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the Origin of the 

Time arises in the theory of  gravity through the semiclassical approximation of  the 
gravitational part of  the solution of  the Wheeler-De Witt equation in the manner 
shown by Banks (SCAG). We generalize Banks' procedure by grafting a Born 
Oppenheimer type approximation onto SCAG. This allows for the feedback of  mat- 
ter onto gravity, wherein the latter is driven by the (quantum) mean energy- 
momentum tensor of  matter. The wave function is nonvanishing in classically for- 
bidden configurations of  gravity. In SCAG this is' described by the evolution of  
matter in imaginary time. 7'his is interpreted as an inverse temperature, and the 
norm of  the matter wave.function, no longer conserved for these gravitational con- 
.figurations, is a partition function. A simple cosmological model is worked out to 
illustrate these ideas. In this model it is shown that the temperature of  the matter 
which emerges into the classically permitted region is the inverse bounce time of  
the bounce executed by the system in the forbidden region (behind the horizon). 

Time present and time past 
are both perhaps present in time future. 
And time future contained in time past. 
If all time is eternally present 
All time is unredeemable. - -  T. S. Eliot, "Burnt  Norton," Four Quartets, 1943. 

1. I N T R O D U C T I O N  

Time does not appear in the Hamiltonian form of gravity. This is a con- 
sequence of the invariance of the action S under arbitrary space-time trans- 
formations, from which follows 6S/3g.v = 0 ,  where g~v is the space-time 
metric and c5S/6g~, v can be identified with the energy-momentum tensor of 
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everything, gravity + matter; 6Singly = T "v = 0. The expression of this fact 
in the Schr6dinger form of quantum mechanics is the Wheeler-de Witt 
equation H~U=0, where H is the Hamiltonian of everything and ~u the 
wave function. Perhaps, in a more familiar context, one may understand 
the vanishing of T,~ from the electromagnetic analogy SS/6A~ = 0 which 
follows from gauge invariance. This result may be interpreted in terms of 
the total vanishing of electric current, that carried by matter and that 
carried by the f ie ld~xpl ic i t ly  called the displacement current by Maxwell. 
Each of these is, of course, separately conserved. And so it is with gravity. 

From the above considerations it seems likely that the ultimate form 
of physics will retain this feature. One can hardly imagine at this point in 
scientific development that general covariance will be given up. Thus, even 
if the present theory of gravity is some phenomenological element of a fun- 
damental theory--and it must be regarded as such because of its quantum 
illnesses--we may well expect H . . . .  ything ~ . . . .  ything = 0. So the Schr6dinger 
right-hand side is missing. 

What then is time and how does it intrude into the seemingly static 
dynamics described by H ~ = 0 ?  The answer to this question has been 
recently found by Banks, t~) drawing, no doubt, on previous considerations 
of de Witt and Hawking/2~ (For simplicitly, I shall here concentrate on 
time as it comes up in cosmology, though Banks shows clearly how the 
idea of local time, such as a Towanaga local temporal displacement in field 
theory, arises from considerations of local gravitational fields). The concep- 
tual answer of Banks is that time parametrizes how matter follows gravity. 
To say that the age of rocks on earth is 4 x 10 9 yrs really means that these 
rocks were created "when" the radius of the universe "was" such and so, 
corresponding to a particular value of the Robertson-Walker scale factor a. 
The latter is measured from the Big Bang where the scale of a is m~ 1 
(rnp - Planck mass). (This is rather loose wording as the scale of a is deter- 
mined by convention. One really means the scale of the visible universe.) 
The ultimate cosmological theory will give us the function a(t); so, to state 
a value of t is tantamount to stipulating a. And it is a which figures in the 
gravitational metric. In this sense, time is calculated on gravitational con- 
figurations. One can only contemplate with admiration Mr. Eliot's 
remarkable poem, an expression of the poet's metaphysical sensing of what 
has to be. 

How does one translate this idea into a mathematical formalism? The 
existence of a Hamiltonian implies an action, and action implies time, as 
can be inferred from its name. The energy eigenfunctions ~E(x) are Fourier 
transforms in time of Feynman path integrals. In the semiclassical 
approximation, the paths are dominated by that of minimal action, and 
time is the classical time which parametrizes this classical path, the energy 
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of which is E. Thus, if the semiclassical approximation to ~E(x) is valid, the 
wave function "tells a story." Banks has shown how the semiclassical wave 
function for gravity provides a parametrization for the evolution of matter. 
The latter follows the former adiabatically, and since the former "tells a 
story," the latter follows the story. Banks shows that the way the story is 
followed is the time-dependent Schr6dinger equation for matter. 

In Banks' original version, he uses an approximation which is 
somewhat too crude, in that the gravitational field is not driven by the 
matter. I shall show below how to remedy this by grafting onto Bank's 
proposition a Born Oppenheimer type approximation (I call this the 
BBO). I shall then show how BBO leads to Einstein's equation with 
gravity driven by the (quantum) mean energy momentum tensor of matter. 
The idea of all of this is that the mass scale of matter,~ mp. 

The word "semi" in semiclassical is not to be taken lightly. Much of 
quantum mechanics is still there. For one, if there are several classical 
paths between two points, such as in the presence of a reflecting barrier, the 
wave function is a superposition of these several contributions, and they 
interfere. For another, the wave function penetrates into classically forbid- 
den regions (mathematically describable in terms of an imaginary or 
euclideanized time). Hartle and Hawking (for background and a review, 
see Hawking/Z)), in their efforts to found quantum cosmology, have 
advocated the possibility that quantum gravity be formulated as a 
Euclidean functional integral. The classical stage of cosmology is then 
attained by analytic continuation to real times as one passes from the 
classically forbidden to the permitted region. In itself this is not such an 
audacious proposition; ordinary quantum mechanics can be so formulated. 
The center of the debate is not so much the issue of continuation in the 
complex time plane, but whether the universe can be described by a single 
wave function at all, a state which to some extent is characterized by the 
same properties of stability of a state of Minkowski quantum field theory. 
It is not my purpose here to enter into the polemics of this passionate 
question. Rather, I wish to explore some facets of the Hart le-Hawking 
hypothesis using Banks' construction. 

In a simple model, a massless scalar field coupled conformally to 
gravity, I shall show how imaginary time in the forbidden region has the 
meaning of temperature. One recovers in this way the statistical ther- 
modynamics of the model as previously worked out by Horwitz and 
Well. ~3/Indeed, it was in the course of discussion with these authors that it 
was found that their results were a consequence of a single H a r t l ~  
Hawking quantum state. The work presented here is based on the 
collaboration among the three of us. 

That temperature does arise in single quantum states is, of course, well 
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known since Hawking's seminal work on black hole radiation/2) and its 
extension to the de Sitter space by Gibbon and Hawking (2) (GH). The 
Horwitz Weil (HW) phenomenon also occurs in a de Sitter type space, but 
it is distinct form that of GH. When it exists, HW prove it to be the more 
stable of the two. This is, however, a technical matter. Frangois Englert has 
emphasized to me the generality of thermal phenomena in the presence of 
gravitational horizons as a fundamental fact of physics. We are here 
illustrating a general principle with the plaything of the present paper. 

What makes this plaything a very poor one indeed is the other feature 
of semiclassical theory, interference. In the classically permitted region the 
pieces between the expanding and collapsing universe interfere in the wave 
function, hardly a respectable state of affairs. The question at hand once 
again transcends the consideration of our particular plaything. It is a mat- 
ter of time reversal invariance, the presence of this collapsing universe. 
How does one get rid of it or at least of its interference with our own 
expanding universe? Casher and Englert (5) have suggested that a con- 
tracting universe be interpreted as an expanding anti-universe. Both are 
macroscopic and the interference will be washed out. Needless to say, much 
needs to be done to make this notion precise. To date, precious little has 
been done, and in this paper these deeper issues will not be joined. 

The scientific contributions of Ilya Prigogine have greatly furthered 
our understanding of the arrow of time. The work presented here is an 
effort to understand time itself, a quantity which parametrizes sequences of 
events. In cosmology, the confrontation of the arrow of time, as defined on 
one hand by the mechanical notion of the expansion of the universe and on 
the other by the growth of entropy, is surely one of the deeper scientific 
questions of our day. Recently Prigogine has turned his ever active mind to 
this question, and we may well expect to find guidance from him, as we 
have on the other profound issues that he has elucidated in the past° 

2. THE BBO A P P R O X I M A T I O N  

The why's and wherefore's of BBO are readily revealed by studying 
gravity in the cosmological context, i.e., by limiting oneself to mini- 
superspace, in technical jargon. 

The classical theory of cosmology is based on the equation of energy 
balance 

_ H2 + k /a2  = ___8~ Gp  ( 1 ) 
3 

Here a is the Robertson Walker scale factor, p the energy density of mat- 
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t e l  G the gravitational constant ~ m p  2~ lO-19Gev -2, and H Hubble's 
constant ( = a  -1 da/dt), t being the proper time. We shall usually employ t/ 
defined by 

dt = a dr  (2) 

The parameter k =  _+1, 0 for closed, open, and flat spaces, respectively, 
thereby fixing the scale of a for the first two cases. A cosmological constant 
is included by allowing p to have a piece independent of a ( -P0) ,  in which 
case we define 

8ziG 
- - p o - A  (3) 

3 

Both G and A are supposed to contain the effects of matter through their 
renormalizations. 

We rewrite (1): 

H =  H G + H M = 0  (4) 

HG= -m--~2Pg(da~a--ka21+2 [_ \dr /  Am2ea4 

(5) 
o . . . .  

HM = 3  (p -- Po) 
a 4 

We shall allow for the quantization of matter by replacing ( p -  P0) a4 
by a general matter Hamiltonian 

HM = HM(~b, a) (6) 

where ~b represents all matter fields; they are supposed to vary on mass 
scales ,~mp. 

Thus, H looks like the H of chemistry, gravity playing the rote of 
nuclei and matter of electrons. The latter follow the former adiabatically. 
This is expressed through the Born-Oppenheimer type factorization of the 
wave function taken together with subsequent approximations. We write 

H(a, ~b) ~(a, ~b) = [HG(a ) + HM(~b, a)] gt(a, q~) = 0 (7) 

1 0 2 k m 2 a  2 1 0 2 
Ha  - 2mee Oa 2 ¢- ~ + AmZ a 4 =- 2m~ Oa 2 ~- Va(a) (8) 

7J(a, ~b) = O(a) z(a, ~b) (9) 

In (8), we have used the momentum corresponding to (4): p =  
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8L/8(Sa/Stl) = -m~(da/d11) ~ i(8/8a). [Note that the gravitational kinetic 
energy is negative (=-p2/2m~).  This is what allows for inflation (as 
emphasized in Ref. 6). 

Inserting (9) into (7) gives rise to 

0 ~82 Z +7~82 0 + 2 ~a +zVGO + ~HMz=0  (10) 

In zeroth-order Born-Oppenheimer theory, the terms in 8z/8a and 82)~/8a 2 
are neglected. Banks' innovation is to keep the term in 8z/8a but neglect 
82),~/8a 2. Since the dependence of Z on a is accounted for in the Born- 
Oppenheimer series in (mlight/mheavy) 1/4, Banks has taken some of these 
corrections into account, but a systematic study has not yet been carried 
out. From now on, Be)USa 2 will be neglected. We multiply (10) by ;(t and 
contract over ~b to give 

H c ( a ) ~ + ( H M } ~  2m~ Z ~a =0 (11) 

Substitution back into (10) gives 

[H~-(HM}"]Z+Zm~2p 8a ~aa- g ~ a  Z =0  (12) 

The equation we require for the semiclassical theory of gravity is that in 
which classical gravity is driven by the mean energy of matter. This is 
expressed by (11) provided we set the condition 

(zI 8z/Sa> =0  (13) 

Inserting (13), we get 

1 02 ] 
[Ha(a )+(HM}~]O-  2m2pSa 2 t-Verf(a) ~ = 0  (14) 

V~ff= Va(a) + (Z] HM [Z} (15) 

and 

[HM-- (HM)]X = 
1 81n~Sz  

m 2 8a ~?a (16) 

The solutions of (16) automatically satisfy (13). 
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The next step is to require that 0(a) be the WKB solution of (14). In 
the absence of a reflecting barrier, 

= N -1/~ exp [iScl] (17) 

where So~ is the classical action of gravity generated along the classical tra- 
jectory governed by the Hamittonian HG+ ( H , ) .  It is reckoned from 
some arbitrary point a 0. The quantity N is a normalization tactor propor- 

tional to [p(a)] = ~ .  It will be assumed throughout that the phase 
factor exp[ iS~(a)]  varies rapidly compared to the variations of V~cf(a); 
thus, in what follows, the dependence of N on a will be neglected. 

In the presence of a reflecting barrier, at say a = a  o, Eq.(17) is 
replaced by a sum of "in" and "out" waves 

= N-1/22 cos[Sd(a lao)  + ~/4], a > a o (t8) 

where 2Sd(alao)  is the round trip action between a and ao, Six and So~t 
being equal, due to time reversal invariance. We have defined the classically 
permitted domain by a > a0. For a < a 0 , the WKB solution is 

= N I/2 exp{ - ISd(alao)l } (19) 

where Sol is still reckoned classically but with t replaced by it. The relative 
phases and constants in (18) and (19) are fixed, as written, by the Kramers 
connection formula. These formulas are elucidated in terms of temporal 
sequence by deriving them from the path integral. A sketch of this 
approach to obtain the WKB approximation is given in Appendix A. It is 
recommended that the reader be familiar with this technique for the 
understanding of Sect. 3, as well as to understand the meaning of time as a 
saddle-point parameter. 

In what follows, O will be approximated by (17). In particular, it will 
be assumed that the interference term in (18) is washed out by some 
mechanism or other. Then 

a l n O  iOS¢I= ~a = Oa @c(a)= -- im~d (20) 

so that (14) becomes 

• 3X ( 2 t )  [H.--  ( H ~ , ) ] Z  = i a ~  = ~ #-7 
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Define a new wave function 

~= )~ exp l - i  j" < HM ) dt' l 

where at' means [(dt'/da')t~l~i~l] da'. Then 

• a 2  HM~ = t -  
Ot 

(22) 

(23) 

The full wave function q~ is 

= ~b(a) g(a, ~b) = ~(a) 2(a, ~b) 

where 

(24) 

= N-l/2eiSc~") (25) 

S~ is the classical action of the gravitational part alone. The form of the 
last equality in (24) is that proposed by Banks, but the meaning is different. 
The orbit on which the action is calculated is governed by H G + ~ H ~ )  = 0, 
whereas Banks calculates on the orbit Hc = 0. We include the back reac- 
tion of matter on the gravity. 

The quantity )~ is the usual Schr6dinger wave function. In the 
classically permitted region its norm is constant, independent of a, hence of 
t. This in not true in the forbidden region and will be the heart of the mat- 
ter of Sect. 3. This concludes the discussion of the origin of time and the 
derivation of Schr6dinger equation. The crux of the matter is the adiabatic 
following of gravity by matter, which in turn feeds back to drive gravity. In 
cosmology, time begins at the Big Bang (provided one can handle the time- 
reversed universe). 

If a reflection barrier (horizon) is present at, say a = ao, then behind 
the barrier the "phase factor" of Eq. (19) is real and Schr6dinger's equation 
is better likened to a diffusion equation. It is suggested that Im t be inter- 
preted as an inverse temperature. Indeed, in the energy representation 
where 

= E cn(t)  z,, 

and HMZ,~ = E~Z,, one sees that, if, at some time ti, Ci were of the form 
Ke -E"t` (with K constant), then at every imaginary t it stays of this form 
C,,= Ke -e°('+'° We would then have 

(ICM> = E E.e --2~'+''~"/Z e 2( t+  t i ) E n  

n - -  n 
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so that 2(t + ti) would be an inverse temperature. So the problem is to find 
out whether or not there is a canonical distribution at some a. (The above 
consideration makes sense only if the time dependence of a in HM is 
negligible). 

In trying to solve this problem, we resorted to steepest-descent techni- 
ques and found that we were in fact redoing the original statistical analysis 
of HW on their model. Something like BBO arises but a rather surprising 
subtlety occurs which makes the evolution of temperature different from 
that of BBO. This is the subject of Sect. 3. The statistical analysis of HW is 
the subject of Appendix B. 

3. T E M P E R A T U R E  

From (13) and its complex conjugate, the norm of )~ is a fixed constant 
for all a. This implies that 2, the Schr6dinger function (23), shares the same 
property throughout the classical region (t real). But, for a in the forbidden 
region, the norm of )~ varies. Here Im t ¢ 0, and we have 

- -  - 2 (EM( t ) )  (26) 
a i m  t 

Quantum physics of matter in its conventional form is drastically modified 
"behind the Big Bang." The product ( 2 1 2 )  appears as a sort of partition 
function, 2 Im t being something of an inverse temperature. 

In BBO, the evolution of this "temperature" with a in the forbidden 
region would be found from the classical trajectory 

HG(a(t))+ (EM(t)) =0 ,  Im t ¢ 0  (27) 

As we have mentioned above, if matter were canonically distributed in 
energy at some t, it would remain so. Thus BBO defines an evolving 
canonical distribution in the forbidden region. The fundamental question, 
then, is whether matter is canonically distributed at some a. If so, is BBO a 
good approximation? Does (27) make good sense? How does one come 
upon such a thermal initial condition? 

In grasping for answers, we explored the toy model of HW, set out in 
Appendix B. Though surely absurdly simple, it does have sufficient physics 
to allow one to formulate some conjectures, to wit: yes! for large systems 
matter is canonically distributed. The temperature is determined by a self- 
consistent equation, But it does not evolve in the BBO way, Eq. (27). In 
the HW model, E~t is kept fixed in the integration, equal to its value at the 
point a for which one is calculating the temperature, rather than varying as 

825/17/6-5 
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in (27). In general dynamic  systems, this will not be true either; the 
variat ion of ( E M )  in t ime will be due to the nonconformal  coupling of 
mat ter  to gravity. In all events, the BBO equat ion of evolut ion cannot  be 
justified in the nonclassical region. I now display the a rgument  for these 
assert ions using the functional integral. 

A convenient  way to proceed is to investigate the normal iza t ion  factor 
<21)75. For  a general dynamic  system described by  coordinates  (fields) x 
(our nota t ion  follows Appendix A), we have 

O~(Xo) e ,o/ 

= f ~ (x )  e isc"l~°~°) (28) 

where ~ labels the degenerate  states of E,,. For  x = x0, we take the Fourier  
t ransform to give 

t VJ,,,~(x)l 2 =  dte  iE'' ~ (x )  e 'sc"l"°l (29) 
~c? + i ~  

(The nota t ion  is symbolic  in that  n is a cont inuous  index, and 6 ( E - E , )  
has been absorbed into the measure  that  defines Sn . )  For  our case, En = 0 
and x =  a, {~b}, where {~b} means field configuration. Then 

Ig (a ,  {¢~})t z =  dT ~'(a)  ~ ' ( { ~ } ) e  'st"'l°l''''':'~}'°' 
s c + i e  s t a l e s  o f  

. . . . . . . .  gy (30) 

where S is the total  act ion expended in the round  trip from and to a, {~b} 
in t ime T. The prime is to remind us that  the integral is not over  the final 
(= in i t i a l )  configurat ion (a, {~b}). Script ~ without  pr ime includes this last 
integrat ion as well. In terms of it, the integral of  (30) over  {¢~}, which we 
denote by P(a) ( = p r o b a b i l i t y  to find the system at a), is 3 

p(a )= fdT f~ ' (a ) e i '%(" . r t " ' ° l j ' ~ ( {~} ) e  isu("'le}'rl"''~}°' (31) 

There has been an interchange of orders of integration, which is in general 
not justified. Thus in the subsequent  steepest-descent calculation over  T 

3 In the present case, we are interested in the evolution of the vacuum state due to the 
variation of a. Thus, there is only one state contributing to the left-hand side of (30), the 
vacuum. We are thereby placing ourselves in the context of the Hartle-Hawking assumption 
of "the quantum state of the universe." 
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and ,@(a), the classical evolution of gravity will be determined by matter in 
the mean. In the correct order, each matter configuration would drive the 
classical gravity according to its particular foibles. Thus the interchange of 
orders is valid only if energy fluctuations are small, i.e., the matter system 
large. This is how thermodynamics happens in cosmology. It is hard to 
imagine any significance at all for a formulation in minisuperspace (i.e., 
cosmology in the usual sense of the mean as first formulated by Einstein) 
were this condition not fulfilled! 

We now go to the semiclassical approximation of gravity by carrying 
out the steepest descents on a and T; thus 

P(a) = [~(a)l 2 (212) ,  

where 

[~(a)l 2 = eiXo(a, r*(~/Ic,,0) 

(32) 

(33) 

and we recover the square of BBO [Eq. (25)]. It remains to discuss the 
nature of the classical closed orbit described in time T*(a). 

Were there no classically forbidden region, both SG and SM would be 
real, and the classical time to go from a to a would vanish. Thus 
P (a )=cons t  (always neglecting the a dependence of N). If the wave 
function ~g is calculated from some reference point a 0 in the WKB 
approximation, the above result merely reflects the fact that the phase fac- 
tors on the round trip between ao and a cancel out in the computation of 
1~12, the actions being equal and opposite. 

In the classically forbidden region, S becomes imaginary and then 
P(a) varies in a. Noting that Eq. (33) for (212) is indeed a partition 
function for T imaginary then yields 

P( a) = e-  S~(a,r*("~l",°)Z( T*(a) ) (34) 

where SG is the gravitational action expended in the bounce time T*, com- 
puted classically in the Euctideanized problem. 

We apply this to the HW model, where the classically forbidden region 
is defined by a_ ~ a ~< a+ corresponding to the two zeros of the effective 
potential: 

Veff= - - a  2 + H 2 a  4 + (EM) 

The bounce must be taken between a and a to have nonsingular energies. 
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(If it were taken between a and a+ ,  then T * ( a + ) = 0 ,  corresponding to 
infinite temperature.) The equation for T*(a) for the HW model is par- 
ticularly simple if one makes the conformal transformation to the dimen- 
sionless field ~b (=a(b;  see Appendix B), in which case (EM} is indepen- 
dent of a. We then have 

= ( d a ) 2 _ . 2 +  + <eM> = 0  H~(a) + (EM) \d~/ (35) 

This first integral of the equation of motion gives the modification of the 
pure gravitational bounce of de Sitter space (Hc; (a)=0)  due to the 
presence of matter energy= EM(T*(a)). This latter quantity, determined 
from the equation of state, is handled as a constant in (35), since SM in 
Eq. (33) has no explicit dependence on a (due to the conformal invariance 
of the HW model). T*(a) is the period of the bounce as determined by the 
further integration of (35). In this way, the HW calculation is recovered, 
and indeed justified. 

For  a < a+,  we find that the temperature increases as one penetrates 
into the forbidden region. But, though the detailed calculation has not been 
made (numerical integration is necessary) it would appear that there is no 
self-consistent solution for a sufficiently small. This would be a most 
satisfying situation if borne out; semiclassical physics ought to be irrelevant 
at very small a. 

The above result differs from that anticipated in the BBO 
approximation [discussion following Eq. (27)1, in that we have found that, 
during the bounce dynamics which determine P(a), the temperature 
T*(a)  -I  does not vary in (EM), whereas in BBO it does. The difference is 
significant. 

In the classically permitted region, T*(a) has a real part which effec- 
tively vanishes corresponding to the part of the round trip to and from a+ 
and an imaginary part from the complete bounce a.  ~ a ~< a+.  The con- 
tribution to P(a) is unity from the former, due to the cancellation of the 
phases between ~ and ~P in this region, whereas the phases add in the 
bounce region. Thus P(a)= P(a+) for a > a+ ,  as in BBO. It is easy to see 
that the steepest-descent calculation and BBO agree in this region, the 
Schr6dinger equation for 2 emerging from the steepest-descent calculation. 
Thus P(a) and T*(a) are constant for a >  a+.  

When the matter is not conformally coupled, the dynamics is far more 
complicated because the dependence of SM on a cannot be "gauged away." 
But the above calculation is rather convincing in enforcing one's expec- 
tations that the temperature will arise, in general, behind the horizon. 
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APPENDIX A: WKB THEORY F R O M  PATH INTEGRALS 

We work with one degree of freedom. The two alternative forms of the 
Feynman propagator are 

K(xtlXoto) = f ~(x ' )  e is(x~lx°'°) 

= f dE OE(x) O+e(Xo) e ....... i E ( t  - -  t o )  

(A1) 

where K is the half-sum of retarded and advanced propagators, tpe(x ) are 
the energy eigenfunctions, and S the action along the path which covers the 
intermediate points x': From (A2), 

~E(x) 0+e(x0) = f dt eie' f  ~ ( x ' ) e  ~s(x`'x°'°) (A2) 

The path of minimal action is described by the classical action So~(xtlx o to), 
and the semictassicat approximation uses the Gaussian fluctuation about 
this, The integral on t is then obtained by taking the stationary phase 

E 0Sclt + ---~- ,=,. =0  (a3) 

the Hamilton-Jacobi equation. Whence 

fx: dx' (A4) 
t* = o , / 2 ( E -  V(x')) 

if there is only one saddle. 
When there is a barrier, there are two saddles. Fix xo at the position of 
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the barrier, E =  V(xo) and t*(Xo)=0.  The saddle times are then the "in" 
and "out" times from x to and from x0: 

O)c ~ t 

,*+= +j . . . .  , 

- - :~o ~v/2(E--V(x  )) 
(as) 

To determine the integration over t in (A2) requires analysis of the contour 
in the complex-t plane. The necessary details are beautifully illustrated in 
Sommerfeld's discussion of Bessel functions in Partial Differential 
Equations. m One begins and ends the contour in the upper half plane and 
steers it through the two real saddles, whose directions are at +_~z/4 with 
respect to the real axis, to give 

If 47 0E(X) = N I '2(x)2  cos p(x') dx' + (A6) 
v0 

i 

where p = ~ 2 ( E -  V(x)), i.e., the phase is E t .  x + Sc~ +_ = 
+ [~i~0 P dx' + n/4]. The quantity N comes from the Gaussian fluctuation. It 
is easy to to compute given the condition for the validity of the steepest- 
descent approximation in the first place, i.e., for slowly varying V(x). Then 
N =  Ip(x)l. 

In the classically forbidden region there are two imaginary saddles 

given by Eq. (A5) with the square root replaced by i x / [ E - V ( x ) [ .  For 
( X - X o )  large, steepest descents once more can be validated for slowly 
varying V(x). Since the end points are in the upper half plane, it is only the 
positive imaginary saddle that can be passed. This is parallel to the real 
axis and 

~' e ( x )  = N - V 2 e  ~;o l,,c~'ll ~ '  (A7) 

This establishes Kramers' connection formula. 
The point of all of this is that the stationary wave function "tells a 

story" through the function t*(x)  in semiclassical approximation. To follow 
the story is to follow time. 

A P P E N D I X  B: THE H O R W I T Z - W E I L  P H E N O M E N O M  

The model is that of a massless scalar field conformally coupled to 
gravity, in its mini-superspace mode only. The total action is 
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S = Sa + SM 

SG=(3/4~z) f d4xx/-g[R+2A],  m e = l  (B1) 

SM= ½ f d4x ~ [gUV~ , q ~  - R/6 (~2] 

The model simplifies on using a trick that generalizes a well-known 
procedure in this type of problem. When the cosmology is Euclidean (i.e., 
the time slice is fiat), one defines guy = g y a  and ~b = acb (multiplied by con- 
venient constants); ~, .  then is the fiat-space metric a n d t h e  problem in 
mini-superspace looks like a Minkowski-type problem if the time variable 
is used (dq=dt/a). One finds L=½(-(c?,a)Z+(Su~b)2).  In the present 
problem, because of the cosmological constant A, the time slices are closed 
spheres (in the absence of matter, de Sitter space). One proceeds 
analogously but with ~,,, having a space part which is that of a static 
spherically symmetric closed space. The constants are chosen to make ~ 
equal to the static Einstein metric corresponding to the value of A. With 
these transformations, the gravitational Lagrangian is 

1 (Oa) 2_ V(a) 
L~ = - 5 \ ~,TJ 

(B2) 
1 g(a) =-~ F --a2 Jr- H 2a4 ] 

The Einstein radius is determined by dV/da I,=,L-= 0, a = x/-2/H, H being 
the Hubble constant of de Sitter space as seen from the equation of motion 

d2a/drl 2 + a - 2H2a 3 = 0 (B3) 

which in proper time reads a/~ + ~ 2  __ 2H2a 2 + 1 = 0. It is easily checked that 
the zero-energy solution is a = cosh Ht/H, hence d/a = H for t ~> H 1. 

The matter action under the rescaling becomes that of a massless 
scalar in the static sphere. This contains the usual kinetic energy plus 
corrections due to finite size and curvature. Horwitz and Weil postulate 
that this matter is in thermal equilibrium, defined by a microcanonical 
ensemble: HM + Ha = O. The entropy SE is then given by 

e sE = tr ~(HM + H6) 

l ;c 
= ~ i  tr d~ 'exp[- f l ' (HM+Ha)]  (B4) 
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where C is parallel to the imaginary axis with Re fl < 0. Assuming that the 
trace and integral operations commute (as they do in flat-space ther- 
modynamics), one has 

1 
eS~ =2-~i fc dfl' tra e~'nc e -~'F(~') (B5) 

here tr C denotes the trace over the gravitational field, and F is the free 
energy of matter in the Einstein space. This is known and is of the form 

F(fl) = -Cf l  4 + corrections (B6) 

The term in fl- 4 is the usual flat-space free energy and the corrections are 
due to the curature and finite size (Casimir effect). In flat-space ther- 
modynamics, H c would be a fixed energy, and a steepest descent integral 
on fl' in (B5) would yield eSE=eP(E+F) x O ( x ~ ) ,  where  E=-~?flF/~fl.  
Large N justifies the procedure. Here, too, it is assumed that N is suf- 
ficiently large to validate the saddle-point integrations. Then gravity is han- 
dled in the semiclassical approximation, i.e., tr Ge -~'nG=~ ~(a)  
[Amplitude for a round trip in time fiT] -~ ~ daie -sc("'~'~, where SG is the 
classical action expended in the bounce to and from ai in time ifl'. Thus 
(B5) becomes 

e S L = l  f dfl, f da, e sd. , . , ' )  ~'F(~') (B7) 

The saddle point in fl' is written, using OflF/Ofl = -E~a, 

c~sG EM(Y) 
a/~' ~ = 0  (BS) 

B'=# 

and the saddle condition on ai gives 

OSGI 
~aa ~,= = a ' ( f l ) = 0  (B9) 

so the system bounces to and from rest. 
Since the system is periodic in the bounce time fl, the latter is iden- 

tified with the inverse temperature of the system. The parameter fl is deter- 
mined self-consistently by integrating the saddle condition (B8): 

d a  ~ 2, 
~B . . . . .  x/a 2 -- n2a 4 q- EM(fl) 
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Horwitz and Weil have shown that nontrivial solutions exist for A < A C, 
where A,~ 100, i.e., H<lOmp. The de Sitter space is thus modified 
because of the nonvanishing of (EM). For small A, HW recover the 
Hawking entropy associated with the horizon (=~/H2), the area of the 
horizon. 
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