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First steps are taken toward a formulation of quantum mechanics which avoids the 
use of probability amplitudes and is expressed entirely in terms of observable 
probabilities'. Quantum states are represented not by state vectors or density 
matrices but by "probability tables," which contain only the probabilities of the 
outcomes of certain special measurements. The rule for computing transition 
probabilities, normally given by the squared modulus of the inner product of two 
state vectors, is re-expressed in terms of probability tables. The new version of the 
rule is surprisingly simple, especially when o n e  considers that the notion of com- 
plex phases, so crucial in the evaluation of inner products, is entirely absent from 
the representation of states used here. 

1. INTRODUCTION 

What is the origin of the structure of quantum mechanics? This is one of a 
number of deep questions John Wheeler has brought to our attention in 
recent years) ~) It can also be phrased this way: Why is nature so construc- 
ted that we find it convenient to describe it in terms of complex probability 
amplitudes? Perhaps some insight can be gained into this question if we 
consider what quantum mechanics looks like when it is n o t  expressed in 
terms of probability amplitudes. If, as Professor Wheeler has argued, the 
origin of quantum mechanics' structure is to be sought in a theory of obser- 
vation and observers and meaning, then we would do well to focus our 
attention not on amplitudes but on quantities which are more directly 
observable. My aim in doing the work presented here has been to express 
as much as possible of the physical content of quantum mechanics purely 
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in terms of probabilities, which are directly observable, rather than in terms 
of amplitudes. This aim is only partially fulfilled in the present paper: We 
express some but not all of the essential features of quantum mechanics in 
terms of probabilities. But this is only intended to be a beginning, and 
there is no obvious barrier in the path. 

It is obviously possible to devise a formulation of quantum mechanics 
without probability amplitudes. One is never forced to use any quantities in 
one's theory other than the raw results of measurements. However, there is 
no reason to expect such a formulation to be anything other than 
extremely ugly. After all, probability amplitudes were invented for a reason. 
They are not as directly observable as probabilities, but they make the 
theory simple. I hope to demonstrate here that one can construct a 
reasonably pretty formulation using only probabilities. It may not be quite 
as simple as the usual formulation, but it is not much more complicated. 

The key element in this no-amplitude formulation is the existence of 
what can be called "mutually unbiased" measurements. Loosely speaking, 
two measurements are mutually unbiased, in the sense used here~ if they are 
as noncommutative as two measurements can possibly be. For  example, in 
the case of a spin-l/2 particle, the measurements Sx and Sy are mutually 
unbiased: if the outcome of the measurement St  can be predicted with cer- 
tainty, then the two possible outcomes of Sy are equally likely. 

In order to construct the kind of formulation of quantum mechanics 
we want, we first need a way of expressing any quantum state in terms of 
probabilities. For any given system, we will select once and for all a par- 
ticular set of special "reference measurements" in terms of which all the 
states will be defined. For  each state, we imagine setting up a table as 
follows: each column of the table corresponds to one of the special 
reference measurements, and the entries in a given column are the 
probabilities of the outcomes of that particular measurement. Such a table 
of probabilities will be sufficient to define the state. Exactly how the 
reference measurements are chosen will be explained in detail later; in the 
simplest cases they are a set of mutually unbiased measurements. For 
example, we will take Sx, Sy, and Sz to be a set of reference measurements 
for spin-l/2 particles. 

We next need a way of computing the probability of a transition from 
one state to another when an appropriate measurement is performed. In 
the usual formulation this probability, for pure states, is equal to the 
squared modulus of the inner product of the two states vectors. In our for- 
mulation we have no state vectors but only probability tables. One might 
think it would be difficult to extract from these tables information which 
normally comes from the inner product, since the latter depends crucially 
on the complex phases of the state vectors' components. Surprisingly, it 
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turns out not to be particularly difficult. Equally surprisingly, one finds 
that the amount of work involved in computing these transition 
probabilities depends on whether the number of outcomes of a complete 
measurement on the system is prime or composite. 

One would like to go further and find out how to express in terms of 
probability tables the ordinary Schr6dinger evolution of a quantum state, 
which is normally given by a family of unitary operators. This work has 
not yet been done. Also, we restrict our attention here to systems with 
finite-dimensional state spaces, although I think an extension to the 
infinite-dimensional case ought to be possible. 

In Sect. 2 we first ask how many mutually unbiased 
measurements--that is, measurements all unbiased with respect to each 
other--we would like to be able to find for an N-dimensional state space, 
and we see that there do exist that many if N is prime. We discuss the 
representation of states by probability tables in Sec. 3, and the computation 
of transition probabilities in Sect. 4. Finally, in Sect. 5 we mention some of 
the mathematical coincidences that make our formulation possible. In 
order to save space, I will not include the proofs of all the results presented 
here. 

2. MUTUALLY UNBIASED MEASUREMENTS 

The concept of mutually unbiased measurements can be motivated by 
the following practical question: What is the best way to ascertain the 
quantum state of a given ensemble? The general problem of state deter- 
mination has been treated in Refs. 2 and 3. The idea of using mutually 
unbiased measurements has been developed by Ivanovic. ~31 

Consider, for example, an ensemble of neutral spin-l/2 particles. We 
do not know the state of the ensemble it may be pure or mixed--and 
would like to find it by making a series of measurements on the ensemble. 
We are interested only in the spin state and not the translational state; so 
we are looking for a 2 x 2 density matrix. Suppose we begin by measuring 
the z-component of spin of a large number of the particles. We find that 
60 % of them yield the value + 1/2 and 40 % yield the value - 1/2. So far 
we do not have enough information to determine the state. It takes three 
independent real numbers to define a 2 x 2 density matrix, and so far we 
have obtained only one, namely, the probability of the outcome Sz = +1/2. 
To get the second number we need to make a different measurement, say 
Sy, on another subensemble, and to get the third number we need to make 
a third measurement, say Sx, on a third subensemble. Once these 
measurements have been made, we will have enough information to deter- 
mine the state. 

825/16/4-8 
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It is helpful to analyze this spin-l/2 problem in more detail. A general 
2 x 2 density matrix can be written in the form 

p=bls ) { s l  + ( 1 - b ) I / 2  (1) 

where I is the identity matrix, Is) is a pure spin state, and b is a real num- 
ber such that 0 ~< b ~< 1. The quantity b can be thought of as the degree of 
purity of the state. Each state p can be represented by a point in the unit 
sphere in three dimensions: the distance of the point from the center is 
given by b, and the direction from the center is given by the unique unit 
vector n such that Is) is an eigenstate of n . a  with eigenvalue + 1. If a par- 
ticle in the state p is subjected to a measurement of, say, S= (where the z- 
axis is taken to be vertical), then the probability of the outcome S. = +1/2 
turns out to be equal to the height of the point representing p, measured 
from the level of the bottom of the sphere and measured in units of the 
sphere's diameter. Thus, if we perform the measurement Sz on a large sub- 
ensemble and find that two-thirds of the particles yield the outcome 
Sz= +1/2, we can conclude that the ensemble's "state-point" lies on a 
horizontal plane two-thirds of the way from the bottom of the sphere to the 
top. 

This way of representing states makes it easy to see how we can deter- 
mine the state of an ensemble from three different measurements performed 
on subensembles. Each measurement restricts p to a plane slice of the 
sphere. As long as the three axes along which the spin component is 
measured are not coplanar, the intersection of the three planes gives us the 
point representing the actual state of the ensemble. 

Thus, almost any choice of the three measurements will allow a deter- 
mination of the ensemble's state. However, if there is any error in our 
estimates of the probabilities--there will always be statistical error if the 
ensemble is finite--then not all triples of measurements are equally good. 
For example, if the three axes are not coplanar but make very small angles 
with each other, then each measurement gives practically the same infor- 
mation; the state-point is pinned down well in one dimension but hardly at 
all in the other two dimensions. Without going into a formal 
argument--because this is not the main point of the paper- - I  would like to 
suggest that it is best, in some reasonable sense of "best," to choose three 
axes that are mutually perpendicular. In that way each different 
measurement gives us as much new information as possible. Thus, the set 
of measurements consisting of Sx, Sy, and S~ is, I think, an optimal set for 
determining the density matrix. 

Let us now try to generalize these ideas to systems whose pure-state 
space has not just two dimensions but N dimensions. In that case the most 
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general state is given by an N x N density matrix, which requires N 2 -  1 
independent real numbers for its specification. Any single complete 
measurement--we will consider here only complete measurements, i.e., 
without degeneracy--has N possible outcomes, so it can gives us N - 1  
independent probabilities. Therefore, just on the basis of counting the num- 
ber of variables, we expect that the number of different measurements 
we need in order to determine the density matrix completely is 
(N z -  1 ) / ( N -  1), which equals N +  1. For example, when N equals 2, as for 
a spin-l/2 particle, we need to make three different measurements, as we 
have already seen. 

We are now faced with the question: What is the best choice of the 
N + I  measurements? As in the spin-l/2 case, we would like the 
measurements to be as different from each other as possible. I conjecture 
that the kind of difference we would most desire is expressed by the 
property of being mutually unbiased, which we now define. Let B and B' be 
two orthonormal bases for the N-dimensional state space. We will say these 
two bases are mutually unbiased if for every vector Iv) in B and every vec- 
tor Iv') in B', f (v[v ' ) f ' -=l /N.  Two measurements are defined to be 
mutually unbiased if the bases composed of their eigenstates are mutually 
unbiased. 

We would thus like to find, if possible, N + 1 bases for an N-dimen- 
sional state space, all unbiased with respect to each other. If such bases can 
be found, then the measurements to which they correspond will be as dif- 
ferent from each other as possible, and will constitute, I think, an optimal 
set of measurements for ascertaining the state of an ensemble. (t assume 
that every basis does correspond to a realizable measurement; i.e., there is 
no superselection rule.) In two dimensions, we have seen that it is possible 
to find N +  1 = 3 mutually unbiased bases. Here they are explicitly, in a 
particular representation: 

lli/ )' ( (21 -i/,/sJ; 
We now ask: Is it possible to find N +  1 mutually unbiased bases in N 
dimensions? 

I do not know the complete answer to this question. I do know that if 
N is a prime number, the answer is yes. The existence of the desired bases 
in that case has been demonstrated by Ivanovic (3) by explicit construction. 
Let B7 m be the lth component of the ruth vector in the nth basis. (Here 
l = 1 ..... N; m = 1,.., N; and n = 0,..., N.) For  prime values of N greater than 
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2, one can show by direct calculation that the following bases are all 
unbiased with respect to each other: 

B °m = 6,. l  

B ~ , .  1 [-2rci 3 : eXpL ,.t j (3t 
,IN 

1 L lvF2Tci ] B7 m = ~ exp 1--;7 n ( m  + l) 2 , for n = 1,.., N -  1 
dN 

This is obviously not the only possible set of N +  ! mutually unbiased 
bases. One can, of course, freely change the ordering of the vectors in each 
basis or the labelling of the bases themselves, and one can perform a 
simultaneous rotation on all the bases. Nevertheless, for the rest of this 
paper we will work only with the particular set of bases given above. This 
is done in the same spirit as choosing a coordinate system. 

Here are some interesting mathematical questions concerning mutually 
unbiased bases to which I do not know the answers. (1) When N is prime, 
can one find m o r e  than N + 1 mutually unbiased bases? I suspect not. (2) 
For a general composite N, what is the maximum number of mutually 
unbiased bases one can find? On the basis of trial and error, I would guess 
that the maximum number is less than N +  1 for all composite values of N, 
i.e., that the desired bases can be found if and only if N is prime. For our 
purpose, it turns out that the mutually unbiased bases for prime N are all 
we will need. 

Each of the above bases is supposed to correspond to a realizable 
measurement. It would be interesting to try to figure out how one might 
actually go about performing these measurements. In the case of spin-i/2 
particles, it is easy: one measures Sx, S~, and S: by appropriately rotating 
the spin of each particle before it enters the inhomogeneous field of a 
Stern-Gerlach magnet. For systems with larger N the problem is con- 
siderably more difficult, and I have not yet found any reasonably practical 
solution. 

3. THE REPRESENTATION OF QUANTUM STATES IN 
TERMS OF PROBABILITIES 

3.1. Prime-Dimensional State Space 

Let p be an N × N density matrix where N is prime. A system in the 
state p, when subjected to the nth measurement of Eq~ (2) or (3), will yield 
the ruth outcome with probability 
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N 

pnm= y~, Bnm*,, ~ m  k vkl'~l (4) 
k , l =  1 

From the set of all these prim'S, with n = 0,..., N and m = 1 ..... N, one can 
reconstruct the density matrix p as follows: 

Pkk = Po~ 
N N ( 5 )  

p ,=EY, . . . . .  * 
pnmBk B t , for k ¢ l  

n - -  1 m = l  

Equation (5) can be verified by substituting for the pnm'S the expressions 
given in Eq. (4) and for the B'm's the expressions given in Eqs. (2) and (3). 

Thus, for prime N, we can take the measurements defined by Eqs. (2) 
and (3) as our reference measurements, with respect to which any quantum 
state can be represented uniquely by a table of probabilities. Equations (4) 
and (5) provide a way of going back and forth between the representation 
of a state by a density matrix and its representation by a probability table. 
To give an example, in the case N =  3, the state 

is represented by the table 

1 0 O)  

p =  0 0 0 (6) 

0 0 0 

measurement 

0 1 2 3 

1 1 1/3 1/3 1/3 (7) 

outcome 2 0 1/3 1/3 1/3 

3 0 1/3 1/3 1/3 

Notice that the numbers in each column add to l, as they must since they 
are the probabilities of the three possible outcomes of a given reference 
measurement. Notice also that because this particular state is an eigenstate 
of measurement # 0, it has equal probabilities of all the possible outcomes 
of all the other measurements; this follows from the fact that the four 
reference measurements are mutually unbiased. 

Does every conceivable probability table correspond to a possible 
quantum state? The answer is no. There are certain restrictions that every 
realizable probability table must satisfy. Are these restrictions equalities or 
inequalities? Answer: The only equalities that must be satisfied are that the 
numbers in each column add to 1. Otherwise the restrictions are 
inequalities. These inequalities can be summarized in one requirement: The 
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probability table p must be such that the matrix p computed from it via 
Eq. (5) has no negative eigenvalues. 

It would be good to find a more direct statement of the inequalities 
which does not involve p. As a first step in this effort, we state here one of 
the required inequalities: the sum of the squares of all the elements of the 
table must be less than or equal to 2. This fact follows from the 
requirement of non-negative eigenvalues, but by itself it is not enough to 
guarantee the non-negativity. Incidentally, one can show that for any 
probability table which does correspond to an actual state, the sum of the 
squares equals 2 if and only if the state is pure. 

3.2. Composite-Dimensional State Space 

When N is not prime, the construction given in Eq. (3) does not yield 
a set of mutually unbiased bases. We therefore need to generalize our 
means of choosing a set of reference measurements. 

Our approach will be to treat every system having a composite-dimen- 
sional state space as if it were a composite system. That is, only systems 
with prime N will be treated as truly fundamental and indivisible. It may 
well be that nature is actually structured in that way. Our approach is cer- 
tainly most appealing if that is the case, and it does not seem improbable 
that it is. However, even if there do exist fundamental systems with com- 
posite N, it is still possible to treat them as if they had components. In the 
case of a spin-3/2 particle, for example, the particle's four-dimensional state 
space could be factorized into two two-dimensional factor spaces, such that 
the operator "sign of S=" acts only on one of these spaces, and the operator 
"magnitude of Sz" acts only on the other. These two smaller spaces could 
be thought of as belonging to two subsystems, which together constitute 
the original spin-3/2 particle. In this spirit, we will regard any system for 
which N has f prime factors as a composite system consisting of f 
primitive subsystems. 

The reference measurements for composite systems are chosen as 
follows. Imagine performing on every primitive subsystem a reference 
measurement for that subsystem, chosen from the set specified in Sect. 3.1. 
The performance of all these measurements, i.e., one on each subsystem, is 
counted as a reference measurement on the whole system, and every 
reference measurement is constructed in this way. Thus, if N = NI N~..N I ,  
where each N i is prime, the total number of reference measurements on the 
whole system is (N1 + 1)(N 2 -t- 1 ) ' "  (Nf-I- 1), since there are N i +  1 
reference measurements for the ith subsystem. 

Consider for example a system consisting of an electron and a proton; 
as always we consider only the spin state. For this system we have 
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N 1 = N 2 = 2 and N =  4. A typical reference measurement would consist of 
performing a measurement of, say, Sy on the electron and Sx on the 
proton. There are altogether nine different reference measurements, each of 
which has four possible outcomes, so we can imagine constructing a 
probability table having nine columns and four rows. As we will see 
shortly, such a table contains a complete description of the system's state. 

For  a general composite system, each of the reference measurements 
has eigenstates of the form 

B , q  ml l~n2m2 . . . B n s m :  ( 8 )  
Vl I "'" If = II ~12 tf 

Here each n~ has a value from 0 to N i ,  and the ordered set ( n l , . .  . t / f )  labels 
the measurement: it says we are performing the n~ th reference 
measurement on the first subsystem, the n2th on the second, and so on. 
Each mi has a value from 1 to N, and the ordered set (m~ ..... my) labels the 
particular outcome, or particular eigenvector, of the measurement. The l{s 
label the components of this eigenvector. The components of the density 
matrix of the composite system can be labelled as 

P k , ' " k f : l l ' " l f ,  where ki, l i= 1,..., Ni (9) 

When the measurement (nl ..... hi) is performed on the state p, the 
probability of the outcome (ml,..., mr) is 

P n l " ' ' n f : m l ' ' ' m f  = ~ 2 (B~llml n m * .. n l m l , . .  B T f m s )  ""  B ~  ~) Pkl. kf;~l.-.ls(Bll 'I 
k~,..., kf t~,..., 9 

(lO) 

Equation (10) tells us how to go from the density matrix of a state to its 
probability table. As in the case of prime N, we would like to have a 
prescription for going the other direction, i.e., for recovering the density 
matrix p from the p's. The prescription turns out to be very similar to that 
given in Eq. (5): 

Nt NI 

n l = l  nf= l ml--1 mf= l 

× (B~l, m l ' "  B~ms)(Btl Im'' '" B~mO * (11) 

if k i # l i  for each i = 1  ..... f For  each value of i for which k i= l i ,  one 
eliminates the sum over ni and replaces ni in the summand by zero. 
Equation (11) is our guarantee that the probability table contains all the 
information o.ne needs to determine the state. 

Again we need to address the question: what restrictions must one 
impose on a probability table in order to ensure that it corresponds to a 
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genuine quantum state? As before, there will be some equalities and some 
inequalities. Here are the equalities that must be satisfied: 

(i) The probabilities of the outcomes of reference measurements per- 
formed on any subset of the f primitive subsystems cannot depend on the 
choice of measurements on the other subsystems. For example, the reduced 
probability table obtained by summing Pnl"'nf;ml"'mf o v e r  m e cannot 
depend on hi. 

(ii) For each measurement (n 1,..., nf), the sum over all possible out- 
comes, ~m I ...... e Pn~''ne,m~"'mj, must equal 1. 

One can show quite generally, i.e., not necessarily in the context of quan- 
tum mechanics, that a probability table satisfying the above two restric- 
tions contains exactly N 2 -  1 independent real numbers. This is precisely 
the number needed to specify a general quantum state. 

There are still some inequalities that any legitimate probability table 
must satisfy. As before, these can be summarized by saying that the matrix 
p defined by Eq. (11) must have no negative eigenvalues. 

3.3. Systems of Identical Particles 

When a system contains identical particles, it is no longer true that 
one needs N 2 -  1 numbers to specify a state of the system. Consider, for 
example, a system of two electrons. If they were not identical, the spin state 
of this system would be described by an ordinary 4 x 4 density matrix. 
However, because of the indistinguishability, odd and even spin states must 
be correlated to spatial states of different parity, so they cannot be 
coherently superposed. This means that the density matrix for the spin, 
written in the usual singlet-triplet basis, must be block diagonal, containing 
a 3 x 3 block and a 1 x 1 block. (We do not consider here the description of 
the spatial part of the state.) The number of independent numbers in such a 
density matrix is not 4 2 -  1 = 15, but only 9. 

In such a case, our description of states in terms of probability tables 
is modified only slightly. We require the probability table to be invariant 
under the interchange of identical particles; in other respects the descrip- 
tion is the same as before. For example, in the two-electron case, we 
require that p,ln2;m~,~2=pn2n~;,~2ml; one can convince oneself that this 
restriction does indeed cut the number of independent variables from 15 to 
9. Quite generally, one can show that for any system containing identical 
particles, every unsymmetrized but otherwise legitimate probability table 
yields, upon symmetrization, a table corresponding to a legitimate sym- 
metrized density matrix. This would obviously be true if we were requiring 
that no measurement show any difference among the indistinguishable par- 
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ticles. But we are only requiring that none of the reference measurements 
show any difference among the particles. This restriction turns out to be 
enough. 

4. CALCULATION OF TRANSITION PROBABILITIES 

Suppose a system in state S is subjected to a measurement one of 
whose eigenstates is a different state S'. What is the probability P(S ~ S') 
that the outcome corresponding to S' will occur? This probability is nor- 
mally obtained by taking the trace of pp', where p is the density matrix of 
the original state S and p' is the density matrix of the pure state S'. How 
do we express this same transition probability in terms of probability 
tables? 

If the system is primitive, the answer could hardly be simpler. Let P,m 
and p',,~ be the probability tables for the two states S and S'. The transition 
probability P ( S ~  S') turns out to be given by 

P(S ~ S')= P,mP'm --1 (12) 
n 0 m = l  

The remarkable simplicity of this result is the main advantage of using 
mutually unbiased measurements to define states, rather than some equally 
complete but different set of measurements. The advantage is analogous to 
that gained by using an orthogonal coordinate system, as opposed to an 
oblique coordinate system, to analyze a problem in, say, classical 
mechanics. 

For composite systems, the calculation of transition probabilities is 
somewhat more complicated, but it is still reasonably simple considering 
that we are working only with probabilities and not with amplitudes. To 
simplify the notation let us define the symbol [-p, p ' ]  to mean the sum of 
products of corresponding terms of the probability tables p and p'. That is, 

[P, P'] = Z "'" ~ "'" p,,...,,.;ml...m:p',l...,,;ml...m i (13) 
n l : O  nf--O m l = l  mf=l 

The quantity [p, p ' ]  has the following interpretation: it is the sum, over all 
reference measurements, of the probability that the primed and unprimed 
states will yield exactly the same outcome. We can call [-p, p ' ]  the "coin- 
cidence sum" for the two states. 

Let us denote by ~ the reduced probability table obtained from p by 
summing over mi. It gives the probabilities of the outcomes of all 
measurements which do not involve the ith primitive subsystem. For exam- 
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ple, lpn2...nf;m2...mf=~m I Pnl""nf;ml""mf is the probability of getting the out- 
come ( m  2 ..... mf) when the measurement (n>..., nj) is performed on sub- 
systems 2 through f As we have mentioned before, this probability is 
independent of what measurement is made on subsystem 1. Likewise, op is 
the table obtained from p by summing over mi and mj, and the analogous 
symbols with more indices are defined similarly. 

The transition probability between two states S and S' of a general 
system, with probability tables p and p', turns out to be given by the 
following combination of coincidence sums: 

f f 
P(S' -~S ' )={P,P'}=-[P,P']  - Z [ip, ip,]+ • [Up,~p,] . . . .  + ( _ l ) f  

i = 1  i , j=  1 

i<j (14) 

The last term comes from ( - 1 )  f [ L.,fp, 1....,@,], but in this expression each 
of the "tables" ' in the brackets consists of the single number 1, so the 
bracket also equals 1. Equation (14) is the main result of this paper. Notice 
that Eq. (12) is a special case of Eq. (14). 

We have been thinking of the state S' as a pure state, so that it could 
be an eigenstate of a measurement. It happens, not surprisingly, that 
{p, p'} is always equal to the trace of pp', even when both states are 
mixed. 

5. DISCUSSION 

We have seen how to represent a general quantum state (of a system 
with a finite-dimensional state space) by a "probability table," and how to 
compute the transistion probability between two states from their 
probability tables. As a by-product, we have obtained a prescription, 
Eq. (11), for finding the density matrix of an arbitrary system directly from 
measurable probabilities. 

It is interesting to list some of the mathematical facts that have 
allowed us to write down at least this much of quantum mechanics purely 
in terms of probabilities. 

(i) The number of real numbers needed to specify a quantum state, 
N 2 -  1, divided by the number of numbers obtainable from a given 
measurement, N - 1 ,  happens always to be an integer. This means that of 
the data collected from the N + 1 reference measurements, N being prime, 
every available number has to be used. There are no redundant variables 
in the data. Thus our probability tables were ' just the right size" for 
specifying a state. 
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(ii) It happens that for an N-dimensional complex vector space, with 
N prime, there are N + 1 mutually unbiased bases, exactly as many as we 
needed. 

(iii) For  composite systems, it was not surprising that for every 
legitimate probability table, the results of measurements on part of the 
system did not depend on the choice of measurement performed on the rest 
of the system. This property is, after all, the reason we cannot use the 
violation of Bell's inequality to transmit information faster than light. (4~ We 
noted that this requirement, along with the obvious requirement that the 
sum of the probabilities of all the outcomes of a measurement be equal to 
1, reduced the number of independent numbers a table could contain down 
to N 2 -  1, which is precisely the number needed to specify a state. This 
agreement between "numbers obtainable" and "numbers needed" allowed 
us to apply to the treatment of composite systems the results we had 
obtained for primitive systems. 

Let me pursue this last point a little further. Consider a hypothetical 
world where, as in the quantum mechanics of our world, one needs to per- 
form several different measurements on an ensemble in order to determine 
its state. Let g(N) be the number of different measurements needed if 
each measurement has N possible outcomes. (For quantum mechanics, 
g(N) = N+ 1.) Suppose further that, as in quantum mechanics, none of the 
( N -  1) g(N) independent probabilities obtained from these measurements 
is redundant; it takes exactly that many numbers to determine the state. 

In such a world, let Z~ and Z2 be two systems, having respectively N1 
and N2 possible outcomes of a complete measurement. Let M, be a set of 
g(N1) measurements sufficient for the determination of the state of Z1, and 
let M2 be an analogous set for Z2. Suppose we now insist that, as in quan- 
tum mechanics, one can obtain a complete determination of the state of the 
composite system Z~ + Z2, with no redundant numbers, 2 by performing on 
an ensemble of such systems every possible combination of a measurement 
from M1 and a measurement from M2. Assuming as usual that the choice 
of measurement on one subsystem does not affect the other, one can show 

2 Given the fact that the choice of measurement  on one subsystem cannot  influence another  
subsys tem-- le t  us call this "the causality condi t ion"- -an  experimenter using our  method of 
determining an ensemble's state knows from the outset that not all the probabilities he 
obtains are going to be independent of each other. But this lack of independence, arising 
from the causality condition, is not  what we are calling "redundancy." Rather, we imagine 
that the experimenter will select from his data a maximal  set of numbers  which are logically 
independent, even given the causality condition. If it turns out  that, because of the laws of 
physics, some of these numbers  do in fact depend on each other, then we call these numbers  
redundant.  
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that the number of independent probabilities obtainable from these 
measurements is 

(N1 - 1 ) g(Nx ) + (N2 - 1 ) g(N2) + (N~ - 1 )(N2 - 1 ) g(N1 ) g(N2) (15) 

On the other hand, according to our assumptions, the number of indepen- 
dent numbers needed to specify the state of Z1 + Zz is 

(N1N 2 - 1) g(N1N2) (16) 

Therefore, if the measurements are to give a complete and nonredundant 
characterization of the state, we must have 

( N 1 -  1) g(N 1)+ (N2-  1) g(U2)+ ( N ~ -  1)(N2- !) g(U~) g(N2) 

= (NIN2 - 1) g(NIN2) (17) 

In any world in which our assumptions are satisfied, the positive- 
integer-valued function g(N) must satisfy Eq. (17) for all positive integers 
N~ and N 2. We can think of Eq. (17) as follows: it is the condition that 
must be satisfied in order that those measurements which are just sufficient 
for determining the states of the subsystems are, when performed jointly, also 
just sufficient for determining the state of the whole system. In quantum 
mechanics, g ( N ) = N +  1, which does satisfy Eq. (17). Another solution is 
g(N) = 1, which corresponds to a world where on each system there is only 
one complete measurement that can be performed. Such a world could be 
called "classical," although it differs from the world of classical physics in 
that the outcomes are discrete. Any function g(N) of the form 
g(N) = Z ~ = o  Nk is also a solution of Eq. (17). It would be interesting to 
know if there are any other solutions. In any case, the fact that the g(N) 
for quantum mechanics does satisfy Eq. (17) made it possible for us to treat 
composite systems as we did. 

In conclusion, we have here the beginning of a formulation of quan- 
tum mechanics expressed purely in terms of quantities which are in prin- 
ciple directly observable. The way in which states are represented is quite 
different from that of the usual formulation, and the rule for computing 
transition probabilities also looks quite different. But the physical content 
is the same. The question, "why complex amplitudes?," could therefore be 
rephrased to read, "why does the transition rule involve the particular com- 
bination of probabilities given by {p,p'}?" The restatement may or may 
not be easier to answer than the original question. It certainly gives us a 
new perspective on the problem. 
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