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This paper contains a tutorial introduction to the ideas of  geometric algebra, 
concentrating on its physical applications. We show how the definition of  a 
"geometric product" of  vectors in 2-and 3-dimensional space provides precise 
geometrical interpretations of  the imaginary numbers often used in conventional 
methods. Reflections and rotations are analyzed in terms of  bilinear spinor trans- 
formations, and are then related to the theory of  analytie functions and their 
natural extension in more than two dimensions (monogenics), Physics is greatly 
facilitated by the use of  Hestenes" spacetime algebra, which automatically incor- 
porates the geometric structure o f  spaeetime. This is demonstrated by examples 
from electromagnetism. In the course of  this purely classical exposition many 
surprising results are obtained--results which are usually thought to belong to the 
preserve of  quantum theory. We conclude that geometric algebra is the most 
powerful and general language available for the development of  mathematical 
physics. 

1. I N T R O D U C T I O N  

...for geometry, you know, is the gate of science, and the gate is so low and small 
that one can only enter it as a little child. 

William K. Clifford 

T h i s  p a p e r  was  c o m m i s s i o n e d  to  c h r o n i c l e  the  i m p a c t  t h a t  D a v i d  H e s t e n e s '  

w o r k  h a s  h a d  o n  phys ics .  Sad ly ,  it s eems  to  us  t h a t  h is  w o r k  h a s  so fa r  n o t  

1 The title of this paper is inspired by David Hestenes, who is known to have a fondness for 
deliberate ambiguity/1) 
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really had the impact it deserves to have, and that what is needed in this 
volume is that his message be AMPLIFIED and stated in a language that 
ordinary physicists understand. With his background in philosophy and 
mathematics, David is certainly no ordinary physicist, and we have 
observed that his ideas are a source of great mystery and confusion to 
many. (2) David accurately described the typical response when he wrote ~3~ 
that "'physicists quickly become impatient with any discussion of elementary 
concepts"~a phenomenon we have encountered ourselves. 

We believe that there are two aspects  of Hestenes' work which 
physicists should take particularly seriously. The first is that the geometric 
algebra of spacetime is the best available mathematical tool for theoretical 
physics, classical or quantum. (4-6) Related to this part of the program is the 
claim that complex numbers arising in physical applications usually have a 
natural geometric interpretation that is hidden in conventional formula- 
tions. (5"7-9) David's second major idea is that the Dirac theory of the 
electron contains important geometric information, (1'3'1°'m which is 
disguised in conventional matrix-based approaches. We hope that the 
importance and truth of this view will be made clear in this and the three 
following papers. As a further, more speculative, line of development, the 
hidden geometric content of the Dirac equation has led David to propose 
a more detailed model of the motion of an electron than is given by the 
conventional expositions of quantum mechanics. In this model, (lz13) 
the electron has an electromagnetic field attached to it, oscillating at the 
"zitterbewegung" frequency, which acts as a physical version of the 
de Broglie pilot-wave. (~4) 

David Hestenes' willingness to ask the sort of question that Feynman 
specifically warned against, 5 and to engage in varying degrees of specula- 
tion, has undoubtedly had the unfortunate effect of diminishing the impact 
of his first idea, that geometric algebra can provide a unified language for 
physics--a contention that we strongly believe. In this paper, therefore, 
we will concentrate on the first aspect of David's work, deferring to a 
companion paper (~6) any critical examination of his interpretation of the 
Dirac equation. 

In Section 2 we provide a gentle introduction to geometric algebra, 
emphasizing the geometric meaning of the associative (Clifford) product of 
vectors. We illustrate this with the examples of 2- and 3-dimensional space, 
showing that it is possible to interpret the unit scalar imaginary number as 
arising from the geometry of real space. Section 3 introduces the powerful 

5 "Do not keep saying to yourself, if you can possibly avoid it, 'But how can it be like that?,' 
because you wilt get "down the drain,' into a blind alley from which nobody has yet escaped. 
Nobody knows how it can be like that. "'~ls) 
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techniques by which geometric algebra deats with rotations. This leads to 
a discussion of the role of spinors in physics. In Section 4 we outline the 
vector calculus in geometric algebra and review the subject of monogenic 
functions; these are higher-dimensional generalizations of the analytic 
functions of two dimensions. Relativity is introduced in Section 5, where 
we show how Maxwell's equations can be combined into a single relation 
in geometric algebra, and give a simple general formula for the electro- 
magnetic field of an accelerating charge. We conclude by comparing 
geometric algebra with alternative languages currently popular in physics. 
The paper is based on an lecture given by one of us (SFG) to an audience 
containing both students and professors. Thus, only a modest level of 
mathematical sophistication (though an open mind) is required to follow it. 
We nevertheless hope that physicists will find in it a number of surprises; 
indeed we hope that they will be surprised that there are so many surprises! 

2. AN O U T L I N E  OF G E O M E T R I C  ALGEBRA 

The new math--so simple only a child can do it. 
Tom Lehrer 

Our involvement with David Hestenes began ten years ago, when he 
attended a Maximum Entropy conference in Laramie. It is a testimony to 
David's range of interests that one of us (SFG) was able to interact with 
him at conferences for the next six years, without becoming aware of 
his interests outside the fields of MaxEnt, ~7) neural research, (18) and the 
teaching of physics. (~9) He apparently knew that astronomers would not be 
interested in geometric algebra. Our infection with his ideas in this area 
started in 1988, when another of us (ANL) stumbled across David's book 
Space-Time Algebra, ~2°) and became deeply impressed. In that summer, our 
annual MaxEnt conference was in Cambridge, and contact was finally 
made. Even then, two more months passed before our group reached the 
critical mass of having two people in the same department, as a result of 
SFG's reading of David's excellent summary "A Unified Language for 
Mathematics and Physics". (5) Anyone who is involved with Bayesian 
probability or MaxEnt is accustomed to the polemical style of writing, but 
his 6-page introduction on the deficiencies of our mathematics is strong 
stuff. In summary, David said that physicists had not learned properly how 
to multiply vectors and, as a result of attempts to overcome this, had 
evolved a variety of Mathematical systems and notations that has come to 
resemble Babel. Four  years on, having studied his work in more detail, we 
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believe that he wrote no less than the truth and that, as a result of learning 
how to multiply vectors together, we can all gain a great increase in our 
mathematical  facility and understanding. 

2.1. How to Multiply Vectors 

A linear space is one upon which addition and scalar multiplication 
are defined. Although such a space is often called a "vector space," our use 
of the term "vector" will be reserved for the geometric concept of a directed 
line segment. We still require linearity, so that for any vectors a and b we 
must be able to define their vector sum a + b. Consistent with our purpose, 
we will restrict scalars to be real numbers, and define the product of a 
scalar 2 and a vector a as 2a. We would like this to have the geometrical 
interpretation of being a vector "parallel" to a and of "magnitude" ,~ times 
the "magnitude" of a. To express algebraically the geometric idea of 
magnitude, we require that an inner product be defined for vectors. 

• The inner product a • b, also known as the dot or scalar product, of 
two vectors a and b, is a scalar with magnitude lal Ibl cos O, where 
lal and Ib[ are the lengths of a and b, and 0 is the angle between 
them. Here lal - (a .a)  1/2, so that the expression for a .b is effectively 
an algebraic definition of cos O. 

This product contains partial information about  the relative direction of 
any two vectors, since it vanishes if they are perpendicular. In order to 
capture the remaining information about  direction, another product is 
conventionally introduced, the vector cross product. 

• The cross product a x b of two vectors is a vector of magnitude laL [bl 
sin 0 in the direction perpendicular to a and b, such that a, b and 
a x b form a right-handed set. 

2.2. A Little Un-Learning 

These products of vectors, together with their expressions in terms of 
components (which we will not need or use here), form the basis of every- 
day teaching in mathematical  physics. In fact, the vector cross product is 
an accident of our 3-dimensional world; in two dimensions there simply 
isn't a direction perpendicular to a and b, and in four or more dimensions 
that direction is ambiguous. A more general concept is needed, so that full 
information about  relative directions can still be encoded in all dimensions. 
Thus, we will temporarily un-learn the cross product, and instead 
introduce a new product, called the outer product: 
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• The outer product a A b has magnitude [al Ibl sin O, but is not a 
scalar or a vector; it is a directed area, or bivector, oriented in the 
plane containing a and b. The outer product has the same 
magnitude as the cross product and shares its anticommutative 
(skew) property: a A b = - b  A a. 

A way to visualize the outer product is to imagine a A b as the area "swept 
out" by displacing a along b, with the orientation given by traversing the 
parallelogram so formed first along an a vector then along a b vectorJ 4) 
This not ion leads to a generalization (due to Grassmann ~21)) to products 
of objects with higher dimensionality, or grade. Thus, if the bivector a A b 
(grade 2) is swept out along another vector e (grade 1), we obtain the 
directed volume element (a A b)A e, which is a trivector (grade 3). By 
construction, the outer product is associative: 

( a A b )  A c = a A  ( b A c ) = a A b A c  (2.1) 

We can go no further in 3-dimensional space-- there  is nowhere else to go. 
Correspondingly, the outer product of any four vectors a A b A e A d is 
zero. 

At this point we also drop the convention of using bold-face type for 
vectors such as a--hencefor th  vectors and all other grades with be written 
in ordinary type (with one specific exception, discussed below). 

2.3. The Geometric Product 

The inner and outer products of vectors are not the whole story. Since 
a - b  is a scalar and a A b is a bivector area, the inner and outer products 
respectively lower and raise the grade of a vector. They also have opposite 
commutat ion properties: 

a . b = b  .a 
(2.2) 

a A b = - - b A a  

In this sense we can think of the inner and outer products together as 
forming the symmetric and antisymmetric parts of a new product (defined 
originally by Grassmann (22) and Clifford(Z3)), which we call the geometric 
product, ab: 

a b = a . b + a  A b (2.3) 

Thus, the product of parallel vectors is a scalar--we take such a product, 
for example, when finding the length of a vector. On the other hand, the 
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product of orthogonal vectors is a bivector--we are finding the directed 
area of something. It is reasonable to suppose that the product of vectors 
that are neither parallel nor perpendicular should contain both scalar and 
bivector parts. 

How on Earth do I Add  a Scalar to a Bivector? 

Most physicists need a little help at this point. (~) Adding together a 
scalar and a bivector doesn't seem right at first--they are different types of 
quantities. But it is exactly what you want an addition to do! The result of 
adding a scalar to a bivector is an object that has both scalar and bivector 
parts, in exactly the same way that the addition of real and imaginary 
numbers yields an object with both real and imaginary parts. We call this 
latter object a "complex number" and, in the same way, we shall refer to 
a (scalar + bivector) as a "multivector," accepting throughout that we are 
combining objects of different types. The addition of scalar and bivector 
does not result in a single new quantity in the same way as 2 + 3 = 5; 
we are simply keeping track of separate components in the symbol 
a b = a . b + a / ~ b  or z = x + i y .  This type of addition, of objects from 
separate linear spaces, could be given the symbol (~, but it should be 
evident from our experience of complex numbers that it is harmless, and 
more convenient, to extend the definition of addition and use the plain, 
ordinary + sign. 

We have defined the geometric product in terms of the inner and outer 
product of two vectors. An alternative and more mathematical approach is 
to define the associative geometric product via a set of axioms and intro- 
duce two "new" products a.  b =- ½(ab + ba) and a/~ b =- ½(ab - ha). Then, 
for example, if we assert that the square of any vector should be a scalar, 
this would allow us to prove that the product a . b  is scalar-valued, since 
ab + ba = (a + b) 2 -  a 2 -  b 2. This more axiomatic approach is taken in 
Chapter 1 of Hestenes and Sobczyk. (6) 

2.4. Geometric Algebra of the Plane 

A 1-dimensional space has insufficient geometric structure to show 
what is going on, so we begin in two dimensions, taking two orthonormal 
basis vectors al  and 0- 2. These satisfy the relations 

~r I - o- 1 = 1, O- 1 A O" 1 : 0 
(2.4) 

0" 2 " 0 " 2 =  t ,  0- 2 A 0 " 2 ~ 0  

and 

al "cr2=O (2.5) 
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The outer product a l A 0"2 represents the directed area element of the plane, 
and we assume that 0"1, o2 are chosen such that this has the conventional 
right-handed orientation. This completes the geometrically meaningful 
quantities that we can make from these basis vectors: 

1, {0-1, 0-2}, O" l A 0-2 
(2.6) 

scalar vectors bivector 

We now assemble a C l i f f o r d  a lgebra  from these quantities. An arbitrary 
linear sum over the four basis elements in (2.6) is called a mul t i vec tor .  In 
turn, given two multivectors A and B, we can form their sum S = A + B by 
adding the components:  

A -  aol  + a l a i  + a20.2 + a30"~ A a2 

B_= bo 1 + bl0.  , + b20. 2 + b30. , A 0-2 (2.7) 

S = (a  0 q- bo) I + (a 1 + 61) 0"1 q- (02 + b2) 0-2 '~ (a3 + b3) 0"1 A 0 2. 

By this definition of a linear sum we have done almost noth ing-- the  power 
comes from the definition of the multiplication P = A B .  In order to define 
this product, we have to be able to multiply the four geometric basis 
elements. Multiplication by a scalar is obvious. To form the products of the 
vectors, we remember the definition ab = a . b + a A b, so that 

0"2=0 .10" ,=0"1  "0"1+0"1 A 0" ,=1=0-  2 
(2.8) 

0"t0"2=0"t  "0"2-{- 0.1 A 0-2=0" t  A 0"2 = --0"20"I 

Products involving the bivector 0-, A 0-2 = al O'2 are particularly important.  
Since the geometric product is associative, we have 

(0"10"2) 0"1 ~--- --0-20"10"1 = --0"2 
(2.9) 

(0",0"2) 0"2 = 0-, 

and 

0"1(0"10-2) = 0.2 
(2 . t 0 )  

0.2(0.10.2)= - 0 - ,  

The only other product is the square of 0.1/x 0"2: 

(0"1 A 0"2) 2 = (710"20.10-2 = --0" '  0-' 0"20"2 = --1 (2.11 ) 

These results complete the definition of the product  and enable, for example, 
the processes of addition and multiplication to be coded as computer  
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functions. In principle, these definitions could be made an intrinsic part  of 
a computer  language, in the same way that complex number  arithmetic is 
already intrinsic to some languages. To reinforce this point, it may be 
helpful to write out the product explicitly. We have 

where 

A B = P = - p o  1 + plffa-t- p2tr2 + P3ffl A a 2 

Po = aobo + a l b l  + a2b2 - a3b3 

Pl = aobi + albo + a3b2 - a2b3 

P2 = aob2 + a2bo + a t b 3 - a 3 b l  

p 3 = a o b 3 + a 3 b o + a l b 2 - a 2 b l  

(2.12) 

(2.13) 

Multivector addition and multiplication obey the associative and distribu- 
tive laws, so that we have, as promised, the geometric algebra of the plane. 

We emphasise the important  features that have emerged in the course 
of this derivation. 

• The geometric product of two parallel vectors is a scalar n u m b e r - -  
the product of their lengths. 

• The geometric product of two perpendicular vectors is a b ivector- -  
the directed area formed by the vectors. 

• Parallel vectors commute under the geometric product; perpen- 
dicular vectors anticommute. 

• The bivector o~/x 0- 2 has the geometric effect of rotating the vectors 
{al ,  o'2} in its own plane by 90 ° clockwise when multiplying them 
on their left. I t  rotates vectors by 90 ° anticlockwise when multiply- 
ing on their right. This can be used to define the orientation of o 1 

and 0"2. 

• The square of the bivector area ol /x 0-2 is a scalar: (o~ A 0-2) 2 = - 1 .  

By virtue of the last two properties the bivector a~ A a2 becomes our 
first candidate for the role of the unit imaginary i, and in 2-dimensional 
applications it fulfills this role admirably. Indeed, we see that the even- 
grade elements z = x + ycrla 2 form a natural subalgebra, equivalent to the 
complex  numbers. 

2.5. The Algebra of 3-Space 

If we now add a third or thonormal  vector a 3 to our basis set, we 
generate the following geometrical objects: 
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1, {0-1, 0-2, G3}, {0"10-2, 0-20-3, 0-30-1 }, 0-10"20-3 

scalar 3 vectors 3 bivectors trivector (2.14) 

area elements volume element 

From these objects we form a linear space of ( 1 + 3 + 3 + 1 ) = 8 = 2 3  
dimensions, defining multivectors as before, together with the operations 
of addition and multiplication. Most of the algebra is the same as in the 
2-dimensional version because the subsets {0-i, 0-2}, {02, 0-3}, and {0-3, 0-1 } 
generate 2-dimensional subalgebras, so that the only new geometric 
products we have to consider are 

0-10-2 )  0"3 ~ 0"10-20"3 

(0-10"20-3) 0"k = 0-k(0-10-20-3) 
(2.15) 

and 

(0-10-20-3)2=0-10-20-30-10-20-3=0-10-20-10"20- 2 =  --1 (2.16) 

These relations lead to new geometrical insights: 

• A simple bivector rotates vectors in its own plane by 90 °, but forms 
trivectors (volumes) with vectors perpendicular to it. 

• The trivector 0-~0-20-3 commutes with all vectors, and hence with all 
multivectors. 

The trivector 0-1a20-3 also has the algebraic property of being a square root 
of minus one. In fact, of the eight geometrical objects, four have negative 

square {0-10-2, 0-203, 0-30-1, 0-10-20-3}. Of these, the trivector 0-10-20-3 is dis- 
tinguished by its commutation properties, and by the fact that it is the 
highest-grade element in the space. Highest-grade objects are generically 
called pseudoscalars, and 0-10-20-3 is thus the unit pseudoscalar for 3-dimen- 
sional space. In view of its properties, we give it the special symbol i: 

i-= 0-10-za3 (2.17) 

We should be quite clear, however, that we are using the symbol i to stand 
for a pseudoscalar, and thus cannot use the same symbol for the com- 
mutative scalar imaginary, as used for example in conventional quantum 
mechanics, or in electrical engineering. We shall use the symbol j for this 
uninterpreted imaginary, consistent with existing usage in engineering. The 
definition (2.17) will be consistent with our later extension to 4-dimensional 
spacetime. 
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2.6. Interlude 

We have now reached the point which is liable to cause the greatest 
intellectual shock, We have played an apparently harmless game with 
the algebra of 3-dimensional vectors and found a geometric quantity 
i-= o-10.20. 3 which has negative square and commutes with all multivectors. 
Multiplying this by 0.3, 0.1, and 0.2, in turn we get 

(010.2 0.3) 0.3 = 0.10.2 = i0.3 

0"20" 3 = ial (2.18) 

0.30.l = /0"2 

which is exactly the algebra of the Pauli spin matrices used in the quantum 
mechanics of spin-½ particles! The familiar Pauli matrix relation 

6i6:= lg)~ + jgok6 k (2.19) 

is now nothing more than an expression of the geometric product of 
orthonormal vectors. We shall demonstrate the equivalence with the Pauli 
matrix algebra explicitly in a companion paper, (24) but here it suffices to 
note that the matrices 

, ~ 0 ;) o') 0) ,2 0, 
comprise a matrix representation of our 3-dimensional geometric algebra. 
Indeed, since we can represent our algebra by these matrices, it should now 
be obvious that we can indeed add together the various different geometric 
objects in the algebra--we just add the corresponding matrices. These 
matrices have four complex components (eight degrees of freedom), so we 
could always disentangle them again. 

Now it is clearly true that any associative algebra can be represented 
by a matrix algebra; but that matrix representation may not be the best 
interpretation of what is going on. In the quantum mechanics of spin-½ 
particles we have a case where generations of physicists have been taught 
nothing but matrices, when there is a perfectly good geometrical inter- 
pretation of those same equations! And it gets worse. We were taught that 
the (61, (~2, d3) were the components of a vector ~, and how to write 
things like a- ~ = ak6k and S 2 = (621 + 62 + #~) h2/4. But, geometrically, 
{0.1, c%, ~3} are three orthonormal vectors comprising the basis of space, 
so that in akd~ the {ak} are the components of a vector along directions 0.k 
and the result ak0. k is a vector, not a scalar. With regard to S 2, if you want 
to find the length of a vector, you must square and add the components of 
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the vector along the unit basis vectors--not the basis vectors themselves. 
So the result akak = 3 is certainly true, but does not have the interpretation 
usually given to it. 

These considerations all indicate that our present thinking about 
quantum mechanics is infested with the deepest misconceptions. We believe, 
with David Hestenes, that geometric algebra is an essential ingredient in 
unravelling these misconceptions. 

On the constructive side, the geometric algebra is easy to use, and 
allows us to manipulate geometric quantities in a coordinate-free way. The 
a-vectors, which play an essential role, are thereby removed from the 
mysteries of quantum mechanics, and used to advantage in physics and 
engineering. We shall see that a similar fate awaits Dirac's °;-matrices. 

The algebra of 3-dimensional space, the Pauli algebra, is central to 
physics, and deserves further emphasis. It is an 8-dimensional linear space 
of multivectors, which we write as 

M =  e + a + ib + i/~ (2.21) 

scalar vector bivector pseudoscalar 

where a==-akak, b -b~a~ ,  and we have reverted to bold-face type for 
3-dimensional vectors. This is the exception referred to earlier; we use this 
convention (5) to maintain a visible difference between spacetime 4-vectors 
and vectors of 3-dimensional space. There is never any ambiguity concerning 
the basis vectors {o-~}, however, and these will continue to be written 
unbold. 

The space of even-grade elements of this algebra, 

= c~ + ib (2.22) 

is closed under multiplication and forms a representation of the quarter- 
nion algebra. Explicitly, identifying i, j, k with io-t, - i a 2 ,  ia3, respectively, 
we have the usual quarternion relations, including the famous formula 

i z = j 2 = k 2 = i j k  = - 1  (2.23) 

Finally in this section, we relearn the cross product in terms of the 
outer product and duality operation (multiplication by the pseudoscalar): 

a x b = - i a  ,', b (2.24) 

Here we have introduced an operator precedence convention in which an 
outer or inner product always takes precedence over a geometric product. 
Thus a A b is taken before the multiplication by i. 
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The duality operation in three dimensions interchanges a plane with a 
vector orthogonal to it (in a right-handed sense). In the mathematical 
literature this operation goes under the name of the "Hodge dual." 
Quantities like a or b would conventionally be called "polar vectors," while 
the "axial vectors" which result from cross-products can now be seen to be 
disguised versions of b i v e c t o r s .  

3. R O T A T I O N S  A N D  G E O M E T R I C  A L G E B R A  

Geometric algebra is useful to a physicist becase it automatically 
incorporates the structure of the world we inhabit, and accordingly 
provides a natural language for physics. One of the clearest illustrations of 
its power is the way in which it deals with reflections and rotations. The 
key to this approach is a theorem due to Hamilton(25}: given any unit 
vector n (n2= 1), we can resolve an arbitrary vector x into parts parallel 
and perpendicular to n : x = x ±  + x t l .  These components are identified 
algebraically through their commutation properties: 

nxll = x l ln  (scalar) 

n x  i = - x 2 n (bivector) 
(3.~) 

The vector X z - - X L i  can therefore be written - n x n .  Geometrically, the 
transformation x ~ - n x n  represents a r e f l e c t i o n  in a plane perpendicular 
to n. To make a rotation, we need two of these reflections: 

x ~ m n x n m  = R x R  (3.2) 

where R - r n n  is called a "rotor." We call R - n m  the "reverse" of R, 
because it is obtained by reversing the order of all geometric products. The 
rotor  is even (i.e., viewed as a multivector it contains only even-grade 
elements), and is unimodular, satisfying RR = RR = 1. 

As an example, let us rotate the unit vector a into another unit 
vector b, leaving all vectors perpendicular to a and b unchanged (a s i m p l e  

rotation). We can accomplish this by a reflection perpendicular to the unit 
vector which is half-way between a and b (see Fig. 1): 

n =- (a + b ) / l a  + bl (3.3) 

This reflects a into - b ,  which we correct by a second reflection 
perpendicular to b. Algebraically, 

a + b  a + b  
x - ~  b ~TT-~I  x ] T - ~ I  b (3.4) 
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Fig. 1. A rotation composed of 
two reflections. 

which represents the simple rotation in the a A b plane. Since a 2 =  b2= 1, 
we define 

l + b a  l + b a  
R--- (3.5) 

l a + b l  , / 2 ( l + b . a )  

so that the rotation is written 

b = R a R  (3.6) 

which is a "bilinear" transformation of a. The inverse transformation is 

a = R b R  (3.7) 

The bilinear transformation of vectors x ~ R x R  is a very general way 
of handling rotations. In deriving this transformation, the dimensionality of 
the space of vectors was at no point specified. As a result, the transforma- 
tion law works for at'/spaces, whatever dimension. Furthermore, it works 
for a// types of geometric object, whatever grade. We can see this by 
considering the product of vectors 

x y  ~ R x R  R y E  = R ( x y )  ,r~ (3.8) 

which holds because RR = 1. 
As an example, consider a 2-dimensional rotation: 

ei = Rai-R (i = 1, 2) (3.9) 

825/'23/9-2 
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A rotat ion by angle 0 is performed by the even element (the equivalent of 
a complex number )  

R -= exp( -- al  0-20/2) = cos(0/2) - a l 0"2 sin(0/2) (3.10) 

As a check: 

and 

Ral /~  = exp( - 0-1 °"20/2) al  exp(a ,  a20/2) 

= e x p ( - a ,  0-20) 0"1 

= cos 0 a~ + sin 0 0-2 (3.11) 

R a 2 k  = - s i n  0 al  + cos 0 a2 (3.12) 

The bilinear t ransformat ion is much easier to use than the one-sided rota- 
t ion matrix, because the latter becomes more  complicated as the number  of 
dimensions increases. Al though this is less evident in two dimensions, in 
three dimensions it is obvious:  the ro tor  

a 
R = e x p ( -  ia/2) = cos(lat/2) - i~-~ sin(lat/2) (3.13) 

represents a ro ta t ion of  tal radians abou t  the axis along the direction of  a. 
If required, we can decompose rotat ions into Euler angles (0, qt, Z), the 
explicit form being 

R = e - i~3 ~/2 e - io20/2 e - i~3 z/2 (3.14) 

We now examine the composi t ion  of rotors  in more detail. In three 
dimensions, let the ro tor  R t ransform the unit vector a long the z-axis into 
a vector s: 

s = R % R  (3.15) 

N o w  rotate  the s vector into another  vector s', using a ro tor  R'. This 
requires 

s' = R'  s[{' = (R 'R )  0-3(R'R)-  (3.16) 

so that  the t ransformat ion is characterized by 

R--+ R ' R  (3.17) 

which is the (left-sided) g roup  combina t ion  rule for rotors. N o w  suppose 
that  we start with s and make a rota t ion of  360 ° about  the z-axis, so that 
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s' returns to s. What happens to R is surprising; using (3.13) above, we see 
that 

R ~ - R  (3.18)  

This is the behavior of spin-½ particles in quantum mechanics, yet we have 
done nothing quantum-mechanical; we have merely built up rotations from 
reflections. 

How can this be? It turns out ~24) that it is possible to represent a Pauli 
spinor l~b) (a two-component complex spinor) as an arbitrary even 
element ~b (four real components) in the geometric algebra of 3-space 
(2.21). Since ~,~ is a positive-definite scalar in the Pauli algebra, we can 
write 

¢ = p l /2R (3.19) 

Thus, the Pauli spinor 10) can be seen as a (heavily disguised) instruction 
to rotate and dilate. The identification of a rotor component in 0 then 
explains the double-sided action of spinors on observables. The spin-vector 
observable, for example, can be written in geometric algebra as 

S = ~ba3 (k = pRa3  k (3.20) 

which has the same form as Eq. (3.15). This identification of quantum spin 
with rotations is very satisfying, and provides much of the impetus for 
David Hestenes' work on Dirac theory. 

A problem remaining is what to call an arbitrary even element g,. We 
shall call it a spinor, because the space of even elements forms a closed 
algebra under the left-sided action of the rotation group: O-+ RO gives 
another even element. This accords with the usual abstract definition of 
spinors from group representation theory, but differs from the column 
vector definition favored by some authors. ~26) 

4. ANALYTIC AND MONOGENIC FUNCTIONS 

Returning to 2-dimensional space, we now use geometric algebra to 
reveal the structure of the Argand diagram. From any vector r = x a ,  + yo2 
we can form an even multivector (a 2-dimensional spinor): 

z - = a i r =  x + I y  (4.I) 

where 

I -  al o'2 (4.2) 
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Using the vector 0-1 to define the real axis, there is therefore a one-to-one 
correspondence between points in the Argand diagram and vectors in two 
dimensions. Complex conjugation, 

z* - ~ = ra l = x - Iy  (4.3) 

now appears as a natural operation of reversion for the even multivector 
z, and (as shown above) it is needed when rotating vectors. 

We now consider the fundamental derivative operator 

V -  0-10x + 0-20y (4.4) 

and observe that 

Vz = (o1 gx -+- ~72c~y)(x + 0t o-2y ) = 0- t + 0 - 2 0 - 1 0 - 2  = 0 (4.5) 

g z * = ( 0 - 1 0 x + 0 - 2 0 y ) ( x - - a l a 2 y ) = 0 - 1 - - 0 - 2 ~ 1 0 . 2 = 2 0 . 1  (4.6) 

Generalizing this behavior, we find that 

Vz n = 0  (4.7) 

and define an analyt ic  func t ion  as a function f ( z )  [or, equivalently, f ( r ) ]  
for which 

Vf  = 0 (4.8) 

Writing f = u + Iv, this implies that 

(OxU - -  (~yU) O" 1 -t- ( ~ y U  -t- ~xV)  0" 2 = 0 (4.9) 

which are the Cauehy-Riemann conditions. It follows immediately that any 
non-negative, integer power series of z is analytic. The vector derivative is 
invertible so that, if 

V f  = s  (4.10) 

for some function s, we can find f as 

f = V  Is (4.11) 

Cauchy's integral formula for analytic functions is an example of this: 

1 ~ f(z') 
f ( z )  = ~-~ dZ'z ,--~_ z (4.12) 

is simply Stokes's theorem for the plane3 6) The bivector I -1  is necessary to 
rotate the line element dz' into the direction of the outward normal. 
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This definition (4.8) of an analytic function generalizes easily to higher 
dimensions, where these functions are called m o n o g e n i c ,  although the 
simple link with power series disappears, Again, there are some surprises 
in three dimensions. We have all learned about the important class of 
h a r m o n i c  functions, defined as those functions 0(r) satisfying the scalar 
operator equation 

V2q) = 0  (4.13) 

where V = ak 0k. Since monogenic functions satisfy 

V0 = 0 (4.14) 

they must also be harmonic. However, this first-order equation is more 
restrictive, so that not all harmonic functions are monogenic. In two 
dimensions, the solutions of Eq. (4.13) are written in terms of polar 
coordinates (r, 0) as 

f r n ) (cos  n O )  

* = ~ r  " ~ s i n  n0~ (4.t5) 

Complex analysis tells us that there are special combinations (analytic 
functions) which have particular radial dependence: 

OJ = rn( cos nO + / s i n  nO) = z "  (4.16) 

~2 = r n(cos nO - I sin nO) = z -  n (4.17) 

In this way we can, in two dimensions, separate any given angular compo- 
nent into parts regular at the origin (r") and at infinity (r-"). These parts 
are just the spinor solutions of the first-order equation (4.14). 

The situation is exactly the same in three dimensions. The solutions of 
Vz0 = 0 are 

but we can find specific combinations of angular dependence which are 
associated with a radial dependence of r z or r t-~. We show this by 
example for the case l =  1. Obviously, nontrivial solutions of VO = 0 must 
contain more than just a scalar part-- they must be multivectors. For the 
position vector r, we find the following relations: 

Vro-  3 = 30- 3 

V6r 3 r : - -  0" 3 

V r  k = k r  k 2 r 

(4.19) 

(4.20) 

(4.21) 
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[-Equation 
Section 5.] We can assemble solutions proportional to r and r - 2 :  

½(30.3 r + r0.3) = r(2 cos 0 + iao sin 0) 

]r[-3 r0.3 = r 2(cos 0 - i0"~ sin 0) 

where 0"~ is the unit vector in the azimuthal direction. 
Alternatively, we 

spherical harmonic q~: 

(4.20) can be derived from a more general formula given in 

(4.22) 

(4.23) 

can generate a spherical monogenic ~ from any 

tp = V~0a3 (4.24) 

We have chosen to place the vector 0 3 to the right of ~ so as to keep q~ 
within the even subalgebra of spinors. This practice is also consistent with 
the conventional Pauli matrix representation (2.20). (24) As an example, we 
try this procedure on the l =  0 harmonics: 

~ =  1 - - ,4 ,=0  

= r  - l ~ t p = r  2 ( c o s 0 - i a c s i n 0 )  

For  a selection of l = 1 harmonics, we obtain 

(4.25) 

• = r c o s 0 ~  @ =Cr30.3 = 1 

1~ = F--2 COS 0 " *  I~/ = r - 3 (  -- (3 cos 2 0 - 1 ) + 3ia~ sin 0 cos 0) 
(4.26) 

Some readers may now recognize this process as similar to that in quantum 
mechanics when we add the spin contribution to the orbital angular 

1 The combinations momentum, making a total angular momentum j = I +_ 5. 
of angular dependence are the same as in stationary solutions of the Dirac 
equation. In particular, (4.25) indicates that only one monogenic arises 
from l = 0. That is correct--only the j = ½ state exists. Turning to (4.26), we 
see that there is one state with no angular dependence at all, and that the 
other has terms proportional to P~(cos 0). These can also be interpreted in 
terms o f j  = ½ and j = ~ respectively. 

The process by which we have generated these functions has, of 
course, nothing to do with quantum mechanics--another clue that many 
quantum-mechanical procedures are much more classical than they seem. 

5. T H E  A L G E B R A  O F  S P A C E T I M E  

The spacetime of Einstein's relativity is 4-dimensional, but with a dif- 
ference. So far we have assumed that the square of any vector x is a scalar, 
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and that X2~ 0. For  spacetime it is appropriate to make a different choice. 
We take the ( +  - - - )  metric usually preferred by physicists, with a 
basis for the spacetime algebra (2°) (STA) made up by the orthonormal 
vectors 

{7o, 71, 72, 73}, w h e r e 7 2 = - 7 ~ = t  ( k = 1 , 2 , 3 )  (5.1) 

These vectors {7~} obey the same algebraic relations as Dirac's y-matrices, 
but our interpretation of them is not that of conventional relativistic quan- 
tum mechanics. We do not view these objects as the components of a 
strange vector of matrices, but (as with the Pauli matrices of 3-space) as 
four separate vectors, with a clear geometric meaning. 

From this basis set of vectors we construct the 16 ( =  24) geometric 
elements of the STA: 

1 {Tu} {ag, iak} {i7~} i 
(5.2) 

1 scalar 4vectors 6 bivectors 4 pseudovectors 1 pseudoscalar 

The timelike bivectors ak--TkTO are isomorphic to the basis vectors of 
3-dimensional space; in the STA they represent an orthonormal frame of 
vectors in space relative to the laboratory time vector 70 .(5'20) The unit 
pseudoscalar of spacetime is defined as 

i =- 7o7t 7273 = al  a2a3 (5.3) 

which is indeed consistent with our earlier definition. 
The geometric properties of spacetime are built into the mathematical 

language of the STA--i t  is the natural language of relativity. Equations 
written in the STA are invariant under passive coordinate transformations. 
For example, we can write the vector x in terms of its components {x"} as 

x = x~7, (5.4) 

These components depend on the frame {7~} and change under passive 
transformations, but the vector x is itself invariant. Conventional methods 
already make good use of scalar invariants in relativity, but much more 
power is available using the STA. 

Active transformations are performed by rotors R, which are again 
even multivectors satisfying RR = 1: 

e~ = RTuR (5.5) 

where the {e~} comprise a new frame of orthogonal vectors. Any rotor R 
can be written as 

R =  ___e B (5.6) 
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where B = a + ib is an arbitrary 6-component bivector (a and b are relative 
vectors). When performing rotations in higher dimensions, a simple rota- 
tion is defined by a plane, and cannot be characterized by a rotation axis; 
it is an accident of 3-dimensional space that planes can be mapped to lines 
by the duality operation. Geometric algebra brings this out clearly by 
expressing a rotation directly in terms of the plane in which it takes place. 

For the 4-dimensional generalization of the gradient operator V, we 
take account of the metric and write 

V = 7~c3~ (5.7) 

where the {7 u} are a reciprocal frame of vectors to the {~},  defined via 
7~ .7~=6~. 

As an example of the use of STA, we consider electromagnetism, 
writing the electromagnetic field in terms of the 4-potential A as 

F = V  A A = V A - V - A  (5.8) 

The divergence term V-A is zero in the Lorentz gauge. The field bivector 
F is expressed in terms of the more familiar electric and magnetic fields by 
making a space-time split in the 70 frame: 

F =  E + iB (5.9) 

where 

E = ½(F- )JoFT0), iB = ½(F+ 7oF70) (5.10) 

Particularly striking is the fact that Maxwell's equations (2°'27) can be 
written in the simple form 

VF=J  (5.11) 

where J is the 4-current. Equation (5.11) contains all of Maxwell's 
equations because the V operator is a vector and F is a bivector, so 
that the geometric product has both vector and trivector components. This 
trivector part is identically zero in the absence of magnetic charges. It is 
worth emphazing (5) that this compact formula (5.11) is not just a trick of 
notation, because the V operator is invertible. We can, therefore, solve 
for F. 

F = V - t J  (5.12) 

The inverse operator is known to physicists in the guise of the Green's 
propagators of relativistic quantum mechanics. We return to this point in 
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a companion paper, (16~ in which we demonstrate this inversion explicitly 
for diffraction theory. 

It is possible here, as in three dimensions, to represent a relativistic 
quantum-mechanical spinor (a Dirac spinor) by the even subalgebra of the 
STA, (7'24) which is 8-dimensional. We write this spinor as ~ and, since ~k~ 
contains only grade-0 and grade-4 terms, we decompose ~k as 

= (peir~) I/2 R (5.13) 

where R is a spacetime rotor. Thus, a relativistic spinor also contains an 
instruction to rota te-- in  this case to carry out a full Lorentz rotation. The 
monogenic equation in spacetime is simply 

V o = 0 (5.14) 

which, remarkably, is also the STA form of the massless Dirac equation. (24) 
Furthermore, the inclusion of a mass term requires only a simple 
modification: 

VO = rn073i  (5.15) 

As a final example of the power of the STA in relativistic physics, we 
give a compact formula for the fields of a radiating charge. This derivation 
is as explicit as possible, in order to give readers new to the STA some 
feeling for its character, but nevertheless it is still as compact as any of 
the conventional treatments in the literature. Let a charge q move along 
a world-line defined by Xo(r),  where z is proper time. An observer at 
spacetime position x receives an electromagnetic influence from the charge 
when it lies on that observer's past light-cone (Fig. 2). The vector 

X = _ x - x o ( r )  (5.16) 

is the separation vector down the light-cone, joining the observer to this 
intersection point. We can take Eq. (5.16), augmented by the condition 
X 2 = 0, to define a mapping from the spacetime position x to a value of the 
particle's proper time r. In this sense, we can write r = z(x), and treat z as 
a scalar field. If the charge is at rest in the observer's frame, we have 

Xo(Z) = r~o = ( t - - r )  ;~o (5.t7) 

where r is the 3-space distance from the observer to the charge (taking 
c = 1 ). For  this simple case the 4-potential A is a pure 1/r electrostatic field, 
which we can write as 

A -  q ?'o (5.18) 
4~ze o X. 70 
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A charge moving in the observer's past light-cone. 

because X.y0 = t - ( t - r ) =  r. Generalizing to an arbitrary velocity v for 
the charge, relative to the observer, gives 

q /) 
A - - -  (5.19) 

4roe0 Y.  v 

which is a particularly compact and clear form for the Li6nard-Wiechert 
potential. 

We now wish to differentiate the potential to find the Faraday bivector. 
This will involve some general results concerning differentiation in the 
STA, which we now set up; for further useful results, see Chapter 2 of 
Hestenes and SobczykJ 6) Since the gradient operator is a vector, we must 
take account of its commutation properties. Though it is evident that 
Vx = 4, we need also to deal with expressions such as Vax, where a is a 
vector, and where the stars indicate that the V operates only on x rather 
than a. The result (6) is found by anticommuting the x past the a to give 
a x =  2x . a - x a ,  and then differentiating this. Generalized to a grade-r 
multivector Ar in an n-dimensional space, we have 

~7ArJ = (-- 1) r (n - 2r) Ar (5.20) 

Thus, in the example give above, V a x = - 2 a .  [See Eq. (4.20) for a 
3-dimensional application of this result.] 
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We will also need to exploit the fact that the chain rule applies in the 
STA as in ordinary calculus, so that (for example) 

Vxo = Vzv (5.21) 

since Xo is a function of z alone, and dxo/& - 20 = v is the particle velocity. 
In Eq. (5.21) we use the convention that (in the absence of brackets or 
overstars) V only operates on the object immediately to its right. 

Armed with these results, we can now proceed quickly to the Faraday 
bivector. First, since 

O = V X Z = V X X - ] - V X 2  -.~ ( 4 -  Vw) X +  ( - 2 X - V z X v )  (5.22) 

it follows that 
X 

Vz = - -  (5.23) J( .v  

As an aside, finding an explicit expression for Vz confirms that the 
particle proper time can be treated as a scalar field--which is, perhaps, a 
surprising result. In the terminology of Wheeler and Feynman, (2s) such a 
function is called an "adjunct field," because it obviously carries no energy 
or charge, being merely a mathematical device for encoding information. 
We share the hope of Wheeler and Feynman that some of the paradoxes 
of classical and quantum electrodynamics, in particular the infinite self- 
energy of a point charge, might be avoidable by working with adjunct 
fields of this kind. 

To differentiate A, we need V(X. v). Using the results already estab- 
lished, we have 

Xi~X-  2 X -  vXv 
V(vX) = Vv~X-  2v - Vzv 2 - X. v (5.24) 

2vXv + X 
(5.25) X .v  

V(Xv) = VrXi + 4v - Vzv 2 

which combine to give 

This yields 

Xf~X-  X + vXv 
V(X. v) - (5.26) 

2(X. v) 

V A =  q { V v  1 V ( X . v ) v }  
4re% X--v ( X . v )  ~ 

q 
- 87Zeo(X. v. 3) (X fwX+ Xv - vX) (5.27) 
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so that 
V . A = 0  (5.28) 

and 

q XAv+½XO~X 
F -  4~re ° (X. v) 3 (5.29) 

Here, £2~ is the "acceleration bivector" of the particle: 

~ ~ 6v (5.30) 

The quantity ~v=~/~ v is a pure bivector, because v 2= 1 implies that 
b-v = 0. For  more on the value of representing the acceleration in terms 
of a bivector, and the sense in which ~ is the rest-frame component 
of a more general acceleration bivector, see Chapter 6 of Hestenes and 
Sobczyk. (6/ 

The form of the Faraday bivector given by Eq. (5.29) is very revealing. 
It displays a clean split into a velocity term proportional to 1/(distance) 2 
and a long-range radiation term proportional to 1/(distance). The first 
term is exactly the Coulomb field in the rest frame of the charge, and the 
radiation term, 

q lxe x 
Fr"d = 4~ce 0 (X. v) 3 (5.31) 

is proportional to the rest-frame acceleration projected down the null- 
vector X. 

Finally, we return to the subject of adjunct fields. Clearly X is an 
adjunct field, as r(x)  was. It is easy to show that 

A = 8~J0 V2X (5.32) 

so that 

F =  - q  V3X (5.33) 
8he0 

In this expression for F we have expressed a physical field solely in terms 
of a derivative of an "information-carrying" adjunct field. Expressions such 
as (5,32) and (5.33) (which we believe are new, and were derived independ- 
ently by ourselves and David Hestenes) may be of further interest in the 
elaboration of Wheeler-Feynman type "action at a distance" ideas. (28"29) 
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6. C O N C L U D I N G  R E M A R K S  

Most of the above is well known--the vast majority of the theorems 
presented date back at least a hundred years. The trouble, of course, is that 
these facts, while "known," were not known by the right people at the right 
time, so that an appalling amount of reinvention and duplication took 
place as physics and mathematics advanced. Spinors have a central role in 
our understanding of the algebra of space, and they have accordingly been 
reinvented more often than anything else. Each reincarnation emphasizes 
different aspects and uses different notation, adding new storeys to our 
mathematical Tower of Babel. What we have tried to show in this intro- 
ductory paper is that the geometric algebra of David Hestenes provides the 
best framework by which to unify these disparate approaches. It is our 
earnest hope that more physicists will come to use it as the main language 
for expressing their work. 

In the three following papers, we explore different aspects of this 
unification, and some of the new physics and new insights which geometric 
algebra brings. Paper II (24) discusses the translation into geometric algebra 
of other languages for describing spinors and quantum-mechanical states 
and operators, especially in the context of the Dirac theory. It will be seen 
that Hestenes' form of the Dirac equation genuinely liberates it from any 
dependence upon specific matrix representations, making its intrinsic 
geometric content much clearer. 

Paper III (27) uses the concept of multivector differentiation (6) to make 
many unifications and improvements in the area of Lagrangian field theory. 
The use of a consistent and mathematically rigorous set of tools for spinor, 
vector, and tensor fields enables us to clarify the role of antisymmetric 
terms in stress-energy tensors, about which there has been some confusion. 
A highlight is the inclusion of functional differentiation within the frame- 
work of geometric algebra, enabling us to treat "differentiation with respect 
to the metric" in a new way. This technique is commonly used in field 
theories as one means of deriving the stress-energy tensor, and our 
approach again clarifies the role of antisymmetric terms. 

Paper IV (16) examines in detail the physical implications of Hestenes' 
formulation and interpretation of the Dirac theory. New results include 
predictions for the time taken for an electron to traverse the classically 
forbidden region of a potential barrier. This is a problem of considerable 
interest in the area of semiconductor technology. 

We have shown elsewhere how to translate Grassmann calculus ~3°'3~t 
and some aspects of twistor theory (32) into geometric algebra, with many 
simplifications and fresh insights. Thus, geometric algebra spans very large 
areas of both theoretical and applied physics. 
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There is another language which has some claim to achieve useful 
unifications. The use of "differential forms" became popular with physicists, 
particularly as a result of its use in the excellent, and deservedly influential, 
"Big Black Book" by Misner, Thorne, and Wheeler. (33) Differential forms 
are skew multilinear functions, so that, like multivectors of grade k, they 
achieve the aim of coordinate independence. By being scalar-valued, 
however, differential forms of different grades cannot be combined in the 
way multivectors can in geometric algebra. Consequently, rotors and 
spinors cannot be so easily expressed in the language of differential forms. 
In addition, the "inner product," which is necessary to a great deal of 
physics, has to be grafted into this approach through the use of the duality 
operation, and so the language of differential forms never unifies the inner 
and outer products in the manner achieved by geometric algebra. 

This leads us to say a few words about the widely held opinion that, 
because complex numbers are fundamental to quantum mechanics, it is 
desirable to "complexify" every bit of physics, including spacetime itself. It 
will be apparent that we disagree with this view, and hope earnestly that 
it is quite wrong, and that complex numbers (as mystical uninterpreted 
scalars) will prove to be unnecessary even in quantum mechanics. 

The same sentiments apply to theories involving spaces with large 
numbers of dimensions that we do not observe. We have no objection to 
the use of higher dimensions as such; it just seems to us to be unnecessary 
at present, when the algebra of the space that we do observe contains so 
many wonders that are not yet generally appreciated. 

We leave the last words to David Hestenes and Garret Sobczyk(6): 

Geometry without algebra is dumb!--Algebra without geometry is blind! 
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