v~e bu = v~e ~" (9.6) 

b (9.7) v~,ea# : v#ebv 

which establishes the symmetry condition (9.2). To show (9.3), we use 
the invariance of the matter action under the infinitesimal coordinate 
transformations: 

with I{ul ~ 1. Then we get 

x '~ = x ~ + ~ ' (x)  (9.8) 

v ~ e" {a (9.9) be" u --- ea { .v -- a,a~ 

After integration by parts, we obtain for arbitrary {": 

a v a p 

This can be written as 

( x fTgTV~) . v+x / -~r  v,,~,'~o" ~.~ = 0  (9.11) 

From (6.1) and (6.10) and using (6.3), we obtain the usual conservation 
law 

v / . tv (~/--g Ta),~ + ½x~ -/-~g T,~ g .~ = 0 (9.12) 

which can easily be shown to be identical to (9.3). 
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When we enter the broken local Lorentz symmetry phase for T >  T c, 
the action S will violate local Lorentz invariance in a fixed gauge and T "~ 
will no longer be symmetric. As a consequence, the conservation of T "v 
will be spontaneously broken, and this means that the diffeomorphism 
invariance of the theory has been spontaneously broken, since (9.12) 
originates from the assumption that SM is invariant under the group of 
diffeomorphism transformations. 

In general, the action S is invariant under Lorentz and diffeomorphism 
transformations, but when a specific direction of symmetry breaking along 
the time axis is chosen, energy conservation is spontaneously broken. In the 
symmetry-restored phase of the universe, conservation of energy is always 
satisfied, since diffeomorphism invariance and local Lorentz invariance are 
strictly obeyed both for the action and the vacuum. Let us consider small 
oscillations about the true minimum and define a shifted field: 

¢'~=qJ~--Va (9.13) 

Then, the action becomes 

S' = S + Sb (9.14) 

where Sb is no longer invariant under the local Lorentz gauge transforma- 
tions and the energy-momentum tensor is no longer conserved. After 
Faddeev-Popov ghost fixing, we can define a new set of extended Becchi- 
Rouet-Stora (BRS) Lorentz gauge transformations under which S' is 
invariant, and a set of Ward-Takahashi identities can be found. The Higgs 
mass and graviton mass contributions proportional to v a= (Of Ca 10) are 
given by (8.16) and (8.17). 

In the broken-symmetry phase, in a fixed gauge the wave function of 
the universe, gt is no longer time-translationally invariant. A real external 
time has been created in the ordered phase T >  To. From this follows that 
we obtain a time-dependent Schr6dinger equation (5.12). We can now 
make sense of the time dependence of quantum mechanical operators in 
quantum cosmology, and the Ehrenfest theorem follows. In the low-energy 
classical region for T <  T c, the wave function in the WKB approximation 
satisfies a Wheeler-deWitt equation (1) 

H o ~rtWK B = 0 (9.15) 

How do we now reconcile the existence of a real time variable and a 
time evolution in the classical domain for T <  To? We shall adopt the 
approach of Halliwell, ~6) in which the quantum and classical regimes are 
distinguished according to whether the wave function ~ has an exponential 
or oscillatory behavior, respectively. The regions in which the wave func- 
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tion is exponential are regarded as classically forbidden and g' cannot be 
associated with a Lorentzian geometry. On the other hand, the regions in 
which the wave function is oscillatory are regarded as classically allowed; 
gt is peaked about a classical Lorentzian four-geometry. A finite number of 
functions ha(t), representing components of the three-metric, are defined in 
minisuperspace and their wave function 7S(h) satisfies the WD equation: 

H g  t = ( -  ½V 2 + U(h)) gt(h) = 0 (9.16) 

where V 2 is the Laplacian operator in the minisuperspace. In the oscillatory 
region, the WKB approximation gives 

9g(h) = F(h) exp(iS(h)) (9.17) 

where S(h) is a rapidly varying phase and F(h) is a slowly varying function. 
From (9.16) and (9.17) we obtain 

½(VS) 2 "t- U(h) = 0 (9.18) 

V S  - V F - ~ -  1 2 ~V S = 0  (9.19) 

where a contribution of order V2F has been neglected. Now it can be 
shown that gt is peaked about the set of trajectories which satisfies 

f = VS (9.20) 

where f is the momentum conjugate to h. To obtain a time variable, 
Halliwell uses the tangent vector in configuration space for the paths for 
which gt is peaked: 

d 
- V S - V  ( 9 . 2 1 )  

dz 

where t is the proper time along the classical trajectories. 
We see that time emerges as a parameter which labels points along the 

trajectories for which the wave function is peaked. Reparameterization 
invariance shows itself as the freedom to choose this parameter, such that 

1 d 

N(t) dt 
- -  - -  = VS. V (9.22) 

where N(t) is an arbitrary function of t. The location and existence of 
the oscillatory region of spacetime is determined by the initial domain of 
ordered spontaneous symmetry breaking in the early univese, which 
imposes the boundary condition on the wave function. Thus, there is a 
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physical mechanism in the early universe which determines, for all time, the 
region in which a classical Lorentz geometry exists. 

The presence of the Lorentz symmetry broken phase at high tem- 
peratures will spontaneously create matter at the beginning of the universe, 
due to the violation of the energy conservation. This could explain the 
origin of matter in the early universe. Energy conservation is restored as an 
exact law at lower energies. Also the presence of domains in the ordered 
phase will produce an arrow of time pointing in the direction of increasing 
entropy as the temperature drops during the expansion of the universe. 
Therefore, the Lorentz symmetry breaking of the gravitational vacuum has 
engendered a real time asymmetry in the universe. One of the interesting 
consequences of this symmetry breaking is that the standard proof of 
the CPT theorem fails. ~sl) This failure is probably inevitable in any new 
physical law that truly introduces a cosmological arrow of time and a time 
asymmetry. This could have important implications for CP or T violation 
observed in K ° decay. 

We have arrived at a seemingly radical version of quantum gravity, 
which is fundamentally at odds with Einstein's vision of gravitational theory, 
based on the equivalence principle and the associated principle of general 
covariance. We have spontaneously broken the diffeomorphism group of 
transformations in order to understand the fundamental observational facts 
underlying thermodynamics, statistical physics, quantum mechanics, and 
the psychological arrow of time. It is now possible to explain the following 
physical phenomena: 

1. The second law of thermodynamics 

2. Schr6dinger equation for the wave function of the universe 

3. The real arrow of time (e.g., the aging of human beings) 

4. The existence of matter 

The price to pay for an explanation of these empirical laws of nature, 
according to our scenario, is: 

5. The violation of Lorentz invariance and time translational 
invariance in the early universe (52) 

6. Violation of the conservation of energy in the early universe 

7. Breaking of CPT invariance 

It is also necessary to postulate the existence of a short-range gravita- 
tional force (massive spin connection f2u) at very high energies ~ 1019 GeV. 
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10. FIELD EQUATIONS IN THE BROKEN SYMMETRY PHASE 

We shall now investigate the gravitational field equations for cosmol- 
ogy in the broken phase of the early universe. We find that a Friedman- 
Robertson-Walker (FRW) cosmology can exist in which the massive vector 
gravitational gauge field on _ n f 2  - V , ( n  = 1, 2, 3) dominates the vacuum energy, 
which could drive the universe into an inflationary de Sitter phase, which 
ceases when the temperature drops below To. The mass of V~ is of order 
m ~ M e  ~ 1019 GeV. 

The total action for the theory is 

S = S G q- S M --~ S O (10.1) 

where SG is given by (6.17) and SM is the usual matter action for gravity. 
Moreover, 

Sf b~" f d4x N / ~  [½Dtt~aD'U~ a -  V ( ( ~ ) ]  (10.2) 

Performing a variation of S leads to the field equations: 

G t'v =_ R "~ - ½ g"~R = 8n[G(T "v + C "v) + k 2 E  "~ ] + A g  ~'~ (10.3) 

where T "v is the matter tensor for a perfect fluid: 

T ~'v = (p + P)  u~'u v _ pg~'~ (10.4) 

Moreover, E ~v is given by (6.19), and the scalar field energy-momentum 
tensor is of the usual form: 

C ~'~ = D"¢~ DYe a - ~q~¢ g,UV (10.5) 

The compatibility relation for the vierbeins is postulated to be 

a a c p a 
e..~ + ( 0 ~ )  c e .  - I 'o~ep - 0 (10.6) 

where (f2.)ab = --(O.)ba. 
Since we assume that the symmetry breaking pattern is 

S 0 ( 3 , 1 ) ~ 0 ( 3 ) ,  there will be three massless gauge vector fields 
n n (g2~).m= --(O~)m. denoted by Us, three massive vector bosons V~, and 

one massive Higgs boson cH. Because G ~v satisfies the Bianchi identities 
(5.16), we find in the broken symmetry phase after the shift of the scalar 
field ¢ according to (9.13): 

T'V;~ = K ~ (10.7) 
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where K " contains the mass terms proportional to v=  ( ¢ ) 0 .  Thus the 
conservation of energy-momentum is spontaneously violated and matter 
can be created in this broken symmetry phase. 

When the temperature passes below the critical temperature Tc, v = 0 
and the action is restored to its classical form (10.1) with a symmetric 
degenerate vacuum and a massless spin gauge connection (f2~)~, and we 
regain the standard energy-momentum conservation laws: TQv = 0. 

The manifold in the broken phase has the symmetry R x 0(3). The 
three-dimensional space with 0(3)  symmetry is assumed to be homogeneous 
and isotropic and yields the usual maximally symmetric three-dimensional 
space: 

F dr 2 ] 
do -2 = -R2(t)  El _-~rg q- r i (go  2 + sin z 0 g~2) (10.8) 

where the spatial coordinates are comoving and t is the "absolute" external 
time variable. This is the RobertsomWalker  theorem for our ordered phase 
of the vacuum and it has the correct subspace structure for the FRW 
universe with the metric 

g dr 2 ] 
ds 2 = dt g - RZ( t) L l _--Z~r2 + r2(dO 2 + sin g 0 d~ 2) (10.9) 

The null geodesics of the metric (10.9) are the light paths of the subspace 
and ds measures the "absolute" time at each test particle. 

11. CONCLUSIONS 

By spontaneously breaking the gravitational vacuum at a critical tem- 
perature T+., the gravitational gauge connection acquires a mass and the 
local Lorentz group of the ground state is broken: S0(3, 1 ) ~  0(3). When 
the temperature cools below T c, the local Lorentz symmetry of the ground 
state of the universe is restored and the gauge connection fg, becomes 
massless. In the ordered phase of the early universe, which extends to the 
singularity at t = 0, time becomes a physical external parameter. The vev 
of the Higgs field ~b chooses a direction in which to break the symmetry of 
the gravitational vacuum and this creates an arrow of time. The entropy 
undergoes a huge increase as the universe expands into the disordered 
phase, after it passes through the phase transition at the temperature Tc, 
explaining the second law of thermodynamics. The spontaneous violation 
of the conservation of energy in the first fractions of seconds of the birth 
of the universe explains the creation of matter. 

825/23/3-7 
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The existence of an external time in the broken phase of the universe 
leads to a consistent quantum cosmology with a time-dependent Schr6dinger 
equation and a conserved probability density for the wave function. When 
the local Lorentz symmetry and diffeomorphism invariance are restored for 
T< To, a time variable can be defined by means of the tangent vector in 
the classical configuration space, and the wave function has oscillatory 
behavior determined by a WKB approximation scheme. The initial broken 
symmetry phase in the early universe divides the universe into the quantum 
gravity regime and the classical regime that ensues when the spacetime 
symmetries are restored. 
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