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J. S. Bell's classic 1966 review paper on the foundations of  quantum mechanics led 
directly to the Bell nonlocality theorem. It is not widely appreciated that the 
review paper contained the basic ingredients needed for  a nonlocality result which 
holds in certain situations where the Bell inequality is not violated. We present in 
this paper a systematie formulation and evaluation of  an argument due to Stairs 
in 1983, which establishes a nonlocality result based on the Bell-Kochen-Specker 
"'paradox" in quantum mechanics. 

1. The classic 1966 review paper on the foundations of quantum 
mechanics (QM) by J. S. Bell 3 is perhaps best known for two things. First, 
the paper shows how the existence of the 1952 Bohm hidden variable (h.v.) 
theory is consistent with, and reveals the shortcomings of, von Neumann's 
formal 1932 "no-go" result for h.v. interpretations of QM. Second, it raises 
the question (which Bell himself was to answer elsewhere) whether the 
manifest nonlocality of the Bohm theory is not a feature of all allowed h.v. 
theories that reproduce the quantum statistics. 

What Bell did not realize at the time was that there is a direct link 
between the nonlocality issue and another aspect of the h.v. question that 
he examined in his review paper. Following a suggestion of Jauch, Bell had 
drawn attention to the implications of important algebraic work due to 
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Gleason ~21 in 1957, which concerned the possible measures defined on the 
closed subspaces of a Hilbert space. He demonstrated that a class of h.v. 
theories--those now commonly called "noncontextualist"--are rendered 
strictly inconsistent by Gleason's work, when such theories are applied to 
quantum systems whose associated Hilbert spaces have dimension three or 
greater. Furthermore, Bell provided a new, relatively simple proof of this 
result which does not depend on Gleason's work, an achievement repeated 
in a more striking fashion in independent work by Kochen and Specker 13~ 
in 1967. This no-go result has frequently been referred to as the 
Kochen-Specker "paradox" (although the Betl-Kochen-Specker paradox 
is perhaps a fairer term). 

Now, it was shown in 1983 in a lengthy argument by Heywood and 
Redhead (4) that a new Bell-Kochen-Specker (BKS) paradox arises in the 
case of pairs of distant spin-1 systems for a certain kind of consistent, local 
h.v. theory. The Heywood-Redhead argument was not entirely algebraic 
(as was the original BKS paradox); it required taking into account the 
probabilistic (correlation) predictions associated with the quantal state of 
the spin-1 systems. Then, in a later t983 paper on quantum logic, Stairs 4 
demonstrated how the Heywood-Redhead result can be generalized and 
the proof greatly simplified. The aim of the present paper is to present a 
more systematic version of the nonlocality result based on Stairs' construc- 
tion, and to compare its implications with those of the well-known Bell 
nonlocality theorem in QM. To do this, we must first fix our terms. 

2. In any h.v. theory, the existence is postulated for any quantum 
system of an apparently uncontrollable parameter (or parameters), whose 
(joint) value 2, at any time t determines, or partially determines, the out- 
come of a measurement of any observable of the system were it performed 
at t. In the case of partial determination, features (controllable or 
otherwise) of the measurement device may also play a causal role. In a 
deterministic h.v. theory, once all the values of the relevant parameters are 
fixed at t, the predicted outcome of a measurement of any observable 
A--we shall denote it by [A] ' - - i s  uniquely determined. (We leave open 
the separate issue whether 2t evolves deterministically or stochastically with 
t for the system in the absence of measurements.) An ensemble of such 
systems in some pure quantal state ¢t will correspond to a mixture of such 
uncontrollable )~t states, their distribution being related to ~/J,. The averages 
[A] '  defined by that distribution are assumed to coincide with the QM 
averages (~,, AOt) for all A, where A is the self-adjoint operator associated 
with A. 

4 See Ref. 5. Of his proof, Stairs writes (p. 581): "...apparently a version of it was first offered 
by Simon Kochen, though his version never appeared in print." 
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A noncontextualist deterministic h.v. theory is one in which (i) there is 
a one-to-one correspondence between the set of all bonafide observables of 
the quantum system and some subset (not necessarily proper) of the set of 
self-adjoint operators on the Hilbert space ~ff associated with it, (ii) for all 
A, [A] t is determined exclusively by 2t, independently of the measurement 
context, and (iii) for any observables A, B where B=f(A) ,  then 
[B]t=f([A]') .  5 It is such theories, when ~ has dimension three or 
greater, that first Bell and then Kochen and Specker showed to be incom- 
patible with Gleason's 1957 work. Now assumption (ii) specifically implies 
that [A]t  does not depend on whether A is being measured simultaneously 
with some compatible observable B, or with some other such observable C. 
When B and C are themselves incompatible, [A ] '  is thus insensitive to the 
choice between mutually exclusive measurement contexts. In what 
Shimony (7) was later to call a "'judo-like manoeuvre," Bell (1) invoked the 
Bohrian principle of the totality of the quantum phenomenon to cast doubt 
on assumption (ii), and hence deflate the impact of the BKS paradox in its 
original version. 

Notice that for the observables A, B, C to have the compatibility 
relations attributed to them above ([.3,/~] = [A, (?] =0;  [B, (~3 ¢-0), it 
is necessary that A be degenerate, or as it is sometimes said, A must be 
nonrnaximal. It is demonstrable that such "noncontextualist" h.v. theories 
which assign well-defined values [A ] '  to only the maximal (nondegenerate) 
observables A are internally consistent; indeed there are models of such 
theories. 6 Much less trivially, it is also known °) that the extension of such 
h.v. theories to locally maximal observables of composite systems is 
likewise consistent. (For a composite system consisting say of two 
systems 1 and 2 with respective Hilbert spaces ~1,-~¢g2, an observable is 
said to be locally maximal if it corresponds to an operator of the type 
A ® 1 or T ®/~ on ~ ® ovg,, where A (/~) is nondegenerate in ~ (~2), and 

denotes the identity operators in both ~ and ~2-) It is this result, 
incidentally, which assures the consistency of the assumptions involved in 
introducing a local (and hence noncontextualist) h.v. theory of correlated 
spin-l/2 systems in Bell's celebrated 1964 derivation of the Bell inequality. 7 

Finally, we must mention that part of Gleason's 1957 work which is 
relevant to this paper. Gleason introduced the notion of a frame function 
of weight W for a separable Hilbert space ~f. This is a real-valued function 
defined on (the surface of the) unit sphere of Jef, such that if {~bl } is any 
orthonormal basis of ~4~, then Zif(~bi)= W. Gleason showed that any 

s Such a h.v. theory is called one of the "zeroth kind" in Ref. 6. 
6 See, e.g., Ref. 8. 

7 This point  is discussed at greater length in Ref. 10. 
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nonnegative frame function in ~:~3 is continuous; we shall refer to this result 
as Gleason's Lemma. 8 

3. Consider a composite quantum system composed of two separated 
subsystems 1, 2 (with zero interaction potential), which have interacted in 
the past, the composite system being in the "hidden" state 2, consistent 
with its pure quantal state Ct at time t. We make the following assump- 
tions, which are restricted throughout to locally maximal observables for the 
system: 

I (Separability). Any observables A ® 1, 1 ® B  are single-valued 
functions of )~t, with respective values [ A ® I ] ' ,  [ I ® B ] (  These values 
correspond to the outcomes of (any kinds) of measurements designed to 
measure separately A on system 1, and B on system 2, were they performed 
at t. 

II  (Locality). [ A ® I ] '  is insensitive to the choice between 
measurements at t of any mutually incompatible observables (maximal or 
otherwise) on 2. A similar condition holds for [ I ® B ]  t and distant 
measurements at system 1. (It is not required that 2 t factorizes into a 
product of 21,~, 22,~ states.) 

I I I  (Excluded Joint Events). Let P~"(A =a, B = b )  denote the joint 
probability in Q M  of obtaining the pair of values a, b in measurements of 
A, B performed at t on systems 1, 2, respectively, for the pure state ¢, of 
the composite system. Then if 

PO'(A = a ,  B = b ) = 0  

we have either [ A ® l ] ' ¢ a ,  or [ l ® B ] ' ¢ b ,  or both. 

Now it can easily be shown from Assumptions I, I I I  that [ A ® I ]  ' and 
[ 1 ® B ] '  always belong to the spectra of A and/~, respectively (we omit the 
proof). 9 This is of course a necessary condition for the h.v. theory to be 
consistent with QM. 

We are now in a position to prove the main result. 

Theorem, A nonstochastic h.v. theory satisfying the above assump- 
tions is inconsistent with the QM description of pairs of distant spin-1 
systems prepared in the singlet state of total spin zero. 

8 This result is contained in the proof of the theorem in Sec. 2.8 in Ref. 2. It is straightforward 
to show that the result holds for frame functions defined on any Hilbert spaces of dimension 
three or greater; see Ref. 11, which also contains a discussion of the main theorem in Ref. 4. 

9 We thank Arthur Elby for pointing out that the "spectrum rule" is not required as an 
independent assumption. 
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Proof (Stairs 1983). Consider a triad 0 of mutually orthogonal 
directions {x, y, z}, and the locally maximal observable H ° ®  1, where 

121° = h~Pls~=o> + hyPls~ =o> + h:Prs.=o> 

on ~ and hx, hy, h~ are distinct real numbers. /sl. > is the projection 
operator I. }{.I  on ~ ,  S~ the component of spin in the x direction, etc. 
Following Heywood-Redhead and Stairs, we could choose H ° to be the 
spin Hamiltonian operator aS~ + bS~. + cS 2, so that h~ = b + c, hy = a + c, 
hz = a + b.~° Consider also the locally ~ maximal observable 1 ® Se, the com- 
ponent of spin in the direction defined by the unit vector h, for system 2. 

For  all 0, h, t, the predictions [ H ° ®  1] ', [ I ® S ~ ]  t are well defined 
(Assumption I), and 1-H ° ® 1 ] '  E {h~,hy, hz}, [ 1 ®  Se] e { - 1 , 0 , 1 } .  
Moreover, from Assumption II, l-H°® 1] '  is unaffected by the choice of 
measurement being performed at t on 2. 

We assume that the composite system is in the singlet state at t, which 
may be written (ignoring spatial degrees of freedom) as 

1 
I¢}- ,j~1-1sx=o}®lSx=O}-Isy=o}®lsy=o} 

+lSz=O}®lSz=O}] 
Let us furthermore suppose that [H ° ® 1], = hx, say. Since we have 

P*(H°=hx ,  S~= + 1 ) = 0  

and 

P¢(H ° = h x, Sy, : = O) = 0 

we conclude from Assumption III that [ l ® S x ] t = 0 ,  and [ l®S~ , z ] t~  
{ 1, - 1 }. Thus, to each of the spatial directions x, y, z in 0, we can assign 
a number ( [ I ® S ~ ]  ~, f i=x ,  y , z )  from the set { - 1 , 0 ,  1}, such that one 
and only one direction is assigned 0. It is clear that this generic result for 
0 does not depend on the original choice above [ H ° ®  1 ] t =  hx. Further- 
more, the rotational symmetry of $ implies that the result holds for all 
triads 0. 

Thus, the value assignment I-1 ® Sn] '  generated by 2, induces a map 
from the surface of the unit sphere in ~3 onto { - 1 , 0 ,  1}, with the 

10 See Ref. 11, Secs. 1.7 and 1.8. A proposal concerning how the spin Hamiltonian might be 
measured in the case of an orthohelium atom in its lowest orbital state was provided in 
Ref. 3. 
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property that for any orthogonal triple of points on the sphere, one and 
only one point is mapped to 0. Similarly, h w-, ([1 ® Salt) 2 generates a map 
from the unit sphere in R 3 onto {0, 1 } with the same property. This map 
constitutes a nonnegative, discontinuous frame function of weight 2 in [R 3, 
which is excluded by Gleason's Lemma. 

4. The advantages of the above proof in relation to that of Heywood 
and Redhead (apart from its considerable gain in simplicity) are twofold. 
First, it refers exclusively to locally maximal observables. This means that 
it is applicable to the entire range of "contextualist" h.v. theories which dif- 
fer only concerning their treatment of locally nonmaximal observables. In 
particular, the proof does not require (as does Heywood and Redhead's) 
adoption of van Fraassen's (12) suggestion that to each such "observable," 
or rather its associated operator, there corresponds an uncountable infinity 
of distinct measurable physical magnitudes, in violation of assumption (i) 
in Sec. 2 above. 

Secondly, it is not required that [A] t, for every observable A, be inter- 
preted to represent an objective element of reality (premeasurement value) 
associated with A, which the measurement process somehow faithfully 
reveals at t. Such a view is decidedly at odds with Bohm's 11 1952 h.v. 
theory, and Bell ~15) has urged its relaxation in the hidden variables 
program generally. 

In fact, the "faithful measurement" hypothesis is clearly incompatible 
with the possibility, which we alluded to in Sec. 2, that [A ] '  for some if not 
all observables A is determined by the pair 2,, # ,  where #, is the initial 
"hidden" state of the measurement device employed to measure A at t. We 
shall refer to theories which incorporate this possibility as (nonstochastic) 
Bohm-type theories, since they capture an essential feature of Bohm's 1952 
model. Now it has recently been shown by Elby ~6) that the quasi-algebraic 
proof of nonlocality above can be generalized to stochastic h.v. theories, 
including the stochastic version of a Bohm-type theory. It turns out as a 
consequence of the singlet state correlations that a local stochastic h.v. 
theory collapses to a deterministic one for the observables in question 
(analogously with the situation for spin-l/2 systems), at least if the 
Assumptions in Sec. 3 above are taken to hold for all possible 2 t. Further- 
more, local/~-state dependency must disappear for the particular measure- 
ment events under consideration. (For details we refer the reader to Elby's 
paper. (16~) 

5. We turn finally to a comparison of the quasi-algebraic nonlocality 
proof with the Bell nontocality theorem for nonstochastic h.v. theories. 

1i See Ref. t3. For a review of more recent developments, see Ref. [14]. 
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(a) Following the precedent set in Bell's seminal 1964 paper, (17~ sub- 
sequent derivations of a deterministic Bell-type theorem by other authors 
have usually referred to local h.v. theories whose predictions depend only 
on the state 2 t of the object system, as in Assumption I in Sec. 3. What is 
demonstrated is that certain predictions of such a theory for pairs of 
spin-l/2 particles in the quantal singlet state must violate QM. These 
predictions concern the upper bound on the absolute value of a certain 
linear combination of correlation coefficients associated with selected pairs 
of (locally maximal) spin components on the two systems. 

However, in 1971 Bell ~18) generalized his theorem to Bohm-type deter- 
ministic h.v. theories. In deriving an expression for each of the required 
correlation coefficients, Bell averaged over the uncontrollable #-parameters 
associated with the spin measuring devices, and considered products of 
averaged spin components of the form [S~®l ] t . [ l®S~ , ] t - -wr i t t en  
simply as [Se] t. [Se,]t--associated with each of the possible 2t states of 
the particles. He required only that [S~]' be independent of h', the 
"setting" of the distant apparatus, and similarly for [Se,] ~ and t~ (a 
consequence of the assumption that the initial distributions of the ~-states 
for the two devices are independent). We call this average locality. In then 
integrating over the 2, states, Bell showed that such average locality is 
sufficient in the Bohm-type theory to derive a QM-violating inequality. 
However, in the course of his derivation, Bell implicitly assumed that 
[ S e ® S e , ]  t is equal to [Se] t. [S~,]( Such factorizability is not a conse- 
quence of average locality. In fact, attention to a recent detailed analysis (191 
of the Bell experiment involving Stern-Gerlach devices reveals that fac- 
torizability of the Bell averages is violated in the Bohm theory, although 
average locality is not. Thus Bell's 1971 argument, as it stands, is 
incomplete. 

It is straightforward to show that both factorizability and average 
locality are consequences of (i) the standard assumption that [Se ® S~,]~= 
[Se] t. [S~,] *, and (ii) the joint assumption that [Se] * is (the value of) a 
function whose only arguments are 2, and the hidden k~-state of the local 
device, the form of the function itself being independent of t~' (and similarly 
for [Se,]). Bohm's theory actually violates both parts of (ii), an assumption 
which Bell clearly expects to hold in a local Bohm-type theory. A similar 
assumption is required in the quasi-algebraic result for Bohm-type theories 
in the spin-1 case. Thus we may conclude that despite the apparent sim- 
plicity of his 1971 theorem, Bell's proof of the nonlocality of Bohm-type 
theories relies on assumptions no weaker than those in the corresponding 
quasi-algebraic proof. 

(b) There is a sense, however, in which the quasi-algebraic proof fills 
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a gap left by the Bell theorem. The latter makes essential use of pairs of 
spin components for the spin-l/2 particles whose correlation coefficient in 
QM do not reach the extremal values of _+ 1. If consideration in the Bell 
argument is limited to pairs of spin components that are "perfectly" 
correlated, no violation of the QM predictions follows. 

The situation with correlated spin-1 systems is somewhat different. 
Although the observables S~ ® 1, 1 ® Se are again perfectly correlated in 
the singlet state (such correlations also being consistent with locality), pairs 
of the type H°®I, l®Se  (he0) are not. Yet, as we have seen, QM 
predicts zero joint probability for certain outcomes related to measurement 
of these latter observables. (A similar situation does not arise with spin-l/2 
systems for observables not perfectly correlated.) As before, no Bell-type 
violation of QM can be demonstrated by consideration of such correlations 
alone for spin-1 systems, in a local h.v. theory. The theorem in Sec. 3 thus 
demonstrates the unavoidable existence of nonlocality in nonstochastie h.v. 
theories (including those of the Bohm variety) related to certain kinds of 
correlations in the quantum world that evade Bell's nonlocality result. 12 
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